JP2018200150A - Organic waste combustion furnace and organic waste treatment system using the combustion furnace - Google Patents
Organic waste combustion furnace and organic waste treatment system using the combustion furnace Download PDFInfo
- Publication number
- JP2018200150A JP2018200150A JP2017105556A JP2017105556A JP2018200150A JP 2018200150 A JP2018200150 A JP 2018200150A JP 2017105556 A JP2017105556 A JP 2017105556A JP 2017105556 A JP2017105556 A JP 2017105556A JP 2018200150 A JP2018200150 A JP 2018200150A
- Authority
- JP
- Japan
- Prior art keywords
- combustion furnace
- organic waste
- fluidized bed
- circulating fluidized
- zone
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/40—Valorisation of by-products of wastewater, sewage or sludge processing
Landscapes
- Fluidized-Bed Combustion And Resonant Combustion (AREA)
Abstract
【課題】 下水汚泥等の有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、有機性廃棄物の乾燥・熱分解、脱硫、及びN2Oの分解のそれぞれの工程を、各々に適した最適な条件で行うことができる燃焼炉を提供する。【解決手段】 下水汚泥等の有機性廃棄物の「乾燥・熱分解」、「脱硫」及び「N2O分解」のそれぞれの工程を最適な条件で行わせるために、各工程をゾーン分けし、好ましくは、「N2O分解」工程に必要な850℃以上の高温にされた流動媒体を、有機性廃棄物の「乾燥・熱分解」工程に返送する前に、熱交換器に循環させることにより、熱を最大限利用することができる。【選択図】図1PROBLEM TO BE SOLVED: To suit each step of drying / thermal decomposition of organic waste, desulfurization, and decomposition of N2O in a circulating fluidized bed combustion furnace for incinerating organic waste such as sewage sludge. To provide a combustion furnace that can be operated under optimum conditions. SOLUTION: In order to perform each process of "drying / thermal decomposition", "desulfurization" and "N2O decomposition" of organic waste such as sewage sludge under optimum conditions, each process is preferably divided into zones. Heats the fluid medium heated to a high temperature of 850 ° C. or higher required for the "N2O decomposition" process by circulating it in a heat exchanger before returning it to the "drying / pyrolysis" process of organic waste. Can be used to the maximum. [Selection diagram] Fig. 1
Description
本発明は、下水汚泥、食品残さ、都市ごみ等の有機性廃棄物を焼却処理するための燃焼炉及び該燃焼炉を用いた有機性廃棄物の処理システムに関し、特に、外部循環型流動層燃焼炉を用いて有機性廃棄物を焼却処理する処理システムに関する。 The present invention relates to a combustion furnace for incinerating organic waste such as sewage sludge, food residue, and municipal waste, and an organic waste treatment system using the combustion furnace, and in particular, external circulation fluidized bed combustion. The present invention relates to a processing system for incinerating organic waste using a furnace.
例えば、下水処理によって発生する下水汚泥は、下水の増加にともなって年々増加しており、その大半が焼却処理されており、焼却炉の大部分には、流動層燃焼炉が用いられている。
この流動層燃焼炉には、気泡流動層燃焼炉と循環型流動層燃焼炉とがある。
前者の気泡流動層燃焼炉は、炉底に砂等の流動媒体を充填してその下方から高圧空気の吹き込みにより流動状態にして該流動媒体中に投入した廃棄物を乾燥、燃焼させるものである。
また、後者の循環型流動層燃焼炉は、流動層とフリーボードとからなる燃焼炉と、微粒子を捕集するサイクロンなどから構成されており、廃棄物を、燃焼炉底部から導入される一次空気により流動化されている流動層に供給すると、流動層内で流動媒体と混合攪拌され、流動しつつ乾燥及び熱分解しながら燃焼され、流動層から吹き上げられる流動媒体と廃棄物中の未燃焼分などは二次空気の導入によりフリーボードへ同伴して燃焼排ガス中の未燃焼分を完全燃焼させ、燃焼排ガスからサイクロンにより流動媒体を捕集して燃焼炉に返送して循環利用するものである。
For example, sewage sludge generated by sewage treatment is increasing year by year as sewage increases, most of which is incinerated, and most of the incinerators use fluidized bed combustion furnaces.
The fluidized bed combustion furnace includes a bubble fluidized bed combustion furnace and a circulating fluidized bed combustion furnace.
In the former bubble fluidized bed combustion furnace, the bottom of the furnace is filled with a fluid medium such as sand, and is made into a fluid state by blowing high-pressure air from below to dry and burn the waste thrown into the fluid medium. .
The latter circulating fluidized bed combustion furnace is composed of a combustion furnace composed of a fluidized bed and a freeboard, a cyclone for collecting fine particles, and the like, and primary air introduced from the bottom of the combustion furnace. When the fluidized bed is supplied to a fluidized bed, the fluidized medium is mixed and stirred with the fluidized medium in the fluidized bed, burned while flowing and dried and thermally decomposed, and blown up from the fluidized bed, and the unburned fraction in the waste. In this case, the secondary air is introduced to the free board to completely burn the unburned portion of the combustion exhaust gas, and the fluid medium is collected from the combustion exhaust gas by a cyclone and returned to the combustion furnace for circulation. .
こうした流動層燃焼炉を用いた有機性廃棄物の焼却処理においては、燃焼炉から排出された燃焼排ガス中に含まれる、ダイオキシンやCO、N2O等の未燃分、中でも、特に温室効果ガスであるとともにオゾン層破壊物質であるN2Oを低減化することが強く求められており、そのための対策がなされている。 In the incineration treatment of organic waste using such a fluidized bed combustion furnace, unburned components such as dioxin, CO, and N 2 O contained in the combustion exhaust gas discharged from the combustion furnace, in particular, greenhouse gases In addition, there is a strong demand to reduce N 2 O, which is an ozone depleting substance, and countermeasures are being taken.
例えば、特許文献1に記載のシステムは、気泡流動層燃焼炉を加圧で運転することで、汚泥を燃焼させた高温の燃焼排ガスを活用して該加圧気泡流動層燃焼炉の後段に設置した過給機を駆動し、燃焼用圧縮空気を生成させるものであり、該システムによれば、システム中のファンを省略して大幅に電力を削減することができるばかりでなく、流動層内に生成される高温域により、N2Oの大幅な低減が達成できる。 For example, the system described in Patent Document 1 is installed in the subsequent stage of a pressurized bubbling fluidized bed combustion furnace by operating a bubbling fluidized bed combustion furnace under pressure, utilizing the high-temperature combustion exhaust gas that burns sludge. The supercharger is driven to generate compressed air for combustion. According to the system, not only the fan in the system can be omitted, but also the power can be greatly reduced. A significant reduction in N 2 O can be achieved due to the high temperature region produced.
また、特許文献2、3に記載の方法では、循環型流動層燃焼炉で下水汚泥等の廃棄物を燃焼させて燃焼排ガスを排出させた後、該燃焼炉から排出された燃焼排ガス中の未燃分を、後段に設置した二次燃焼炉で完全燃焼させることにより、N2O排出量の大幅な低減を図っている。 Further, in the methods described in Patent Documents 2 and 3, waste such as sewage sludge is burned in a circulating fluidized bed combustion furnace to discharge the combustion exhaust gas, and then the unexposed gas in the combustion exhaust gas discharged from the combustion furnace The amount of N 2 O emission is greatly reduced by completely burning the fuel in a secondary combustion furnace installed at a later stage.
また、これらの特許文献では言及されていないものの、下水汚泥等の有機性廃棄物を焼却処理する際のもう1つの課題として、下水汚泥等の有機性廃棄物中には硫黄化合物が多く含まれているため、SOx等の硫黄酸化物が発生する場合があるという問題があり、硫黄酸化物を含む燃焼排ガスは大気汚染、酸性雨の原因となることから、硫黄酸化物を除去(脱硫)する必要がある。
従来の有機性廃棄物の焼却システムにおいて、多くは焼却炉後段に排煙処理塔を設置することで脱硫を行っている(例えば図6参照)が、焼却システムのランニングコスト削減に向けて、燃焼炉内でおこなうことが検討されている。
Further, although not mentioned in these patent documents, as another problem when incinerating organic waste such as sewage sludge, organic waste such as sewage sludge contains a large amount of sulfur compounds. Therefore, there is a problem that sulfur oxides such as SOx may be generated, and the combustion exhaust gas containing sulfur oxides causes air pollution and acid rain, so that sulfur oxides are removed (desulfurized). There is a need.
In conventional organic waste incineration systems, many desulfurization is performed by installing a flue gas treatment tower at the rear stage of the incinerator (see, for example, FIG. 6), but combustion is aimed at reducing the running cost of the incineration system. It is being considered to do it in the furnace.
燃焼炉内での脱硫法の1つに、燃焼炉内に脱硫剤を投入して流動媒体とともに循環させる方法がある。
例えば、特許文献4には、循環型流動層燃焼炉を用いて下水汚泥を焼却処理する際に、炉内温度が850〜950℃に維持された炉内で、脱硫剤である石灰石(CaCO3)を用いて脱硫することが提案されており、該方法によれば、高温の砂が燃焼炉内全域に分散しているため、焼却炉全域において約850〜950℃の均一な高温度が形成されており、N2Oも低減化できるとしている。
As one of the desulfurization methods in the combustion furnace, there is a method in which a desulfurizing agent is introduced into the combustion furnace and circulated together with a fluid medium.
For example, Patent Document 4 discloses that when sewage sludge is incinerated using a circulating fluidized bed combustion furnace, the temperature inside the furnace is maintained at 850 to 950 ° C., and limestone (CaCO 3 as a desulfurizing agent). In this method, since high-temperature sand is dispersed throughout the combustion furnace, a uniform high temperature of about 850 to 950 ° C. is formed throughout the incinerator. N 2 O can also be reduced.
また、特許文献5には、燃焼炉内に脱硫剤として投入されたCaCO3は、高温(例えば850℃)下において酸化されてCaOを生成し、生成されたCaOは、本来の役割である脱硫反応を起こしてSOxをCaSO4にするばかりでなく、NH3、HCN、N2O等の窒素化合物の酸化反応の触媒作用を果たし、NOxを生成させることが記載されている。 Patent Document 5 discloses that CaCO 3 charged as a desulfurizing agent in a combustion furnace is oxidized at a high temperature (for example, 850 ° C.) to generate CaO, and the generated CaO is a desulfurization which is an original role. It is described that not only the reaction causes SOx to be changed to CaSO 4 but also catalyses the oxidation reaction of nitrogen compounds such as NH 3 , HCN, and N 2 O to generate NOx.
以上のとおり、従来の循環型流動層炉を用いた下水汚泥等の有機性廃棄物の焼却処理において、燃焼炉内で、脱硫剤を投入して脱硫する工程と、有機性廃棄物に含まれる窒素化合物から発生するN2Oを分解して低減させる工程とを行うことが検討されている。
しかしながら、例えば、脱硫工程に必要なCaSO4への反応は800〜850℃程度の高温で行われるのに対して、N2Oの分解には850℃以上、好ましくは900〜950℃が好ましく、さらに、有機性廃棄物の乾燥・熱分解は、それほどの高温を必要とせず、750℃程度で充分であるなど、有機性廃棄物の乾燥・熱分解、脱硫、及びN2Oの分解の各々の工程の最適な条件は異なっており、それぞれの工程を、それぞれ適した条件で行うための検討が十分にはなされていない。
As described above, in the incineration treatment of organic waste such as sewage sludge using a conventional circulating fluidized bed furnace, the desulfurization agent is added to the desulfurization process in the combustion furnace, and is included in the organic waste It has been studied to perform a step of decomposing and reducing N 2 O generated from a nitrogen compound.
However, for example, the reaction to CaSO 4 required for the desulfurization step is performed at a high temperature of about 800 to 850 ° C., whereas the decomposition of N 2 O is preferably 850 ° C. or more, preferably 900 to 950 ° C., Furthermore, drying / thermal decomposition of organic waste does not require such a high temperature, and about 750 ° C. is sufficient. For example, drying / thermal decomposition of organic waste, desulfurization, and decomposition of N 2 O The optimum conditions for these processes are different, and studies for performing each process under suitable conditions have not been sufficiently conducted.
例えば、特許文献4記載の燃焼炉では、約850〜950℃の均一な高温度を形成することによりN2Oの分解を行うものであって、高温の砂が燃焼炉内全域に分散しているために焼却炉全域において約850〜950℃の均一な高温度が形成されており、有機性廃棄物の乾燥・熱分解、脱硫、及びN2Oの分解の各々の工程を最適な条件で行うことが困難である。
また、特許文献5記載の燃焼炉では、850℃の高温下で生成したCaOの触媒作用により、排ガス中のN2Oを酸化してNOxとするものであるが、850℃ではN2Oの分解に長い滞留時間が必要と考えられる。
For example, in the combustion furnace described in Patent Document 4, N 2 O is decomposed by forming a uniform high temperature of about 850 to 950 ° C., and high-temperature sand is dispersed throughout the combustion furnace. Therefore, a uniform high temperature of about 850 to 950 ° C. is formed throughout the incinerator, and each process of drying / pyrolysis of organic waste, desulfurization, and decomposition of N 2 O is performed under optimum conditions. Difficult to do.
Further, in the combustion furnace described in Patent Document 5, N 2 O in exhaust gas is oxidized to NOx by the catalytic action of CaO generated at a high temperature of 850 ° C., but at 850 ° C., N 2 O Long residence time is considered necessary for decomposition.
一方、特許文献2、3には、排ガス中に発生したN2Oを850〜950℃の高温下で分解することが提案されているが、いずれも、脱硫工程については検討されていない。 On the other hand, Patent Documents 2 and 3 propose that N 2 O generated in exhaust gas is decomposed at a high temperature of 850 to 950 ° C., but none of the desulfurization process is studied.
さらに、従来の循環型流動層炉を用いた有機性廃棄物の焼却処理においては、加圧下で運転を行うことで、特許文献1に記載されたシステムのように、システム内のファンを省略することについては何ら検討されていない。 Further, in the incineration treatment of organic waste using a conventional circulating fluidized bed furnace, the fan in the system is omitted as in the system described in Patent Document 1 by operating under pressure. There is no discussion about this.
本発明は、以上のような事情に鑑みてなされたものであり、下水汚泥等の有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、有機性廃棄物の乾燥・熱分解、脱硫、及びN2Oの分解のそれぞれの工程を、各々に適した最適な条件で行うことができる燃焼炉を提供することを目的とするものである。 The present invention has been made in view of the above circumstances, and in a circulating fluidized bed combustion furnace for incinerating organic waste such as sewage sludge, drying and pyrolysis of organic waste, It is an object of the present invention to provide a combustion furnace capable of performing each step of desulfurization and decomposition of N 2 O under optimum conditions suitable for each.
本発明者らは、上記目的を達成すべく検討を重ねた結果、下水汚泥等の有機性廃棄物の「乾燥・熱分解」、「脱硫」、「N2O分解」それぞれを燃焼炉内で最適な条件で行わせるために、各工程を、温度の異なるゾーンに分けることが有効であることを見いだし、本発明を完成するに至った。
また、本発明においては、「N2O分解」工程に必要な850〜950℃の高温にされた流動媒体を、有機性廃棄物の「乾燥・熱分解」工程に返送する前に、熱交換器に循環させることにより、熱を最大限利用できることが判明した。
さらに、本発明に係る循環型流動層燃焼炉を加圧下で運転し、生成した高温の燃焼排ガスを活用して該加圧気泡流動層燃焼炉の後段に設置した過給機を駆動し、燃焼用圧縮空気を生成させるシステムを提供できることも判明した。
As a result of repeated studies to achieve the above object, the present inventors conducted “drying / pyrolysis”, “desulfurization”, and “N 2 O decomposition” of organic waste such as sewage sludge in the combustion furnace. The inventors have found that it is effective to divide each process into zones having different temperatures in order to perform the process under optimum conditions, and have completed the present invention.
In the present invention, the fluid medium heated to 850 to 950 ° C. necessary for the “N 2 O decomposition” step is subjected to heat exchange before being returned to the “drying / pyrolysis” step of organic waste. It has been found that heat can be maximally utilized by circulating it in a vessel.
Further, the circulating fluidized bed combustion furnace according to the present invention is operated under pressure, and the superheater installed at the subsequent stage of the pressurized bubble fluidized bed combustion furnace is driven by using the generated high-temperature combustion exhaust gas, It has also been found that a system for generating compressed air for use can be provided.
本発明はこれらの知見に基づいて完成に至ったものであり、本発明によれば、以下の発明が提供される。
[1]有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、該燃焼炉内に、有機性廃棄物の乾燥・熱分解ゾーン、脱硫ゾーン、及びN2O分解ゾーンを有し、各ゾーンは、それぞれ温度の異なるゾーンであることを特徴とする循環型流動層燃焼炉。
[2]有機性廃棄物と石灰石を乾燥・熱分解ゾーンに投入する手段を備え、脱硫反応の一部を、前記乾燥・熱分解ゾーンの一部で起こらせるようにすることを特徴とする[1]に記載の循環型流動層燃焼炉。
[3]有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、該燃焼炉内に、有機性廃棄物の乾燥・熱分解ゾーン及び脱硫ゾーンを有し、各ゾーンは、それぞれ温度の異なるゾーンであるとともに、該燃焼炉の後段に二次燃焼炉を設置し、そこをN2O分解ゾーンとすることを特徴とする循環型流動層燃焼炉。
[4]有機性廃棄物を焼却処理するための循環型流動層燃焼炉において、該燃焼炉内に、有機性廃棄物の乾燥・熱分解ゾーン及びN2O分解ゾーンを有し、各ゾーンは、それぞれ温度の異なるゾーンであるとともに、該燃焼炉の後段に乾式脱硫塔を設置し、そこを脱硫ゾーンとすることを特徴とする循環型流動層燃焼炉。
[5]前記乾燥・熱分解ゾーン、前記脱硫ゾーン、及び前記N2O分解ゾーンの温度が、それぞれ、700〜800℃、800〜850℃、及び850〜950℃に設定されていることを特徴とする[1]〜[4]のいずれかに記載の循環型流動層燃焼炉。
[6]前記乾燥・熱分解ゾーンの前段に熱交換器を設置し、流動媒体を該熱交換器に循環させるようにしたことを特徴とする[1]〜[5]のいずれかに記載の循環型流動層燃焼炉。
[7][6]に記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記熱交換器で熱媒体を加熱し、加熱した熱媒体を使用する発電装置、または温水製造装置の少なくとも一つを備えることを特徴とする下水汚泥処理システム。
[8][1]〜[6]のいずれかに記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記循環流動層燃焼炉を加圧下で運転し、有機性廃棄物を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させ圧縮空気を製造し、製造した圧縮空気を燃焼用空気として循環流動層燃焼炉に供給することを特徴とする有機性廃棄物の処理システム。
[9]前記燃焼排ガスと前記過給機により製造した圧縮空気を熱交換する空気予熱器を備えることを特徴とする[8]に記載の有機性廃棄物の処理システム。
[10]前記燃焼排ガスを利用し、圧縮空気を製造する第2の過給機を備えることを特徴とする[8]又は[9]に記載の有機性廃棄物の処理システム。
[11][1]〜[6]のいずれかに記載の循環型流動層燃焼炉を用いた下水汚泥の処理システムであって、
循環流動層燃焼炉を加圧下で運転し、下水汚泥を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させて圧縮空気を製造し、製造した圧縮空気を下水処理場内の曝気槽等へ供給することを特徴とする有機性廃棄物の処理システム。
[12]前記過給機から排気された燃焼排ガスを利用し、蒸気を生成するボイラを備えることを特徴とする[8]〜[11]のいずれかに記載の有機性廃棄物の処理システム。
[13][1]〜[6]のいずれかに記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
燃焼排ガスを利用し、発電する発電手段を備えることを特徴とする有機性廃棄物の処理システム。
[14]前記過給機及び/又は前記発電手段から排気された燃焼排ガスを利用し、蒸気を生成することを特徴とする[8]〜[13]のいずれかに記載の有機性廃棄物の処理システム。
[15][1]〜[6]のいずれかに記載の循環型流動層燃焼炉を用いた有機性廃棄物の処理システムであって、
前記循環流動層燃焼炉から排出された燃焼排ガスと圧縮空気とを熱交換する空気予熱器と、熱交換器で加熱された圧縮空気を駆動源とし、熱交換器に供給する圧縮空気を生成する過給機とを備え、前記過給機から排出される加熱され低圧となった圧縮空気は、前記循環流動層燃焼炉に供給されることを特徴とする有機性廃棄物の処理システム。
The present invention has been completed based on these findings, and according to the present invention, the following inventions are provided.
[1] In a circulating fluidized bed combustion furnace for incinerating organic waste, the combustion furnace has an organic waste drying / thermal decomposition zone, a desulfurization zone, and an N 2 O decomposition zone. The circulating fluidized bed combustion furnace is characterized in that each zone has a different temperature.
[2] It is provided with means for introducing organic waste and limestone into the drying / pyrolysis zone, and a part of the desulfurization reaction is caused to occur in a part of the drying / pyrolysis zone. 1]. The circulating fluidized bed combustion furnace according to 1).
[3] In a circulating fluidized bed combustion furnace for incinerating organic waste, the combustion furnace has an organic waste drying / pyrolysis zone and a desulfurization zone, and each zone has a temperature. A circulating fluidized bed combustion furnace characterized in that a secondary combustion furnace is installed at a subsequent stage of the combustion furnace and is used as an N 2 O decomposition zone.
[4] In a circulating fluidized bed combustion furnace for incinerating organic waste, the combustion furnace has an organic waste drying / pyrolysis zone and an N 2 O decomposition zone, The circulating fluidized bed combustion furnace is characterized in that each zone has a different temperature, and a dry desulfurization tower is installed at the rear stage of the combustion furnace, which serves as a desulfurization zone.
[5] The temperatures of the drying / pyrolysis zone, the desulfurization zone, and the N 2 O decomposition zone are set to 700 to 800 ° C., 800 to 850 ° C., and 850 to 950 ° C., respectively. The circulating fluidized bed combustion furnace according to any one of [1] to [4].
[6] The heat treatment apparatus according to any one of [1] to [5], wherein a heat exchanger is installed in front of the drying / pyrolysis zone, and the fluidized medium is circulated through the heat exchanger. Circulating fluidized bed combustion furnace.
[7] An organic waste treatment system using the circulating fluidized bed combustion furnace according to [6],
A sewage sludge treatment system comprising at least one of a power generation apparatus that heats a heat medium with the heat exchanger and uses the heated heat medium, or a hot water production apparatus.
[8] An organic waste treatment system using the circulating fluidized bed combustion furnace according to any one of [1] to [6],
Operate the circulating fluidized bed combustion furnace under pressure, utilize the high-temperature combustion exhaust gas generated by burning organic waste, drive the supercharger installed in the rear stage of the combustion furnace to produce compressed air, An organic waste treatment system, wherein the produced compressed air is supplied to a circulating fluidized bed combustion furnace as combustion air.
[9] The organic waste treatment system according to [8], further comprising an air preheater that exchanges heat between the combustion exhaust gas and compressed air produced by the supercharger.
[10] The organic waste treatment system according to [8] or [9], further comprising a second supercharger that uses the combustion exhaust gas to produce compressed air.
[11] A sewage sludge treatment system using the circulating fluidized bed combustion furnace according to any one of [1] to [6],
The circulating fluidized bed combustion furnace was operated under pressure, and the compressed air was produced by using the high-temperature combustion exhaust gas generated by burning sewage sludge and driving the supercharger installed at the rear stage of the combustion furnace. An organic waste treatment system that supplies compressed air to an aeration tank or the like in a sewage treatment plant.
[12] The organic waste treatment system according to any one of [8] to [11], comprising a boiler that generates steam by using combustion exhaust gas exhausted from the supercharger.
[13] An organic waste treatment system using the circulating fluidized bed combustion furnace according to any one of [1] to [6],
An organic waste treatment system comprising power generation means for generating power using combustion exhaust gas.
[14] The organic waste according to any one of [8] to [13], wherein steam is generated using combustion exhaust gas exhausted from the supercharger and / or the power generation means. Processing system.
[15] An organic waste treatment system using the circulating fluidized bed combustion furnace according to any one of [1] to [6],
An air preheater that exchanges heat between the flue gas discharged from the circulating fluidized bed combustion furnace and compressed air, and compressed air that is heated by the heat exchanger are used as driving sources to generate compressed air that is supplied to the heat exchanger. A system for treating organic waste, comprising: a supercharger, wherein heated compressed air discharged from the supercharger and having a low pressure is supplied to the circulating fluidized bed combustion furnace.
本発明によれば、循環型流動層燃焼炉を用いた下水汚泥等の有機性廃棄物の焼却処理において、有機性廃棄物の「乾燥・熱分解」、「脱硫」及び「N2O分解」のそれぞれの工程を最適な条件で行うことができる。また、「N2O分解」工程を経て得られた高温の燃焼排ガスを利用して、燃焼炉に供給する圧縮空気を生成及び送風する「過給機」を、本発明に係る循環型流動層燃焼炉の後段に設置することにより、該過給機により生成した圧縮空気を燃焼用空気に活用することで、システム中のファンを省くことができる。さらに、本発明の循環型流動層燃焼炉内の乾燥・熱分解ゾーンの前段に熱交換器を設置することにより、該熱交換器における熱交換によって生成させた蒸気を有効利用できる。 According to the present invention, in incineration treatment of organic waste such as sewage sludge using a circulating fluidized bed combustion furnace, “drying / thermal decomposition”, “desulfurization”, and “N 2 O decomposition” of organic waste. Each of these processes can be performed under optimum conditions. Further, the “supercharger” that generates and blows compressed air to be supplied to the combustion furnace using the high-temperature combustion exhaust gas obtained through the “N 2 O decomposition” step is used as the circulating fluidized bed according to the present invention. By installing in the rear stage of the combustion furnace, the fan in the system can be omitted by using the compressed air generated by the supercharger as combustion air. Furthermore, by installing a heat exchanger before the drying / pyrolysis zone in the circulating fluidized bed combustion furnace of the present invention, steam generated by heat exchange in the heat exchanger can be effectively used.
[循環型流動層燃焼炉]
以下、図面を参照して、本発明に係る循環型流動層燃焼炉について実施形態を用いて説明するが、本発明に係る循環型流動層燃焼炉は、これらの実施形態に限定されないことは言うまでもない。
[Circulating fluidized bed combustion furnace]
Hereinafter, with reference to the drawings, a circulating fluidized bed combustion furnace according to the present invention will be described using embodiments, but it goes without saying that the circulating fluidized bed combustion furnace according to the present invention is not limited to these embodiments. Yes.
(第1実施形態)
図1は、本発明に係る循環型流動層燃焼炉の第1の実施形態を示す模式図である。
該図に示すように、本実施形態においては、一般的な循環型流動層燃焼炉が備えている、流動層とフリーボードとからなる流動層炉と、フリーボードに吹き上げられた流動砂を捕集するサイクロンと、流動砂を返送するダウンカマーとに加え、前記流動層炉の前段に設置された、有機性廃棄物を乾燥・熱分解する「乾燥・熱分解ゾーン」と、該「乾燥・熱分解ゾーン」の前段に設置された「熱交換器」とを有しており、さらに、前記流動層炉内の下流側に、炉内脱硫材である石灰石(CaCO3)による脱硫を行なう「脱硫ゾーン」を設け、前記流動層炉内の上流側及び流動層炉出口と前記サイクロンを連結するダクト内を、高温域でN2Oを分解する「N2O分解ゾーン」としたものである。
(First embodiment)
FIG. 1 is a schematic view showing a first embodiment of a circulating fluidized bed combustion furnace according to the present invention.
As shown in the figure, in the present embodiment, a general circulating fluidized bed combustion furnace includes a fluidized bed furnace composed of a fluidized bed and a freeboard, and fluidized sand blown up to the freeboard. In addition to the cyclone that collects and the downcomer that returns the fluidized sand, a “drying / pyrolysis zone” for drying and pyrolyzing organic waste installed in the previous stage of the fluidized bed furnace, A “heat exchanger” installed in the front stage of the “thermal decomposition zone”, and further, desulfurization with limestone (CaCO 3 ), which is a desulfurization material in the furnace, is performed downstream of the fluidized bed furnace. A “desulfurization zone” is provided, and the upstream side in the fluidized bed furnace and the duct connecting the fluidized bed furnace outlet and the cyclone are designated as “N 2 O decomposition zones” for decomposing N 2 O in a high temperature range. .
「乾燥・熱分解ゾーン」には、流動層が設けられており、炉の底部から導入される空気により流動化されている流動層に有機性廃棄物を投入すると、有機性廃棄物は流動層内で流動媒体(一般には硅砂)とともに混合攪拌されて微細化されるとともに、乾燥・熱分解する。
「乾燥・熱分解ゾーン」に導入される空気の空気比は、1.0未満であり、好ましくは、0.7〜0.8程度である。
また、「乾燥・熱分解ゾーン」の温度は、有機性廃棄物の乾燥・熱分解に必要な温度であればよく、好ましくは、700〜800℃で充分であるが、必要に応じて、補助燃料を用いることもできる。なお、補助燃料としては、重油、灯油あるいは都市ガスや石炭等の可燃物質が挙げられる。
乾燥・熱分解により発生した熱分解ガス及び有機性廃棄物残渣分は流動媒体とともに、次の「脱硫ゾーン」に送られる。
The “drying / pyrolysis zone” is provided with a fluidized bed. When organic waste is introduced into the fluidized bed fluidized by the air introduced from the bottom of the furnace, the organic waste is fluidized. Inside, it is mixed and stirred with a fluid medium (generally cinnabar sand), refined, dried and thermally decomposed.
The air ratio of the air introduced into the “drying / pyrolysis zone” is less than 1.0, and preferably about 0.7 to 0.8.
The temperature of the “drying / pyrolysis zone” may be any temperature required for drying / pyrolysis of organic waste, and preferably 700 to 800 ° C., but if necessary, auxiliary Fuel can also be used. The auxiliary fuel includes heavy oil, kerosene, and combustible substances such as city gas and coal.
The pyrolysis gas and organic waste residue generated by drying and pyrolysis are sent to the next “desulfurization zone” together with the fluidized medium.
「脱硫ゾーン」では、前記「乾燥・熱分解ゾーン」から送られてきた、熱分解ガス、有機性廃棄物残渣分及び流動媒体の混合物に、炉内脱硫剤である石灰石が投入混合された後、炉の底部から導入される一次空気により流動化されている流動層上に投入される。
ここで、未燃焼分の一部が燃焼するとともに、投入された石灰石により、炉内脱硫される。
また、「脱硫ゾーン」の温度は、脱硫に必要な800〜850℃に設定されるが、必要に応じて補助燃料を用いることもできる。
脱硫された熱分解ガスを含む排ガスは、流動媒体と共に、あるいは、更に二次空気と共に、上流の「N2O分解ゾーン」に送られる。このとき用いられる一次空気と二次空気をあわせた空気比は、1.2〜1.3程度である。
In the “desulfurization zone”, limestone, which is a desulfurization agent in the furnace, is added to the mixture of pyrolysis gas, organic waste residue and fluidized medium sent from the “drying / pyrolysis zone”. Then, it is put on a fluidized bed fluidized by primary air introduced from the bottom of the furnace.
Here, a part of the unburned portion burns and is desulfurized in the furnace by the charged limestone.
Further, the temperature of the “desulfurization zone” is set to 800 to 850 ° C. necessary for desulfurization, but auxiliary fuel can be used as necessary.
The exhaust gas containing the desulfurized pyrolysis gas is sent to the upstream “N 2 O decomposition zone” together with the fluid medium or further with the secondary air. The air ratio of the primary air and the secondary air used at this time is about 1.2 to 1.3.
「N2O分解ゾーン」では、脱硫ゾーンから送られてくる熱分解ガスを含む排ガスを、必要に応じて補助燃料を用い、850℃より高温で加熱して、排ガス中に含まれるN2Oを分解させる。
N2Oが分解された燃焼排ガスは、最後にサイクロンにより固気分離されて、炉の上部より取り出される。
取り出された燃焼排ガスは、各種用途に有効利用される。具体的には、例えば燃焼排ガスを利用して該循環型流動層燃焼炉の後段に設置した過給機を駆動し、燃焼用圧縮空気を生成させること等が挙げられる。
In the “N 2 O decomposition zone”, the exhaust gas containing the pyrolysis gas sent from the desulfurization zone is heated at a temperature higher than 850 ° C. using auxiliary fuel as necessary, and N 2 O contained in the exhaust gas is heated. To decompose.
The combustion exhaust gas in which N 2 O is decomposed is finally solid-gas separated by a cyclone and taken out from the upper part of the furnace.
The extracted combustion exhaust gas is effectively used for various purposes. Specifically, for example, using a combustion exhaust gas, a supercharger installed at the rear stage of the circulating fluidized bed combustion furnace is driven to generate compressed air for combustion.
一方、サイクロンで捕集された高温の流動媒体は、ダウンカマーを経て、再び「乾燥・熱分解ゾーン」に還流される。
サイクロンで捕集された流動媒体は高温であるため、「乾燥・熱分解ゾーン」の前段に設置された熱交換器に通過させてから「乾燥・熱分解ゾーン」に還流することで、熱を最大限利用することができる。
具体的には、例えば、熱交換器で高温蒸気又は高温空気を発生させ、その高温蒸気又は高温空気を蒸気タービン又は高温空気タービンに利用して発電する、あるいはその高温蒸気又は高温空気で温水を製造すること等が挙げられる。
On the other hand, the high-temperature fluid medium collected by the cyclone is returned to the “drying / pyrolysis zone” again through the downcomer.
Since the fluid medium collected by the cyclone is hot, it passes through the heat exchanger installed in the previous stage of the `` drying / pyrolysis zone '' and then flows back to the `` drying / pyrolysis zone '', so that heat can be transferred. It can be used as much as possible.
Specifically, for example, high-temperature steam or high-temperature air is generated by a heat exchanger, and the high-temperature steam or high-temperature air is used for a steam turbine or high-temperature air turbine to generate power, or hot water is generated using the high-temperature steam or high-temperature air. Manufacturing and the like.
(第2実施形態)
図2は、本発明に係る循環型流動層燃焼炉の第2の実施形態を示す模式図である。
該図に示すように、本実施形態では、前述の第1の実施形態において、石灰石を脱硫ゾーンに投入する形態に代えて、有機性廃棄物と石灰石を同時に「乾燥・分解ゾーン」に投入するように変更した以外は、前述の第1の実施形態と同じである。
脱硫反応の一部は700〜800℃程度でも起こるため、本実施形態によれば、有機性廃棄物と脱硫剤の同時投入により、「乾燥・熱分解ゾーン」でも脱硫の一部が起こり、その結果、実質的に脱硫工程を長くすることが可能となる。
(Second Embodiment)
FIG. 2 is a schematic view showing a second embodiment of the circulating fluidized bed combustion furnace according to the present invention.
As shown in the figure, in this embodiment, instead of the form in which limestone is introduced into the desulfurization zone in the first embodiment, organic waste and limestone are simultaneously introduced into the “drying / decomposition zone”. Except for this change, the second embodiment is the same as the first embodiment.
Since part of the desulfurization reaction occurs even at about 700 to 800 ° C., according to this embodiment, part of the desulfurization occurs even in the “drying / pyrolysis zone” by simultaneous addition of the organic waste and the desulfurization agent. As a result, it is possible to substantially lengthen the desulfurization process.
(第3実施形態)
図3は、本発明に係る循環型流動層燃焼炉の第3の実施形態を示す模式図であって、燃焼炉の後段に二次燃焼炉を設置し、そこをN2O分解ゾーンとするものである。
すなわち、該図に示すように、本実施形態では、流動層とフリーボードとからなる流動層炉内の下流側に「乾燥・熱分解ゾーン」を設け、前記流動層炉内の上流側及び流動層炉出口とサイクロンを連結するダクト内を「脱硫ゾーン」とするとともに、該流動層炉の後段に、二次燃焼炉を設置して、前記二次燃焼炉を「N2O分解ゾーン」とするように変更した以外は、前述の第1の実施形態と同じである。
(Third embodiment)
FIG. 3 is a schematic view showing a third embodiment of the circulating fluidized bed combustion furnace according to the present invention, in which a secondary combustion furnace is installed at the rear stage of the combustion furnace and is used as an N 2 O decomposition zone. Is.
That is, as shown in the figure, in this embodiment, a “drying / pyrolysis zone” is provided on the downstream side in the fluidized bed furnace composed of the fluidized bed and the freeboard, and the upstream side in the fluidized bed furnace and the fluidized bed. The inside of the duct connecting the outlet of the bed furnace and the cyclone is referred to as a “desulfurization zone”, and a secondary combustion furnace is installed at the rear stage of the fluidized bed furnace, and the secondary combustion furnace is referred to as an “N 2 O decomposition zone”. Except for such changes, the second embodiment is the same as the first embodiment.
「乾燥・熱分解ゾーン」では、流動層炉の底部から導入される一次空気により流動化されている流動層に、有機性廃棄物及び炉内脱硫剤である石灰石が投入され、有機性廃棄物は流動層内で流動媒体とともに混合攪拌されて微細化されるとともに、乾燥・熱分解する。
「乾燥・熱分解ゾーン」に導入される一次空気の空気比は、1.0未満であり、好ましくは、0.7〜0.8程度である。
また、「乾燥・熱分解ゾーン」の温度は、有機性廃棄物の乾燥・熱分解に必要な温度であればよく、好ましくは、700〜800℃で充分であるが、必要に応じて、補助燃料を用いることもできる。なお、補助燃料としては、重油、灯油あるいは都市ガスや石炭等の可燃物質が挙げられる。
乾燥・熱分解により発生した熱分解ガス及び有機性廃棄物残渣分及び石灰石は、流動媒体とともに、或いは更に導入された二次空気と共に、次の、流動層炉上流側に設けられた「脱硫ゾーン」に送られる。
In the “drying / pyrolysis zone”, organic waste and limestone, which is a desulfurization agent in the furnace, are introduced into the fluidized bed fluidized by the primary air introduced from the bottom of the fluidized bed furnace. Is mixed and stirred together with the fluid medium in the fluidized bed to be refined, and dried and thermally decomposed.
The air ratio of primary air introduced into the “drying / pyrolysis zone” is less than 1.0, and preferably about 0.7 to 0.8.
The temperature of the “drying / pyrolysis zone” may be any temperature required for drying / pyrolysis of organic waste, and preferably 700 to 800 ° C., but if necessary, auxiliary Fuel can also be used. The auxiliary fuel includes heavy oil, kerosene, and combustible substances such as city gas and coal.
The pyrolysis gas, organic waste residue, and limestone generated by drying and pyrolysis are placed in the fluidized bed furnace upstream side of the next fluidized bed furnace together with the fluidized medium or with the introduced secondary air. To be sent to.
流動層炉上流側及び炉の出口とサイクロンを繋ぐダクト内に設けられた「脱硫ゾーン」では、未燃焼分の一部が燃焼するとともに、石灰石により、炉内脱硫される。
また、「脱硫ゾーン」の温度は、脱硫に必要な800〜850℃に設定されるが、必要に応じて補助燃料を用いることもできる。
脱硫された熱分解ガスを含む排ガスは、サイクロンにより固気分離されて、炉の上部より取り出され、「N2O分解ゾーン」である二次燃焼炉に送られる。一方、サイクロンで捕集された流動媒体は、ダウンカマー及び熱交換器を経て、「乾燥・熱分解ゾーン」に還流される。
In the “desulfurization zone” provided in the duct connecting the upstream side of the fluidized bed furnace and the outlet of the furnace and the cyclone, a part of the unburned portion burns and is desulfurized in the furnace by limestone.
Further, the temperature of the “desulfurization zone” is set to 800 to 850 ° C. necessary for desulfurization, but auxiliary fuel can be used as necessary.
The exhaust gas containing the desulfurized pyrolysis gas is solid-gas separated by a cyclone, taken out from the upper part of the furnace, and sent to a secondary combustion furnace which is an “N 2 O decomposition zone”. On the other hand, the fluid medium collected by the cyclone is returned to the “drying / pyrolysis zone” through the downcomer and the heat exchanger.
「N2O分解ゾーン」では、脱硫ゾーンから送られてくる熱分解ガスを含む排ガスを、必要に応じて空気、補助燃料を用い、850℃より高温で加熱して、排ガス中に含まれるN2Oを分解させる。 In the “N 2 O decomposition zone”, the exhaust gas containing the pyrolysis gas sent from the desulfurization zone is heated at a temperature higher than 850 ° C. using air and auxiliary fuel as necessary, and N contained in the exhaust gas. Decompose 2 O.
(第4実施形態)
図4は、本発明に係る循環型流動層燃焼炉の第4の実施形態を示す模式図であって、該燃焼炉の後段に乾式脱硫塔を設置し、そこを脱硫ゾーンとするものである。
すなわち、該図に示すように、本実施形態では、流動層とフリーボードとからなる流動層炉内の下流側に「乾燥・熱分解ゾーン」を設け、前記流動層炉内の上流側及び流動層炉出口とサイクロンを連結するダクト内を「N2O分解ゾーン」とするとともに、該流動層炉の後段に、乾式脱硫塔を設置して、「脱硫ゾーン」とするように変更した以外は、前述の第3の実施形態と同じである。
(Fourth embodiment)
FIG. 4 is a schematic view showing a fourth embodiment of the circulating fluidized bed combustion furnace according to the present invention, in which a dry desulfurization tower is installed at the rear stage of the combustion furnace and is used as a desulfurization zone. .
That is, as shown in the figure, in this embodiment, a “drying / pyrolysis zone” is provided on the downstream side in the fluidized bed furnace composed of the fluidized bed and the freeboard, and the upstream side in the fluidized bed furnace and the fluidized bed. The inside of the duct connecting the outlet of the bed furnace and the cyclone is an “N 2 O decomposition zone”, and a dry desulfurization tower is installed at the rear stage of the fluidized bed furnace to change to a “desulfurization zone”. This is the same as the third embodiment described above.
「乾燥・熱分解ゾーン」では、流動層炉の底部から導入される一次空気により流動化されている流動層に、有機性廃棄物が投入され、有機性廃棄物は流動層内で流動媒体とともに混合攪拌されて微細化されるとともに、乾燥・熱分解する。
「乾燥・熱分解ゾーン」に導入される一次空気の空気比は、1.0未満であり、好ましくは、0.7〜0.8程度である。
また、「乾燥・熱分解ゾーン」の温度は、有機性廃棄物の乾燥・熱分解に必要な温度であればよく、好ましくは、700〜800℃で充分であるが、必要に応じて、補助燃料を用いることもできる。なお、補助燃料としては、重油、灯油あるいは都市ガスや石炭等の可燃物質が挙げられる。
乾燥・熱分解により発生した熱分解ガス及び有機性廃棄物残渣分は、流動媒体とともに、或いは更に導入された二次空気と共に、次の、流動層炉上流側に設けられた「N2O分解ゾーン」に送られる。
In the “drying / pyrolysis zone”, organic waste is introduced into the fluidized bed fluidized by the primary air introduced from the bottom of the fluidized bed furnace, and the organic waste is mixed with the fluidized medium in the fluidized bed. The mixture is agitated and refined, and it is dried and thermally decomposed.
The air ratio of primary air introduced into the “drying / pyrolysis zone” is less than 1.0, and preferably about 0.7 to 0.8.
The temperature of the “drying / pyrolysis zone” may be any temperature required for drying / pyrolysis of organic waste, and preferably 700 to 800 ° C., but if necessary, auxiliary Fuel can also be used. The auxiliary fuel includes heavy oil, kerosene, and combustible substances such as city gas and coal.
The pyrolysis gas and organic waste residue generated by drying / pyrolysis are mixed with the fluidized medium or with the secondary air introduced further along with the “N 2 O decomposition provided upstream of the fluidized bed furnace. Sent to the zone.
流動層炉上流側及び炉の出口とサイクロンを繋ぐダクト内に設けられた「N2O分解ゾーン」では、熱分解ガスを含む排ガスを、必要に応じて補助燃料を用い、850℃より高温で加熱して、排ガス中に含まれるN2Oを分解させる。
N2Oが分解された燃焼排ガスは、サイクロンにより固気分離されて、炉の上部より取り出された後、脱硫剤として投入された石灰石とともに、「脱硫ゾーン」である乾式脱硫塔に送られる。
一方、サイクロンで捕集された高温の流動媒体は、ダウンカマー及び熱交換器を経て、再び「乾燥・熱分解ゾーン」に還流される。
In the “N 2 O decomposition zone” provided in the duct that connects the upstream side of the fluidized bed furnace and the outlet of the furnace and the cyclone, exhaust gas containing pyrolysis gas is used at a temperature higher than 850 ° C. using auxiliary fuel as necessary. Heat to decompose N 2 O contained in the exhaust gas.
The combustion exhaust gas decomposed with N 2 O is solid-gas separated by a cyclone, taken out from the upper part of the furnace, and then sent to a dry desulfurization tower, which is a “desulfurization zone”, together with limestone introduced as a desulfurization agent.
On the other hand, the high-temperature fluid medium collected by the cyclone is returned to the “drying / pyrolysis zone” again through the downcomer and the heat exchanger.
「脱硫ゾーン」である乾式脱硫塔の温度は、脱硫に必要な800〜850℃に設定されており、石灰石により脱硫される。
脱硫後は、脱硫反応後の石膏のみを分離して、排ガスとして取り出しても良いし、該乾式脱硫塔後段に設置したセラミックフィルタ等により、ダストとともに取り出しても良い。
The temperature of the dry desulfurization tower which is the “desulfurization zone” is set to 800 to 850 ° C. necessary for desulfurization and is desulfurized by limestone.
After the desulfurization, only the gypsum after the desulfurization reaction may be separated and taken out as exhaust gas, or may be taken out together with dust by a ceramic filter or the like installed at the latter stage of the dry desulfurization tower.
[循環型流動層燃焼炉を用いた有機性廃棄物の処理システム]
有機性廃棄物を燃焼させる処理システムとして、過給式流動燃焼システムが知られている(特許文献1)。この過給式流動燃焼システムは、たとえば下水汚泥を加圧流動床炉に供給して燃焼させ、燃焼炉から排出される燃焼排ガスによって過給機を回転駆動することで圧縮空気を生成し、この圧縮空気を燃焼炉に供給して燃焼を促進させるシステムである。
本発明に係る循環型流動層燃焼炉を用いて有機性廃棄物の焼却処理する際においても、この特許文献1に記載したシステムの場合と同様に、過給機を用いたシステムとすることが望ましい。
[Organic waste treatment system using circulating fluidized bed combustion furnace]
A supercharging fluidized combustion system is known as a treatment system for burning organic waste (Patent Document 1). This supercharged fluidized combustion system, for example, supplies sewage sludge to a pressurized fluidized bed furnace for combustion, and generates compressed air by rotating the turbocharger with combustion exhaust gas discharged from the combustion furnace. It is a system that promotes combustion by supplying compressed air to a combustion furnace.
Even when the organic waste is incinerated using the circulating fluidized bed combustion furnace according to the present invention, a system using a supercharger may be used as in the case of the system described in Patent Document 1. desirable.
以下に、本発明に係る循環型流動層燃焼炉の後段に過給機を設置した有機性廃棄物の処理システムについて説明する。
図5は、本発明に係る循環型流動層燃焼炉を加圧下で運転して、有機性廃棄物を焼却する処理システムの一例の概要を示すブロック図である。
図5に示すシステムでは、加圧下で運転される本発明に係る循環型流動層燃焼炉の後段に、空気予熱器、セラミックフィルタ、過給機、白煙防止予熱器、及び煙突が設けられている。
Below, the processing system of the organic waste which installed the supercharger in the back | latter stage of the circulation type fluidized-bed combustion furnace which concerns on this invention is demonstrated.
FIG. 5 is a block diagram showing an outline of an example of a treatment system for operating a circulating fluidized bed combustion furnace according to the present invention under pressure to incinerate organic waste.
In the system shown in FIG. 5, an air preheater, a ceramic filter, a supercharger, a white smoke prevention preheater, and a chimney are provided after the circulating fluidized bed combustion furnace according to the present invention operated under pressure. Yes.
空気予熱器は、循環型流動層燃焼炉によって生成された燃焼排ガスと、過給機から生成された圧縮空気とを間接的に熱交換することによって、圧縮空気を所定温度まで加温するものである。
この高温に加温された圧縮空気を、循環型流動層燃焼炉の下部から燃焼用空気として、給することにより、燃焼効率を向上させることができる。
The air preheater heats the compressed air to a predetermined temperature by indirectly exchanging heat between the flue gas generated by the circulating fluidized bed combustion furnace and the compressed air generated from the supercharger. is there.
Combustion efficiency can be improved by supplying the compressed air heated to this high temperature as combustion air from the lower part of the circulating fluidized bed combustion furnace.
セラミックフィルタは、循環型流動層燃焼炉によって生成された燃焼排ガス中に含まれるダストを除去するのに用いられる高温フィルタの一例であり、該フィルタによって捕集されたダストは、循環型流動層燃焼炉に供給して再度燃焼させることもできる。
上記空気予熱器とセラミックフィルタとの配置は逆でも良く、まず、セラミックフィルタにおいて燃焼排ガス中に含有するダストを除去した後に、空気予熱器において燃焼排ガスの熱エネルギによって圧縮空気を加温しても良い。
A ceramic filter is an example of a high-temperature filter used to remove dust contained in flue gas generated by a circulating fluidized bed combustion furnace, and the dust collected by the filter is used for circulating fluidized bed combustion. It can also be supplied to the furnace and burned again.
The arrangement of the air preheater and the ceramic filter may be reversed. First, after removing dust contained in the combustion exhaust gas in the ceramic filter, the compressed air is heated by the thermal energy of the combustion exhaust gas in the air preheater. good.
過給機は、上記燃焼排ガスよって回転駆動されるタービン(図示せず)及び当該タービンの回転動力を伝達されることによって前記圧縮空気を生成して送風するコンプレッサ(図示せず)から構成されている。 The supercharger includes a turbine (not shown) that is rotationally driven by the combustion exhaust gas, and a compressor (not shown) that generates and blows the compressed air by transmitting the rotational power of the turbine. Yes.
上記過給機の後段には、白煙が外部に排気されることを防止するための白煙防止予熱器が設けられており、白煙防止予熱器を通過した燃焼排ガスは、煙突から排出される。 A white smoke prevention preheater is provided downstream of the supercharger to prevent white smoke from being exhausted to the outside, and the combustion exhaust gas that has passed through the white smoke prevention preheater is discharged from the chimney. The
該システムにおいては、加圧循環型流動層燃焼炉から取り出された高温の燃焼排ガスは、燃焼炉後段に設置した過給機により、圧縮空気の生成に利用される一方、加圧循環型流動層燃焼炉内の高温の流動媒体は、熱交換器で熱交換されて熱媒体を加熱し、加熱された熱媒体は蒸気タービン等の発電装置や、ボイラ等の温水製造設備に供給され有効活用される。熱媒体として、水、空気などに加え、代替フロン、熱媒油、溶融塩が採用できる。水を熱媒体とした場合は、熱交換器で蒸気を生成し、蒸気タービンや、ボイラ等に供給することになる。空気を熱媒体とした場合には、熱交換器で高温ガスが生成されることになり、その高温ガスを発電装置や温水製造設備に供給することができる。
また、炉内脱硫することで、燃焼炉後段の排煙処理塔を省くことができ、大幅な電力削減効果が期待できる。
さらに、過給機により生成した圧縮空気は、燃焼用空気へ活用でき、図6に示すような従来の流動層燃焼炉を用いた有機性廃棄物の処理システムと比較すると、システム中のファン(流動ブロワおよび誘引ファン)を省くことができる。また、過給機により生成した圧縮空気は、その量に応じて下水処理場内の曝気槽への有効活用も可能であり、また、過給機は複数設置しても良いし、過給機と蒸気タービンの組合せもあり得る。
In this system, the high-temperature combustion exhaust gas taken out from the pressurized circulation fluidized bed combustion furnace is used to generate compressed air by a supercharger installed at the rear stage of the combustion furnace, while the pressurized circulation fluidized bed is used. The high-temperature fluid medium in the combustion furnace is heat-exchanged by a heat exchanger to heat the heat medium, and the heated heat medium is supplied to a power generator such as a steam turbine and hot water production equipment such as a boiler and is effectively used. The As the heat medium, in addition to water, air, etc., alternative chlorofluorocarbon, heat medium oil, and molten salt can be employed. When water is used as a heat medium, steam is generated by a heat exchanger and supplied to a steam turbine, a boiler, or the like. When air is used as the heat medium, high-temperature gas is generated by the heat exchanger, and the high-temperature gas can be supplied to the power generation device and the hot water production facility.
In addition, by desulfurization in the furnace, it is possible to omit the flue gas treatment tower at the rear stage of the combustion furnace, and a significant power reduction effect can be expected.
Furthermore, the compressed air generated by the supercharger can be used as combustion air. Compared with the organic waste treatment system using a conventional fluidized bed combustion furnace as shown in FIG. The flow blower and the induction fan) can be omitted. In addition, the compressed air generated by the supercharger can be effectively used for the aeration tank in the sewage treatment plant according to the amount of the compressed air, and a plurality of superchargers may be installed. There can also be a combination of steam turbines.
本発明に係る循環型流動層燃焼炉の後段に過給機を設置した有機性廃棄物の処理システムの他の事例について説明する。
図7は、本発明に係る循環型流動層燃焼炉を炉内圧が大気圧下から負圧となる条件で運転して、有機性廃棄物を焼却する処理システムの他の一例の概要を示すブロック図である。
図7に示すシステムでは、本発明に係る循環型流動層燃焼炉、燃焼用空気を供給する過給機、空気予熱器、白煙防止予熱器、バグフィルタ及び煙突が設けられている。この事例で使用する過給機は、空気予熱器で加熱された流動空気をタービンに供給することで駆動するものである。
Another example of the organic waste treatment system in which a supercharger is installed at the rear stage of the circulating fluidized bed combustion furnace according to the present invention will be described.
FIG. 7 is a block diagram showing an outline of another example of a treatment system for incinerating organic waste by operating the circulating fluidized bed combustion furnace according to the present invention under conditions where the furnace pressure is changed from atmospheric pressure to negative pressure. FIG.
The system shown in FIG. 7 includes a circulating fluidized bed combustion furnace according to the present invention, a supercharger that supplies combustion air, an air preheater, a white smoke prevention preheater, a bag filter, and a chimney. The supercharger used in this case is driven by supplying flowing air heated by an air preheater to a turbine.
空気予熱器は、循環型流動層燃焼炉によって生成された燃焼排ガスと、過給機から生成された圧縮空気とを間接的に熱交換することによって、圧縮空気を所定温度まで加温するものである。
この高温に加温された圧縮空気を、過給機のタービンに供給することで過給機を駆動させるとともに、タービンから排出される圧力が下がった圧縮空気を循環型流動層燃焼炉の下部から燃焼用空気として、供給する。
The air preheater heats the compressed air to a predetermined temperature by indirectly exchanging heat between the flue gas generated by the circulating fluidized bed combustion furnace and the compressed air generated from the supercharger. is there.
The compressed air heated to this high temperature is supplied to the turbine of the supercharger to drive the supercharger, and the compressed air whose pressure discharged from the turbine is reduced is supplied from the lower part of the circulating fluidized bed combustion furnace. Supply as combustion air.
空気予熱器の後段には、白煙が外部に排気されることを防止するための白煙防止予熱器が設けられている。 A white smoke prevention preheater for preventing white smoke from being exhausted to the outside is provided at the subsequent stage of the air preheater.
バグフィルタは、循環型流動層燃焼炉によって生成された燃焼排ガス中に含まれるダストを除去するのに用いられる高温フィルタの一例であり、該フィルタによって捕集されたダストは、循環型流動層燃焼炉に供給して再度燃焼させることもできる。バグフィルタを通過した燃焼排ガスは、煙突から排出される。なお、バグフィルタを通過した燃焼排ガスは、排煙処理塔や誘引ファン(いずれも図示せず)を経由して煙突から排出しても良い。 A bag filter is an example of a high-temperature filter used to remove dust contained in combustion exhaust gas generated by a circulating fluidized bed combustion furnace, and the dust collected by the filter is used for circulating fluidized bed combustion. It can also be supplied to the furnace and burned again. The combustion exhaust gas that has passed through the bag filter is discharged from the chimney. Note that the combustion exhaust gas that has passed through the bag filter may be discharged from the chimney via a flue gas processing tower or an induction fan (both not shown).
過給機は、前記空気予熱器で加熱された圧縮空気によって回転駆動されるタービン(図示せず)及び当該タービンの回転動力を伝達されることによって前記圧縮空気を生成して送風するコンプレッサ(図示せず)から構成されている。 The supercharger is a turbine (not shown) that is rotationally driven by the compressed air heated by the air preheater, and a compressor that generates and blows the compressed air by transmitting the rotational power of the turbine (see FIG. (Not shown).
該システムにおいては、循環型流動層燃焼炉から取り出された高温の燃焼排ガスは、空気予熱器を介して圧縮空気を加熱することで過給機での圧縮空気の生成に利用される一方、循環型流動層燃焼炉内の高温の流動媒体は、熱交換器で熱交換されて熱媒体を加熱し、加熱された熱媒体は蒸気タービン等の発電装置や、ボイラ等の温水製造設備に供給され有効活用される。熱媒体として、水、空気などに加え、代替フロン、熱媒油、溶融塩が採用できる。水を熱媒体とした場合は、熱交換器で蒸気を生成し、蒸気タービンや、ボイラ等に供給することになる。空気を熱媒体とした場合には、熱交換器で高温ガスが生成されることになり、その高温ガスを発電装置や温水製造設備に供給することができる。 In this system, the high-temperature combustion exhaust gas taken out from the circulating fluidized bed combustion furnace is used for generating compressed air in the supercharger by heating the compressed air through an air preheater. The high-temperature fluidized medium in the fluidized bed combustion furnace is heat-exchanged by a heat exchanger to heat the heat medium, and the heated heat medium is supplied to a power generator such as a steam turbine and hot water production equipment such as a boiler. Effective use. As the heat medium, in addition to water, air, etc., alternative chlorofluorocarbon, heat medium oil, and molten salt can be employed. When water is used as a heat medium, steam is generated by a heat exchanger and supplied to a steam turbine, a boiler, or the like. When air is used as the heat medium, high-temperature gas is generated by the heat exchanger, and the high-temperature gas can be supplied to the power generation device and the hot water production facility.
Claims (15)
前記熱交換器で熱媒体を加熱し、加熱した熱媒体を使用する発電装置、または温水製造装置の少なくとも一つを備えることを特徴とする下水汚泥処理システム。 An organic waste treatment system using the circulating fluidized bed combustion furnace according to claim 6,
A sewage sludge treatment system comprising at least one of a power generation apparatus that heats a heat medium with the heat exchanger and uses the heated heat medium, or a hot water production apparatus.
前記循環流動層燃焼炉を加圧下で運転し、有機性廃棄物を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させ圧縮空気を製造し、製造した圧縮空気を燃焼用空気として循環流動層燃焼炉に供給することを特徴とする有機性廃棄物の処理システム。 An organic waste treatment system using the circulating fluidized bed combustion furnace according to any one of claims 1 to 6,
Operate the circulating fluidized bed combustion furnace under pressure, utilize the high-temperature combustion exhaust gas generated by burning organic waste, drive the supercharger installed in the rear stage of the combustion furnace to produce compressed air, An organic waste treatment system, wherein the produced compressed air is supplied to a circulating fluidized bed combustion furnace as combustion air.
循環流動層燃焼炉を加圧下で運転し、下水汚泥を燃焼することで生成する高温の燃焼排ガスを活用し、燃焼炉後段に設置した過給機を駆動させて圧縮空気を製造し、製造した圧縮空気を下水処理場内の曝気槽等へ供給することを特徴とする有機性廃棄物の処理システム。 A sewage sludge treatment system using the circulating fluidized bed combustion furnace according to any one of claims 1 to 6,
The circulating fluidized bed combustion furnace was operated under pressure, and the compressed air was produced by using the high-temperature combustion exhaust gas generated by burning sewage sludge and driving the supercharger installed at the rear stage of the combustion furnace. An organic waste treatment system that supplies compressed air to an aeration tank or the like in a sewage treatment plant.
燃焼排ガスを利用し、発電する発電手段を備えることを特徴とする有機性廃棄物の処理システム。 An organic waste treatment system using the circulating fluidized bed combustion furnace according to any one of claims 1 to 6,
An organic waste treatment system comprising power generation means for generating power using combustion exhaust gas.
前記循環流動層燃焼炉から排出された燃焼排ガスと圧縮空気とを熱交換する空気予熱器と、熱交換器で加熱された圧縮空気を駆動源とし、熱交換器に供給する圧縮空気を生成する過給機とを備え、前記過給機から排出される加熱され低圧となった圧縮空気は、前記循環流動層燃焼炉に供給されることを特徴とする有機性廃棄物の処理システム。 An organic waste treatment system using the circulating fluidized bed combustion furnace according to any one of claims 1 to 6,
An air preheater that exchanges heat between the flue gas discharged from the circulating fluidized bed combustion furnace and compressed air, and compressed air that is heated by the heat exchanger are used as driving sources to generate compressed air that is supplied to the heat exchanger. A system for treating organic waste, comprising: a supercharger, wherein heated compressed air discharged from the supercharger and having a low pressure is supplied to the circulating fluidized bed combustion furnace.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017105556A JP7075574B2 (en) | 2017-05-29 | 2017-05-29 | Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017105556A JP7075574B2 (en) | 2017-05-29 | 2017-05-29 | Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018200150A true JP2018200150A (en) | 2018-12-20 |
JP7075574B2 JP7075574B2 (en) | 2022-05-26 |
Family
ID=64667998
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017105556A Active JP7075574B2 (en) | 2017-05-29 | 2017-05-29 | Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7075574B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112377895A (en) * | 2020-11-10 | 2021-02-19 | 浙江大学 | Adjustable double-bed anti-corrosion external high-temperature superheater ash return device and method |
Citations (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989921A (en) * | 1982-11-11 | 1984-05-24 | Nippon Kokan Kk <Nkk> | Sludge feeding method in sludge incinerator system with drying machine |
JPS6249111A (en) * | 1985-08-28 | 1987-03-03 | Tsukishima Kikai Co Ltd | Method of incinerating liquid impregnated substance |
JPH0384302A (en) * | 1989-08-28 | 1991-04-09 | Mitsubishi Heavy Ind Ltd | Combustion device with fluidized bed |
JPH04155105A (en) * | 1990-10-18 | 1992-05-28 | Nippon Steel Corp | Fluidized bed boiler to suppress generation of nitrous oxide |
JPH04327706A (en) * | 1991-04-30 | 1992-11-17 | Tsukishima Kikai Co Ltd | Drying and incinerating method for water-containing solid |
JPH05180413A (en) * | 1991-12-27 | 1993-07-23 | Mitsubishi Heavy Ind Ltd | Fluidized bed combustion boilers |
JPH05505021A (en) * | 1990-04-17 | 1993-07-29 | エイ.アフルストロム コーポレーション | Method for reducing nitrous oxide emissions when burning nitrogen-containing fuels in fluidized bed reactors |
JPH05340509A (en) * | 1992-06-09 | 1993-12-21 | Kobe Steel Ltd | N2 and nox reducing method in fluidized bed combustion |
JPH07332613A (en) * | 1994-06-03 | 1995-12-22 | Agency Of Ind Science & Technol | Method for combustion in fluidized bed for performing concurrent reduction of nitrous oxide and nitrogen oxide |
JPH09137929A (en) * | 1995-11-16 | 1997-05-27 | Mitsubishi Heavy Ind Ltd | Fluidized bed combustor |
JPH1043551A (en) * | 1996-04-22 | 1998-02-17 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for improving combustion and harmful gas emissions in fluidized bed furnaces with natural minerals |
JP2000146116A (en) * | 1998-11-11 | 2000-05-26 | Electric Power Dev Co Ltd | Combustion device and method for preventing corrosion of heat transfer tube |
JP2002122305A (en) * | 2000-10-16 | 2002-04-26 | Mitsubishi Heavy Ind Ltd | Operation method for circulated fluidized bed incinerator |
JP2002130641A (en) * | 2000-10-18 | 2002-05-09 | Mitsubishi Heavy Ind Ltd | Incinerator for high-water-content and high-volatile wastes, such as sewage sludge or the like |
JP2004082111A (en) * | 2002-06-28 | 2004-03-18 | Idemitsu Kosan Co Ltd | Method for controlling emission of N2O and NOX in combustion device |
JP2005028251A (en) * | 2003-07-09 | 2005-02-03 | Public Works Research Institute | Sludge treatment system and method |
JP2006105448A (en) * | 2004-10-01 | 2006-04-20 | Nippon Steel Corp | Gasification melting method and gasification melting furnace of sludge and incineration ash |
JP2009040886A (en) * | 2007-08-09 | 2009-02-26 | Ihi Corp | Gasification method and gasification system |
JP2009139043A (en) * | 2007-12-10 | 2009-06-25 | Metawater Co Ltd | Sludge incineration apparatus and sludge incineration method using the same |
JP2009204282A (en) * | 2008-02-29 | 2009-09-10 | Mhi Environment Engineering Co Ltd | Sludge treatment method and sludge treatment system with circulating fluidized bed furnace |
JP2009229056A (en) * | 2008-02-28 | 2009-10-08 | Mhi Environment Engineering Co Ltd | Circulating type fluidized bed furnace, treatment system with circulating type fluidized bed furnace and operating method for circulating type fluidized bed furnace |
JP2010175157A (en) * | 2009-01-30 | 2010-08-12 | Metawater Co Ltd | Fluidized incinerator |
JP2010275369A (en) * | 2009-05-26 | 2010-12-09 | Ihi Corp | Gasification apparatus |
WO2011016556A1 (en) * | 2009-08-07 | 2011-02-10 | 独立行政法人産業技術総合研究所 | Organic waste treatment system and method |
JP2012087235A (en) * | 2010-10-21 | 2012-05-10 | Ihi Corp | Method and device of gas production amount control |
JP2012122623A (en) * | 2010-12-06 | 2012-06-28 | Metawater Co Ltd | Method and apparatus for drying and incinerating sewage sludge |
JP2012255114A (en) * | 2011-06-10 | 2012-12-27 | Ihi Corp | System and method for producing gasified gas |
JP2013155954A (en) * | 2012-01-31 | 2013-08-15 | Kobelco Eco-Solutions Co Ltd | Furnace and method of two-stage combustion |
JP2016180528A (en) * | 2015-03-24 | 2016-10-13 | 株式会社クボタ | Waste treatment facility and method of operating waste treatment facility |
-
2017
- 2017-05-29 JP JP2017105556A patent/JP7075574B2/en active Active
Patent Citations (30)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5989921A (en) * | 1982-11-11 | 1984-05-24 | Nippon Kokan Kk <Nkk> | Sludge feeding method in sludge incinerator system with drying machine |
JPS6249111A (en) * | 1985-08-28 | 1987-03-03 | Tsukishima Kikai Co Ltd | Method of incinerating liquid impregnated substance |
JPH0384302A (en) * | 1989-08-28 | 1991-04-09 | Mitsubishi Heavy Ind Ltd | Combustion device with fluidized bed |
JPH05505021A (en) * | 1990-04-17 | 1993-07-29 | エイ.アフルストロム コーポレーション | Method for reducing nitrous oxide emissions when burning nitrogen-containing fuels in fluidized bed reactors |
JPH04155105A (en) * | 1990-10-18 | 1992-05-28 | Nippon Steel Corp | Fluidized bed boiler to suppress generation of nitrous oxide |
JPH04327706A (en) * | 1991-04-30 | 1992-11-17 | Tsukishima Kikai Co Ltd | Drying and incinerating method for water-containing solid |
JPH05180413A (en) * | 1991-12-27 | 1993-07-23 | Mitsubishi Heavy Ind Ltd | Fluidized bed combustion boilers |
JPH05340509A (en) * | 1992-06-09 | 1993-12-21 | Kobe Steel Ltd | N2 and nox reducing method in fluidized bed combustion |
JPH07332613A (en) * | 1994-06-03 | 1995-12-22 | Agency Of Ind Science & Technol | Method for combustion in fluidized bed for performing concurrent reduction of nitrous oxide and nitrogen oxide |
JPH09137929A (en) * | 1995-11-16 | 1997-05-27 | Mitsubishi Heavy Ind Ltd | Fluidized bed combustor |
JPH1043551A (en) * | 1996-04-22 | 1998-02-17 | Ishikawajima Harima Heavy Ind Co Ltd | Method and apparatus for improving combustion and harmful gas emissions in fluidized bed furnaces with natural minerals |
JP2000146116A (en) * | 1998-11-11 | 2000-05-26 | Electric Power Dev Co Ltd | Combustion device and method for preventing corrosion of heat transfer tube |
JP2002122305A (en) * | 2000-10-16 | 2002-04-26 | Mitsubishi Heavy Ind Ltd | Operation method for circulated fluidized bed incinerator |
JP2002130641A (en) * | 2000-10-18 | 2002-05-09 | Mitsubishi Heavy Ind Ltd | Incinerator for high-water-content and high-volatile wastes, such as sewage sludge or the like |
JP2004082111A (en) * | 2002-06-28 | 2004-03-18 | Idemitsu Kosan Co Ltd | Method for controlling emission of N2O and NOX in combustion device |
JP2005028251A (en) * | 2003-07-09 | 2005-02-03 | Public Works Research Institute | Sludge treatment system and method |
JP3783024B2 (en) * | 2003-07-09 | 2006-06-07 | 独立行政法人土木研究所 | Sludge treatment system and method |
JP2006105448A (en) * | 2004-10-01 | 2006-04-20 | Nippon Steel Corp | Gasification melting method and gasification melting furnace of sludge and incineration ash |
JP2009040886A (en) * | 2007-08-09 | 2009-02-26 | Ihi Corp | Gasification method and gasification system |
JP2009139043A (en) * | 2007-12-10 | 2009-06-25 | Metawater Co Ltd | Sludge incineration apparatus and sludge incineration method using the same |
JP2009229056A (en) * | 2008-02-28 | 2009-10-08 | Mhi Environment Engineering Co Ltd | Circulating type fluidized bed furnace, treatment system with circulating type fluidized bed furnace and operating method for circulating type fluidized bed furnace |
JP2009204282A (en) * | 2008-02-29 | 2009-09-10 | Mhi Environment Engineering Co Ltd | Sludge treatment method and sludge treatment system with circulating fluidized bed furnace |
JP2010175157A (en) * | 2009-01-30 | 2010-08-12 | Metawater Co Ltd | Fluidized incinerator |
JP2010275369A (en) * | 2009-05-26 | 2010-12-09 | Ihi Corp | Gasification apparatus |
WO2011016556A1 (en) * | 2009-08-07 | 2011-02-10 | 独立行政法人産業技術総合研究所 | Organic waste treatment system and method |
JP2012087235A (en) * | 2010-10-21 | 2012-05-10 | Ihi Corp | Method and device of gas production amount control |
JP2012122623A (en) * | 2010-12-06 | 2012-06-28 | Metawater Co Ltd | Method and apparatus for drying and incinerating sewage sludge |
JP2012255114A (en) * | 2011-06-10 | 2012-12-27 | Ihi Corp | System and method for producing gasified gas |
JP2013155954A (en) * | 2012-01-31 | 2013-08-15 | Kobelco Eco-Solutions Co Ltd | Furnace and method of two-stage combustion |
JP2016180528A (en) * | 2015-03-24 | 2016-10-13 | 株式会社クボタ | Waste treatment facility and method of operating waste treatment facility |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112377895A (en) * | 2020-11-10 | 2021-02-19 | 浙江大学 | Adjustable double-bed anti-corrosion external high-temperature superheater ash return device and method |
CN112377895B (en) * | 2020-11-10 | 2021-11-05 | 浙江大学 | Adjustable double-bed anti-corrosion external high-temperature superheater ash return device and method |
Also Published As
Publication number | Publication date |
---|---|
JP7075574B2 (en) | 2022-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2014013849A1 (en) | Waste processing method and waste incinerator | |
CN112062435B (en) | Oil sludge pyrolysis treatment device and process thereof | |
US4932335A (en) | Coal combustion with a fluidized incineration bed | |
JP2006015179A (en) | Exhaust gas treatment apparatus, waste treatment apparatus and exhaust gas treatment apparatus | |
JPH11173520A (en) | Method and device for fluidized bed type thermal decomposition | |
JP7075574B2 (en) | Combustion furnace of organic waste and treatment system of organic waste using the combustion furnace | |
JP4400467B2 (en) | Method and apparatus for burning hydrous waste | |
CN107687639A (en) | Energy-saving waste combustion waste-heat recovery device | |
JP2008215661A (en) | Combustion furnace, waste gasification system and combustible gas treatment method | |
JPH07506179A (en) | Method for maintaining the nominal operating temperature of flue gas in a PFBC power plant | |
JP2003056363A (en) | Combined equipment of waste incineration equipment and gas turbine power generator | |
JP2013164226A (en) | Waste material incinerator and waste material incinerating method | |
CN111076180A (en) | A high-low temperature variable gas velocity waste incineration system and method thereof | |
JP4241578B2 (en) | Method and apparatus for burning hydrous waste | |
JP4449704B2 (en) | Combustion method and apparatus | |
JP2003166706A (en) | Combustion method and combustion device of stoker type incinerator | |
JP2006242490A (en) | Stoker-type incinerator and operation method thereof | |
JP3771791B2 (en) | Waste incinerator with high water content and high volatility such as sewage sludge | |
JPH11159731A (en) | Waste incinerator | |
CN113154399A (en) | Waste treatment and power station unit cooperative coupling power generation system | |
JP2003227604A (en) | Incinerator and combustion exhaust gas re-circulating method for incinerator | |
JP2004077013A (en) | Operating method of waste incinerator and waste incinerator | |
JP2003254516A (en) | Garbage incineration power plant | |
JP2019190729A (en) | Waste combustion device and waste combustion method | |
JP2004169955A (en) | Waste incinerator and its operation method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200306 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201215 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201218 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210210 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210719 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210903 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20220203 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220331 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20220419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7075574 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313115 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |