[go: up one dir, main page]

JP2018201295A - Method for manufacturing rotor - Google Patents

Method for manufacturing rotor Download PDF

Info

Publication number
JP2018201295A
JP2018201295A JP2017104644A JP2017104644A JP2018201295A JP 2018201295 A JP2018201295 A JP 2018201295A JP 2017104644 A JP2017104644 A JP 2017104644A JP 2017104644 A JP2017104644 A JP 2017104644A JP 2018201295 A JP2018201295 A JP 2018201295A
Authority
JP
Japan
Prior art keywords
mold
field magnet
shaft
magnet
core portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017104644A
Other languages
Japanese (ja)
Other versions
JP6907707B2 (en
Inventor
竜次 北紺
Tatsuji Kitakon
竜次 北紺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2017104644A priority Critical patent/JP6907707B2/en
Publication of JP2018201295A publication Critical patent/JP2018201295A/en
Application granted granted Critical
Publication of JP6907707B2 publication Critical patent/JP6907707B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

To provide a method for manufacturing a rotor that can integrate a cylindrical field magnet with resin inside the field magnet.SOLUTION: A rotor has a shaft, a core part and a field magnet. Magnetic field orientation forming is performed on a magnet material to shape the field magnet. Next, the core part is molded by disposing (inserting) the field magnet and the shaft in a mold and then filling the mold with resin, thereby integrating the core part with the field magnet.SELECTED DRAWING: Figure 2

Description

本発明は、ロータの製造方法に関する。   The present invention relates to a method for manufacturing a rotor.

従来、ブラシレスモータのロータは、シャフトと、シャフトの外周に設けられた環状の界磁磁石とを有している。界磁磁石は永久磁石であり、界磁磁石の内側とシャフトとの間に充填された樹脂によりシャフトと一体化される(例えば、特許文献1参照)。   Conventionally, a rotor of a brushless motor has a shaft and an annular field magnet provided on the outer periphery of the shaft. The field magnet is a permanent magnet, and is integrated with the shaft by a resin filled between the inside of the field magnet and the shaft (see, for example, Patent Document 1).

実公平6−26040号公報No. 6-26040

ところで、環状の界磁磁石の内側に樹脂を充填する場合、樹脂の注入圧力が低いと、磁樹脂が界磁磁石に密着せず、一体化されない虞がある。一方、樹脂の注入圧力が高いと、注入圧力が界磁磁石を広げる方向の応力となって界磁磁石が割れる虞がある。樹脂の注入圧力に耐えるように界磁磁石を厚くすると、磁石が高価となる。   By the way, when the resin is filled inside the annular field magnet, if the injection pressure of the resin is low, the magnetic resin may not adhere to the field magnet and may not be integrated. On the other hand, if the injection pressure of the resin is high, there is a risk that the injection pressure will become a stress in the direction of spreading the field magnet and the field magnet will break. If the field magnet is thickened to withstand the resin injection pressure, the magnet becomes expensive.

本発明は上記問題点を解決するためになされたものであって、その目的は、円筒形状の界磁磁石と、界磁磁石の内側の樹脂とを一体化できるロータの製造方法を提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a method for manufacturing a rotor capable of integrating a cylindrical field magnet and a resin inside the field magnet. It is in.

上記課題を解決するロータの製造方法は、シャフトと、前記シャフトの外周に配置され、樹脂材よりなる円筒形状のコア部と、前記コア部の外周に配置され、磁石粉と樹脂材を含み、極異方着磁された円筒形状の界磁磁石とからなるロータ構造の製造方法であって、前記コア部と前記界磁磁石のいずれか一方を第1形成物とし、前記コア部と前記界磁磁石のいずれか他方を第2形成物とし、前記第1形成物を金型内に配置し、前記第1形成物と前記金型とにより形成される空間に材料を充填して前記第2形成物を成型する。   A method of manufacturing a rotor that solves the above problems includes a shaft, a cylindrical core portion that is disposed on the outer periphery of the shaft, and is disposed on the outer periphery of the core portion, and includes magnet powder and a resin material, A method of manufacturing a rotor structure comprising a cylindrical field magnet having an anisotropically magnetized shape, wherein either one of the core part and the field magnet is a first formation, and the core part and the field Either one of the magnets is used as a second formed product, the first formed product is placed in a mold, and a space formed by the first formed product and the mold is filled with a material to form the second formed product. Mold the formation.

この構成によれば、一方を金型内に配置し、その金型に材料を注入してコア部と界磁磁石とを一体化するので、注入する材料の圧力によって2つの樹脂材の間の密着が高まり、確実な一体化が図れる。   According to this configuration, one is placed in the mold, and the core portion and the field magnet are integrated by injecting the material into the mold, so the pressure between the two resin materials is increased by the pressure of the injected material. Adhesion increases and reliable integration can be achieved.

上記のロータの製造方法において、前記第1形成物は前記界磁磁石であり、前記第2形成物は前記コア部であり、前記界磁磁石を前記金型内に配置し、前記界磁磁石の中心に前記シャフトを配置し、前記シャフトと前記界磁磁石との間の空間に前記材料を充填して前記コア部を成型することが好ましい。   In the method of manufacturing a rotor, the first formation is the field magnet, the second formation is the core, the field magnet is disposed in the mold, and the field magnet It is preferable that the core is formed by arranging the shaft at the center of the core and filling the space between the shaft and the field magnet with the material.

この構成によれば、割れ易い界磁磁石を先に加工し金型と接触させることでインサート時の圧力を受けたときの界磁磁石の割れが抑制される。
上記のロータの製造方法において、金型入子を第2の金型内に配置し、前記金型入子の内面と前記第2の金型とにより形成される空間に前記磁石粉と前記樹脂材を含む磁石材料を充填して前記界磁磁石を成型し、前記第1形成物としての前記界磁磁石と前記金型入子とを前記金型内に配置することが好ましい。
According to this configuration, the field magnet is easily cracked when it is subjected to pressure during insertion by first processing the easily breakable field magnet and bringing it into contact with the mold.
In the rotor manufacturing method, a mold insert is disposed in a second mold, and the magnet powder and the resin are formed in a space formed by an inner surface of the mold insert and the second mold. It is preferable that the field magnet is molded by filling a magnet material including a material, and the field magnet as the first formed product and the mold insert are disposed in the mold.

この構成によれば、金型入子の内面の側に界磁磁石を形成し、コア部を成型する金型に金型入子及び界磁磁石を配置(インサート)することにより、割れ易い界磁磁石のインサートが容易となる。   According to this configuration, a field magnet is formed on the inner surface side of the mold insert, and the mold insert and the field magnet are arranged (inserted) in the mold for molding the core portion, thereby easily breaking the field. Magnet magnet insertion is facilitated.

上記のロータの製造方法において、前記第1形成物は前記コア部であり、前記第2形成物は前記界磁磁石であり、中心に前記シャフトが一体化された前記コア部を前記金型内に配置し、前記コア部と前記金型との間の空間に前記材料を充填して前記界磁磁石を成型することが好ましい。   In the above-described rotor manufacturing method, the first formation is the core portion, the second formation is the field magnet, and the core portion integrated with the shaft at the center is placed in the mold. Preferably, the field magnet is molded by filling the material in a space between the core portion and the mold.

この構成によれば、割れ易い界磁磁石を後に成型することで、界磁磁石がコア部材を成型する樹脂の圧力を受けないので、界磁磁石に割れの発生が抑制される。
上記のロータの製造方法において、前記シャフトを第2の金型内に配置し、前記シャフトと前記第2の金型との間の空間に樹脂を充填し、中心に前記シャフトが一体化された前記コア部を成型し、前記第1形成物としてのコア部材と前記シャフトとを前記金型内に配置することが好ましい。
According to this configuration, since the field magnet is not subjected to the pressure of the resin for molding the core member by forming the field magnet that is easily cracked later, occurrence of cracks in the field magnet is suppressed.
In the above rotor manufacturing method, the shaft is disposed in a second mold, a space between the shaft and the second mold is filled with resin, and the shaft is integrated in the center. Preferably, the core part is molded, and the core member as the first formed product and the shaft are disposed in the mold.

この構成によれば、金型を基準としてシャフト及びコア部を配置し、コア部の外周に界磁磁石を成型することで、シャフト及びコア部と界磁磁石とが容易に同軸状となる。   According to this configuration, the shaft and the core portion are arranged on the basis of the mold, and the field magnet is molded on the outer periphery of the core portion, so that the shaft, the core portion, and the field magnet are easily coaxial.

本発明のロータの製造方法によれば、円筒形状の界磁磁石と、界磁磁石の内側の樹脂とを一体化できるロータの製造方法を提供できる。   According to the method for manufacturing a rotor of the present invention, it is possible to provide a method for manufacturing a rotor capable of integrating a cylindrical field magnet and a resin inside the field magnet.

(a)はロータの斜視図、(b)はモータの概略図。(A) is a perspective view of a rotor, (b) is a schematic diagram of a motor. ロータの製造工程を示す工程図。Process drawing which shows the manufacturing process of a rotor. (a)〜(c)はロータの製造工程を示す模式図。(A)-(c) is a schematic diagram which shows the manufacturing process of a rotor. (a)〜(c)はロータの製造工程を示す模式図。(A)-(c) is a schematic diagram which shows the manufacturing process of a rotor. ロータの製造工程を示す工程図。Process drawing which shows the manufacturing process of a rotor. (a)〜(c)はロータの製造工程を示す模式図。(A)-(c) is a schematic diagram which shows the manufacturing process of a rotor. (a)(b)はロータの製造工程を示す模式図。(A) (b) is a schematic diagram which shows the manufacturing process of a rotor. (a)(b)は変形例のロータを示す概略図。(A) (b) is the schematic which shows the rotor of a modification. (a)(b)は変形例のロータを示す概略図。(A) (b) is the schematic which shows the rotor of a modification. (a)(b)は変形例のロータを示す概略図。(A) (b) is the schematic which shows the rotor of a modification.

以下、各形態を説明する。
なお、添付図面は、理解を容易にするために構成要素を拡大して示している場合がある。構成要素の寸法比率は実際のものと、または別の図面中のものと異なる場合がある。また、断面図では、理解を容易にするために、一部の構成要素のハッチングを省略している場合がある。
Hereinafter, each embodiment will be described.
In the accompanying drawings, components may be shown in an enlarged manner for easy understanding. The dimensional ratios of the components may be different from the actual ones or in other drawings. Further, in the cross-sectional view, some components may not be hatched for easy understanding.

図1(b)に示すように、モータ10は、環状のステータ11と、ステータ11の内側に配置されたロータ12とを有している。
図1(a)に示すように、ロータ12は、シャフト21と、コア部22と、界磁磁石23とを有している。
As shown in FIG. 1B, the motor 10 includes an annular stator 11 and a rotor 12 disposed inside the stator 11.
As shown in FIG. 1A, the rotor 12 has a shaft 21, a core portion 22, and a field magnet 23.

シャフト21は円柱状に形成されている。シャフト21は金属製である。
コア部22は、円環状に形成されている。コア部22は、例えば熱可塑性の樹脂よりなる。この樹脂は、例えばPPS(ポリフェニレンサルファイド)樹脂、ポリアミド樹脂(例えば、ナイロン12)、等である。
The shaft 21 is formed in a cylindrical shape. The shaft 21 is made of metal.
The core part 22 is formed in an annular shape. The core part 22 is made of, for example, a thermoplastic resin. This resin is, for example, a PPS (polyphenylene sulfide) resin, a polyamide resin (for example, nylon 12), or the like.

界磁磁石23は、円環状に形成されている。
図1(b)に示すように、界磁磁石23は、外周面23aにおいて、周方向にN極とS極とが交互に並ぶ極異方性に着磁されている。つまり、本実施形態の界磁磁石23は、「外周極異方」に着磁されている。図1(b)に示す矢印は、磁力の方向を示す。
The field magnet 23 is formed in an annular shape.
As shown in FIG. 1B, the field magnet 23 is magnetized on the outer peripheral surface 23a with polar anisotropy in which N poles and S poles are alternately arranged in the circumferential direction. In other words, the field magnet 23 of the present embodiment is magnetized in “peripheral pole anisotropic”. The arrow shown in FIG. 1B indicates the direction of magnetic force.

界磁磁石23は、例えばボンド磁石(プラスチックマグネット、ゴムマグネット等)よりなる。ボンド磁石は、磁石粉をバインダで固めて成形した複合材料磁石である。磁石粉は、例えば、フェライト磁石、サマリウム鉄窒素(Sm−Fe−N)系磁石、サマリウムコバルト(Sm−Co)系磁石、ネオジム磁石等の磁石粉である。バインダは、例えば熱可塑性樹脂(例えばPPS)、等の樹脂材である。   The field magnet 23 is made of, for example, a bond magnet (plastic magnet, rubber magnet, etc.). The bond magnet is a composite magnet formed by solidifying magnet powder with a binder. The magnet powder is, for example, a magnet powder such as a ferrite magnet, a samarium iron nitrogen (Sm—Fe—N) magnet, a samarium cobalt (Sm—Co) magnet, or a neodymium magnet. The binder is a resin material such as a thermoplastic resin (for example, PPS).

つまり、ロータ12は、シャフト21と、樹脂を含む材料からなるコア部22及び界磁磁石23とにより構成されている。従って、金型を用い、コア部22と界磁磁石23とを成形することにより、コア部22と界磁磁石23とを密着させて一体とすることができる。例えば、金型内にコア部22を配設(インサート)し、界磁磁石23の材料を金型内に射出して成形する。また、金型内に界磁磁石23を配設し、コア部22の材料を金型内に射出して成形する。この金型内にシャフト21を配設(インサート)することにより、シャフト21とコア部22と界磁磁石23とを一体化したロータ12が得られる。   That is, the rotor 12 includes the shaft 21, the core portion 22 and the field magnet 23 made of a material containing resin. Therefore, the core 22 and the field magnet 23 can be brought into close contact with each other by molding the core 22 and the field magnet 23 using a mold. For example, the core portion 22 is disposed (inserted) in the mold, and the material of the field magnet 23 is injected into the mold and molded. Further, the field magnet 23 is disposed in the mold, and the material of the core portion 22 is injected into the mold and molded. By disposing (inserting) the shaft 21 in the mold, the rotor 12 in which the shaft 21, the core portion 22, and the field magnet 23 are integrated is obtained.

(第1実施形態)
上記のロータ12の製造方法の第1実施形態を説明する。
図2に示すように、先ず磁石材料を磁場配向成形して図1(a)に示す界磁磁石23を成型する。次に、界磁磁石23とシャフト21を金型内に配置(インサート)し、その金型に樹脂を充填して図1(a)に示すコア部22を成型する。これにより、シャフト21とコア部22と界磁磁石23とを一体化する。
(First embodiment)
1st Embodiment of the manufacturing method of said rotor 12 is described.
As shown in FIG. 2, the magnet material is first subjected to magnetic field orientation molding to form the field magnet 23 shown in FIG. Next, the field magnet 23 and the shaft 21 are disposed (inserted) in the mold, and the mold is filled with a resin to mold the core portion 22 shown in FIG. Thereby, the shaft 21, the core part 22, and the field magnet 23 are integrated.

この製造方法を順次説明する。
図3(a)に示すように、金型30内に金型入子41を配置する。金型30は、第1金型31(例えば可動金型)と第2金型32(例えば固定金型)とを含む。図3(a)は、第1金型31と第2金型32とを型閉めした状態を示す。金型入子41は、円筒状の内周面を有している。この金型入子41は、例えば円環状に形成されている。第1金型31を第2金型32(例えば固定金型)に対して型閉めする。そして、図3(b)に示すように、第1金型31と金型入子41との間の空間30a、つまり第1金型31と第2金型32と金型入子41とにより形成される空間30aに、磁石材料43を充填する。磁石材料43は、磁石粉とバインダを含む。そして、配向用磁石35により金型30内の磁石材料43に磁場をかけ、界磁磁石23を成形する。配向用磁石35は、例えば電磁石や永久磁石である。図3(c)に示すように、界磁磁石23と金型入子41を図3(b)に示す第1金型31から取り出す。
This manufacturing method will be described sequentially.
As shown in FIG. 3A, a mold insert 41 is disposed in the mold 30. The mold 30 includes a first mold 31 (for example, a movable mold) and a second mold 32 (for example, a fixed mold). FIG. 3A shows a state where the first mold 31 and the second mold 32 are closed. The mold insert 41 has a cylindrical inner peripheral surface. The mold insert 41 is formed in an annular shape, for example. The first mold 31 is closed with respect to the second mold 32 (for example, a fixed mold). Then, as shown in FIG. 3B, a space 30a between the first mold 31 and the mold insert 41, that is, the first mold 31, the second mold 32, and the mold insert 41. The space 30a to be formed is filled with the magnet material 43. The magnet material 43 includes magnet powder and a binder. A magnetic field is applied to the magnet material 43 in the mold 30 by the orientation magnet 35 to form the field magnet 23. The orientation magnet 35 is, for example, an electromagnet or a permanent magnet. As shown in FIG. 3C, the field magnet 23 and the mold insert 41 are taken out from the first mold 31 shown in FIG.

図4(a)に示すように、金型50に、界磁磁石23及び金型入子41を配置(インサート)するとともに、シャフト21を界磁磁石23の軸中心と同軸上に配置(インサート)する。金型50は、第1金型51(例えば可動金型)と第2金型52(例えば固定金型)とを含む。図4(a)は、第1金型51と第2金型52とを型閉めした状態を示す。シャフト21と界磁磁石23及び金型入子41は、金型50を基準として配置(インサート)される。従って、シャフト21は、金型50により界磁磁石23の軸中心に精度よく配置される。   As shown in FIG. 4A, the field magnet 23 and the mold insert 41 are disposed (inserted) in the mold 50, and the shaft 21 is disposed coaxially with the axial center of the field magnet 23 (inserted). ) The mold 50 includes a first mold 51 (for example, a movable mold) and a second mold 52 (for example, a fixed mold). FIG. 4A shows a state where the first mold 51 and the second mold 52 are closed. The shaft 21, the field magnet 23, and the mold insert 41 are arranged (inserted) with reference to the mold 50. Therefore, the shaft 21 is accurately placed at the axial center of the field magnet 23 by the mold 50.

次に、図4(b)に示すように、シャフト21と界磁磁石23との間の空間50a、つまり、第1金型51と第2金型52とシャフト21と界磁磁石23とにより形成される空間50aに、樹脂42を充填し、樹脂42を硬化してコア部22を成形する。そして、図4(c)に示すように、金型入子41からロータ12を取り外す。   Next, as shown in FIG. 4B, a space 50 a between the shaft 21 and the field magnet 23, that is, the first mold 51, the second mold 52, the shaft 21, and the field magnet 23. The space 42 to be formed is filled with the resin 42 and the resin 42 is cured to form the core portion 22. Then, the rotor 12 is removed from the mold insert 41 as shown in FIG.

(作用)
図4(a)に示すように、第1金型51に、界磁磁石23及び金型入子41を配置する。このため、割れ易い界磁磁石23を容易に第1金型51に配置(インサート)することができる。
(Function)
As shown in FIG. 4A, the field magnet 23 and the mold insert 41 are arranged in the first mold 51. For this reason, the field magnet 23 that is easily broken can be easily placed (inserted) in the first mold 51.

また、金型入子41の内側に界磁磁石23が成型されている。このため、界磁磁石23と金型入子41との間に隙間が生じない。そして、図4(b)に示すように、界磁磁石23とシャフト21との間に樹脂42を充填する。   A field magnet 23 is molded inside the mold insert 41. For this reason, there is no gap between the field magnet 23 and the mold insert 41. Then, as shown in FIG. 4B, a resin 42 is filled between the field magnet 23 and the shaft 21.

この工程により、シャフト21と界磁磁石23とに対してコア部22が一体的に成形される。この工程において、コア部22を成形する樹脂42を金型50内に注入(射出)する。樹脂42の注入圧力によって、注入する樹脂42と界磁磁石23の内周面との間と、注入する樹脂42とシャフト21の外周面との間の密着性が高く、シャフト21とコア部22と界磁磁石23とが一体的となる。   Through this process, the core portion 22 is integrally formed with the shaft 21 and the field magnet 23. In this step, a resin 42 for molding the core portion 22 is injected (injected) into the mold 50. Due to the injection pressure of the resin 42, the adhesiveness between the resin 42 to be injected and the inner peripheral surface of the field magnet 23 and between the resin 42 to be injected and the outer peripheral surface of the shaft 21 is high. And the field magnet 23 are integrated.

コア部22を成型する樹脂42を充填する際の注入圧力は、界磁磁石23の外周に配置された金型入子41により受け止められる。このため、界磁磁石23が注入圧力によって拡径することが抑制される、つまりコア部22の成型時における界磁磁石23の割れが抑制される。   The injection pressure when filling the resin 42 for molding the core portion 22 is received by the mold insert 41 disposed on the outer periphery of the field magnet 23. For this reason, the diameter of the field magnet 23 is suppressed from being increased by the injection pressure, that is, cracking of the field magnet 23 during the molding of the core portion 22 is suppressed.

図4(a)に示すように、シャフト21と界磁磁石23及び金型入子41は、金型50を基準としてその金型50内に配置される。従って、シャフト21と界磁磁石23とを同軸状に精度よく配置される。   As shown in FIG. 4A, the shaft 21, the field magnet 23, and the mold insert 41 are disposed in the mold 50 with respect to the mold 50. Therefore, the shaft 21 and the field magnet 23 are accurately arranged coaxially.

このようにして得られるロータ12は、シャフト21に対して樹脂製のコア部22と、樹脂材のバインダと磁石粉とを含む界磁磁石23とからなる。従って、このロータ12は、金属製のカバーや金属製のコア部を有していないため、イナーシャが小さい。また、このロータ12は、金属製のカバーを必要としないため、図1(b)に示すステータ11に対して磁気ギャップが小さいロータ12とすることができる。このため、安価で軽量であり、高い応答性のモータを提供できる。また、金属製のカバーを用いた場合、ロータとステータとの間の磁気ギャップが大きく、磁気損失となる。一方、本実施形態では、図1(b)に示すロータ12の界磁磁石23とステータ11との間の磁気ギャップが小さく、磁気損失の増加を抑制することができる。   The rotor 12 thus obtained includes a resin core portion 22 with respect to the shaft 21, and a field magnet 23 including a resin binder and magnet powder. Accordingly, since the rotor 12 does not have a metal cover or a metal core, inertia is small. In addition, since the rotor 12 does not require a metal cover, the rotor 12 can have a smaller magnetic gap than the stator 11 shown in FIG. For this reason, an inexpensive, lightweight, and highly responsive motor can be provided. Further, when a metal cover is used, the magnetic gap between the rotor and the stator is large, resulting in magnetic loss. On the other hand, in this embodiment, the magnetic gap between the field magnet 23 of the rotor 12 and the stator 11 shown in FIG. 1B is small, and an increase in magnetic loss can be suppressed.

以上記述したように、本実施形態によれば、以下の効果を奏する。
(1−1)金型入子41の内側に界磁磁石23が成型されている。このため、界磁磁石23と金型入子41との間に隙間が生じない。そして、界磁磁石23とシャフト21との間に樹脂42を充填し、コア部22を成型する。樹脂42を金型50内に注入(射出)する。樹脂42の注入圧力によって、注入する樹脂42と界磁磁石23の内周面との間と、注入する樹脂42とシャフト21の外周面との間の密着性が高く、シャフト21とコア部22と界磁磁石23とを一体化できる。
As described above, according to the present embodiment, the following effects can be obtained.
(1-1) A field magnet 23 is molded inside the mold insert 41. For this reason, there is no gap between the field magnet 23 and the mold insert 41. Then, a resin 42 is filled between the field magnet 23 and the shaft 21 to mold the core portion 22. Resin 42 is injected (injected) into the mold 50. Due to the injection pressure of the resin 42, the adhesiveness between the resin 42 to be injected and the inner peripheral surface of the field magnet 23 and between the resin 42 to be injected and the outer peripheral surface of the shaft 21 is high. And the field magnet 23 can be integrated.

(1−2)金型入子41の内側に界磁磁石23が成型されている。コア部22を成型する第1金型51に、界磁磁石23及び金型入子41を配置する。このため、割れ易い界磁磁石23を容易に第1金型51に配置(インサート)することができる。   (1-2) A field magnet 23 is molded inside the mold insert 41. The field magnet 23 and the mold insert 41 are arranged in the first mold 51 for molding the core portion 22. For this reason, the field magnet 23 that is easily broken can be easily placed (inserted) in the first mold 51.

(1−3)コア部22を成型する樹脂42を充填する際の注入圧力は、界磁磁石23の外周に配置された金型入子41により受け止められる。このため、界磁磁石23が注入圧力によって拡径することが抑制される、つまりコア部22の成型時における界磁磁石23の割れを抑制できる。   (1-3) The injection pressure when filling the resin 42 for molding the core portion 22 is received by the mold insert 41 arranged on the outer periphery of the field magnet 23. For this reason, it is possible to suppress the field magnet 23 from being expanded in diameter by the injection pressure, that is, it is possible to suppress cracking of the field magnet 23 when the core portion 22 is molded.

(1−4)シャフト21と界磁磁石23及び金型入子41は、金型50を基準としてその金型50内に配置される。従って、シャフト21と界磁磁石23とを同軸状に精度よく配置できる。   (1-4) The shaft 21, the field magnet 23, and the mold insert 41 are arranged in the mold 50 with respect to the mold 50. Therefore, the shaft 21 and the field magnet 23 can be accurately arranged coaxially.

(1−5)ロータ12は、シャフト21に対して樹脂製のコア部22と、樹脂材のバインダと磁石粉とを含む界磁磁石23とからなる。従って、イナーシャの小さなロータ12を得ることができる。   (1-5) The rotor 12 includes a resin core portion 22 with respect to the shaft 21, and a field magnet 23 including a resin binder and magnet powder. Therefore, the rotor 12 with small inertia can be obtained.

(第2実施形態)
次に、上記のロータ12の製造方法の第2実施形態を説明する。
図5に示すように、先ずシャフトを配置(インサート)した金型に樹脂を充填して図1(a)に示すシャフト21とコア部22とを一体成形する。次いで、シャフト21及びコア部22を次の金型に配置し、コア部22と金型との間に充填した磁石材料43を磁場配向成形して図1(a)に示す界磁磁石をコア部22と一体的に形成する。
(Second Embodiment)
Next, a second embodiment of the method for manufacturing the rotor 12 will be described.
As shown in FIG. 5, first, a mold having a shaft disposed (inserted) is filled with resin, and the shaft 21 and the core portion 22 shown in FIG. Next, the shaft 21 and the core portion 22 are arranged in the next mold, and the magnet material 43 filled between the core portion 22 and the mold is magnetically oriented and the field magnet shown in FIG. It is formed integrally with the part 22.

この製造方法を順次説明する。
図6(a)に示すように、金型60内にシャフト21を配置する。金型60は、第1金型61(例えば可動金型)と第2金型62(例えば固定金型)とを含む。図6(a)は、第1金型61と第2金型62とを型閉めした状態を示す。そして、図6(b)に示すように、第1金型61とシャフト21との間の空間60a、つまり、第1金型61と第2金型62とシャフト21とにより形成される円環状の空間60aに、樹脂42を充填し、樹脂42を硬化し、シャフト21と一体的なコア部22を成形する。そして、図6(c)に示すように、シャフト21及びコア部22を図6(b)に示す金型60から取り出す。
This manufacturing method will be described sequentially.
As shown in FIG. 6A, the shaft 21 is disposed in the mold 60. The mold 60 includes a first mold 61 (for example, a movable mold) and a second mold 62 (for example, a fixed mold). FIG. 6A shows a state where the first mold 61 and the second mold 62 are closed. 6B, a space 60a between the first mold 61 and the shaft 21, that is, an annular shape formed by the first mold 61, the second mold 62, and the shaft 21 is formed. The space 42a is filled with the resin 42, the resin 42 is cured, and the core portion 22 integrated with the shaft 21 is formed. And as shown in FIG.6 (c), the shaft 21 and the core part 22 are taken out from the metal mold | die 60 shown in FIG.6 (b).

図7(a)に示すように、金型70内にシャフト21及びコア部22を配置(インサート)する。金型70は、第1金型71(例えば可動金型)と第2金型72(例えば固定金型)とを含む。図7(a)は、第1金型71と第2金型72とを型閉めした状態を示す。   As shown in FIG. 7A, the shaft 21 and the core portion 22 are arranged (inserted) in the mold 70. The mold 70 includes a first mold 71 (for example, a movable mold) and a second mold 72 (for example, a fixed mold). FIG. 7A shows a state in which the first mold 71 and the second mold 72 are closed.

図7(b)に示すように、第1金型71とコア部22との間の空間70a、つまり第1金型71と第2金型72とコア部22とにより形成される空間70aに、磁石材料43を充填する。磁石材料43は、磁石粉とバインダを含む。そして、配向用磁石75により金型70内の磁石材料43に磁場をかけ、界磁磁石23を成形する。配向用磁石75は、例えば電磁石や永久磁石である。   As shown in FIG. 7B, in the space 70a between the first mold 71 and the core part 22, that is, in the space 70a formed by the first mold 71, the second mold 72, and the core part 22. The magnet material 43 is filled. The magnet material 43 includes magnet powder and a binder. Then, a magnetic field is applied to the magnet material 43 in the mold 70 by the orientation magnet 75 to form the field magnet 23. The orientation magnet 75 is, for example, an electromagnet or a permanent magnet.

(作用)
図7(a)に示すように、シャフト21と、シャフト21と一体化したコア部22とを金型70に挿入(インサート)し、金型70に磁石材料43を充填して界磁磁石23を成形する。従って、バインダとして樹脂材を含む磁石材料43を金型70に注入(射出)する際の注入圧力によって磁石材料43とコア部22との密着性が高く、コア部22と界磁磁石23とが確実に一体的となる。また、コア部22の成形における応力は界磁磁石23にかからないため、界磁磁石23の割れ等の発生を抑制できる。
(Function)
As shown in FIG. 7A, the shaft 21 and the core portion 22 integrated with the shaft 21 are inserted (inserted) into the mold 70, and the magnet material 43 is filled into the mold 70 to fill the field magnet 23. Is molded. Therefore, the adhesion between the magnet material 43 and the core portion 22 is high due to the injection pressure when the magnet material 43 containing a resin material as a binder is injected (injected) into the mold 70, and the core portion 22 and the field magnet 23 are connected to each other. Be sure to be united. Further, since the stress in the molding of the core portion 22 is not applied to the field magnet 23, the occurrence of cracks and the like of the field magnet 23 can be suppressed.

図6(a)に示すように、シャフト21は、金型60を基準としてその金型60内に配置される。そして、図6(b)に示すように、金型60とシャフト21との間の空間60aに樹脂42を充填してコア部22を成形する。従って、シャフト21とコア部22は、金型60により同軸状に精度よく配置される。   As shown in FIG. 6A, the shaft 21 is disposed in the mold 60 with respect to the mold 60. Then, as shown in FIG. 6B, the core portion 22 is formed by filling the resin 42 into the space 60 a between the mold 60 and the shaft 21. Accordingly, the shaft 21 and the core portion 22 are accurately arranged coaxially by the mold 60.

図7(a)に示すように、シャフト21及びコア部22は、金型70を基準としてその金型70内に配置される。そして、その金型70とコア部22との間の空間70aに磁石材料43を充填して界磁磁石23を成形する。従って、シャフト21とコア部22と界磁磁石23は、金型70により同軸状に精度よく配置される。   As shown in FIG. 7A, the shaft 21 and the core portion 22 are disposed in the mold 70 with reference to the mold 70. Then, the field material 23 is formed by filling the space 70 a between the mold 70 and the core portion 22 with the magnet material 43. Therefore, the shaft 21, the core portion 22, and the field magnet 23 are accurately arranged coaxially by the mold 70.

以上記述したように、本実施形態によれば、以下の効果を奏する。
(2−1)シャフト21と、シャフト21と一体化したコア部22とを金型70に挿入(インサート)し、金型70に磁石材料43を充填して界磁磁石23を成形する。従って、バインダとして樹脂材を含む磁石材料43を金型70に注入(射出)する際の注入圧力によって磁石材料43とコア部22との密着性が高く、コア部22と界磁磁石23とが確実に一体的にできる。
As described above, according to the present embodiment, the following effects can be obtained.
(2-1) The shaft 21 and the core portion 22 integrated with the shaft 21 are inserted (inserted) into the mold 70, and the magnet material 43 is filled in the mold 70 to form the field magnet 23. Therefore, the adhesiveness between the magnet material 43 and the core portion 22 is high due to the injection pressure when the magnet material 43 containing a resin material as a binder is injected (injected) into the mold 70, and the core portion 22 and the field magnet 23 are Can be united reliably.

(2−2)シャフト21と、シャフト21と一体化したコア部22とを金型70に挿入(インサート)し、金型70に磁石材料43を充填して界磁磁石23を成形する。コア部22の成形における応力は界磁磁石23にかからないため、界磁磁石23の割れ等の発生を抑制できる。   (2-2) The shaft 21 and the core portion 22 integrated with the shaft 21 are inserted (inserted) into the mold 70, and the magnet material 43 is filled in the mold 70 to form the field magnet 23. Since the stress in the molding of the core portion 22 is not applied to the field magnet 23, the occurrence of cracks and the like of the field magnet 23 can be suppressed.

(2−3)シャフト21は、金型60を基準としてその金型60内に配置される。金型60とシャフト21との間の空間60aに樹脂42を充填してコア部22を成形する。従って、シャフト21とコア部22を同軸状に精度よく配置できる。   (2-3) The shaft 21 is disposed in the mold 60 with reference to the mold 60. A space 60 a between the mold 60 and the shaft 21 is filled with a resin 42 to mold the core portion 22. Therefore, the shaft 21 and the core portion 22 can be accurately arranged coaxially.

(2−4)シャフト21及びコア部22は、金型70を基準としてその金型70内に配置される。そして、その金型70とコア部22との間の空間70aに磁石材料43を充填して界磁磁石23を成形する。従って、シャフト21とコア部22と界磁磁石23を同軸状に精度よく配置できる。   (2-4) The shaft 21 and the core portion 22 are disposed in the mold 70 with reference to the mold 70. Then, the field material 23 is formed by filling the space 70 a between the mold 70 and the core portion 22 with the magnet material 43. Therefore, the shaft 21, the core portion 22, and the field magnet 23 can be accurately arranged coaxially.

尚、上記各実施形態は、以下の態様で実施してもよい。
・上記実施形態に対し、コア部22と界磁磁石23とに回り止めを設けるようにしてもよい。
In addition, you may implement each said embodiment in the following aspects.
In contrast to the above embodiment, the core portion 22 and the field magnet 23 may be provided with a rotation stopper.

図8(a)及び図8(b)に示すように、コア部22には、外周面22aから径方向内側に向かう複数(図8(a)では4つ)の凹部22bが、周方向に沿って等間隔に設けられている。界磁磁石23には、内周面23bから径方向内側に突出する複数(図8(a)では4つ)の凸部23cが周方向に沿って等間隔に設けられている。コア部22の凹部22bと界磁磁石23の凸部23cにより、コア部22と界磁磁石23と互いの回り止めがなされる。コア部22の凹部22bと界磁磁石23の凸部23cは、それぞれを成型する金型により形成することができる。このため、製造工数は増加しない。   As shown in FIG. 8A and FIG. 8B, the core portion 22 has a plurality of (four in FIG. 8A) concave portions 22b extending radially inward from the outer peripheral surface 22a in the circumferential direction. It is provided at equal intervals along. In the field magnet 23, a plurality (four in FIG. 8A) of convex portions 23c projecting radially inward from the inner peripheral surface 23b are provided at equal intervals along the circumferential direction. The core portion 22 and the field magnet 23 are prevented from rotating together by the concave portion 22b of the core portion 22 and the convex portion 23c of the field magnet 23. The concave portion 22b of the core portion 22 and the convex portion 23c of the field magnet 23 can be formed by a mold for molding each. For this reason, the number of manufacturing steps does not increase.

図9(a)及び図9(b)に示すように、コア部22には、外周面22aから径方向外側に突出する複数(図9(a)では4つ)の凸部22cが、周方向に沿って等間隔に設けられている。界磁磁石23には、内周面23bから径方向外側に向かう複数(図9(a)では4つ)の凹部23dが周方向に沿って等間隔に設けられている。コア部22の凸部22cと界磁磁石23の凹部23dにより、コア部22と界磁磁石23と互いの回り止めがなされる。コア部22の凸部22cと界磁磁石23の凹部23dは、それぞれを成型する金型により形成することができる。このため、製造工数は増加しない。   As shown in FIGS. 9A and 9B, the core portion 22 has a plurality of (four in FIG. 9A) convex portions 22c protruding radially outward from the outer peripheral surface 22a. It is provided at equal intervals along the direction. The field magnet 23 is provided with a plurality (four in FIG. 9A) of recesses 23d that extend radially outward from the inner circumferential surface 23b at equal intervals along the circumferential direction. The core portion 22 and the field magnet 23 are prevented from rotating together by the convex portion 22 c of the core portion 22 and the concave portion 23 d of the field magnet 23. The convex part 22c of the core part 22 and the concave part 23d of the field magnet 23 can be formed by a mold for molding each of them. For this reason, the number of manufacturing steps does not increase.

図10(a)及び図10(b)に示すように、コア部22には、外周面22aから径方向内側に向かい、軸方向に沿って延びる複数(図10(a)では4つ)の溝部22dが、周方向に沿って等間隔に設けられている。界磁磁石23には、内周面23bから径方向内側に突出し、軸方向に沿って延びる複数(図10(a)では4つ)の突条23eが周方向に沿って等間隔に設けられている。コア部22の溝部22dと界磁磁石23の突条23eにより、コア部22と界磁磁石23と互いの回り止めがなされる。コア部22の溝部22dと界磁磁石23の突条23eは、それぞれを成型する金型により形成することができる。このため、製造工数は増加しない。   As shown in FIGS. 10A and 10B, the core portion 22 has a plurality of (four in FIG. 10A) extending radially inward from the outer peripheral surface 22a and extending along the axial direction. The groove portions 22d are provided at equal intervals along the circumferential direction. The field magnet 23 is provided with a plurality (four in FIG. 10A) of protrusions 23e that protrude radially inward from the inner peripheral surface 23b and extend in the axial direction at equal intervals along the circumferential direction. ing. The groove part 22d of the core part 22 and the protrusion 23e of the field magnet 23 prevent the core part 22 and the field magnet 23 from rotating together. The groove part 22d of the core part 22 and the protrusion 23e of the field magnet 23 can be formed by a mold for molding each of them. For this reason, the number of manufacturing steps does not increase.

12…ロータ、21…シャフト、22…コア部、23…界磁磁石、41…金型入子、42…樹脂、43…磁石材料、50,70…金型、50a,70a…空間。
DESCRIPTION OF SYMBOLS 12 ... Rotor, 21 ... Shaft, 22 ... Core part, 23 ... Field magnet, 41 ... Mold insert, 42 ... Resin, 43 ... Magnet material, 50, 70 ... Mold, 50a, 70a ... Space.

Claims (5)

シャフトと、
前記シャフトの外周に配置され、樹脂材よりなる円筒形状のコア部と、
前記コア部の外周に配置され、磁石粉と樹脂材を含み、極異方着磁された円筒形状の界磁磁石と
からなるロータ構造の製造方法であって、
前記コア部と前記界磁磁石のいずれか一方を第1形成物とし、前記コア部と前記界磁磁石のいずれか他方を第2形成物とし、
前記第1形成物を金型内に配置し、
前記第1形成物と前記金型とにより形成される空間に材料を充填して前記第2形成物を成型すること、
を特徴とするロータの製造方法。
A shaft,
A cylindrical core portion disposed on the outer periphery of the shaft and made of a resin material;
A method of manufacturing a rotor structure, which is arranged on the outer periphery of the core part, includes a magnet powder and a resin material, and is made of a pole-shaped magnetic field magnet,
Either one of the core part and the field magnet is a first formation, and the other part of the core part and the field magnet is a second formation,
Placing the first formation in a mold;
Filling the material formed in the space formed by the first formation and the mold and molding the second formation;
A method for manufacturing a rotor, characterized in that
前記第1形成物は前記界磁磁石であり、
前記第2形成物は前記コア部であり、
前記界磁磁石を前記金型内に配置し、前記界磁磁石の中心に前記シャフトを配置し、前記シャフトと前記界磁磁石との間の空間に前記材料を充填して前記コア部を成型すること、
を特徴とする請求項1に記載のロータの製造方法。
The first formation is the field magnet;
The second formation is the core;
The field magnet is disposed in the mold, the shaft is disposed in the center of the field magnet, and the core portion is molded by filling the space between the shaft and the field magnet with the material. To do,
The method of manufacturing a rotor according to claim 1.
金型入子を第2の金型内に配置し、前記金型入子の内面と前記第2の金型とにより形成される空間に前記磁石粉と前記樹脂材を含む磁石材料を充填して前記界磁磁石を成型し、
前記第1形成物としての前記界磁磁石と前記金型入子とを前記金型内に配置すること、
を特徴とする請求項2に記載のロータの製造方法。
A mold insert is disposed in the second mold, and a space formed by the inner surface of the mold insert and the second mold is filled with a magnet material including the magnet powder and the resin material. Mold the field magnet,
Disposing the field magnet as the first formation and the mold insert in the mold;
The method for manufacturing a rotor according to claim 2.
前記第1形成物は前記コア部であり、
前記第2形成物は前記界磁磁石であり、
中心に前記シャフトが一体化された前記コア部を前記金型内に配置し、前記コア部と前記金型との間の空間に前記材料を充填して前記界磁磁石を成型すること、
を特徴とする請求項1に記載のロータの製造方法。
The first formation is the core;
The second formation is the field magnet;
Placing the core part integrated with the shaft in the center in the mold, filling the space between the core part and the mold with the material, and molding the field magnet;
The method of manufacturing a rotor according to claim 1.
前記シャフトを第2の金型内に配置し、前記シャフトと前記第2の金型との間の空間に樹脂を充填し、中心に前記シャフトが一体化された前記コア部を成型し、
前記第1形成物としてのコア部材と前記シャフトとを前記金型内に配置すること、
を特徴とする請求項4に記載のロータの製造方法。
The shaft is disposed in a second mold, a resin is filled in a space between the shaft and the second mold, and the core part in which the shaft is integrated at the center is molded.
Disposing the core member as the first formation and the shaft in the mold;
The method of manufacturing a rotor according to claim 4.
JP2017104644A 2017-05-26 2017-05-26 Rotor manufacturing method Active JP6907707B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017104644A JP6907707B2 (en) 2017-05-26 2017-05-26 Rotor manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017104644A JP6907707B2 (en) 2017-05-26 2017-05-26 Rotor manufacturing method

Publications (2)

Publication Number Publication Date
JP2018201295A true JP2018201295A (en) 2018-12-20
JP6907707B2 JP6907707B2 (en) 2021-07-21

Family

ID=64668403

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017104644A Active JP6907707B2 (en) 2017-05-26 2017-05-26 Rotor manufacturing method

Country Status (1)

Country Link
JP (1) JP6907707B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020156203A (en) * 2019-03-20 2020-09-24 愛知製鋼株式会社 Device and method for manufacturing magnet member
US11532960B2 (en) * 2019-02-05 2022-12-20 Fanuc Corporation Device for manufacturing rotor core, method for manufacturing rotor core, and rotor structure
WO2023127084A1 (en) * 2021-12-28 2023-07-06 三菱電機株式会社 Rotor, motor, fan, ventilator, and air conditioner
JP7420327B1 (en) 2022-10-24 2024-01-23 株式会社村田製作所 Rotor member, rotor, rotating electric machine, brushless motor, and manufacturing method of rotor member
WO2024089933A1 (en) * 2022-10-24 2024-05-02 株式会社村田製作所 Rotor member, rotor, rotary electric mechanism, brushless motor, and method for manufacturing rotor member

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312284A (en) * 2007-06-12 2008-12-25 Aisin Seiki Co Ltd Rotor for electric pump
WO2016203524A1 (en) * 2015-06-15 2016-12-22 三菱電機株式会社 Permanent magnet electric motor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008312284A (en) * 2007-06-12 2008-12-25 Aisin Seiki Co Ltd Rotor for electric pump
WO2016203524A1 (en) * 2015-06-15 2016-12-22 三菱電機株式会社 Permanent magnet electric motor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11532960B2 (en) * 2019-02-05 2022-12-20 Fanuc Corporation Device for manufacturing rotor core, method for manufacturing rotor core, and rotor structure
JP2020156203A (en) * 2019-03-20 2020-09-24 愛知製鋼株式会社 Device and method for manufacturing magnet member
JP7275707B2 (en) 2019-03-20 2023-05-18 愛知製鋼株式会社 MAGNET MEMBER MANUFACTURING APPARATUS AND MANUFACTURING METHOD THEREOF
WO2023127084A1 (en) * 2021-12-28 2023-07-06 三菱電機株式会社 Rotor, motor, fan, ventilator, and air conditioner
JP7420327B1 (en) 2022-10-24 2024-01-23 株式会社村田製作所 Rotor member, rotor, rotating electric machine, brushless motor, and manufacturing method of rotor member
WO2024089933A1 (en) * 2022-10-24 2024-05-02 株式会社村田製作所 Rotor member, rotor, rotary electric mechanism, brushless motor, and method for manufacturing rotor member

Also Published As

Publication number Publication date
JP6907707B2 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP2018201295A (en) Method for manufacturing rotor
EP2573917B1 (en) Method of producing a rotor and an inner rotor type brushless motor
US9369013B2 (en) Rotor for motor
US9985506B2 (en) Manufacturing method and magnetizing device for interior permanent magnet rotor unit
JP2002044915A (en) Rotor of magnet built-in type and build-in method
JP5501660B2 (en) Electric motor and its rotor
EP3016250A2 (en) Interior permanent magnet rotor and method and apparatus for manufacturing the same
EP2892128A2 (en) Rotor and motor including the same
JP2007214393A (en) Annular polar anisotropic plastic magnet and rotor used for motor
JP2017195690A (en) Rotor structure in outer rotor type multipole generator
JP2017507046A (en) Injection mold for manufacturing permanent magnets
CN107210634B (en) Rotor of motor
WO2020059654A1 (en) Rotor for outer rotor type electric motor
JP2004056835A (en) Bonded magnet for motor and motor
EP3223409A2 (en) Orientation magnetization device and magnet-embedded rotor
KR100570461B1 (en) Rotor
CN111525756A (en) Rotor core manufacturing device, rotor core manufacturing method, and rotor structure
JP2014039424A (en) Rotor of rotary electric machine
JP5929147B2 (en) Rotor structure of rotating electrical machine
JP2013188036A (en) Rotor for electric motor, electric motor, and washing machine
JP6567177B2 (en) Rotor of IPM motor, IPM motor, and method of manufacturing rotor of IPM motor
JPS6142249A (en) Manufacture of rotor with permanent magnet
JP3771894B2 (en) Mold for molding magnetic rotor
JP2018170423A (en) Anisotropic magnet and manufacturing method thereof
EP3902102A1 (en) Manufacturing method of a softpad comprising permanent magnets

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20180501

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210601

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210614

R151 Written notification of patent or utility model registration

Ref document number: 6907707

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250