JP2018200218A - Measuring device for measuring incoming radio wave and measuring method thereof - Google Patents
Measuring device for measuring incoming radio wave and measuring method thereof Download PDFInfo
- Publication number
- JP2018200218A JP2018200218A JP2017104757A JP2017104757A JP2018200218A JP 2018200218 A JP2018200218 A JP 2018200218A JP 2017104757 A JP2017104757 A JP 2017104757A JP 2017104757 A JP2017104757 A JP 2017104757A JP 2018200218 A JP2018200218 A JP 2018200218A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- antenna
- reception
- synthetic aperture
- aperture processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims description 25
- 238000005259 measurement Methods 0.000 claims abstract description 121
- 238000012545 processing Methods 0.000 claims abstract description 121
- 238000000691 measurement method Methods 0.000 claims description 17
- 230000015572 biosynthetic process Effects 0.000 claims description 8
- 238000003786 synthesis reaction Methods 0.000 claims description 8
- 238000001228 spectrum Methods 0.000 description 16
- 230000005684 electric field Effects 0.000 description 11
- 230000006870 function Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000005562 fading Methods 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- KLDZYURQCUYZBL-UHFFFAOYSA-N 2-[3-[(2-hydroxyphenyl)methylideneamino]propyliminomethyl]phenol Chemical compound OC1=CC=CC=C1C=NCCCN=CC1=CC=CC=C1O KLDZYURQCUYZBL-UHFFFAOYSA-N 0.000 description 1
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 201000001098 delayed sleep phase syndrome Diseases 0.000 description 1
- 208000033921 delayed sleep phase type circadian rhythm sleep disease Diseases 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
Images
Landscapes
- Radio Transmission System (AREA)
Abstract
【課題】到来電波の受信強度が時間変動する場合でも到来電波の到来方向を簡易に高角度分解能で測定するとともに到来方向の測定精度を高める。【解決手段】受信アンテナの移動経路における連続した複数の移動測定範囲それぞれにおいて、移動測定範囲内の互いに異なる複数の移動位置又は一移動位置で受信アンテナの受信信号と固定配置した基準アンテナの基準信号とを複数組取得する。複数の移動測定範囲それぞれについて、移動測定範囲内に取得した複数組の受信信号及び基準信号に時間ダイバーシチを適用して合成開口処理対象の受信信号及び基準信号を選択し、時間ダイバーシチを適用して選択した複数の移動測定範囲それぞれの受信信号及び基準信号と受信アンテナの回転角度とに基づいて合成開口処理を行う。複数の移動測定範囲それぞれにおける合成開口処理後の受信信号と受信アンテナの回転角度との関係を示す特性に基づいて到来電波の方向を推定する。【選択図】図1An object of the present invention is to easily measure the direction of arrival of an incoming radio wave with a high angle resolution even when the reception intensity of the incoming radio wave fluctuates with time and to increase the accuracy of measurement of the direction of arrival. In each of a plurality of continuous movement measurement ranges in a movement path of a reception antenna, a reception signal of a reception antenna and a reference signal of a reference antenna fixedly arranged at a plurality of different movement positions or one movement position within the movement measurement range. Acquire multiple sets of. For each of a plurality of movement measurement ranges, time diversity is applied to a plurality of sets of reception signals and reference signals acquired within the movement measurement range to select reception signals and reference signals to be subjected to synthetic aperture processing, and time diversity is applied. Synthetic aperture processing is performed based on the received signal and reference signal of each of the selected plurality of moving measurement ranges and the rotation angle of the receiving antenna. The direction of the incoming radio wave is estimated based on the characteristics indicating the relationship between the received signal after the synthetic aperture processing and the rotation angle of the receiving antenna in each of the plurality of moving measurement ranges. [Selection] Figure 1
Description
本発明は、到来電波を測定する測定装置及びその測定方法に関するものである。 The present invention relates to a measuring apparatus for measuring an incoming radio wave and a measuring method thereof.
従来、受信アンテナを回転させながら到来電波を所定時間毎に受信し、この所定時間毎の受信信号に対して、基準アンテナの受信信号を基準にした合成開口処理を行うことにより、到来電波の方向を測定する測定装置が知れている(例えば非特許文献1参照)。この測定装置によれば、到来電波の方向を簡易に高角度分解能で測定することができるとされている。 Conventionally, arriving radio waves are received every predetermined time while rotating the receiving antenna, and the direction of the incoming radio waves is obtained by performing synthetic aperture processing on the received signal at each predetermined time based on the received signal of the reference antenna. A measuring device that measures the above is known (for example, see Non-Patent Document 1). According to this measuring apparatus, the direction of incoming radio waves can be easily measured with high angular resolution.
上記従来の測定装置では、到来電波の受信強度が時間変動すると、上記合成開口処理を行って到来電波の方向を測定するときのダイナミックレンジが悪化し、測定精度が低下するおそれがあることがわかった。 In the above conventional measuring device, it is understood that when the received intensity of the incoming radio wave varies with time, the dynamic range when measuring the direction of the incoming radio wave by performing the synthetic aperture processing is deteriorated, and the measurement accuracy may be reduced. It was.
本発明の一態様に係る測定装置は、到来電波を測定する測定装置であって、指向性を有する受信アンテナと、前記受信アンテナを移動させるアンテナ駆動部と、固定配置された基準アンテナと、前記受信アンテナの移動経路における連続した複数の移動測定範囲それぞれにおいて、前記移動測定範囲内の互いに異なる複数の移動位置又は前記移動測定範囲内の一移動位置で前記受信アンテナを介して受信した受信信号と前記基準アンテナを介して受信した基準信号とを複数組取得する信号取得部と、前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記複数組の受信信号及び基準信号に時間ダイバーシチを適用して合成開口処理対象の受信信号及び基準信号を選択し、前記時間ダイバーシチを適用して選択した前記複数の移動測定範囲それぞれの受信信号及び基準信号と前記受信アンテナの回転角度とに基づいて合成開口処理を行い、前記複数の移動測定範囲それぞれにおける前記合成開口処理後の受信信号と前記受信アンテナの回転角度との関係を示す特性に基づいて前記到来電波の方向を推定する信号処理部と、を備える。
本発明の他の態様に係る測定方法は、到来電波を測定する測定方法であって、到来電波を測定する測定方法であって、指向性を有する受信アンテナを移動させることと、前記受信アンテナの移動経路における連続した複数の移動測定範囲それぞれにおいて、前記移動測定範囲内の互いに異なる複数の移動位置で前記受信アンテナを介して受信した受信信号と固定配置した基準アンテナを介して受信した基準信号とを複数組取得することと、前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記複数組の受信信号及び基準信号に時間ダイバーシチを適用して合成開口処理対象の受信信号及び基準信号を選択し、前記時間ダイバーシチを適用して選択した前記複数の移動測定範囲それぞれの受信信号及び基準信号と前記受信アンテナの回転角度とに基づいて合成開口処理を行い、前記複数の移動測定範囲それぞれにおける前記合成開口処理後の受信信号と前記受信アンテナの回転角度との関係を示す特性に基づいて前記到来電波の方向を推定することと、を含む。
A measuring apparatus according to an aspect of the present invention is a measuring apparatus that measures an incoming radio wave, and includes a receiving antenna having directivity, an antenna driving unit that moves the receiving antenna, a fixedly arranged reference antenna, In each of a plurality of continuous movement measurement ranges in the movement path of the reception antenna, a plurality of different movement positions in the movement measurement range or received signals received via the reception antenna at one movement position in the movement measurement range A signal acquisition unit for acquiring a plurality of sets of reference signals received via the reference antenna, and time diversity for the plurality of sets of received signals and reference signals acquired within the movement measurement range for each of the plurality of movement measurement ranges To select a received signal and a reference signal to be processed by synthetic aperture processing, and to select the time diversity applied The synthetic aperture processing is performed based on the received signal and reference signal of each of the plurality of moving measurement ranges and the rotation angle of the receiving antenna, and the received signal after the synthetic aperture processing in each of the plurality of moving measurement ranges and the receiving antenna A signal processing unit that estimates a direction of the incoming radio wave based on a characteristic indicating a relationship with a rotation angle.
A measurement method according to another aspect of the present invention is a measurement method for measuring an incoming radio wave, and is a measurement method for measuring an incoming radio wave, wherein the receiving antenna having directivity is moved; and In each of a plurality of continuous movement measurement ranges in the movement path, a reception signal received via the reception antenna at a plurality of different movement positions within the movement measurement range and a reference signal received via a fixedly arranged reference antenna For each of the plurality of movement measurement ranges, and applying time diversity to the plurality of sets of reception signals and reference signals acquired within the movement measurement range, the received signal and reference for the synthetic aperture processing Selecting a signal, applying the time diversity, and selecting the received signal and the reference signal for each of the plurality of movement measurement ranges; and A synthetic aperture process based on a rotation angle of the transmission antenna, and the incoming radio wave based on a characteristic indicating a relationship between the reception signal after the synthetic aperture process and the rotation angle of the reception antenna in each of the plurality of movement measurement ranges Estimating the direction of.
前記測定装置及び前記測定方法において、前記時間ダイバーシチの処理は、前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記基準アンテナを介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択し、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を合成開口処理対象の受信信号として選択する処理であってもよい。
また、前記測定装置及び前記測定方法において、前記時間ダイバーシチの処理は、前記受信アンテナを所定角度(例えば1°)移動するごとに停止し、その停止中に複素振幅測定を複数回行い、前記受信アンテナを介した受信信号と前記基準アンテナを介した基準信号とを複数組取得し、前記基準アンテナを介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択し、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を合成開口処理対象の受信信号として選択する処理であってもよい。
また、前記測定装置及び前記測定方法において、前記複数の移動測定範囲それぞれについて、前記時間ダイバーシチを適用して選択した基準信号を分母とし、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を分子として、前記合成開口処理対象の信号を導出してもよい。
また、前記測定装置及び前記測定方法において、前記合成開口処理の窓関数の標準偏差に基づいて決定したウェイトを前記合成開口処理対象の信号に乗算し、前記ウェイトを乗算した合成開口処理対象の信号に基づいて合成開口処理を行ってもよい。
また、前記測定装置及び前記測定方法において、回転中心から離れた円状の移動経路上を径方向外側に指向性が向いた状態で移動するように前記受信アンテナを回転駆動してもよい。
また、前記測定装置及び前記測定方法において、前記合成開口処理を行うi番目の測定点における前記受信アンテナの回転角度を受信角度θiとし、前記受信角度θiの測定点で合成する複数の合成開口処理対象の信号のうちj番目の合成開口処理対象の信号に対応する前記受信アンテナの回転角度の前記受信角度θiとの角度差をφjとし、前記時間ダイバーシチを適用して選択した前記受信アンテナの回転角度(θi+φj)における前記受信信号及び前記基準信号それぞれをERx(θi+φj)及びERef(θi+φj)とし、前記合成開口処理対象の要素数を2N+1(N:自然数)とし、前記受信アンテナの移動経路の半径をRとし、前記到来電波の波数をkとし、前記合成開口処理の窓関数の標準偏差をσとしたとき、下記の式(1)及び式(2)を用いて、前記受信角度θiにおける前記合成開口処理後の受信信号ESA(θi)を算出してもよい。
In the measurement apparatus and the measurement method, the time diversity processing is stopped every time the reception antenna is moved by a predetermined angle (for example, 1 °), and complex amplitude measurement is performed a plurality of times while the reception antenna is stopped. A plurality of sets of reception signals via the antenna and reference signals via the reference antenna are acquired, and a reference signal having the largest amplitude among the plurality of reference signals via the reference antenna is selected as a reference signal for the synthetic aperture processing And the process which selects the received signal via the said receiving antenna acquired at the same timing as the said selected reference signal as a received signal of synthetic aperture processing object may be sufficient.
In the measurement apparatus and the measurement method, for each of the plurality of movement measurement ranges, the reference antenna selected by applying the time diversity is used as a denominator, and the reception antenna acquired at the same timing as the selected reference signal The signal to be processed by the synthetic aperture may be derived using the received signal via the numerator.
Further, in the measurement apparatus and the measurement method, the synthetic aperture processing target signal obtained by multiplying the synthetic aperture processing target signal by a weight determined based on a standard deviation of the synthetic aperture processing window function, and multiplying the weight by the weight. The synthetic aperture processing may be performed based on the above.
In the measurement apparatus and the measurement method, the reception antenna may be rotationally driven so as to move in a state in which directivity is directed radially outward on a circular movement path away from the rotation center.
Further, in the measuring apparatus and the measuring method, the rotation angle of the receiving antenna in the i-th measurement point for performing synthetic aperture processing is set to receive the angle theta i, a plurality of synthetic synthesized at the measurement point of the reception angle theta i The angle difference between the reception angle θ i of the rotation angle of the reception antenna corresponding to the j-th synthetic aperture processing target signal among the aperture processing target signals is φ j , and the time diversity is selected to be selected The received signal and the reference signal at the rotation angle (θ i + φ j ) of the receiving antenna are E Rx (θ i + φ j ) and E Ref (θ i + φ j ), respectively, and the number of elements to be processed by the synthetic aperture is 2N + 1. (N: natural number), radius of the moving path of the receiving antenna is R, wave number of the incoming radio wave is k, and standard deviation of the window function of the synthetic aperture processing is σ Using the following formula (1) and (2) may calculate the received signal E SA after the synthetic aperture processing in the reception angle θ i (θ i).
本発明によれば、任意の方向から到来する到来電波の受信強度が時間変動する場合でも到来電波の到来方向(DOA:Direction−of−Arrival)を簡易に高角度分解能で測定することができるとともに到来方向の測定精度を高めることができる。 According to the present invention, it is possible to easily measure the arrival direction (DOA: Direction-of-Arrival) of an incoming radio wave with high angular resolution even when the reception intensity of the incoming radio wave arriving from an arbitrary direction varies with time. Measurement accuracy in the direction of arrival can be improved.
以下、図面を参照して本発明の実施形態について説明する。
本実施形態では、合成開口アンテナを用いて到来電波を測定する。合成開口アンテナは、指向性を有する小さなアンテナ(実開口アンテナ)を移動させながら電波の複素振幅測定を行い、その複素振幅の測定値を記録しておき、その後、測定した受信信号の複素振幅に対し信号処理により同相合成することで形成される仮想的に大きなアンテナである。合成開口アンテナは、到来電波の到来方向(DOA)に関して実開口アンテナよりも高い分解能が得られるため、任意の方向から到来する時間変動波(例えばフェージング波などの変調波)の到来方向などの時空間プロファイルの高角度分解能測定に適する。また、所望の角度分解能を有する大きなサイズの指向性アンテナを複数配置する必要がないため、簡易な構成にすることができる。また、複数アンテナを使用する際に生じるケーブル間の振幅や位相の補正を行う必要がないため、簡易に測定できる。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
In this embodiment, incoming radio waves are measured using a synthetic aperture antenna. Synthetic aperture antennas measure the complex amplitude of radio waves while moving a small directional antenna (actual aperture antenna), record the measured value of the complex amplitude, and then calculate the measured complex amplitude of the received signal. On the other hand, it is a virtually large antenna formed by in-phase synthesis by signal processing. Since the synthetic aperture antenna has higher resolution than the real aperture antenna with respect to the arrival direction (DOA) of the incoming radio wave, the arrival time of a time-varying wave (for example, a modulated wave such as a fading wave) coming from an arbitrary direction can be obtained. Suitable for high angular resolution measurement of spatial profiles. In addition, since it is not necessary to arrange a plurality of large-size directional antennas having a desired angular resolution, a simple configuration can be achieved. Moreover, since it is not necessary to correct the amplitude and phase between cables that occur when using a plurality of antennas, measurement can be performed easily.
図1(a)は、本発明の一実施形態に係る合成開口アンテナを用いた到来電波の測定装置の一例を示す説明図であり、図1(b)は同測定装置の受信アンテナの移動経路(回転軌跡)Cの一例を示す説明図である。本実施形態の測定装置10は、回転駆動可能な受信アンテナ100と、固定配置された基準アンテナ200と、受信アンテナ100の指向性の方向が変化するように受信アンテナ100を回転させるアンテナ駆動部300と、受信アンテナ100及び基準アンテナ200それぞれを介して受信した信号を取得する信号取得部400と、信号取得部400で取得した信号を処理する信号処理部500と、各部を制御する制御部600とを備える。
Fig.1 (a) is explanatory drawing which shows an example of the measuring apparatus of the incoming radio wave using the synthetic aperture antenna which concerns on one Embodiment of this invention, FIG.1 (b) is the movement path | route of the receiving antenna of the measuring apparatus It is explanatory drawing which shows an example of (rotation locus | trajectory) C. The
受信アンテナ100は、指向性を有するアンテナ(例えば、ホーンアンテナ)である。アンテナ駆動部300は、受信アンテナ100が装着される回転台310と、その回転台を回転駆動するモータやギアなどからなる回転駆動部320とを有する。
The
受信アンテナ100は、その指向性の向きが回転台310の径方向外側を向くように、回転台310の回転中心Aから距離Rを離して取り付けられている。このように回転中心Aから受信アンテナ100をずらした場合、到来電波の波源が十分遠方の場合、受信アンテナ100で受信した受信信号(電界)の振幅パターンに変化はなく、位相パターンは著しく変化する。
The
受信アンテナ100の受信位相中心Bと回転台310の回転中心Aとの距離Rは、測定対象の到来電波の波長(λ)に応じて設定してもよい。距離Rは、到来電波の波長(λ)の1倍〜数10倍程度に設定してもよく、例えばR=8λ〜18λを満たすように設定してもよい。
The distance R between the reception phase center B of the
回転台310を回転駆動部320で回転駆動することにより、受信アンテナ100は、回転台の310の回転中心Aから所定距離Rだけ離れた円状の移動経路(回転軌跡)C上を径方向外側に指向性が向いた状態で移動するように回転する。
By rotating the
基準アンテナ200は、例えばホーンアンテナ又は無指向性のアンテナである。
The
信号取得部400は、例えば2チャネル(2ch)ベクトル受信器により複素振幅測定を行い、回転駆動された受信アンテナ100を介して受信した受信信号と、固定配置の基準アンテナ200を介して受信した受信信号(以下「基準信号」ともいう。)とを取得する。
The
信号処理部500は、信号取得部400で取得した受信信号及び基準信号と受信アンテナ100の回転角度とに基づいて合成開口処理を行い、合成開口処理後の信号と受信アンテナ100の回転角度との関係を示す特性に基づいて到来電波の方向(DOA)を推定する。
The
図2は、本実施形態の測定装置10における到来電波の測定の一例を示すフローチャートである。図2において、まず、測定装置10は、受信アンテナ100を回転させながら、受信アンテナ100の所定の回転角度ごとに、受信アンテナ100を介して受信した受信信号と基準アンテナ200を介して受信した基準信号を取得する(S210)。例えば、測定装置10は、受信アンテナ100を1°又は1°よりも小さい角度ずつ回転させるごとに、受信アンテナ100及び基準アンテナ200それぞれを介した受信信号を取得する。
FIG. 2 is a flowchart showing an example of measurement of incoming radio waves in the
次に、測定装置10は、受信アンテナ100が1回転(360°回転)する間に受信アンテナ100及び基準アンテナ200それぞれを介して取得した受信信号及び基準信号と、各取得時の受信アンテナ100の回転角度とに基づいて後述の合成開口処理を行う(S220)。
Next, the
次に、測定装置10は、合成開口処理後の受信信号と受信アンテナ100の回転角度(受信角度)との関係を示す特性(以下「DOAスペクトラム」ともいう。)に基づいて、到来電波の方向(DOA)を推定する(S230)。
Next, the
図3は、本実施形態の測定装置における受信信号の合成開口処理の一例を示す説明図である。図3において、受信アンテナ100のi番目の回転角度(以下「受信角度」ともいう。)をθiとし、その受信角度θiの合成開口処理で合成するj番目の受信信号(電界)を受信したときの受信アンテナ100の回転角度の受信角度θiとの角度差(以下「合成回転角度」ともいう。)をφjとしている。また、合成開口処理で合成する受信信号(電界)の個数(要素数)を2N+1(N:自然数)とし、受信アンテナ100の受信位相中心の移動経路Cの半径をRとしている。合成開口処理対象の2N+1個の角度差φj(j=−N〜+N)の受信点(要素)はそれぞれ、合成開口アンテナを構成する対称構造の仮想円弧アレーアンテナ素子が配置されている点と考えることができる。
FIG. 3 is an explanatory diagram illustrating an example of the synthetic aperture processing of the received signal in the measurement apparatus of the present embodiment. In FIG. 3, the i-th rotation angle (hereinafter also referred to as “reception angle”) of the receiving
受信アンテナ100を介した受信信号(電界)をERx(θi+φj)とし、基準アンテナ200を介して受信した基準信号ERef(θi+φj)とし、到来電波の波数をkとし、合成開口処理の窓関数の標準偏差をσとすると、次の式(1)を用いて、到来電波の受信角度θiにおける合成開口処理後の受信信号(電界)ESA(θi)を算出することができる。
ここで、上記式(1)の右辺の第1因子E(θi+φj)は、i番目の受信角度におけるj番目の合成開口処理対象の相対受信信号の振幅成分(合成対象振幅成分)である。第1因子E(θi+φj)は、受信アンテナ100の回転角度(θi+φj)の測定点において受信された、基準アンテナ200を介した基準信号(電界)の振幅ERef(θi+φj)と受信アンテナ100を介した受信信号(電界)の振幅ERx(θi+φj)との比であり、次式(2)で表される。
また、上記式(1)の右辺の第2因子exp{−(φj 2/2σ2)}は、j番目の合成対象振幅成分E(θi+φj)に対して付与するウェイトである。このウェイトを与えることで、測定時に生ずる不要なサイドローブを低減することが可能となる。また、合成開口アンテナの指向性ビームパターンのビーム幅を変化させることができ、合成開口に応じた狭ビームパターンを形成することができる。 Further, the second factor exp {− (φ j 2 / 2σ 2 )} on the right side of the above equation (1) is a weight to be given to the j-th synthesis target amplitude component E (θ i + φ j ). By giving this weight, it is possible to reduce unnecessary side lobes generated during measurement. Further, the beam width of the directional beam pattern of the synthetic aperture antenna can be changed, and a narrow beam pattern corresponding to the synthetic aperture can be formed.
また、上記式(1)の右辺の第3因子exp{jkR(1−cos(φj))}は、j=0番目の合成対象中央の受信信号を基準にした任意のj(=−N〜+N)番目の合成対象の受信信号の位相成分である。 Further, the third factor exp {jkR (1-cos (φ j ))} on the right side of the above formula (1) is an arbitrary j (= −N based on the received signal at the j = 0th synthesis target center. This is the phase component of the received signal to be combined with (˜ + N) th.
上記式(1)及び式(2)を用いて到来電波の受信角度θiにおける合成開口処理を行い、合成開口処理後の受信信号ESA(θi)を算出することができる。この合成開口処理後の受信信号ESA(θi)と受信アンテナ100の回転角度(受信角度)θiとの関係を示す特性(DOAスペクトラム)に基づいて、到来電波の方向(DOA)を簡易に且つ高角度分解能で測定することができる。
The synthetic aperture processing at the reception angle θ i of the incoming radio wave can be performed using the above formulas (1) and (2), and the received signal E SA (θ i ) after the synthetic aperture processing can be calculated. Based on the characteristic (DOA spectrum) indicating the relationship between the received signal E SA (θ i ) after the synthetic aperture processing and the rotation angle (reception angle) θ i of the receiving
図4は、本実施形態の測定装置における合成開口処理で到来電波の方向(DOA)を推定したシミュレーション結果の一例を示すグラフ(非特許文献1参照)である。図4中のスペクトラム401は、合成開口処理後の受信信号の振幅ESA(θi)と受信アンテナ100の回転角度(受信角度)θiとの関係を示す特性である。図4中のスペクトラム402は、合成開口処理を行わずに測定した受信信号の振幅と受信アンテナ100の回転角度(受信角度)θiとの関係を示す比較例の特性である。この比較例の特性は、本実施形態の測定装置において回転中心Aからの受信アンテナ100の距離R=0に対応し、回転中心Aにおいて受信アンテナを回転させて受信信号を取得した場合の特性である。図4において、比較例における到来電波の方向(DOA)の3dB角度分解能は42.9[°]である。これに対し、本実施形態に係る測定装置で測定される到来電波の方向(DOA)の3dB角度分解能は4.9[°]であり、到来電波の方向(DOA)を高角度分解能で推定することができる。なお、上記3dB角度分解能は、到来電波の方向の中央における受信信号の最大振幅が3dB減衰した点間の角度幅である。
FIG. 4 is a graph (see Non-Patent Document 1) showing an example of a simulation result in which the direction of incoming radio waves (DOA) is estimated by the synthetic aperture processing in the measurement apparatus of the present embodiment. A
また、受信アンテナ100を回転させて受信信号を取得し、取得した受信信号に対して合成開口処理を行う本実施形態の測定装置10は、従来の直線状のアンテナアレーを用いた合成開口アンテナの場合に比して、到来方向の角度分解能の角度依存性が低い。直線状のアンテナアレーを用いた合成開口アンテナの場合では、到来電波の方向に応じて主ビーム幅やサイドローブなどのビーム特性が異なり、到来方向の角度分解能の角度依存性が高い。
In addition, the
また、本実施形態の測定装置10は、円弧状のアンテナアレーを用いた合成開口アンテナの場合とは異なり、円状に配置したアンテナ素子間のキャリブレーションが不要になるため、到来電波の方向(DOA)を簡易に測定することができる。円弧状のアンテナアレーを用いた合成開口アンテナの場合は、多数のアンテナ素子を円状に配置し、到来電波の角度に指向性を有するアンテナ素子を中心に2N+1個のアンテナ素子を用いて対称構造の円弧状に配置したアレーアンテナを形成するため、アンテナ素子間のキャリブレーションが必要になる。
Further, unlike the case of the synthetic aperture antenna using the arc-shaped antenna array, the
次に、本実施形態の測定装置10における合成開口処理前の受信信号に対する時間ダイバーシチの適用について説明する。
Next, application of time diversity to the received signal before the synthetic aperture processing in the
図5及び図6はそれぞれ、本実施形態の測定装置10において時間ダイバーシチを適用しない場合の合成開口処理前及び合成開口処理後における受信信号の振幅と受信アンテナの回転角度との関係を示す特性(DOAスペクトラム)の測定結果の一例を示すグラフである。本例の測定では、電波暗室内で受信角度θが0°の方向の測定装置10から離れた位置に、到来電波の波源としてのベクトル信号発生器(Tx)を配置し、表1の測定諸元を用いた。また、受信アンテナ100を回転台310の中心から半径R離した一に設置した。受信アンテナ100の移動経路Cの半径である仮想円弧アレーアンテナの半径Rは64cmに設定したため、仮想円弧アレーアンテナのビーム幅は約3°となった。
FIGS. 5 and 6 are characteristics (respectively) showing the relationship between the amplitude of the received signal and the rotation angle of the receiving antenna before and after the synthetic aperture processing when time diversity is not applied in the
また、本測定例では、受信角度θが−180°〜+180°の範囲で受信アンテナ100を回転させて到来電波の受信を行い、測定受信信号(電界)E(θi+φj)を取得して前記式(1)を用いて合成開口処理を行っていく。また、本測定例では、2チャネルベクトル受信器とベクトル信号発生器を使用するため、前述の式(2)のように測定装置と同じ位置に固定されている基準アンテナ200により測定された受信信号(電界)を除算することで、合成開口処理対象の測定受信信号(測定電界)E(θi+φj)を取得する。
In this measurement example, the
図5の合成開口処理適用前の相対受信信号(受信アンテナの受信信号/基準アンテナの基準信号)E(θi+φj)の測定結果では、受信角度θが−180°〜−60°の範囲内と+60°〜+180°の範囲内で、振幅が時間変動する変調波の相対受信信号が波源方向付近(受信角度θが0°付近)よりも高くなっている角度θが存在する。一方、受信角度θが0°である波源方向では相対受信信号が高いなっている強いスペクトラムが生じる可能性は低い。 In the measurement result of the relative reception signal (reception signal of the reception antenna / reference signal of the reference antenna) E (θ i + φ j ) before application of the synthetic aperture processing in FIG. 5, the reception angle θ is in the range of −180 ° to −60 °. Within the range of + 60 ° to + 180 °, there is an angle θ where the relative received signal of the modulated wave whose amplitude varies with time is higher than the vicinity of the wave source direction (reception angle θ is near 0 °). On the other hand, in the direction of the wave source where the reception angle θ is 0 °, it is unlikely that a strong spectrum with a high relative reception signal will occur.
図6の合成開口処理適用後の相対受信信号の測定結果(DOAスペクトラム)では、振幅が時間変動する変調波と振幅が時間変動しない無変調連続波(以下「CW」という。)の両方とも、波源方向(到来電波の到来方向)を正確に検知することができる。しかしながら、図中の一点鎖線で示した受信角度θが40°〜100°の範囲内では、変調波のスペクトラム601がCWのスペクトラム602よりも10dB以上高くなり、変調波の測定時のダイナミックレンジが悪化するため、波源方向(到来電波の到来方向)の誤検知の可能性が高まる。
In the measurement result (DOA spectrum) of the relative received signal after application of the synthetic aperture processing in FIG. 6, both the modulated wave whose amplitude varies with time and the unmodulated continuous wave whose amplitude does not vary with time (hereinafter referred to as “CW”). The wave source direction (the direction of arrival of incoming radio waves) can be accurately detected. However, when the reception angle θ indicated by the alternate long and short dash line in the figure is in the range of 40 ° to 100 °, the
図7は、本実施形態の測定装置において変調波の相対受信信号の増大の原因を説明する受信信号波形の一例を示す説明図である。図7中の黒丸は到来電波の受信点である。図7に示すように、変調波が時変動し、図7中の一点鎖線で囲んだ測定点のように瞬時的に基準アンテナ200の受信信号である基準信号(電界)が大きく低下する場合がある。この基準アンテナ200の基準信号は、前述の相対受信信号の計算に用いる式(2)の分母になるため、基準アンテナ200で受信する基準信号の低下により、図6の受信角度θが40°〜100°の範囲内における相対測定信号の増加が発生したものと考えられる。また、基準アンテナ200で受信する基準信号の低下により、各受信角度での受信信号の位相パターンも乱れるため、合成開口処理が適切に行われず、変調波測定時のダイナミックレンジが悪化するおそれがある。
FIG. 7 is an explanatory diagram illustrating an example of a received signal waveform that explains the cause of an increase in the relative received signal of the modulated wave in the measurement apparatus of the present embodiment. A black circle in FIG. 7 is a reception point of incoming radio waves. As shown in FIG. 7, the modulation wave may fluctuate with time, and the reference signal (electric field) that is the received signal of the
そこで、本実施形態の測定装置10では、上記基準アンテナ200で受信する基準信号の瞬時的な低下があっても合成開口処理が適切に行われるように、以下に例示する時間ダイバーシチを適用している。
Therefore, in the
図8は、本実施形態の測定装置10の合成開口処理において時間ダイバーシチを適用するときの受信信号波形の説明図である。
本実施形態では、受信アンテナ100の移動経路(回転軌跡)C上に連続した所定の角度幅の複数の移動測定角度範囲ψk(k=1〜M)のそれぞれにおいて、複素振幅測定を複数回(2K+1回,K:自然数)行い、受信アンテナ100を介した受信信号及び基準アンテナ200を介した基準信号それぞれを複数組ずつ取得している。ここで、Mは受信アンテナ100の1回転に含まれる移動測定角度範囲の数である。例えば、移動測定角度範囲の角度幅が1°の場合は、M=360である。また、Kは各移動測定角度範囲内の受信信号及び基準信号の取得回数を規定するパラメータである。例えばK=1の場合、各移動測定角度範囲内に受信信号及び基準信号が3(=2K+1)回取得される。
FIG. 8 is an explanatory diagram of received signal waveforms when time diversity is applied in the synthetic aperture processing of the
In the present embodiment, complex amplitude measurement is performed a plurality of times in each of a plurality of movement measurement angle ranges ψ k (k = 1 to M) having a predetermined angular width that is continuous on the movement path (rotation locus) C of the receiving
図8の例では、受信アンテナ100が1°回転する移動測定角度範囲ψkの間に複素振幅測定を3回行い、受信信号及び基準信号を3組取得している。また、各移動測定角度範囲ψkの中央は、1°ずつの目標受信角度であり、その目標受信角度から両側に所定角度離れた2つの受信角度が追加受信角度である。目標受信角度と追加受信角度との角度差は、移動測定角度範囲ψk内に追加受信角度が位置する条件下で任意に設定することができ、例えば0.2°〜0.3°(図8の例では0.25°)である。
In the example of FIG. 8, the complex amplitude measurement is performed three times during the movement measurement angle range ψ k in which the
本実施形態の時間ダイバーシチでは、複数の移動測定角度範囲ψkそれぞれについて、移動測定角度範囲ψk内に取得した3つの基準信号ERefのうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択する。例えば、図8中の移動測定角度範囲ψ0では、中央よりも左側の測定点の基準信号が最も大きいため、その左側の基準信号を選択する。また、図8中の移動測定角度範囲ψ1では、中央よりも右側の測定点の基準信号が最も大きいため、その右側の基準信号を選択する。 In the time diversity of the present embodiment, for each of the plurality of movement measurement angle ranges ψ k , the reference signal having the largest amplitude among the three reference signals E Ref acquired within the movement measurement angle range ψ k is used as the reference for the synthetic aperture processing target. Select as signal. For example, in the moving measurement angle range ψ 0 in FIG. 8, the reference signal on the left side is selected because the reference signal at the measurement point on the left side of the center is the largest. In the moving measurement angle range ψ 1 in FIG. 8, the reference signal on the right side is selected because the reference signal at the measurement point on the right side of the center is the largest.
また、本実施形態の時間ダイバーシチでは、複数の移動測定角度範囲ψkそれぞれについて、前記選択した基準信号と同じタイミングに取得した受信アンテナ100を介した受信信号を合成開口処理対象の受信信号として選択する。また、選択した基準信号及び受信信号に対応する受信アンテナ100の回転角度(=目標回転角度θ+補正角度Δθ)を用いる。
In the time diversity of the present embodiment, for each of the plurality of movement measurement angle ranges ψ k , the reception signal obtained through the
そして、本実施形態では、前記時間ダイバーシチを適用して選択した複数の移動測定範囲それぞれの受信信号及び基準信号と受信アンテナ100の回転角度(仮想アレーアンテナの角度)とに基づいて合成開口処理を行い、その合成開口処理後の受信信号と受信アンテナ100の回転角度(θ+Δθ)との関係を示す特性(DOAスペクトラム)に基づいて到来電波の方向を推定する。
In this embodiment, the synthetic aperture processing is performed based on the received signal and reference signal of each of the plurality of moving measurement ranges selected by applying the time diversity and the rotation angle of the receiving antenna 100 (the angle of the virtual array antenna). The direction of the incoming radio wave is estimated based on the characteristic (DOA spectrum) indicating the relationship between the received signal after the synthetic aperture processing and the rotation angle (θ + Δθ) of the receiving
なお、前記時間ダイバーシチを使用することにより合成開口処理に用いた信号の測定点の角度と仮想アレーアンテナの角度との間に誤差(角度差Δθ)が生じるが、本実施形態の測定方法では上記誤差(角度差Δθ)による測定精度への影響が小さく、合成開口処理をことが可能である。 Note that, by using the time diversity, an error (angle difference Δθ) occurs between the angle of the measurement point of the signal used for the synthetic aperture processing and the angle of the virtual array antenna. The influence on the measurement accuracy due to the error (angle difference Δθ) is small, and synthetic aperture processing can be performed.
図9は、本実施形態の測定装置10における時間ダイバーシチを適用して合成開口処理を行った受信信号の振幅と受信アンテナ100の回転角度との関係を示す特性(DOAスペクトラム)の測定結果の一例を示すグラフである。図9中のスペクトラム901は、時間ダイバーシチを適用して合成開口処理を行ったときの受信信号の振幅ESA(θi)と受信アンテナ100の回転角度(受信角度)θiとの関係を示す特性である。図9中のスペクトラム902は、時間ダイバーシチを適用しないで合成開口処理を行ったときの受信信号の振幅ESA(θi)と受信アンテナ100の回転角度(受信角度)θiとの関係を示す特性である。
FIG. 9 shows an example of the measurement result of the characteristic (DOA spectrum) indicating the relationship between the amplitude of the received signal and the rotation angle of the receiving
図9により時間ダイバーシチを適用することで受信角度が±180°付近のダイナミックレンジが向上することがわかる。時間ダイバーシチを適用していない場合の基準アンテナ200で受信した基準信号の振幅パターンの変動幅が最大−40dB程度あった。前述の式(2)に示すように、基準アンテナ200で受信した基準信号の
受信レベルERefを分母とし、受信アンテナ100の受信信号の受信レベルERXを分子として算出している。このため、図9中のスペクトラム902で示す時間ダイバーシチを適用しない比較例では、基準アンテナ200の受信振幅ERefが受信アンテナ100の受信振幅ERXよりも低下し、合成開口処理対象の相対受信信号(ERX/ERef)の信頼性が落ちてしまい、正常に合成開口処理(アレー合成)が行えない。一方、図9中のスペクトラム901で示す時間ダイバーシチを適用した場合の基準アンテナ200の振動パターンではほとんどの角度で基準信号の受信レベルERefの変動幅が10dB以内に抑えられていた。このため、合成開口処理対象の相対受信信号(ERX/ERef)の信頼性が向上し、合成開口処理(アレー合成)が正常に行えたため、ダイナミックレンジが改善したと考えられる。
It can be seen from FIG. 9 that the dynamic range around the reception angle of ± 180 ° is improved by applying time diversity. When the time diversity is not applied, the fluctuation range of the amplitude pattern of the reference signal received by the
以上、本実施形態によれば、時間ダイバーシチを適用することにより合成開口処理に用いる相対受信信号が異常に増大するのを回避することができるため、任意の方向から到来する到来電波の受信強度が時間変動する場合でも、到来電波の到来方向(DOA)を簡易に高角度分解能で測定することができるとともに到来方向の測定精度を高めることができる。また、DOAスペクトラムの異常な振る舞いが低減し、到来電波の方向(波源の方向)の誤検知の可能性が低減する。また、周囲が動的な環境(レイリーフェージングが発生する環境)で、合成開口アンテナによる到来電波の到来方向などの時空間プロファイルの測定が可能になる。 As described above, according to the present embodiment, by applying time diversity, it is possible to avoid an abnormal increase in the relative received signal used for the synthetic aperture processing, so that the reception intensity of the incoming radio wave coming from an arbitrary direction can be reduced. Even when the time fluctuates, the arrival direction (DOA) of the incoming radio wave can be easily measured with high angular resolution, and the measurement accuracy of the arrival direction can be increased. Further, the abnormal behavior of the DOA spectrum is reduced, and the possibility of erroneous detection of the direction of the incoming radio wave (the direction of the wave source) is reduced. In addition, in a dynamic environment (an environment in which Rayleigh fading occurs), it becomes possible to measure a spatiotemporal profile such as the direction of arrival of an incoming radio wave by a synthetic aperture antenna.
なお、上記実施形態において合成開口処理に適用する時間ダイバーシチの方法は、図9に示したものに限定されない。例えば、次のような時間ダイバーシチ処理を行ってもよい。時間ダイバーシチ処理の他の例では、受信アンテナ100を所定角度(例えば1°)移動するごとに停止し、その停止中に複素振幅測定を複数回行い、受信アンテナ100を介した受信信号と基準アンテナ200を介した基準信号とを複数組取得する。そして、基準アンテナ200を介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択する。この選択した基準信号と同じタイミングに取得した受信アンテナ100を介した受信信号を合成開口処理対象の受信信号(仮想アレーアンテナの角度での受信信号)として選択する。
Note that the time diversity method applied to the synthetic aperture processing in the above embodiment is not limited to that shown in FIG. For example, the following time diversity processing may be performed. In another example of the time diversity processing, the
また、本明細書で説明された処理工程並びに測定装置の構成要素(アンテナ駆動部、信号取得部、信号処理部、制御部)は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。例えば、本実施形態の測定装置における処理は、後述のハードウェアに所定のプログラムが読み込まれて実行されたり、後述のハードウェアに予め組み込まれた所定のプログラムが実行されたりすることにより、実現される。 In addition, the processing steps and the components of the measurement apparatus (antenna drive unit, signal acquisition unit, signal processing unit, control unit) described in this specification can be implemented by various means. For example, these steps and components may be implemented in hardware, firmware, software, or a combination thereof. For example, the processing in the measurement apparatus according to the present embodiment is realized by a predetermined program being read and executed in hardware described later or a predetermined program pre-installed in hardware described later is executed. The
ハードウェア実装については、実体(例えば、制御部や信号処理部のプロセッサ)において上記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレイ(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。 For hardware implementation, means such as processing units used to implement the steps and components in the entity (e.g., controller or signal processor) may be one or more application specific ICs ( ASIC), digital signal processor (DSP), digital signal processor (DSPD), programmable logic device (PLD), field programmable gate array (FPGA), processor, controller, microcontroller, microprocessor, electronic device May be implemented in other electronic units, computers, or combinations thereof designed to perform the functions described herein.
また、ファームウェア及び/又はソフトウェア実装については、上記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された上記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、FLASHメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。 Also, for firmware and / or software implementation, means such as processing units used to implement the above components may be programs (eg, procedures, functions, modules, instructions) that perform the functions described herein. , Etc.). In general, any computer / processor readable medium that specifically embodies firmware and / or software code is means such as a processing unit used to implement the steps and components described herein. May be used to implement For example, the firmware and / or software code may be stored in a memory, for example, in a control device, and executed by a computer or processor. The memory may be implemented inside the computer or processor, or may be implemented outside the processor. The firmware and / or software code may be, for example, random access memory (RAM), read only memory (ROM), nonvolatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM) ), FLASH memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage, etc. Good. The code may be executed by one or more computers or processors, and may cause the computers or processors to perform the functional aspects described herein.
また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。 Also, descriptions of embodiments disclosed herein are provided to enable any person skilled in the art to make or use the present disclosure. Various modifications to the present disclosure will be readily apparent to those skilled in the art, and the general principles defined herein may be applied to other variations without departing from the spirit or scope of the disclosure. The present disclosure is therefore not limited to the examples and designs described herein, but should be accorded the widest scope consistent with the principles and novel features disclosed herein.
10 測定装置
100 受信アンテナ
200 基準アンテナ
300 アンテナ駆動部
310 回転台
320 回転駆動部
400 信号取得部
500 信号処理部
600 制御部
DESCRIPTION OF
Claims (14)
指向性を有する受信アンテナと、
前記受信アンテナを移動させるアンテナ駆動部と、
固定配置された基準アンテナと、
前記受信アンテナの移動経路における連続した複数の移動測定範囲それぞれにおいて、前記移動測定範囲内の互いに異なる複数の移動位置又は前記移動測定範囲内の一移動位置で前記受信アンテナを介して受信した受信信号と前記基準アンテナを介して受信した基準信号とを複数組取得する信号取得部と、
前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記複数組の受信信号及び基準信号に時間ダイバーシチを適用して合成開口処理対象の受信信号及び基準信号を選択し、前記時間ダイバーシチを適用して選択した前記複数の移動測定範囲それぞれの受信信号及び基準信号と前記受信アンテナの回転角度とに基づいて合成開口処理を行い、前記複数の移動測定範囲それぞれにおける前記合成開口処理後の受信信号と前記受信アンテナの回転角度との関係を示す特性に基づいて前記到来電波の方向を推定する信号処理部と、を備えることを特徴とする測定装置。 A measuring device for measuring incoming radio waves,
A receiving antenna having directivity;
An antenna driver for moving the receiving antenna;
A fixedly arranged reference antenna;
In each of a plurality of continuous movement measurement ranges in the movement path of the reception antenna, a reception signal received via the reception antenna at a plurality of different movement positions in the movement measurement range or one movement position in the movement measurement range. And a signal acquisition unit for acquiring a plurality of sets of reference signals received via the reference antenna;
For each of the plurality of movement measurement ranges, time diversity is applied to the plurality of sets of reception signals and reference signals acquired within the movement measurement range to select reception signals and reference signals to be subjected to synthetic aperture processing, and the time diversity is selected. The synthetic aperture processing is performed based on the received signal and the reference signal of each of the plurality of moving measurement ranges selected by applying and the rotation angle of the receiving antenna, and after the synthetic aperture processing in each of the plurality of moving measurement ranges And a signal processing unit that estimates a direction of the incoming radio wave based on a characteristic indicating a relationship between a received signal and a rotation angle of the receiving antenna.
前記信号処理部で適用する時間ダイバーシチの処理は、前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記基準アンテナを介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択し、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を合成開口処理対象の受信信号として選択する処理であることを特徴とする測定装置。 The measuring apparatus according to claim 1.
The time diversity processing applied by the signal processing unit synthesizes a reference signal having the largest amplitude among a plurality of reference signals acquired through the reference antenna for each of the plurality of movement measurement ranges. A measuring apparatus that is selected as a reference signal to be subjected to aperture processing, and that selects a received signal via the reception antenna acquired at the same timing as the selected reference signal as a received signal to be subjected to synthetic aperture processing. .
前記信号処理部で適用する時間ダイバーシチの処理は、前記受信アンテナを所定角度移動するごとに停止し、その停止中に、前記受信アンテナを介した受信信号と前記基準アンテナを介した基準信号とを複数組取得し、前記基準アンテナを介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択し、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を合成開口処理対象の受信信号として選択する処理であることを特徴とする測定装置。 The measuring apparatus according to claim 1.
The time diversity processing applied by the signal processing unit is stopped every time the reception antenna is moved by a predetermined angle, and during the stop, the reception signal via the reception antenna and the reference signal via the reference antenna are A plurality of sets are acquired, a reference signal having the largest amplitude among a plurality of reference signals via the reference antenna is selected as a reference signal for a synthetic aperture process, and the receiving antenna acquired at the same timing as the selected reference signal The measurement apparatus is a process for selecting the received signal as a received signal to be subjected to the synthetic aperture processing.
前記信号処理部は、前記複数の移動測定範囲それぞれについて、前記時間ダイバーシチを適用して選択した基準信号を分母とし、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を分子として、前記合成開口処理対象の信号を導出することを特徴とする測定装置。 In the measuring apparatus in any one of Claims 1 thru | or 3,
For each of the plurality of movement measurement ranges, the signal processing unit uses a reference signal selected by applying the time diversity as a denominator, and receives a reception signal via the reception antenna acquired at the same timing as the selected reference signal. A measuring apparatus for deriving a signal of the synthetic aperture processing target as a molecule.
前記信号処理部は、前記合成開口処理の窓関数の標準偏差に基づいて決定したウェイトを前記合成開口処理対象の信号に乗算し、前記ウェイトを乗算した合成開口処理対象の信号に基づいて合成開口処理を行うことを特徴とする測定装置。 The measuring device according to claim 4.
The signal processing unit multiplies the synthetic aperture processing target signal by a weight determined based on the standard deviation of the synthetic aperture processing window function, and the synthetic aperture processing signal based on the synthetic aperture processing target signal multiplied by the weight. A measuring apparatus that performs processing.
前記アンテナ駆動部は、回転中心から離れた円状の移動経路上を径方向外側に指向性が向いた状態で移動するように前記受信アンテナを回転駆動することを特徴とする測定装置。 In the measuring apparatus in any one of Claims 1 thru | or 5,
The measurement apparatus characterized in that the antenna driving unit rotationally drives the receiving antenna so as to move in a state where directivity is directed radially outward on a circular moving path away from the rotation center.
前記合成開口処理を行うi番目の測定点における前記受信アンテナの回転角度を受信角度θiとし、前記受信角度θiの測定点で合成する複数の合成開口処理対象の信号のうちj番目の合成開口処理対象の信号に対応する前記受信アンテナの回転角度の前記受信角度θiとの角度差をφjとし、前記時間ダイバーシチを適用して選択した前記受信アンテナの回転角度(θi+φj)における前記受信信号及び前記基準信号それぞれをERx(θi+φj)及びERef(θi+φj)とし、前記合成開口処理の要素数を2N+1(N:自然数)とし、前記受信アンテナの移動経路の半径をRとし、前記到来電波の波数をkとし、前記合成開口処理の窓関数の標準偏差をσとしたとき、
下記の式(1)及び式(2)を用いて、前記受信角度θiにおける前記合成開口処理後の受信信号ESA(θi)を算出することを特徴とする測定装置。
The rotation angle of the reception antenna at the i-th measurement point where the synthetic aperture processing is performed is defined as a reception angle θ i, and the j-th synthesis among a plurality of synthetic aperture processing target signals synthesized at the measurement point of the reception angle θ i. The receiving antenna rotation angle (θ i + φ j ) selected by applying the time diversity is defined as φ j , where the angular difference between the receiving antenna θ i corresponding to the aperture processing target signal and the receiving angle θ i is φ j . The received signal and the reference signal in FIG. 4 are respectively E Rx (θ i + φ j ) and E Ref (θ i + φ j ), the number of elements of the synthetic aperture processing is 2N + 1 (N: natural number), and the movement of the receiving antenna When the radius of the path is R, the wave number of the incoming radio wave is k, and the standard deviation of the window function of the synthetic aperture processing is σ,
A measurement apparatus that calculates the reception signal E SA (θ i ) after the synthetic aperture processing at the reception angle θ i using the following formulas (1) and (2).
指向性を有する受信アンテナを移動させることと、
前記受信アンテナの移動経路における連続した複数の移動測定範囲それぞれにおいて、前記移動測定範囲内の互いに異なる複数の移動位置又は前記移動測定範囲内の一移動位置で前記受信アンテナを介して受信した受信信号と固定配置した基準アンテナを介して受信した基準信号とを複数組取得することと、
前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記複数組の受信信号及び基準信号に時間ダイバーシチを適用して合成開口処理対象の受信信号及び基準信号を選択し、前記時間ダイバーシチを適用して選択した前記複数の移動測定範囲それぞれの受信信号及び基準信号と前記受信アンテナの回転角度とに基づいて合成開口処理を行い、前記複数の移動測定範囲それぞれにおける前記合成開口処理後の受信信号と前記受信アンテナの回転角度との関係を示す特性に基づいて前記到来電波の方向を推定することと、を含むことを特徴とする測定方法。 A measurement method for measuring incoming radio waves,
Moving a directional receiving antenna;
In each of a plurality of continuous movement measurement ranges in the movement path of the reception antenna, a reception signal received via the reception antenna at a plurality of different movement positions in the movement measurement range or one movement position in the movement measurement range. Acquiring a plurality of sets of reference signals received via a fixedly arranged reference antenna;
For each of the plurality of movement measurement ranges, time diversity is applied to the plurality of sets of reception signals and reference signals acquired within the movement measurement range to select reception signals and reference signals to be subjected to synthetic aperture processing, and the time diversity is selected. The synthetic aperture processing is performed based on the received signal and the reference signal of each of the plurality of moving measurement ranges selected by applying and the rotation angle of the receiving antenna, and after the synthetic aperture processing in each of the plurality of moving measurement ranges Estimating the direction of the incoming radio wave based on a characteristic indicating a relationship between a received signal and a rotation angle of the receiving antenna.
前記時間ダイバーシチの処理は、前記複数の移動測定範囲それぞれについて、前記移動測定範囲内に取得した前記基準アンテナを介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択し、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を合成開口処理対象の受信信号として選択する処理であることを特徴とする測定方法。 The measurement method according to claim 8, wherein
In the time diversity processing, for each of the plurality of movement measurement ranges, the reference signal having the largest amplitude among the plurality of reference signals acquired through the reference antenna within the movement measurement range is used as a reference signal to be subjected to synthetic aperture processing. And measuring the received signal via the receiving antenna acquired at the same timing as the selected reference signal as a received signal to be subjected to the synthetic aperture processing.
前記時間ダイバーシチの処理は、前記受信アンテナを所定角度移動するごとに停止し、その停止中に、前記受信アンテナを介した受信信号と前記基準アンテナを介した基準信号とを複数組取得し、前記基準アンテナを介した複数の基準信号のうち振幅が最も大きい基準信号を合成開口処理対象の基準信号として選択し、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を合成開口処理対象の受信信号として選択することを特徴とする測定方法。 The measurement method according to claim 8, wherein
The time diversity processing is stopped every time the reception antenna is moved by a predetermined angle, and during the stop, a plurality of sets of reception signals via the reception antenna and reference signals via the reference antenna are acquired, A reference signal having the largest amplitude among a plurality of reference signals via the reference antenna is selected as a reference signal to be subjected to the synthetic aperture processing, and a reception signal obtained via the reception antenna obtained at the same timing as the selected reference signal is synthesized. A measurement method characterized by selecting as a reception signal to be subjected to aperture processing.
前記複数の移動測定範囲それぞれについて、前記時間ダイバーシチを適用して選択した基準信号を分母とし、前記選択した基準信号と同じタイミングに取得した前記受信アンテナを介した受信信号を分子として、前記合成開口処理対象の信号を導出することを特徴とする測定方法。 In the measuring method in any one of Claims 8 thru | or 10,
For each of the plurality of movement measurement ranges, a reference signal selected by applying the time diversity is used as a denominator, and a received signal via the reception antenna acquired at the same timing as the selected reference signal is used as the numerator. A measurement method characterized by deriving a signal to be processed.
前記合成開口処理の窓関数の標準偏差に基づいて決定したウェイトを、前記合成開口処理対象の信号に乗算し、前記ウェイトを乗算した合成開口処理対象の信号に基づいて合成開口処理を行うことを特徴とする測定方法。 The measurement method of claim 11,
Multiplying the synthetic aperture processing target signal by a weight determined based on the standard deviation of the window function of the synthetic aperture processing, and performing the synthetic aperture processing based on the synthetic aperture processing target signal multiplied by the weight. Characteristic measuring method.
前記受信アンテナは、回転中心から離れた円状の移動経路上を径方向外側に指向性が向いた状態で移動するように回転することを特徴とする測定方法。 In the measuring method in any one of Claims 8 thru | or 12,
The measurement method, wherein the receiving antenna rotates so as to move in a state in which directivity is directed radially outward on a circular moving path away from a rotation center.
前記合成開口処理を行うi番目の測定点における前記受信アンテナの回転角度を受信角度θiとし、前記受信角度θiの測定点で合成する複数の合成開口処理対象の信号のうちj番目の合成開口処理対象の信号に対応する前記受信アンテナの回転角度の前記受信角度θiとの角度差をφjとし、前記時間ダイバーシチを適用して選択した前記受信アンテナの回転角度(θi+φj)における前記受信信号及び前記基準信号それぞれをERx(θi+φj)及びERef(θi+φj)とし、前記合成開口処理の要素数を2N+1(N:自然数)とし、前記受信アンテナの移動経路の半径をRとし、前記到来電波の波数をkとし、前記合成開口処理の窓関数の標準偏差をσとしたとき、
下記の式(1)及び式(2)を用いて、前記受信角度θiにおける前記合成開口処理後の受信信号ESA(θi)を算出することを特徴とする測定方法。
The rotation angle of the reception antenna at the i-th measurement point where the synthetic aperture processing is performed is defined as a reception angle θ i, and the j-th synthesis among a plurality of synthetic aperture processing target signals synthesized at the measurement point of the reception angle θ i. The receiving antenna rotation angle (θ i + φ j ) selected by applying the time diversity is defined as φ j , where the angular difference between the receiving antenna θ i corresponding to the aperture processing target signal and the receiving angle θ i is φ j . The received signal and the reference signal in FIG. 4 are respectively E Rx (θ i + φ j ) and E Ref (θ i + φ j ), the number of elements of the synthetic aperture processing is 2N + 1 (N: natural number), and the movement of the receiving antenna When the radius of the path is R, the wave number of the incoming radio wave is k, and the standard deviation of the window function of the synthetic aperture processing is σ,
A measurement method characterized in that the received signal E SA (θ i ) after the synthetic aperture processing at the reception angle θ i is calculated using the following equations (1) and (2).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017104757A JP6491263B2 (en) | 2017-05-26 | 2017-05-26 | Measuring device for measuring incoming radio waves and measuring method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017104757A JP6491263B2 (en) | 2017-05-26 | 2017-05-26 | Measuring device for measuring incoming radio waves and measuring method therefor |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018200218A true JP2018200218A (en) | 2018-12-20 |
JP6491263B2 JP6491263B2 (en) | 2019-03-27 |
Family
ID=64668052
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017104757A Active JP6491263B2 (en) | 2017-05-26 | 2017-05-26 | Measuring device for measuring incoming radio waves and measuring method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6491263B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111239682A (en) * | 2020-02-07 | 2020-06-05 | 北京机械设备研究所 | Electromagnetic emission source positioning system and method |
JP2021019240A (en) * | 2019-07-18 | 2021-02-15 | 日本電信電話株式会社 | Radio wave propagation characteristic measurement system, dynamic propagation parameter estimation method, receiver, and radio wave propagation characteristic measurement program |
JP2021099245A (en) * | 2019-12-20 | 2021-07-01 | 株式会社東芝 | Radar system and radar signal processing method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4638315A (en) * | 1984-06-20 | 1987-01-20 | Westinghouse Electric Corp. | Rotor tip synthetic aperture radar |
JP2001102847A (en) * | 1999-09-30 | 2001-04-13 | Toshiba Corp | Antenna device |
JP2002228747A (en) * | 2001-01-18 | 2002-08-14 | Eads Deutschland Gmbh | Wire confirming method using rotary synthetic opening radar |
JP2016099305A (en) * | 2014-11-26 | 2016-05-30 | 三菱電機株式会社 | Radar system |
-
2017
- 2017-05-26 JP JP2017104757A patent/JP6491263B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4638315A (en) * | 1984-06-20 | 1987-01-20 | Westinghouse Electric Corp. | Rotor tip synthetic aperture radar |
JP2001102847A (en) * | 1999-09-30 | 2001-04-13 | Toshiba Corp | Antenna device |
JP2002228747A (en) * | 2001-01-18 | 2002-08-14 | Eads Deutschland Gmbh | Wire confirming method using rotary synthetic opening radar |
JP2016099305A (en) * | 2014-11-26 | 2016-05-30 | 三菱電機株式会社 | Radar system |
Non-Patent Citations (1)
Title |
---|
KAZUMA TOMIMOTO ET AL.: "DOA Measurements Using Synthetic Aperture Methode in Outdoor Environments", 2016 INTERNATIONAL SYNPOSIUM ON ANTENNAS AND PROPAGATION(ISAP), vol. 4C3-2, JPN6019004085, 19 January 2017 (2017-01-19), US, pages 1030 - 1031, ISSN: 0003973697 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2021019240A (en) * | 2019-07-18 | 2021-02-15 | 日本電信電話株式会社 | Radio wave propagation characteristic measurement system, dynamic propagation parameter estimation method, receiver, and radio wave propagation characteristic measurement program |
JP7088475B2 (en) | 2019-07-18 | 2022-06-21 | 日本電信電話株式会社 | Radio wave propagation characteristic measurement system, dynamic propagation parameter estimation method, receiver and radio wave propagation characteristic measurement program |
JP2021099245A (en) * | 2019-12-20 | 2021-07-01 | 株式会社東芝 | Radar system and radar signal processing method |
JP7532031B2 (en) | 2019-12-20 | 2024-08-13 | 株式会社東芝 | Radar device and radar signal processing method |
CN111239682A (en) * | 2020-02-07 | 2020-06-05 | 北京机械设备研究所 | Electromagnetic emission source positioning system and method |
CN111239682B (en) * | 2020-02-07 | 2021-11-30 | 北京机械设备研究所 | Electromagnetic emission source positioning system and method |
Also Published As
Publication number | Publication date |
---|---|
JP6491263B2 (en) | 2019-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110018452B (en) | Method and apparatus for estimating direction of arrival using generation of virtual received signals | |
JP6947054B2 (en) | Radar device | |
JP6337030B2 (en) | Massive-MIMO antenna measuring apparatus and directivity measuring method thereof | |
JP5617334B2 (en) | Radar apparatus and target detection method | |
JP6491263B2 (en) | Measuring device for measuring incoming radio waves and measuring method therefor | |
US10545216B2 (en) | Method of locating a transmitting source in multipath environment and system thereof | |
CN106486769B (en) | Spatial interpolation method and apparatus for linear phased array antenna | |
Bechter et al. | Digital beamforming to mitigate automotive radar interference | |
JP6678554B2 (en) | Antenna measuring device | |
JP2012185039A (en) | Radar device and arrival angle calculation method of the radar device | |
CN115524674B (en) | Millimeter wave radar antenna phase calibration method, device, equipment and storage medium | |
US10267906B2 (en) | Angle estimating method and radar system | |
KR20160029616A (en) | Apparatus and Method for Finding Hybrid Direction using Two Baseline | |
CN111211826B (en) | Recursive structure beamforming method and device | |
JP5507642B2 (en) | Interference measurement system and interference measurement method | |
US9939513B2 (en) | Apparatus and method for finding hybrid direction using two baselines | |
US11585892B1 (en) | Calibration for multi-channel imaging systems | |
CN108089161A (en) | A kind of aerial array synthesis wave beam spatial domain selection method based on Feedback of Power | |
JP2010237069A (en) | Apparatus for measuring radar reflection cross-section | |
JP7248454B2 (en) | Radar device and correction value calculation method | |
JP6809674B2 (en) | Arrival wave angle estimation method and arrival wave angle estimation device | |
JP2012211794A (en) | Angular characteristics measuring method and radar apparatus | |
JP6415392B2 (en) | Signal processing device | |
JP7381970B2 (en) | Radar device, object detection method, and object detection program | |
WO2022168213A1 (en) | Radar cross section measurement device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20190208 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20190228 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6491263 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |