[go: up one dir, main page]

JP2018522237A - パワーゲーティングデバイスのドレイン−ソース間電圧から導出された電圧に補償済み利得を適用することで負荷電流を測定するための装置及び方法 - Google Patents

パワーゲーティングデバイスのドレイン−ソース間電圧から導出された電圧に補償済み利得を適用することで負荷電流を測定するための装置及び方法 Download PDF

Info

Publication number
JP2018522237A
JP2018522237A JP2018500576A JP2018500576A JP2018522237A JP 2018522237 A JP2018522237 A JP 2018522237A JP 2018500576 A JP2018500576 A JP 2018500576A JP 2018500576 A JP2018500576 A JP 2018500576A JP 2018522237 A JP2018522237 A JP 2018522237A
Authority
JP
Japan
Prior art keywords
voltage
power gating
coupled
fet
input
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2018500576A
Other languages
English (en)
Other versions
JP6389020B2 (ja
Inventor
ニックス、マイケル・アーン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qualcomm Inc
Original Assignee
Qualcomm Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Inc filed Critical Qualcomm Inc
Publication of JP2018522237A publication Critical patent/JP2018522237A/ja
Application granted granted Critical
Publication of JP6389020B2 publication Critical patent/JP6389020B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/32Compensating for temperature change
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/0092Arrangements for measuring currents or voltages or for indicating presence or sign thereof measuring current only

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Amplifiers (AREA)
  • Measurement Of Current Or Voltage (AREA)
  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Testing Of Individual Semiconductor Devices (AREA)

Abstract

1つ又は複数の集積回路コアに供給される負荷電流を測定するための装置及び方法が開示される。装置は、ゲート、ソース、及びドレインを備えるパワーゲーティング電界効果トランジスタ(FET)と、ここにおいて、ソースは、電圧レールに結合され、ドレインは、負荷に結合され、ゲートは、負荷電流が電圧レールと負荷との間を流れることを可能にするためにパワーゲーティングFETを選択的にオンにするためのゲーティング電圧を受けるように構成される、パワーゲーティングFETのドレイン−ソース間電圧に基づいて利得を入力電圧に適用することで負荷電流に関する電流関連電圧を生成するように構成された差動増幅器と、ここにおいて、利得は、パワーゲーティングFETのゲート−ソース間電圧の又は温度変化に応答して入力電圧に反比例して変化する、を含む。
【選択図】 図2

Description

関連出願への相互参照
[0001]本出願は、2015年7月8日に米国特許商標庁に出願された非仮出願第14/794,496に対する優先権及びその利益を主張し、その全内容は、参照によって本明細書に組み込まれる。
[0002]本開示の態様は一般に、負荷電流を測定することに関し、より具体的には、1つ又は複数のパワーゲーティングデバイスのドレイン−ソース間電圧から導出された電圧に補償済み利得を適用することで負荷電流を測定するための装置及び方法に関する。
[0003]集積回路(IC)の1つ又は複数のコアに供給される電流は典型的に、パワーゲーティング回路を介してゲーティングされる。パワーゲーティング回路は典型的に、電圧レール(Vdd)とICの1つ又は複数のコアとの間に並列に接続された(ブロックヘッドスイッチ(BHS)とも呼ばれる)1つ又は複数のパワーゲーティングデバイス(例えば、PMOSデバイス)を備える。1つ又は複数のコアに電力を選択的に供給するために、PMOSデバイスのゲート電圧は、デバイスをオンにして、電流が1つ又は複数のコアに流れることを可能にするために略ゼロ(0)ボルトに設定され得、ゲート電圧は、デバイスをオフにして、電流が1つ又は複数のコアから流れるのを防ぐためにVdd前後に設定され得る。
[0004]多くのアプリケーションでは、1つ又は複数のコア(「負荷電流」)に供給される電流は、ICが安全に動作され得るように及び/又は他の目的で測定及び制御され得る。負荷電流を測定する1つの方法は、1つ又は複数の並列PMOSデバイスにわたってドレイン−ソース間電圧(Vds)を検知することである。1つ又は複数のPMOSデバイスのドレイン−ソース間抵抗(Rds)が一定であると仮定すると、Vdsの検知は、負荷電流を示すインジケーションを提供する。
[0005]しかしながら、1つ又は複数のPMOSデバイスのRdsは、温度によって及びゲート−ソース間電圧(Vgs)によって変化する。Vgsは、異なるアプリケーションに対するVddの意図的な変化により変化し得る。Rdsが温度及びVgsによって変化するため、負荷電流を決定するために1つ又は複数のPMOSデバイスのVdsを検知するだけでは、電流測定に誤りを生じさせる。
[0006]1つ又は複数の実施形態の基本的な理解を提供するために、そのような実施形態の簡略化された概要を以下に提示する。この概要は予期される全ての実施形態の広範な概観ではなく、全ての実施形態の重要な又は不可欠な要素を識別するようにも、任意又は全ての実施形態の範囲を線引きするようにも意図されない。その唯一の目的は、後に提示されるより詳細な説明への前置きとして、1つ又は複数の実施形態のいくつかの概念を簡略化された形式で提示することである。
[0007]本開示のある態様は、負荷電流を測定するための装置に関する。装置は、ゲート、ソース、及びドレインを含むパワーゲーティング電界効果トランジスタ(FET)を備え、ここにおいて、ソースは、電圧レールに結合され、ドレインは、負荷に結合され、ゲートは、負荷電流がパワーゲーティングFETを経由して電圧レールと負荷との間を流れることを可能にするためにパワーゲーティングFETを選択的にオンにするためのゲーティング電圧を受けるように構成される。装置は、パワーゲーティングFETのドレイン−ソース間電圧に基づいて利得を入力電圧に適用することで、負荷電流に関する電流関連電圧を生成するように構成された差動増幅器を更に備え、ここにおいて、利得は、パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して入力電圧に反比例して変化する。
[0008]本開示の別の態様は、負荷に供給される負荷電流に関する電流関連電圧を生成する方法に関する。方法は、電圧レールと負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧を生成することを備える。方法は、電流関連電圧を生成するために利得で入力電圧を増幅することを更に備え、ここにおいて、利得は、パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して入力電圧に反比例して変化する。
[0009]本開示の別の態様は、負荷電流を測定するための装置に関する。装置は、電圧レールと負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧を生成するための手段を備える。装置は、電流関連電圧を生成するために利得で入力電圧を増幅するための手段を更に備え、ここにおいて、利得は、パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して入力電圧に反比例して変化する。
[0010]上述した目的及び関連する目的を達成するために、1つ又は複数の実施形態は、以下に十分に説明され、かつ特許請求の範囲において具体的に示される特徴を備える。以下の説明及び添付の図面は、1つ又は複数の実施形態の実例となる特定の態様を詳細に示す。しかしならが、これらの態様は、様々な実施形態の原理が用いられ得る様々な方法のほんの一部だけを示し、説明の実施形態は、そのような態様及びそれらの等化物の全てを含むよう意図される。
[0011]図1は、本開示のある態様に係る、1つ又は複数のパワーゲーティング回路を介して負荷電流を測定及び制御するための例示的な装置のブロック図である。 [0012]図2は、本開示の別の態様に係る、負荷電流に関する信号を生成するための例示的な装置の略図である。 [0013]図3は、本開示の別の態様に係る、図2に示される装置に関連付けられた例示的な電流関連電圧対負荷電流応答のグラフである。 [0014]図4は、本開示の別の態様に係る、負荷電流を測定するための別の例示的な装置の略図である。 [0015]図5は、本開示の別の態様に係る、図4の装置に関連付けられた例示的な電流関連電圧対負荷電流応答の別のグラフである。 [0016]図6は、本開示の別の態様に係る、負荷電流を測定するための別の例示的な装置の略図である。 [0017]図7は、本開示の別の態様に係る、例示的な可変補償PMOS回路の略図である。 [0018]図8は、本開示の別の態様に係る、負荷電流を測定するための例示的な装置の略図である。 [0019]図9は、本開示の別の態様に係る、負荷電流を測定するための例示的な装置の略図である。 [0020]図10は、本開示の別の態様に係る、負荷電流を測定するための例示的な方法のフロー図である。
発明の詳細な説明
[0021]添付の図面に関連して以下に示される詳細な説明は、様々な構成の説明として意図されており、本明細書で説明される概念が実践され得る唯一の構成を表すよう意図されるものではない。詳細な説明は、様々な概念の完全な理解を提供するために特定の詳細を含む。しかしながら、これらの概念がこれらの特定の詳細なしに実践され得ることは当業者には明らかであろう。いくつかの事例では、そのような概念を曖昧にしないために、周知の構造及び構成要素はブロック図の形式で示される。
[0022]図1は、本開示のある態様に係る、負荷電流を測定及び制御するための例示的な装置100のブロック図である。要するに、装置100は、1つ又は複数のパワーゲーティング回路を経由して負荷に供給される電流(「負荷電流」)に関する(例えば、略比例する)電流関連信号を生成する。
[0023]コントローラは、電流関連信号を受け、この電流関連信号に基づいて任意の数の定義された動作を実行する。例えば、コントローラは、例えば、ICの温度が高すぎる(例えば、定義された閾値を上回る)とき、IC保護の目的で負荷電流を制御し得る。代替的に又は加えて、コントローラは、様々な電力消費モード(例えば、低電力消費、通常動作電力消費、等)間でICを設定するように負荷電流を制御し得る。コントローラが他の目的で負荷電流を制御し得ることは理解されるものとする。
[0024]コントローラは、例えば、負荷に供給されるレール電圧Vddを増加又は低減することで、負荷電流を制御し得る。代替的に又は加えて、コントローラは、電流を負荷に供給する1つ又は複数のパワーゲーティング回路をイネーブル又はディセーブルにすることで、負荷電流を制御し得る。代替的に又は加えて、コントローラは、負荷に供給されるクロック信号のレート又は周波数を増加又は低減することで、負荷電流を制御し得る。コントローラが他の方法で負荷電流を制御し得ることは理解されるものとする。
[0025]図1を参照すると、装置100は、集積回路(IC)の1つ又は複数のコアのような負荷110を備える。装置100は、パワーゲーティング回路120A及び120Bのような1つ又は複数のパワーゲーティング回路を更に備える。追加的に、装置100は、電圧検知回路130A及び130Bのような1つ又は複数の電圧検知回路を備える。更に、装置100は、負荷電流コントローラ140を備える。
[0026]パワーゲーティング回路120A及び120Bの各々は、電圧レールVddと負荷110との間に結合される。それぞれのゲーティング電圧VGA及びVGBに応答して、パワーゲーティング回路120A及び120Bは、負荷電流ILA及びILBが電圧レールVddから負荷110に流れることを可能にする又は可能にしない。例えば、パワーゲーティング回路120A及び120Bの各々は、電圧レールVddと負荷110との間に並列に結合された、p型金属酸化膜半導体(PMOS)電界効果トランジスタ(FET)(「PMOSデバイス」)のような複数のFETから形成され得る。ゲーティング電圧VGA及びVGBは、それぞれ、パワーゲーティング回路120A及び120Bの並列PMOSデバイスのゲートに印加される。
[0027]ゲート電圧VGA及びVGBが、低くなる(例えば、接地電位になる)ように選択されるとき、パワーゲーティング回路120A及び120BのPMOSデバイスは、負荷電流ILA及びILBが電圧レールVddから負荷110に流れることを可能にするためにオンにされる。ゲート電圧VGA及びVGBが、高くなる(例えば、Vddになる)ように選択されるとき、パワーゲーティング回路120A及び120BのPMOSデバイスは、負荷電流ILA及びILBが負荷110に流れるのを防ぐためにオフにされる。この例では、パワーゲーティング回路120A及び120Bは、PMOSデバイスを用いるが、回路120A及び120Bがn型金属酸化膜半導体(NMOS)デバイスを用い得ることは理解されるものとする。更に、この例では、装置100は、2つのパワーゲーティング回路120A及び120Bを備えるが、装置100が任意の数のパワーゲーティング回路を備え得ることは理解されるものとする。
[0028]電圧検知回路130A及び130Bは、それぞれ、負荷110に供給される負荷電流ILA及びILBに関する入力電圧VIA及びVIBを受ける目的でパワーゲーティング回路120A及び120Bに結合される。電圧検知回路130A及び130Bは、次に、それぞれ、負荷電流ILA及びILBを示す電流関連デジタル信号DSA及びDSBを生成する。更に本明細書でより詳細に述べるように、電圧検知回路130A及び130Bは、それぞれ、入力電圧VIA及びVIBを増幅することと、増幅された電圧をデジタル化することとによって、電流関連信号DSA及びDSBを生成する。
[0029]コントローラ140は、電流関連信号DSA及びDSBを受け、この電流関連信号DSA及びDSBに基づいて負荷電流制御信号を生成する。コントローラ140は、任意の数の目的のために、負荷電流ILA及びILBのうちの一方又は両方を制御するための制御信号を生成する。例えば、前述したように、コントローラ140は、過度温度からIC110を保護するため、ICの電力消費モードを設定するため、及び他の目的のために制御信号を生成し得る。追加的に、前述したように、コントローラ140は、レール電圧Vddを制御するために、ゲーティング信号VGA及びVGBを介してパワーゲーティング回路120A及び120Bのうちの任意のものをイネーブル又はディセーブルにするために、又はIC110に供給されるクロック信号(図示されない)のレート又は周波数を制御するために制御信号を生成し得る。
[0030]図2は、本開示の別の態様に係る、負荷電流に関する信号を生成するための例示的な装置200の略図である。装置200は、それぞれ、パワーゲーティング回路120A又は120B及び電圧検知回路130A又は130Bのより詳細な例示的な実施を含む。
[0031]より具体的には、装置200は、ICコアのような、電圧レールVddと負荷210との間に結合されたパワーゲーティング回路(PGC)220を備える。この例では、パワーゲーティング回路220は、電圧レールVddに結合されたソースと、ゲーティング電圧Vを受けるように構成されたゲートと、負荷210に結合されたドレインとを備えるPMOS FETすなわちデバイスP1を備える。前述したように、ゲーティング電圧Vが、低くなる(例えば、接地電位になる)ように選択されるとき、PMOSデバイスP1は、負荷電流Iが電圧レールVddから負荷210に流れることを可能にするためにオンにされる。ゲーティング電圧Vが、高くなる(例えば、Vddになる)ように選択されるとき、PMOSデバイスP1は、負荷電流Iが負荷210に流れるのを防ぐためにオフにされる。前述したように、大半の実施では、パワーゲーティング回路220は、必要とされる負荷電流を負荷210に供給するために、並列に結合された複数の(例えば、数十の又は数百の)PMOSデバイスを備える。
[0032]装置200は、PMOSデバイスP1のソース及びドレインにまたがって電圧(本明細書ではドレイン−ソース間電圧(Vds)と呼ばれる)を受け、このVdsに基づいて電流関連デジタル信号Dを生成するように構成された電圧検知回路230を更に備える。具体的には、電圧検知回路230は、差動増幅器232とアナログ/デジタル変換器(ADC)236とを備える。差動増幅器232は、正(+)の入力及び負(−)の入力並びに正の出力及び負の出力を含む演算増幅器234を備える。差動増幅器232は、演算増幅器234の負の出力と正の入力との間に結合された第1のフィードバック抵抗器R2Aと、演算増幅器234の正の出力と負の入力との間に結合された第2のフィードバック抵抗器R2Bとを更に備える。追加的に、差動増幅器232は、PMOSデバイスP1のソースと演算増幅器234の正の入力との間に結合された第1の入力抵抗器R1Aと、PMOSデバイスP1のドレインと演算増幅器234の負の入力との間に結合された第2の入力抵抗器R1Bとを備える。
[0033]負荷電流Iに関する電圧を生成するために、差動増幅器232は、それぞれ入力抵抗器R1A及びR1Bを経由して演算増幅器234の正の入力及び負の入力に適用されるドレイン−ソース間電圧Vdsに固定の利得Gを適用することで、その正の出力及び負の出力にわたって電流関連電圧Vsを生成するように構成される。差動増幅器232は、次の式に従って電流関連電圧Vsを生成する:
Figure 2018522237
差動増幅器232の利得Gは、次の式によって求められる:
Figure 2018522237
ここで、R1は、第1の入力抵抗器R1A及び第2の入力抵抗器R1Bの各々の抵抗であり(抵抗R1は、両方について略同じである)、R2は、第1のフィードバック抵抗器R2A及び第2のフィードバック抵抗器R2Bの各々の抵抗である(抵抗R1は、両方について略同じである)。故に、式1及び2を組み合わせることで、電流関連電圧Vsは、次の式によって表され得る:
Figure 2018522237
[0034]PMOSデバイスP1のドレイン−ソース間電圧Vdsは、次の式によって表され得る:
Figure 2018522237
ここで、Iは、PMOSデバイスP1を通る負荷電流であり、Rdsは、PMOSデバイスP1のドレイン−ソース間抵抗である。式3及び4を組み合わせることで、電流関連電圧Vsは、次の式によって表され得る:
Figure 2018522237
故に、式5によって示されるように、電流関連電圧Vsは、負荷電流Iに関する。パラメータR2/R1及びRdsが一定のままであると仮定すると、電流関連電圧Vsは、負荷電流Iに比例し、故に、電流関連電圧Vsは、負荷電流Iを示すインジケーションを提供する。ADC236は、前述したように、負荷電流コントローラが使用するための電流関連デジタル信号Dsを生成するために、電流関連電圧Vsをデジタル化する。
[0035]電圧検知回路230に関する1つの課題は、PMOSデバイスP1のドレイン−ソース間抵抗Rdsが、PMOSデバイスP1のゲート−ソース間電圧Vgs及び温度によって変化することである。PMOSデバイスP1のゲート−ソース間電圧Vgsは、レール電圧Vddの意図的な変化によって変化し得る。例えば、レール電圧Vddは、低、通常、又は高(ブースト)電力消費モード間で負荷210を設定することのような、異なるアプリケーションに対して意図的に変化し得る。Rdsが温度及びVgsによって変化するため、電流関連電圧Vsは、もはや負荷電流Iに比例せず、故に、電流関連電圧Vsは、負荷電流Iを示す正確なインジケーションを提供しない。これは、図3に描写されるグラフを参照して更に例示される。
[0036]図3は、本開示の別の態様に係る、装置200に関連付けられた例示的な電流関連電圧Vs対負荷電流I応答のグラフである。x軸すなわち水平軸は、負荷電流Iを表し、y軸すなわち垂直軸は、電流関連電圧Vsを表す。この例では、Vs対I応答は、パワーゲーティングPMOSデバイスP1の3つの異なる温度(摂氏35、70、及び105度)及び3つの異なるゲート−ソース間電圧Vgs(0.7、0.925、及び1.15ボルト(V))について例示される。
[0037]前述したように、電流関連電圧Vsが、負荷電流Iを示す正確なインジケーションを提供するためには、電流関連電圧Vsは、負荷電流Iに対して略線形に変化しなければならない。故に、PMOSデバイスP1のVgs及び温度の変化がある場合でも、電流関連電圧Vsが、負荷電流Iに対して線形に又は比例して変化することが望ましいであろう。しかしながら、これは、装置200には当てはまらない。図3に示されるように、電流関連電圧Vsは、負荷電流Iが一定のままであるにもかかわらず、Vgsに反比例して変化する。同様に、電流関連電圧Vsは、負荷電流Iが一定のままであっても、Vgsが0.925Vであり及び1.15Vである場合には、温度と同じ方向に変化し、Vgsが0.7Vである場合には、温度に反比例して変化する。前述したように、これは、装置200によって実行される電流測定に誤りを引き起こす。
[0038]図4は、本開示の別の態様に係る、負荷電流Iを測定するための別の例示的な装置400の略図である。装置400は、1つ又は複数のICコアのような負荷410と電圧レールVddとの間に結合されたパワーゲーティング回路(PGC)420を備える。この例では、パワーゲーティング回路420は、電圧レールVddに結合されたソースと、負荷410に結合されたドレインと、ゲーティング電圧Vを受けるように構成されたゲートとを含むPMOSデバイスP1を備える。前の実施形態にあるように、ゲーティング電圧Vは、PMOSデバイスP1をオンにして、負荷電流IがPMOSデバイスP1を経由して電圧レールVddから負荷410に流れることを可能にするために低い電圧(例えば、接地電位)に設定される。ゲーティング電圧Vは、PMOSデバイスP1をオフにして、負荷電流Iが負荷410に流れるのを防ぐために高い電圧(例えば、Vdd)に設定される。
[0039]パワーゲーティング回路420が、電圧レールVddと負荷410との間に並列に結合された複数の(例えば、数十又は数百の)PMOSデバイスとして実施され得ることは理解されるものとする。代替的に、パワーゲーティング回路420は、電圧レールVddと負荷410との間に並列に結合された複数の(例えば、数十又は数百の)NMOSデバイスとして実施され得る。
[0040]装置400は、PMOSデバイスP1のドレイン−ソース間電圧(Vds)を受け、PMOSデバイスP1のドレイン−ソース間電圧Vdsに基づいて電流関連電圧Vsを生成するように構成された第1の入力及び第2の入力を含む差動増幅器432を更に備える。このケースでは、差動増幅器432は、PMOSデバイスP1のゲート−ソース間電圧Vgsの変化及び/又は温度の変化に応答して、PMOSデバイスP1のドレイン−ソース間電圧Vdsに反比例して変化する利得Gを用いて設定される。差動増幅器432の利得Gは、次の式によって表わされ得る:
Figure 2018522237
故に、式6によって示されるように、Vgsの関数としての利得Gは、Vgsの関数としてのVdsに反比例して変化する。また、式7によって示されるように、温度の関数としての利得Gは、温度の関数としてのVdsに反比例して変化する。
[0041]定義された範囲の温度又は定義された範囲のVgsにわたってVdsと略同じ量で変化するように利得Gを設定することで、式1によれば、電流関連電圧Vsは、温度又はVgsについての定義された範囲にわたって負荷電流Iに対して略線形に変化するように設定され得る。故に、このようなケースでは、電流関連電圧Vsは、温度及びVgsについての定義された範囲にわたって負荷電流Iを示す正確なインジケーションを提供する。これは、図5に描写されるグラフを参照して例示される。
[0042]図5は、本開示の別の態様に係る、装置400に関連付けられた例示的な電流関連電圧Vs対負荷電流I応答の別のグラフである。図5に描写されるグラフパラメータ(x軸及びy軸、ディメンション、凡例)は、前述した図3に描写されたグラフのものと同じである。示されるように、電流関連電圧Vsは、摂氏35から105度までの定義された温度範囲及び0.7から1.15ボルトまでの定義されたVgs範囲にわたって、負荷電流Iに対して略比例する(又は、それに対して略線形に変化する)。故に、電流関連電圧Vsは、それらの定義された温度及びVgs範囲内の負荷電流Iを示す正確なインジケーションを提供する。
[0043]図6は、本開示の別の態様に係る、負荷電流Iを測定するための別の例示的な装置600の略図である。装置600は、前述した差動増幅器432のより詳細な例示的な実施を提供する。
[0044]具体的には、装置600は、1つ又は複数のICコアのような負荷610と電圧レールVddとの間に結合されたパワーゲーティング回路(PGC)620を備える。この例では、パワーゲーティング回路620は、電圧レールVddに結合されたソースと、負荷610に結合されたドレインと、ゲーティング電圧Vを受けるように構成されたゲートとを含むPMOSデバイスP1を備える。前の実施形態にあるように、ゲーティング電圧Vは、PMOSデバイスP1をオンにして、負荷電流IがPMOSデバイスP1を経由して電圧レールVddから負荷610に流れることを可能にするために低い電圧(例えば、接地電位)に設定される。ゲーティング電圧Vは、PMOSデバイスP1をオフにして、負荷電流Iが負荷610に流れるのを防ぐために高い電圧(例えば、Vdd)に設定される。
[0045]パワーゲーティング回路620が、電圧レールVddと負荷610との間に並列に結合された複数の(例えば、数十又は数百の)PMOSデバイスとして実施され得ることは理解されるものとする。代替的に、パワーゲーティング回路620は、負荷610と別の電圧レール(例えば、接地)との間に並列に結合された複数の(例えば、数十又は数百の)NMOSデバイスとして実施され得る。
[0046]装置600は、演算増幅器634を含む差動増幅器632を更に備える。第1のフィードバック抵抗器R2Aは、演算増幅器634の負の出力と正の入力との間に結合される。第1のフィードバック抵抗器R2Aと略同じ抵抗R2を有し得る第2のフィードバック抵抗器R2Bは、演算増幅器634の正の出力と負の入力との間に結合される。第1のフィードバック抵抗器R2A及び第2のフィードバック抵抗器R2Bは、ポリシリコン抵抗器を備え得る。
[0047]差動増幅器632は、第1の入力抵抗器R1Aに直列に結合された第1の補償PMOSデバイスP2Aを備える第1の入力抵抗経路を更に備える。第1の入力抵抗経路は、パワーゲーティングPMOS P1のソースと演算増幅器634の正の入力との間に結合される。より具体的には、第1の補償PMOSデバイスP2Aのソースは、パワーゲーティングPMOS P1のソースに結合され、第1の補償PMOSデバイスP2Aのドレインは、第1の抵抗器R1Aの第1の端に結合され、第1の補償PMOSデバイスP2Aのゲートは、接地電位に結合される。第1の入力抵抗器R1Aの第2の端は、演算増幅器634の正の入力に結合される。第1の入力抵抗器R1Aは、示されるように、可変であり得る。
[0048]更に、この例では、第1の補償PMOSデバイスP2Aは、パワーゲーティングPMOS P1と第1の入力抵抗器R1Aとの間に位置しているが、第1の入力抵抗器R1Aが、パワーゲーティングPMOS P1と第1の補償PMOSデバイスP2Aとの間に位置し得ることは理解されるものとする。すなわち、第1の入力抵抗器R1Aの第1の端は、パワーゲーティングPMOS P1のソースに結合され得、第1の入力抵抗器R1Aの第2の端は、第1の補償PMOS P2Aのソースに結合され得、第1の補償PMOS P2Aのドレインは、演算増幅器634の(例えば、正の)入力に結合され得る。このような構成では、第1の補償PMOS P2Aのゲートは、接地電位に結合され得る。
[0049]差動増幅器632は、第2の入力抵抗器R1Bに直列に結合された第2の補償PMOSデバイスP2Bを備える第2の入力抵抗経路を更に備える。第2の入力抵抗経路は、パワーゲーティングPMOS P1のドレインと演算増幅器634の負の入力との間に結合される。より具体的には、第2の補償PMOSデバイスP2Bのソースは、パワーゲーティングPMOS P1のドレインに結合され、第2の補償PMOSデバイスP2Bのドレインは、第2の抵抗器R1Bの第1の端に結合され、第2の補償PMOSデバイスP2Bのゲートは、接地電位に結合される。第2の入力抵抗器R1Bの第2の端は、演算増幅器634の負の入力に結合される。第2の入力抵抗器R1Bもまた、示されるように、可変であり得る。
[0050]更に、この例では、第2の補償PMOSデバイスP2Bは、パワーゲーティングPMOS P1と第2の入力抵抗器R1Bとの間に位置しているが、第2の入力抵抗器R1Bが、パワーゲーティングPMOS P1と第2の補償PMOSデバイスP2Bとの間に位置し得ることは理解されるものとする。すなわち、第2の入力抵抗器R1Bの第1の端は、パワーゲーティングPMOS P1のドレインに結合され得、第2の入力抵抗器R1Bの第2の端は、第2の補償PMOS P2Bのソースに結合され得、第2の補償PMOS P2Bのドレインは、演算増幅器634の(例えば、負の)入力に結合され得る。このような構成では、第2の補償PMOS P2Bのゲートは、接地電位に結合され得る。
[0051]第1の入力抵抗器R1A及び第2の入力抵抗器R1Bは、ポリシリコン抵抗器を備え得、各々、略同じ抵抗R1を有するように構成され得る。追加的に、演算増幅器634は、第1の抵抗経路が演算増幅器の負の入力に結合され、第2の抵抗経路が正の入力に結合されるように反転され得ることは理解されるものとする。更に、本明細書で述べるように、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bは、本明細書で参照されるように、可変ドレイン−ソース間抵抗又は補償抵抗Rcを有するように構成され得る。
[0052]前述した式3を使用して、差動増幅器632によって生成された電流関連電圧Vsは、次の式によって表され得る:
Figure 2018522237
ここで、Rcは、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bの各々の抵抗であり、R1は、第1の入力抵抗器R1A及び第2の入力抵抗器R1Bの各々の抵抗であり、R2は、フィードバック抵抗器R2A及びR2Bの各々の抵抗である。定義された温度又はVgs範囲にわたって負荷電流Iに対して略線形に変化するように電流関連電圧Vsを設定するために、抵抗Rc+R1の変化は、定義された温度及びVgs範囲にわたってパワーゲーティングPMOSデバイスP1のドレイン−ソース間抵抗Rdsの変化と略同じでなければならない。
[0053]最初に、Vgsの変化による電流関連電圧Vsの補償を考慮すると、パワーゲーティングPMOSデバイスP1のRdsは、金属接触抵抗Rmtと直列のチャネル抵抗Rchとしてモデリングされ得る。チャネル抵抗Rchは、パワーゲーティングpMOSデバイスP1のVgsの関数として変化する。第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bは、それぞれ、パワーゲーティングPMOSデバイスP1がオンにされているとき、パワーゲーティングPMOSデバイスP1と略同じ及び同様のVgsを有するようにバイアスが掛けられる。
[0054]より具体的には、パワーゲーティングPMOSデバイスP1がオンにされるとき、ゲーティング電圧Vは、接地電位に設定される。パワーゲーティングPMOSデバイスP1のソースは、Vddである。故に、パワーゲーティングPMOSデバイスP1のVgsは、実質的にVddである。
[0055]第1の補償PMOSデバイスP2Aのゲートは、接地電位に接続される。第1の補償PMOSデバイスP2Aのソースは、Vddである。故に、第1の補償PMOSデバイスP2AのVgsも、実質的にVddであり、オンにされているときのパワーゲーティングPMOSデバイスP1のVgsと同じである。
[0056]同様に、第2の補償PMOSデバイスP2Bのゲートもまた、接地電位に接続される。第2の補償PMOSデバイスP2Bのソースは、パワーゲーティングPMOSデバイスP1のドレインに結合される。パワーゲーティングPMOSデバイスP1は、このデバイスによるIRロスを最小化するために極めて低いRdsを有するように構成されるため、パワーゲーティングPMOSデバイスP1のドレインにおける電圧は、Vddよりほんのわずかに低い。故に、第2の補償PMOSデバイスP2BのVgsは、Vddよりわずかに低い。
[0057]故に、パワーゲーティングPMOSデバイスP1並びに第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bは、同じ及び同様のVgsでそれぞれバイアスが掛けられるため、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bのチャネル抵抗Rc並びに電力PMOSデバイスP1のチャネル抵抗Rchは、定義されたVgs範囲にわたってVgsが変化するのと略同じ方法で変化する。故に、式8ではRdsが分子であり、Rcが分母であるため、電流関連電圧Vsは、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bの抵抗Rcの適切な設定によって、Vgsの変化について補償される。本明細書で更に述べるように、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bは、この補償を最適化する、例えば、Vgsについての定義された範囲にわたってVgsの変化に応答した電流関連電圧Vsの変化を実質的に最小化する(又は、変化を特定の最大値に制限する)ための可変抵抗Rcを有するように構成される。
[0058]次に温度の変化による電流関連電圧Vsの補償を考慮すると、前述したように、パワーゲーティングPMOSデバイスP1のドレイン−ソース間抵抗Rdsは、金属接触抵抗Rmtと直列のチャネル抵抗Rchとしてモデリングされ得る。第1の抵抗経路及び第2の抵抗経路は、同様の構成を有する:第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bによるチャネル抵抗Rc並びにポリシリコン抵抗器R1A及びR1Bの抵抗。故に、抵抗Rc及びR1を適切に設定することで、Rc+R1の有効温度係数は、定義された温度範囲にわたってRds(Rch+Rmt)の有効温度係数と略同じにされ得る。この選択は、定義された温度範囲にわたって温度の変化に応答した電流関連電圧Vsの変化を実質的に最小化する(又は、変化を特定の最大値に制限する)ようにモデリングすることで及び/又は実験的に達成され得る。
[0059]要するに、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bの可変抵抗Rc並びにポリシリコン抵抗器R1A及びR1Bの抵抗R1を適切に設定することで、電流関連電圧Vsは、定義された温度又はVgs範囲にわたって負荷電流Iに対して略線形に変化するように設定され得る。更に、ポリシリコン抵抗器R1A及びR1Bの各々の抵抗R1の選択は、ポリシリコンフィードバック抵抗器R2A及びR2Bの各々の抵抗R2と共に、前述したように、差動増幅器632が、アナログ/デジタル変換器によるデジタル化に適した所望の電圧範囲内に電流関連電圧Vsを設定するための所望の利得Gを考慮に入れ得る。
[0060]図7は、本開示の別の態様に係る、例示的な可変補償PMOS回路700の略図である。可変補償PMOS回路700は、前述した第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bのうちの一方又は両方の例示的な実施であり得る。
[0061]具体的には、可変PMOS回路700は、前述した第1の補償PMOSデバイスP2A又は第2の補償PMOSデバイスP2Bのように、パワーゲーティングPMOSデバイスP1のソース又はドレインに結合され得る入力(IN)を備える。可変PMOS回路700はまた、前述した第1の補償PMOSデバイスP2A又は第2の補償PMOSデバイスP2Bのように、対応する入力抵抗器R1A又はR1Bに結合され得る出力(OUT)を備える。
[0062]可変PMOS回路700は、この回路700のための所望の抵抗を設定するために入力と出力との間に直列に接続されたデバイスの数を選択するためのSELECT信号を受けるための入力を含む。この例では、可変PMOS回路700は、この回路700の入力と出力との間に直列に接続されたデバイスの11個の異なる構成の中からの選択を提供する。SELECT信号の使用することで、一度につき、11個の利用可能な構成のうちの1つだけがイネーブルにされる。可変PMOS回路700が、この回路700の入力と出力との間に直列に接続されたデバイスの任意の数の選択を提供するように構成され得ることは理解されるものとする。可変PMOS回路700は、PMOSデバイスP0〜P11をオン及びオフにすることで、この回路を選択的にイネーブルにするためのENABLE信号を受けるための入力を更に含む。デバイスP0〜P11をオフにすることは、回路700の入力と出力との間でオープン抵抗(open resistance)又は極めて高い抵抗を実現するように可変PMOS回路700を構成する。
[0063]次の表は、SELECT信号の様々な状態と、可変PMOS回路700の入力と出力との間に直列に接続されたPMOSデバイスの対応する数と、対応するPMOSデバイスの識別情報とを示す:
Figure 2018522237
[0064]この例では、固定のN個のPMOSデバイスP0は、入力と出力との間で最小抵抗を有する可変PMOS回路700を構成するためのものである。残りの選択可能なPMOSデバイスPS1〜PS11及びP2〜P11は、最小抵抗より上の抵抗の微調整を提供するためのものである。最小抵抗は、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bに必要とされるワーストケースの最小抵抗に基づいて選択され得る。可変PMOS回路700が、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bについて可変抵抗を実現するために他の方法で実施され得ることは理解されるものとする。
[0065]図8は、本開示の別の態様に係る、負荷電流を測定するための例示的な装置800の略図である。この例では、装置800は、電圧レールVddと負荷との間に並列に結合された複数のパワーゲーティングサブ回路(PGC)820−1〜820−Nを含むパワーゲーティング回路820を備える。パワーゲーティングサブ回路820−1〜820−Nの各々は、電圧レールに結合されたソースと、負荷に結合されたドレインと、ゲーティング信号Vを受けるように構成されたゲートとを含むパワーゲーティングPMOSデバイスP0を備える。前述したように、NMOSデバイスが、PMOSデバイスP0に取って代わり得る。
[0066]パワーゲーティングサブ回路820−1〜820−Nの各々は、パワーゲーティングPMOSデバイスP0のソース及びドレインと、差動増幅器832の第1の入力ノード及び第2の入力ノードとの間にそれぞれ結合された一対の抵抗器Rを更に備える。追加的に、パワーゲーティングサブ回路820−1〜820−Nの各々は、差動増幅器832の第1の入力ノード及び第2の入力ノード並びに接地にわたってそれぞれ形成される寄生キャパシタンスCに関連付けられ得る。差動増幅器832の入力及び出力にわたって形成される入力差動電圧Vds_Avgは、それぞれ、パワーゲーティングPMOSデバイスP0の複数の個々のドレイン−ソース間電圧(Vds)に関し得る。例えば、抵抗器R及び寄生キャパシタCの全てが略同じ抵抗及びキャパシタンスを有すると仮定すると、入力差動電圧Vds_Avgは、実質的に、パワーゲーティングPMOSデバイスP0の個々のドレイン−ソース間電圧(Vds)の平均であり得る。
[0067]差動増幅器832は、差動増幅器432又は632の何れかのものと同様に構成され得る。例えば、差動増幅器832は、負荷に負荷電流を供給するためにデバイスがオンにされると、パワーゲーティングPMOSデバイスP0のゲート−ソース間電圧Vgs又は温度の変化に応答して入力差動電圧Vds_Avgに反比例して変化する利得Gを含むように構成され得る。更に、温度及びVgsによる利得Gの変化の度合いは、差動増幅器832の出力において生成される電流関連電圧Vsが負荷電流に対して略線形に変化するように、温度及びVgsによる入力差動電圧Vds_Avgの変化の度合いと略同じ度合であり得る。前述したように、電流関連電圧Vsは、負荷電流コントローラによって処理するための電流関連デジタル信号を生成するためにADCによってデジタル化され得る。
[0068]図9は、本開示の別の態様に係る、負荷電流を測定するための例示的な装置900の略図である。この例では、装置900は、電圧レールVddと負荷との間に並列に結合された複数のパワーゲーティング回路920A〜920Cを備える。この例では、装置900は、3つのパワーゲーティング回路920A〜920Cを含むと示されるが、装置900がそのようなパワーゲーティング回路の2つ以上を含み得ることは理解されるものとする。
[0069]パワーゲーティング回路920A〜920Cの各々は、複数のパワーゲーティングサブ回路を含む。例えば、パワーゲーティング回路920Aは、電圧レールVddと負荷との間に結合されたパワーゲーティングサブ回路1−1〜1−Jを備え、パワーゲーティング回路920Bは、電圧レールVddと負荷との間に結合されたパワーゲーティングサブ回路2−1〜2−Kを備え、パワーゲーティング回路920Cは、電圧レールVddと負荷との間に結合されたパワーゲーティングサブ回路3−1〜3−Lを備える。
[0070]パワーゲーティングサブ回路の各々は、前述したパワーゲーティングサブ回路820−1〜820−Nのうちの任意のものに略同じ又は同様に構成され得る。より具体的には、パワーゲーティング回路920Aのパワーゲーティングサブ回路1−1〜1−Jの各々は、Vddに結合されたソースと、負荷に結合されたドレインと、第1のゲーティング電圧VG1を受けるように構成されたゲートとを含むパワーゲーティングPMOSデバイスを備え得る。同様に、パワーゲーティング回路920Bのパワーゲーティングサブ回路2−1〜2−Kの各々は、Vddに結合されたソースと、負荷に結合されたドレインと、第2のゲーティング電圧VG2を受けるように構成されたゲートとを含むパワーゲーティングPMOSデバイスを備え得る。そして、パワーゲーティング回路920Cのパワーゲーティングサブ回路3−1〜3−Lの各々は、Vddに結合されたソースと、負荷に結合されたドレインと、第3のゲーティング電圧VG3を受けるように構成されたゲートとを含むパワーゲーティングPMOSデバイスを備え得る。
[0071]パワーゲーティングサブ回路820−1〜820−Nの各々にあるように、パワーゲーティングサブ回路1−1〜1−J、2−1〜2−K、及び3−1〜3−Lの各々は、ソース及びドレインと差動増幅器932の第1の入力ノードn1及び第2の入力ノードn2との間に結合された一対の抵抗器を備える。また、パワーゲーティングサブ回路820−1〜820−Nの各々と同様に、パワーゲーティングサブ回路1−1〜1−J、2−1〜2−K、及び3−1〜3−Lの各々は、第1の入力ノードn1及び第2の入力ノードn2と接地との間に形成された寄生キャパシタンスに関連付けられる。
[0072]差動増幅器932は、前述した差動増幅器632と同様に構成され得る。より具体的には、差動増幅器932は、演算増幅器934と、ノードn1及びn2と演算増幅器934の正の入力及び負の入力との間にそれぞれ結合された第1の抵抗経路及び第2の抵抗経路と、演算増幅器934の負の出力と正の入力の間及び正の出力と負の入力との間にそれぞれ結合されたフィードバック抵抗器R2A及びR2Bとを備える。第1の抵抗経路及び第2の抵抗経路は、それぞれ、対応する抵抗器R1A及びR1Bに直列に結合された第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bを備える。装置600と同様に、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bの位置は、それぞれ、第1の入力抵抗器R1A及び第2の入力抵抗器R1Bの位置と入れ替えられ得る。
[0073]パワーゲーティング回路920A〜920Cは、単独で又は組み合わせで、差動増幅器932の入力においてノードn1及びn2にわたった入力差動電圧Vds_Avgを生じさせる。例えば、ゲーティング電圧VG1、VG2、及びVG3は、それぞれ、負荷に負荷電流を供給するためのパワーゲーティング回路920A、920B、及び920Cを選択的にオンにするように独立して制御される。差動増幅器932の入力ノードn1及びn2にわたって発生した差動電圧Vds_Avgは、パワーゲーティング回路920A〜920Cのうちのどれがオンにされるかに依存し得る。換言すると、差動電圧Vds_Avgは、ゲーティング電圧VG1、VG2、及びVG3の状態の関数である。
[0074]より具体的には、差動電圧Vds_Avgは、ゲーティング電圧VG1が、サブ回路1−1〜1−Jをオンにするように設定され、ゲーティング電圧VG2及びVG3が、サブ回路2−1〜2−K及び3−1〜3−Lをオフにするように設定される場合、パワーゲーティングサブ回路1−1〜1−Jのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsだけに関し得る。例えば、このようなケースでは、差動電圧Vds_Avgは、実質的に、サブ回路1−1〜1−J中のパワーゲーティングデバイスのVdsの平均となるように設定され得る。
[0075]同様に、差動電圧Vds_Avgは、ゲーティング電圧VG2が、サブ回路2−1〜2−Kをオンにするように設定され、ゲーティング電圧VG1及びVG3が、サブ回路1−1〜1−J及び3−1〜3−Lをオフにするように設定される場合、パワーゲーティングサブ回路2−1〜1−Kのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsだけに関し(例えば、それの平均であり)得る。同様の方法で、差動電圧Vds_Avgは、ゲーティング電圧VG3が、サブ回路3−1〜3−Lをオンにするように設定され、ゲーティング電圧VG1及びVG2が、サブ回路1−1〜1−J及び2−1〜2−Kをオフにするように設定される場合、パワーゲーティングサブ回路3−1〜3−Lのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsだけに関し(例えば、それの平均であり)得る。
[0076]追加的に、差動電圧Vds_Avgは、ゲーティング電圧VG1及びVG2が、サブ回路1−1〜1−J及び2−1〜2−Kをオンにするように設定され、ゲーティング電圧VG3が、サブ回路3−1〜3−Lをオフにするように設定される場合、パワーゲーティングサブ回路1−1〜1−J及び2−1〜2−Kのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsだけに関し得る。例えば、このようなケースでは、差動電圧Vds_Avgは、実質的に、サブ回路1−1〜1−J及び2−1〜2−K中のパワーゲーティングデバイスのVdsの平均となるように設定され得る。
[0077]同様に、差動電圧Vds_Avgは、ゲーティング電圧VG1及びVG3が、サブ回路1−1〜1−J及び3−1〜3−Lをオンにするように設定され、ゲーティング電圧VG2が、サブ回路2−1〜2−Kをオフにするように設定される場合、パワーゲーティングサブ回路1−1〜1−J及び3−1〜3−Mのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsだけに関し(例えば、それの平均であり)得る。同様の方法で、差動電圧Vds_Avgは、ゲーティング電圧VG2及びVG3が、サブ回路2−1〜2−K及び3−1〜3−Lをオンにするように設定され、ゲーティング電圧VG1が、サブ回路1−1〜1−Jをオフにするように設定される場合、パワーゲーティングサブ回路2−1〜2−K及び3−1〜3−Lのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsだけに関し(例えば、それの平均であり)得る。
[0078]差動電圧Vds_Avgは、ゲーティング電圧VG1、VG2、及びVG3が、サブ回路1−1〜1−J、2−1〜2−K、及び3−1〜3−Lをオンにするように設定される場合、全てのパワーゲーティングサブ回路1−1〜1−J、2−1〜2−K、及び3−1〜3−Lのパワーゲーティングデバイスのドレイン−ソース間電圧Vdsに関し得る。例えば、このようなケースでは、差動電圧Vds_Avgは、実質的に、サブ回路1−1〜1−J、2−1〜2−K、及び3−1〜3−L中のパワーゲーティングデバイスのVdsの平均になるように設定され得る。
[0079]ゲーティング電圧VG1、VG2、及びVG3の状態は、負荷に必要とされる負荷電流に対する需要に基づいて選択され得る。例えば、パワーゲーティング回路920A中のデバイスの数Jは、パワーゲーティング回路920B中のデバイスの数Kより少なく、これは、パワーゲーティング回路920C中のデバイスの数Lより少ないだろう。デバイスの数は、負荷に供給される負荷電流の量に関し得る。
[0080]例えば、負荷が、その動作モードに依存して最小量の電流を必要とする場合、ゲーティング電圧VG1は、パワーゲーティング回路920Aをオンにするように設定され得、ゲーティング電圧VG2及びVG3は、パワーゲーティング回路920B及び920Cをオフにするように設定され得る。負荷が、その動作モードに依存して最大量の電流を必要とする場合、ゲーティング電圧VG1、VG2、及びVG3は、パワーゲーティング回路920A、920C、及び920Cを全てターンするように設定され得る。このような構成では、負荷電流は、PMOSデバイスがパワーゲーティングサブ回路で使用される場合、以下の論理状態にゲーティング電圧VG1、VG2、及びVG3を設定することで、最小負荷電流から最大負荷電流へと次第に増加され得る:(101)920Bだけをオンにする、(110)920Cだけをオンにする、(001)920A〜Bだけをオンにする、(010)920A及びCだけをオンにする、(100)920B〜Cだけをオンにする。
[0081]前述したように、差動増幅器932は、回路920A〜920CのパワーゲーティングデバイスのVgs及び温度の変化に応答して、入力電圧Vds_Avgに反比例して及びそれと略同じ量変化する利得Gを有するように構成される。また、電流関連電圧Vsが負荷電流に対して略線形に変化するために、これは行われる。
[0082]入力電圧Vds_Avgがゲーティング電圧VG1、VG2、及びVG3の状態に依存して変化するため、コントローラ950は、電流関連電圧Vsが負荷電流に対して略線形に変化することを確実にするために差動増幅器932の第1の入力抵抗経路及び第2の入力抵抗経路を変更するように構成される。換言すると、コントローラ950は、ゲーティング電圧VG1、VG2、及びVG3の状態の関数として、第1の補償デバイスP2A及び第2の補償デバイスP2Bの各々の抵抗Rc並びに入力抵抗器R1A及びR1Bの各々の抵抗R1を変化させるように構成される。
[0083]述べたように、第1の入力抵抗経路及び第2の入力抵抗経路の変更を実現するために、コントローラ950は、負荷電流を制御するための、ゲーティング電圧VG1、VG2、及びVG3についての選択された状態と、第1の補償PMOSデバイスP2A及び第2の補償PMOSデバイスP2Bの抵抗Rc並びに抵抗器R1A及びR1Bの抵抗R1を制御するための信号とを生成するように構成される。第1のPMOSデバイスP2A及び第2のPMOSデバイスP2Bの抵抗は、前述した可変PMOS回路700を使用して変化し得る。ポリシリコン抵抗器として実施され得る抵抗器R1A及びR1Bの抵抗は、設定可能なバンクの抵抗器を使用して変化し得る。
[0084]図10は、本開示の別の態様に係る、負荷電流を測定するための例示的な方法1000のフロー図である。方法1000によれば、電圧レールと負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧が生成される(ブロック1002)。更に、方法1000によれば、電流関連電圧を生成するために入力電圧が利得で増幅される、ここにおいて、利得は、パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して入力電圧に反比例して変化する(ブロック1004)。
[0085]本開示の先の説明は、当業者による本開示の実行又は使用を可能にするために提供される。本開示に対する様々な修正は、当業者には容易に明らかであり、本明細書で定義された包括的な原理は、本開示の精神又は範囲から逸脱することなく、他の変形に適用され得る。故に、本開示は、本明細書で説明された例に制限されるよう意図されず、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲が与えられるべきである。
[0085]本開示の先の説明は、当業者による本開示の実行又は使用を可能にするために提供される。本開示に対する様々な修正は、当業者には容易に明らかであり、本明細書で定義された包括的な原理は、本開示の精神又は範囲から逸脱することなく、他の変形に適用され得る。故に、本開示は、本明細書で説明された例に制限されるよう意図されず、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲が与えられるべきである。
以下に本願発明の当初の特許請求の範囲に記載された発明を付記する。
[C1]
装置であって、
ゲート、ソース、及びドレインを備えるパワーゲーティング電界効果トランジスタ(FET)と、ここにおいて、前記ソースは、電圧レールに結合され、前記ドレインは、負荷に結合され、前記ゲートは、負荷電流が前記パワーゲーティングFETを経由して前記電圧レールと前記負荷との間を流れることを可能にするために前記パワーゲーティングFETを選択的にオンにするためのゲーティング電圧を受けるように構成される、
入力電圧に利得を適用することで、前記負荷電流に関する電流関連電圧を生成するように構成された差動増幅器と、ここにおいて、前記入力電圧は、前記パワーゲーティングFETのドレイン−ソース間電圧に基づき、前記利得は、前記パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して前記入力電圧に反比例して変化する、
を備える装置。
[C2]
前記差動増幅器の前記利得は、前記電流関連電圧が前記負荷電流の変化に対して略線形に変化するように構成される、C1に記載の装置。
[C3]
前記差動増幅器は、
演算増幅器と、
第1のゲート、第1のソース、及び第1のドレインを含む第1の補償PMOSデバイスと、ここにおいて、前記第1の補償PMOSデバイスは、前記パワーゲーティングFETの前記ソースと前記演算増幅器の第1の入力との間に結合され、前記第1のゲートは、前記パワーゲーティングFETをオンにする前記ゲーティング電圧と略同じ第1のゲート電圧を受けるように構成される、
第2のゲート、第2のソース、及び第2のドレインを含む第2の補償PMOSデバイスと、ここにおいて、前記第2の補償PMOSデバイスは、前記パワーゲーティングFETの前記ドレインと前記演算増幅器の第2の入力との間に結合され、前記第2のゲートは、前記パワーゲーティングFETをオンにする前記ゲーティング電圧と略同じ第2のゲート電圧を受けるように構成される、
前記演算増幅器の出力及び前記演算増幅器の前記第1の入力又は前記第2の入力のうちの1つにわたって結合された少なくとも1つのフィードバック抵抗器と、ここにおいて、前記電流関連電圧は、前記演算増幅器の前記出力において生成される、
を備える、C1に記載の装置。
[C4]
前記差動増幅器は、
前記第1の補償PMOSデバイスと前記演算増幅器の前記第1の入力との間に結合された第1の抵抗器と、
前記第2の補償PMOSデバイスと前記演算増幅器の前記第2の入力との間に結合された第2の抵抗器と
を更に備える、C3に記載の装置。
[C5]
前記差動増幅器は、実質的に、次の関係に従って前記電流関連電圧Vsを生成する:
Figure 2018522237
ここにおいて、R1は、前記第1の抵抗器及び前記第2の抵抗器の各々の抵抗であり、R2は、前記少なくとも1つのフィードバック抵抗器の抵抗であり、Rcは、前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスの各々の抵抗であり、Rdsは、前記パワーゲーティングFETのドレイン−ソース間抵抗であり、I は、前記負荷電流であり、Vsは、前記電流関連電圧である、C4に記載の装置。
[C6]
前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイス並びに前記第1の抵抗器及び前記第2の抵抗器は、前記ドレイン−ソース間抵抗Rdsが前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するのと略同じ方法で、抵抗R1及びRcの和が前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するように構成される、C5に記載の装置。
[C7]
前記差動増幅器は、
前記パワーゲーティングFETの前記ソースと前記第1の補償PMOSデバイスとの間に結合された第1の抵抗器と、
前記パワーゲーティングFETの前記ドレインと前記第2の補償PMOSデバイスとの間に結合された第2の抵抗器と
を更に備える、C3に記載の装置。
[C8]
前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスのうちの少なくとも1つは、各々、
複数の直列接続PMOSデバイスと、
それぞれ、前記パワーゲーティングFETの前記ソース又は前記ドレインと前記演算増幅器の前記第1の入力又は前記第2の入力との間で前記直列接続FETの選択されたサブセットだけを結合するように構成された選択回路と
を備える、C3に記載の装置。
[C9]
前記パワーゲーティングFETは、パワーゲーティングPMOSデバイスを備え、前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスの前記第1のゲート及び前記第2のゲートは、接地電位に結合され、前記ゲーティング電圧は、前記パワーゲーティングPMOSデバイスをオンにするために接地電位にある、C3に記載の装置。
[C10]
第1の組のソース、第1の組のドレイン、及び第1の組のゲートを備える第1の組のパワーゲーティングFETと、ここにおいて、前記第1の組のソースは、前記電圧レールに結合され、前記第1の組のドレインは、前記負荷に結合され、前記第1の組のゲートは、前記第1の組のパワーゲーティングFETを経由して前記電圧レールと前記負荷との間を前記負荷電流が流れることを可能にするために前記第1の組のパワーゲーティングFETを選択的にオンにするための前記ゲーティング電圧を受けるように構成され、前記パワーゲーティングFETは、前記第1の組のパワーゲーティングFETのメンバである、
第2の組のソース、第2の組のドレイン、及び第2の組のゲートを備える第2の組のパワーゲーティングFETと、ここにおいて、前記第2の組のソースは、前記電圧レールに結合され、前記第2の組のドレインは、前記負荷に結合され、前記第2の組のゲートは、前記第2の組のパワーゲーティングFETを経由して前記電圧レールと前記負荷との間を前記負荷電流が流れることを可能にするために前記第2の組のパワーゲーティングFETを選択的にオンにするための第2のゲーティング電圧を受けるように構成される、
前記第1の組のソース及び前記第2の組のソースは、第1の組のそれぞれの抵抗器を経由して第1のノードに結合され、前記第1の組のドレイン及び前記第2の組のドレインは、第2の組のそれぞれの抵抗器を経由して第2のノードに結合され、前記入力電圧は、前記第1のノード及び前記第2のノードにわたって形成され、
前記ゲーティング電圧及び前記第2のゲーティング電圧のそれぞれの状態に基づいて、前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスの各々の抵抗並びに前記第1の抵抗器及び前記第2の抵抗器の各々の抵抗を調整するように構成されたコントローラと
を更に備える、C3に記載の装置。
[C11]
1つ以上の他のゲート、1つ以上の他のソース、及び1つ以上の他のドレインを含む1つ以上の他のパワーゲーティングFETを更に備え、ここにおいて、前記1つ以上の他のソースは、前記電圧レールに結合され、前記1つ以上の他のドレインは、前記負荷に結合され、前記1つ以上の他のゲートは、前記負荷電流が前記1つ以上の他のパワーゲーティングFETを経由して前記電圧レールと前記負荷との間を流れることを可能にするために前記1つ以上の他のパワーゲーティングFETをオンにするための前記ゲーティング電圧を受けるように構成され、前記1つ以上の他のソース及び前記パワーゲーティングFETの前記ソースは、2つ以上のそれぞれの抵抗器を経由して第1のノードに結合され、前記1つ以上の他のドレイン及び前記パワーゲーティングFETの前記ドレインは、2つ以上の他のそれぞれの抵抗器を経由して第2のノードに結合され、前記入力電圧は、前記第1のノード及び前記第2のノードにわたって形成される、C1に記載の装置。
[C12]
負荷に供給される負荷電流に関する電流関連電圧を生成する方法であって、
電圧レールと前記負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧を生成することと、
前記電流関連電圧を生成するために利得で前記入力電圧を増幅することと、ここにおいて、前記利得は、前記パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して前記入力電圧に反比例して変化する、
を備える方法。
[C13]
前記電流関連電圧が前記負荷電流の変化に対して略線形に変化するように前記利得を構成することを更に備える、C12に記載の方法。
[C14]
前記入力電圧を増幅することは、入力抵抗デバイスとフィードバック抵抗デバイスとを備える演算増幅器で前記入力電圧を増幅することを備える、C12に記載の方法。
[C15]
前記入力電圧が前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するのと略同じ方法で、前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化する抵抗を有するように前記入力抵抗デバイスを構成することを更に備える、C14に記載の方法。
[C16]
前記入力抵抗デバイスは、前記パワーゲーティングFETの前記ゲート−ソース間電圧と略同じゲート−ソース間電圧を有する補償PMOSデバイスを備える、C14に記載の方法。
[C17]
前記補償PMOSデバイスの抵抗を設定することを更に備える、C16に記載の方法。
[C18]
前記パワーゲーティングFETは、p型金属酸化膜半導体(PMOS)タイプFETを備える、C16に記載の方法。
[C19]
前記入力電圧は、前記パワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された1つ以上の他のパワーゲーティングFETのドレイン−ソース間電圧に関する、C12に記載の方法。
[C20]
前記入力電圧は、前記電圧レールと前記負荷との間に並列に結合された第1の組のパワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された第2の組のパワーゲーティングFETのドレイン−ソース間電圧に関する、C12に記載の方法。
[C21]
前記第1の組のパワーゲーティングFETがオンにされるかどうか又は前記第2の組のパワーゲーティングFETがオンにされるかどうかに基づいて前記利得を調整することを更に備える、C20に記載の方法。
[C22]
装置であって、
電圧レールと負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧を生成するための手段と、
電流関連電圧を生成するために利得で前記入力電圧を増幅するための手段と、ここにおいて、前記利得は、前記パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して前記入力電圧に反比例して変化する、
を備える装置。
[C23]
前記電流関連電圧が前記負荷電流の変化に対して略線形に変化するように前記利得を構成するための手段を更に備える、C22に記載の装置。
[C24]
前記入力電圧を前記増幅するための手段は、入力抵抗デバイスとフィードバック抵抗デバイスとを備える演算増幅器で前記入力電圧を増幅するための手段を備える、C22に記載の装置。
[C25]
前記入力電圧が前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するのと略同じ方法で、前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化する抵抗を有するように前記入力抵抗デバイスを構成するための手段を更に備える、C24に記載の装置。
[C26]
前記入力抵抗デバイスは、前記パワーゲーティングFETの前記ゲート−ソース間電圧と略同じゲート−ソース間電圧を有する補償PMOSデバイスを備える、C25に記載の装置。
[C27]
前記補償PMOSデバイスの抵抗を設定するための手段を更に備える、C26に記載の装置。
[C28]
前記パワーゲーティングFETは、p型金属酸化膜半導体(PMOS)タイプFETを備える、C26に記載の装置。
[C29]
前記入力電圧は、前記パワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された1つ以上の他のパワーゲーティングFETのドレイン−ソース間電圧に関する、C22に記載の装置。
[C30]
前記入力電圧は、前記電圧レールと前記負荷との間に並列に結合された第1の組のパワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された第2の組のパワーゲーティングFETのドレイン−ソース間電圧に関する、C22に記載の装置。
[C31]
前記第1の組のパワーゲーティングFETがオンにされるかどうか又は前記第2の組のパワーゲーティングFETがオンにされるかどうかに基づいて前記利得を調整するための手段を更に備える、C30に記載の装置。

Claims (31)

  1. 装置であって、
    ゲート、ソース、及びドレインを備えるパワーゲーティング電界効果トランジスタ(FET)と、ここにおいて、前記ソースは、電圧レールに結合され、前記ドレインは、負荷に結合され、前記ゲートは、負荷電流が前記パワーゲーティングFETを経由して前記電圧レールと前記負荷との間を流れることを可能にするために前記パワーゲーティングFETを選択的にオンにするためのゲーティング電圧を受けるように構成される、
    入力電圧に利得を適用することで、前記負荷電流に関する電流関連電圧を生成するように構成された差動増幅器と、ここにおいて、前記入力電圧は、前記パワーゲーティングFETのドレイン−ソース間電圧に基づき、前記利得は、前記パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して前記入力電圧に反比例して変化する、
    を備える装置。
  2. 前記差動増幅器の前記利得は、前記電流関連電圧が前記負荷電流の変化に対して略線形に変化するように構成される、請求項1に記載の装置。
  3. 前記差動増幅器は、
    演算増幅器と、
    第1のゲート、第1のソース、及び第1のドレインを含む第1の補償PMOSデバイスと、ここにおいて、前記第1の補償PMOSデバイスは、前記パワーゲーティングFETの前記ソースと前記演算増幅器の第1の入力との間に結合され、前記第1のゲートは、前記パワーゲーティングFETをオンにする前記ゲーティング電圧と略同じ第1のゲート電圧を受けるように構成される、
    第2のゲート、第2のソース、及び第2のドレインを含む第2の補償PMOSデバイスと、ここにおいて、前記第2の補償PMOSデバイスは、前記パワーゲーティングFETの前記ドレインと前記演算増幅器の第2の入力との間に結合され、前記第2のゲートは、前記パワーゲーティングFETをオンにする前記ゲーティング電圧と略同じ第2のゲート電圧を受けるように構成される、
    前記演算増幅器の出力及び前記演算増幅器の前記第1の入力又は前記第2の入力のうちの1つにわたって結合された少なくとも1つのフィードバック抵抗器と、ここにおいて、前記電流関連電圧は、前記演算増幅器の前記出力において生成される、
    を備える、請求項1に記載の装置。
  4. 前記差動増幅器は、
    前記第1の補償PMOSデバイスと前記演算増幅器の前記第1の入力との間に結合された第1の抵抗器と、
    前記第2の補償PMOSデバイスと前記演算増幅器の前記第2の入力との間に結合された第2の抵抗器と
    を更に備える、請求項3に記載の装置。
  5. 前記差動増幅器は、実質的に、次の関係に従って前記電流関連電圧Vsを生成する:
    Figure 2018522237
    ここにおいて、R1は、前記第1の抵抗器及び前記第2の抵抗器の各々の抵抗であり、R2は、前記少なくとも1つのフィードバック抵抗器の抵抗であり、Rcは、前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスの各々の抵抗であり、Rdsは、前記パワーゲーティングFETのドレイン−ソース間抵抗であり、Iは、前記負荷電流であり、Vsは、前記電流関連電圧である、請求項4に記載の装置。
  6. 前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイス並びに前記第1の抵抗器及び前記第2の抵抗器は、前記ドレイン−ソース間抵抗Rdsが前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するのと略同じ方法で、抵抗R1及びRcの和が前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するように構成される、請求項5に記載の装置。
  7. 前記差動増幅器は、
    前記パワーゲーティングFETの前記ソースと前記第1の補償PMOSデバイスとの間に結合された第1の抵抗器と、
    前記パワーゲーティングFETの前記ドレインと前記第2の補償PMOSデバイスとの間に結合された第2の抵抗器と
    を更に備える、請求項3に記載の装置。
  8. 前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスのうちの少なくとも1つは、各々、
    複数の直列接続PMOSデバイスと、
    それぞれ、前記パワーゲーティングFETの前記ソース又は前記ドレインと前記演算増幅器の前記第1の入力又は前記第2の入力との間で前記直列接続FETの選択されたサブセットだけを結合するように構成された選択回路と
    を備える、請求項3に記載の装置。
  9. 前記パワーゲーティングFETは、パワーゲーティングPMOSデバイスを備え、前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスの前記第1のゲート及び前記第2のゲートは、接地電位に結合され、前記ゲーティング電圧は、前記パワーゲーティングPMOSデバイスをオンにするために接地電位にある、請求項3に記載の装置。
  10. 第1の組のソース、第1の組のドレイン、及び第1の組のゲートを備える第1の組のパワーゲーティングFETと、ここにおいて、前記第1の組のソースは、前記電圧レールに結合され、前記第1の組のドレインは、前記負荷に結合され、前記第1の組のゲートは、前記第1の組のパワーゲーティングFETを経由して前記電圧レールと前記負荷との間を前記負荷電流が流れることを可能にするために前記第1の組のパワーゲーティングFETを選択的にオンにするための前記ゲーティング電圧を受けるように構成され、前記パワーゲーティングFETは、前記第1の組のパワーゲーティングFETのメンバである、
    第2の組のソース、第2の組のドレイン、及び第2の組のゲートを備える第2の組のパワーゲーティングFETと、ここにおいて、前記第2の組のソースは、前記電圧レールに結合され、前記第2の組のドレインは、前記負荷に結合され、前記第2の組のゲートは、前記第2の組のパワーゲーティングFETを経由して前記電圧レールと前記負荷との間を前記負荷電流が流れることを可能にするために前記第2の組のパワーゲーティングFETを選択的にオンにするための第2のゲーティング電圧を受けるように構成される、
    前記第1の組のソース及び前記第2の組のソースは、第1の組のそれぞれの抵抗器を経由して第1のノードに結合され、前記第1の組のドレイン及び前記第2の組のドレインは、第2の組のそれぞれの抵抗器を経由して第2のノードに結合され、前記入力電圧は、前記第1のノード及び前記第2のノードにわたって形成され、
    前記ゲーティング電圧及び前記第2のゲーティング電圧のそれぞれの状態に基づいて、前記第1の補償PMOSデバイス及び前記第2の補償PMOSデバイスの各々の抵抗並びに前記第1の抵抗器及び前記第2の抵抗器の各々の抵抗を調整するように構成されたコントローラと
    を更に備える、請求項3に記載の装置。
  11. 1つ以上の他のゲート、1つ以上の他のソース、及び1つ以上の他のドレインを含む1つ以上の他のパワーゲーティングFETを更に備え、ここにおいて、前記1つ以上の他のソースは、前記電圧レールに結合され、前記1つ以上の他のドレインは、前記負荷に結合され、前記1つ以上の他のゲートは、前記負荷電流が前記1つ以上の他のパワーゲーティングFETを経由して前記電圧レールと前記負荷との間を流れることを可能にするために前記1つ以上の他のパワーゲーティングFETをオンにするための前記ゲーティング電圧を受けるように構成され、前記1つ以上の他のソース及び前記パワーゲーティングFETの前記ソースは、2つ以上のそれぞれの抵抗器を経由して第1のノードに結合され、前記1つ以上の他のドレイン及び前記パワーゲーティングFETの前記ドレインは、2つ以上の他のそれぞれの抵抗器を経由して第2のノードに結合され、前記入力電圧は、前記第1のノード及び前記第2のノードにわたって形成される、請求項1に記載の装置。
  12. 負荷に供給される負荷電流に関する電流関連電圧を生成する方法であって、
    電圧レールと前記負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧を生成することと、
    前記電流関連電圧を生成するために利得で前記入力電圧を増幅することと、ここにおいて、前記利得は、前記パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して前記入力電圧に反比例して変化する、
    を備える方法。
  13. 前記電流関連電圧が前記負荷電流の変化に対して略線形に変化するように前記利得を構成することを更に備える、請求項12に記載の方法。
  14. 前記入力電圧を増幅することは、入力抵抗デバイスとフィードバック抵抗デバイスとを備える演算増幅器で前記入力電圧を増幅することを備える、請求項12に記載の方法。
  15. 前記入力電圧が前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するのと略同じ方法で、前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化する抵抗を有するように前記入力抵抗デバイスを構成することを更に備える、請求項14に記載の方法。
  16. 前記入力抵抗デバイスは、前記パワーゲーティングFETの前記ゲート−ソース間電圧と略同じゲート−ソース間電圧を有する補償PMOSデバイスを備える、請求項14に記載の方法。
  17. 前記補償PMOSデバイスの抵抗を設定することを更に備える、請求項16に記載の方法。
  18. 前記パワーゲーティングFETは、p型金属酸化膜半導体(PMOS)タイプFETを備える、請求項16に記載の方法。
  19. 前記入力電圧は、前記パワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された1つ以上の他のパワーゲーティングFETのドレイン−ソース間電圧に関する、請求項12に記載の方法。
  20. 前記入力電圧は、前記電圧レールと前記負荷との間に並列に結合された第1の組のパワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された第2の組のパワーゲーティングFETのドレイン−ソース間電圧に関する、請求項12に記載の方法。
  21. 前記第1の組のパワーゲーティングFETがオンにされるかどうか又は前記第2の組のパワーゲーティングFETがオンにされるかどうかに基づいて前記利得を調整することを更に備える、請求項20に記載の方法。
  22. 装置であって、
    電圧レールと負荷との間に結合されたパワーゲーティング電界効果トランジスタ(FET)のドレイン−ソース間電圧に関する入力電圧を生成するための手段と、
    電流関連電圧を生成するために利得で前記入力電圧を増幅するための手段と、ここにおいて、前記利得は、前記パワーゲーティングFETのゲート−ソース間電圧又は温度の変化に応答して前記入力電圧に反比例して変化する、
    を備える装置。
  23. 前記電流関連電圧が前記負荷電流の変化に対して略線形に変化するように前記利得を構成するための手段を更に備える、請求項22に記載の装置。
  24. 前記入力電圧を前記増幅するための手段は、入力抵抗デバイスとフィードバック抵抗デバイスとを備える演算増幅器で前記入力電圧を増幅するための手段を備える、請求項22に記載の装置。
  25. 前記入力電圧が前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化するのと略同じ方法で、前記パワーゲーティングFETの前記ゲート−ソース間電圧又は前記温度によって変化する抵抗を有するように前記入力抵抗デバイスを構成するための手段を更に備える、請求項24に記載の装置。
  26. 前記入力抵抗デバイスは、前記パワーゲーティングFETの前記ゲート−ソース間電圧と略同じゲート−ソース間電圧を有する補償PMOSデバイスを備える、請求項25に記載の装置。
  27. 前記補償PMOSデバイスの抵抗を設定するための手段を更に備える、請求項26に記載の装置。
  28. 前記パワーゲーティングFETは、p型金属酸化膜半導体(PMOS)タイプFETを備える、請求項26に記載の装置。
  29. 前記入力電圧は、前記パワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された1つ以上の他のパワーゲーティングFETのドレイン−ソース間電圧に関する、請求項22に記載の装置。
  30. 前記入力電圧は、前記電圧レールと前記負荷との間に並列に結合された第1の組のパワーゲーティングFETのドレイン−ソース間電圧及び前記電圧レールと前記負荷との間に並列に結合された第2の組のパワーゲーティングFETのドレイン−ソース間電圧に関する、請求項22に記載の装置。
  31. 前記第1の組のパワーゲーティングFETがオンにされるかどうか又は前記第2の組のパワーゲーティングFETがオンにされるかどうかに基づいて前記利得を調整するための手段を更に備える、請求項30に記載の装置。
JP2018500576A 2015-07-08 2016-06-08 パワーゲーティングデバイスのドレイン−ソース間電圧から導出された電圧に補償済み利得を適用することで負荷電流を測定するための装置及び方法 Expired - Fee Related JP6389020B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US14/794,496 2015-07-08
US14/794,496 US9958484B2 (en) 2015-07-08 2015-07-08 Apparatus and method for measuring load current by applying compensated gain to voltage derived from drain-to-source voltage of power gating device
PCT/US2016/036512 WO2017007566A1 (en) 2015-07-08 2016-06-08 Apparatus and method for measuring load current by applying compensated gain to voltage derived from drain-to-source voltage of power gating device

Publications (2)

Publication Number Publication Date
JP2018522237A true JP2018522237A (ja) 2018-08-09
JP6389020B2 JP6389020B2 (ja) 2018-09-12

Family

ID=56203978

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018500576A Expired - Fee Related JP6389020B2 (ja) 2015-07-08 2016-06-08 パワーゲーティングデバイスのドレイン−ソース間電圧から導出された電圧に補償済み利得を適用することで負荷電流を測定するための装置及び方法

Country Status (7)

Country Link
US (1) US9958484B2 (ja)
EP (1) EP3320349B1 (ja)
JP (1) JP6389020B2 (ja)
KR (1) KR20180028440A (ja)
CN (1) CN109073687A (ja)
BR (1) BR112018000327A2 (ja)
WO (1) WO2017007566A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018217A (ja) * 2019-07-24 2021-02-15 ローム株式会社 電圧監視回路

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108366419A (zh) * 2018-01-05 2018-08-03 京信通信系统(中国)有限公司 一种输出功率控制方法、控制器及输出功率调节装置
CN114460428B (zh) * 2020-11-10 2024-10-15 圣邦微电子(北京)股份有限公司 一种功率管的漏源电压检测电路和开关电路
CN114002592B (zh) * 2021-09-24 2024-06-18 圣邦微电子(北京)股份有限公司 功率管的漏源电压采样电路

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617838B1 (en) * 2001-09-11 2003-09-09 Analog Devices, Inc. Current measurement circuit
JP2005039573A (ja) * 2003-07-16 2005-02-10 Nec Electronics Corp 過電流検出回路及び負荷駆動回路
JP2005517666A (ja) * 2001-12-20 2005-06-16 バイエル・ヘルスケア・アクチェンゲゼルシャフト 1,4−ジヒドロ−1,4−ジフェニルピリジン誘導体
JP2006141330A (ja) * 2004-11-24 2006-06-08 Tohoku Univ メタンフェタミン依存性の判定方法
JP2010536032A (ja) * 2007-08-08 2010-11-25 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド ディスクリートパワー半導体デバイスのカスコード電流センサ
US20120169377A1 (en) * 2010-12-30 2012-07-05 Infineon Technologies Ag Circuit Arrangement including a Common Source Sense-FET
US20120293017A1 (en) * 2011-04-25 2012-11-22 Volterra Semiconductor Corporation Integrated protection devices with monitoring of electrical characteristics
US20140347119A1 (en) * 2013-05-22 2014-11-27 Infineon Technologies Ag Circuit arrangement

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3584232A (en) * 1969-01-21 1971-06-08 Bell Telephone Labor Inc Precision logarithmic converter
DE10120524B4 (de) 2001-04-26 2015-08-20 Infineon Technologies Ag Vorrichtung zur Ermittlung des Stromes durch ein Leistungs-Halbleiterbauelement
JP4163019B2 (ja) 2003-02-06 2008-10-08 シャープ株式会社 安定化電源用デバイスおよびそれを用いるスイッチング電源装置ならびに電子機器
US7202711B2 (en) 2005-09-07 2007-04-10 Delphi Technologies, Inc. Technique for determining a load current
CN101029910B (zh) * 2007-03-22 2010-05-26 华为技术有限公司 电流检测电路及装置
CN101470141B (zh) * 2007-12-28 2011-04-06 震一科技股份有限公司 过电流侦测装置
DE102008059853B4 (de) 2008-12-01 2013-09-19 Infineon Technologies Ag Schaltungsanordnung mit einem Lasttransistor und einem Messtransistor
JP5391973B2 (ja) 2009-09-30 2014-01-15 富士通株式会社 半導体装置及び半導体装置の電源制御方法
CN101846702B (zh) * 2010-05-10 2012-05-30 伊博电源(杭州)有限公司 一种电感电流检测电路
EP2730931B1 (en) 2012-11-12 2015-08-26 ST-Ericsson SA Absolute value current-sensing circuit for step-down DC-to-DC converters with integrated power stage
CN103248330B (zh) * 2013-01-31 2015-10-21 南京邮电大学 一种高增益精度的可编程增益放大器
US9146569B2 (en) * 2013-03-13 2015-09-29 Macronix International Co., Ltd. Low drop out regulator and current trimming device
CN104101764B (zh) * 2014-06-24 2017-04-12 暨南大学 一种应用于dc‑dc转换器的新型电感电流检测电路
US9263877B1 (en) * 2014-12-30 2016-02-16 Api Technologies Corp. Temperature-compensated current monitoring
CN104518747A (zh) * 2015-01-20 2015-04-15 北京华强智连微电子有限责任公司 一种增益可精确设置的开环放大器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6617838B1 (en) * 2001-09-11 2003-09-09 Analog Devices, Inc. Current measurement circuit
JP2005517666A (ja) * 2001-12-20 2005-06-16 バイエル・ヘルスケア・アクチェンゲゼルシャフト 1,4−ジヒドロ−1,4−ジフェニルピリジン誘導体
JP2005039573A (ja) * 2003-07-16 2005-02-10 Nec Electronics Corp 過電流検出回路及び負荷駆動回路
JP2006141330A (ja) * 2004-11-24 2006-06-08 Tohoku Univ メタンフェタミン依存性の判定方法
JP2010536032A (ja) * 2007-08-08 2010-11-25 アドバンスト・アナロジック・テクノロジーズ・インコーポレイテッド ディスクリートパワー半導体デバイスのカスコード電流センサ
US20120169377A1 (en) * 2010-12-30 2012-07-05 Infineon Technologies Ag Circuit Arrangement including a Common Source Sense-FET
US20120293017A1 (en) * 2011-04-25 2012-11-22 Volterra Semiconductor Corporation Integrated protection devices with monitoring of electrical characteristics
US20140347119A1 (en) * 2013-05-22 2014-11-27 Infineon Technologies Ag Circuit arrangement
US9024678B2 (en) * 2013-05-22 2015-05-05 Infineon Technologies Ag Current sensing circuit arrangement for output voltage regulation

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021018217A (ja) * 2019-07-24 2021-02-15 ローム株式会社 電圧監視回路

Also Published As

Publication number Publication date
US9958484B2 (en) 2018-05-01
WO2017007566A1 (en) 2017-01-12
JP6389020B2 (ja) 2018-09-12
BR112018000327A2 (pt) 2018-09-11
CN109073687A (zh) 2018-12-21
EP3320349A1 (en) 2018-05-16
US20170010312A1 (en) 2017-01-12
EP3320349B1 (en) 2019-12-04
KR20180028440A (ko) 2018-03-16

Similar Documents

Publication Publication Date Title
TWI413881B (zh) 線性穩壓器及其電流感測電路
KR101800598B1 (ko) 기준 전류 및 기준 전압을 생성하는 혼합―모드 회로들 및 방법들
JP6389020B2 (ja) パワーゲーティングデバイスのドレイン−ソース間電圧から導出された電圧に補償済み利得を適用することで負荷電流を測定するための装置及び方法
KR101586525B1 (ko) 전압 조정기
WO2019104467A1 (zh) 稳压器以及电源
US9483069B2 (en) Circuit for generating bias current
JP5820990B2 (ja) 定電圧回路
TW201730706A (zh) 具有輸出補償的半導體裝置
WO2018149166A1 (zh) 低温漂基准电压电路
CN102375465A (zh) 线性稳压器及其电流感测电路
JP5545045B2 (ja) コンパレータ回路
US20160274616A1 (en) Bandgap voltage generation
CN115843416A (zh) 多偏置模式电流输送器、配置多偏置模式电流输送器、包括多偏置模式电流输送器的触摸传感系统以及相关的系统、方法和设备
TWI548209B (zh) 差動運算放大器以及帶隙參考電壓產生電路
KR101362474B1 (ko) Cmos 서브밴드갭 기준발생기
KR20190029244A (ko) 밴드 갭 기준 전압 생성 회로 및 밴드 갭 기준 전압 생성 시스템
JP6912350B2 (ja) ボルテージレギュレータ
JP6132881B2 (ja) 電圧可変利得増幅回路及び差動入力電圧の増幅方法
JP2022094378A (ja) 過電流保護回路及び負荷駆動装置
JP4718271B2 (ja) D/aコンバータ
US20130154604A1 (en) Reference current generation circuit and reference voltage generation circuit
JP2003177828A (ja) 定電流回路
CN207908576U (zh) 电流传感器
Manolov Design of CMOS analog circuits in subthreshold region of operation
JP5644519B2 (ja) 半導体集積回路

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180525

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180525

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180525

TRDD Decision of grant or rejection written
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180717

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180815

R150 Certificate of patent or registration of utility model

Ref document number: 6389020

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees