JP2018196937A - Method for producing molded article - Google Patents
Method for producing molded article Download PDFInfo
- Publication number
- JP2018196937A JP2018196937A JP2017101811A JP2017101811A JP2018196937A JP 2018196937 A JP2018196937 A JP 2018196937A JP 2017101811 A JP2017101811 A JP 2017101811A JP 2017101811 A JP2017101811 A JP 2017101811A JP 2018196937 A JP2018196937 A JP 2018196937A
- Authority
- JP
- Japan
- Prior art keywords
- carbon fiber
- thermoplastic resin
- fiber bundle
- molding material
- resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 148
- 239000004917 carbon fiber Substances 0.000 claims abstract description 148
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 127
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 82
- 239000012778 molding material Substances 0.000 claims abstract description 72
- 238000002347 injection Methods 0.000 claims abstract description 20
- 239000007924 injection Substances 0.000 claims abstract description 20
- 238000000034 method Methods 0.000 claims abstract description 17
- 238000001746 injection moulding Methods 0.000 claims abstract description 16
- 238000000465 moulding Methods 0.000 claims abstract description 11
- 239000004417 polycarbonate Substances 0.000 claims description 17
- 229920000515 polycarbonate Polymers 0.000 claims description 17
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 16
- 239000001301 oxygen Substances 0.000 claims description 16
- 229910052760 oxygen Inorganic materials 0.000 claims description 16
- 239000000853 adhesive Substances 0.000 abstract description 3
- 230000001070 adhesive effect Effects 0.000 abstract description 3
- 229920005989 resin Polymers 0.000 description 49
- 239000011347 resin Substances 0.000 description 49
- IISBACLAFKSPIT-UHFFFAOYSA-N bisphenol A Chemical group C=1C=C(O)C=CC=1C(C)(C)C1=CC=C(O)C=C1 IISBACLAFKSPIT-UHFFFAOYSA-N 0.000 description 16
- 125000000524 functional group Chemical group 0.000 description 16
- 238000005470 impregnation Methods 0.000 description 12
- 239000000835 fiber Substances 0.000 description 11
- 239000008188 pellet Substances 0.000 description 11
- -1 polyoxymethylene Polymers 0.000 description 7
- 238000004898 kneading Methods 0.000 description 6
- 229920002239 polyacrylonitrile Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000306 component Substances 0.000 description 5
- 125000005028 dihydroxyaryl group Chemical group 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 4
- 125000003118 aryl group Chemical group 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 239000002994 raw material Substances 0.000 description 4
- 239000000654 additive Substances 0.000 description 3
- 239000008358 core component Substances 0.000 description 3
- 238000005520 cutting process Methods 0.000 description 3
- 238000010030 laminating Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 150000003014 phosphoric acid esters Chemical class 0.000 description 3
- 229920001643 poly(ether ketone) Polymers 0.000 description 3
- 229920002492 poly(sulfone) Polymers 0.000 description 3
- 229920005668 polycarbonate resin Polymers 0.000 description 3
- 239000004431 polycarbonate resin Substances 0.000 description 3
- 229920000728 polyester Polymers 0.000 description 3
- 229920001955 polyphenylene ether Polymers 0.000 description 3
- 229920005990 polystyrene resin Polymers 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000004513 sizing Methods 0.000 description 3
- VPWNQTHUCYMVMZ-UHFFFAOYSA-N 4,4'-sulfonyldiphenol Chemical compound C1=CC(O)=CC=C1S(=O)(=O)C1=CC=C(O)C=C1 VPWNQTHUCYMVMZ-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- SDDLEVPIDBLVHC-UHFFFAOYSA-N Bisphenol Z Chemical compound C1=CC(O)=CC=C1C1(C=2C=CC(O)=CC=2)CCCCC1 SDDLEVPIDBLVHC-UHFFFAOYSA-N 0.000 description 2
- 229920000571 Nylon 11 Polymers 0.000 description 2
- 229920000299 Nylon 12 Polymers 0.000 description 2
- 229920003189 Nylon 4,6 Polymers 0.000 description 2
- 229920002292 Nylon 6 Polymers 0.000 description 2
- 229920000305 Nylon 6,10 Polymers 0.000 description 2
- 229920002302 Nylon 6,6 Polymers 0.000 description 2
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- BQPNUOYXSVUVMY-UHFFFAOYSA-N [4-[2-(4-diphenoxyphosphoryloxyphenyl)propan-2-yl]phenyl] diphenyl phosphate Chemical compound C=1C=C(OP(=O)(OC=2C=CC=CC=2)OC=2C=CC=CC=2)C=CC=1C(C)(C)C(C=C1)=CC=C1OP(=O)(OC=1C=CC=CC=1)OC1=CC=CC=C1 BQPNUOYXSVUVMY-UHFFFAOYSA-N 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 125000001931 aliphatic group Chemical group 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- PXKLMJQFEQBVLD-UHFFFAOYSA-N bisphenol F Chemical compound C1=CC(O)=CC=C1CC1=CC=C(O)C=C1 PXKLMJQFEQBVLD-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- ROORDVPLFPIABK-UHFFFAOYSA-N diphenyl carbonate Chemical compound C=1C=CC=CC=1OC(=O)OC1=CC=CC=C1 ROORDVPLFPIABK-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 230000005484 gravity Effects 0.000 description 2
- 125000004464 hydroxyphenyl group Chemical group 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 229920006122 polyamide resin Polymers 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 239000009719 polyimide resin Substances 0.000 description 2
- 229920005672 polyolefin resin Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000009987 spinning Methods 0.000 description 2
- 238000010301 surface-oxidation reaction Methods 0.000 description 2
- 229920001169 thermoplastic Polymers 0.000 description 2
- 239000004416 thermosoftening plastic Substances 0.000 description 2
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 1
- HJZJMARGPNJHHG-UHFFFAOYSA-N 2,6-dimethyl-4-propylphenol Chemical compound CCCC1=CC(C)=C(O)C(C)=C1 HJZJMARGPNJHHG-UHFFFAOYSA-N 0.000 description 1
- OEPOKWHJYJXUGD-UHFFFAOYSA-N 2-(3-phenylmethoxyphenyl)-1,3-thiazole-4-carbaldehyde Chemical compound O=CC1=CSC(C=2C=C(OCC=3C=CC=CC=3)C=CC=2)=N1 OEPOKWHJYJXUGD-UHFFFAOYSA-N 0.000 description 1
- BIICHPZAXGBDCH-UHFFFAOYSA-N 2-cyclohexyl-4-propylphenol Chemical compound CCCC1=CC=C(O)C(C2CCCCC2)=C1 BIICHPZAXGBDCH-UHFFFAOYSA-N 0.000 description 1
- LDQYTDPXIMNESL-UHFFFAOYSA-N 2-methyl-4-propylphenol Chemical compound CCCC1=CC=C(O)C(C)=C1 LDQYTDPXIMNESL-UHFFFAOYSA-N 0.000 description 1
- UEZQPLQZAUVRDZ-UHFFFAOYSA-N 2-tert-butyl-4-propylphenol Chemical compound CCCC1=CC=C(O)C(C(C)(C)C)=C1 UEZQPLQZAUVRDZ-UHFFFAOYSA-N 0.000 description 1
- RXNYJUSEXLAVNQ-UHFFFAOYSA-N 4,4'-Dihydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=C(O)C=C1 RXNYJUSEXLAVNQ-UHFFFAOYSA-N 0.000 description 1
- VWGKEVWFBOUAND-UHFFFAOYSA-N 4,4'-thiodiphenol Chemical compound C1=CC(O)=CC=C1SC1=CC=C(O)C=C1 VWGKEVWFBOUAND-UHFFFAOYSA-N 0.000 description 1
- RQCACQIALULDSK-UHFFFAOYSA-N 4-(4-hydroxyphenyl)sulfinylphenol Chemical compound C1=CC(O)=CC=C1S(=O)C1=CC=C(O)C=C1 RQCACQIALULDSK-UHFFFAOYSA-N 0.000 description 1
- JNAUIOQFUDVUJP-UHFFFAOYSA-N 4-cyclododecylphenol Chemical compound C1=CC(O)=CC=C1C1CCCCCCCCCCC1 JNAUIOQFUDVUJP-UHFFFAOYSA-N 0.000 description 1
- SNBKPVVDUBFDEJ-UHFFFAOYSA-N 4-cyclopentylphenol Chemical compound C1=CC(O)=CC=C1C1CCCC1 SNBKPVVDUBFDEJ-UHFFFAOYSA-N 0.000 description 1
- HXDOZKJGKXYMEW-UHFFFAOYSA-N 4-ethylphenol Chemical compound CCC1=CC=C(O)C=C1 HXDOZKJGKXYMEW-UHFFFAOYSA-N 0.000 description 1
- CYYZDBDROVLTJU-UHFFFAOYSA-N 4-n-Butylphenol Chemical compound CCCCC1=CC=C(O)C=C1 CYYZDBDROVLTJU-UHFFFAOYSA-N 0.000 description 1
- NTDQQZYCCIDJRK-UHFFFAOYSA-N 4-octylphenol Chemical compound CCCCCCCCC1=CC=C(O)C=C1 NTDQQZYCCIDJRK-UHFFFAOYSA-N 0.000 description 1
- 229930185605 Bisphenol Natural products 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- PXIKRTCSSLJURC-UHFFFAOYSA-N Dihydroeugenol Chemical compound CCCC1=CC=C(O)C(OC)=C1 PXIKRTCSSLJURC-UHFFFAOYSA-N 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000005062 Polybutadiene Substances 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 239000004721 Polyphenylene oxide Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 238000004833 X-ray photoelectron spectroscopy Methods 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920001893 acrylonitrile styrene Polymers 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000007602 hot air drying Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000002825 nitriles Chemical class 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 229920001652 poly(etherketoneketone) Polymers 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920002857 polybutadiene Polymers 0.000 description 1
- 229920000570 polyether Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 239000011116 polymethylpentene Substances 0.000 description 1
- 229920000306 polymethylpentene Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- SCUZVMOVTVSBLE-UHFFFAOYSA-N prop-2-enenitrile;styrene Chemical compound C=CC#N.C=CC1=CC=CC=C1 SCUZVMOVTVSBLE-UHFFFAOYSA-N 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- KKEYFWRCBNTPAC-UHFFFAOYSA-L terephthalate(2-) Chemical compound [O-]C(=O)C1=CC=C(C([O-])=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-L 0.000 description 1
- 229920006259 thermoplastic polyimide Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 238000005809 transesterification reaction Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Landscapes
- Injection Moulding Of Plastics Or The Like (AREA)
Abstract
【課題】炭素繊維束を含んだ成形材料では、製造効率向上のために、成形材料に含まれる炭素繊維束内部は熱可塑性樹脂で濡らされていない場合がある。この場合、通常の成形方法では機械物性の高い成形体が得られにくい。そこで、炭素繊維と熱可塑性樹脂との接着力を向上させ、より機械的強度が高い成形体を製造できる製造方法の提供。
【解決手段】炭素繊維束と熱可塑性樹脂とを含む成形材料を射出成形して成形体を製造する方法であって、成形型キャビティ体積100に対して、射出容量を400〜2000に計量して成形する機械的強度の高い成形体。
【選択図】図1In a molding material including a carbon fiber bundle, the inside of the carbon fiber bundle included in the molding material may not be wetted with a thermoplastic resin in order to improve manufacturing efficiency. In this case, it is difficult to obtain a molded article having high mechanical properties by a normal molding method. Then, the provision of the manufacturing method which can improve the adhesive force of carbon fiber and a thermoplastic resin, and can manufacture a molded object with higher mechanical strength.
A method of manufacturing a molded body by injection molding a molding material containing a carbon fiber bundle and a thermoplastic resin, and measuring an injection capacity of 400 to 2000 with respect to a mold cavity volume 100 Molded body with high mechanical strength to be molded.
[Selection] Figure 1
Description
本発明は、炭素繊維束と熱可塑性樹脂を含む成形材料を用い、成形体を製造する方法に関するものである。 The present invention relates to a method for producing a molded body using a molding material containing a carbon fiber bundle and a thermoplastic resin.
高強度、かつ脆性破壊が抑制された樹脂材料を得る手段として、樹脂を炭素繊維で強化された複合材料とすることが知られている。特に、マトリックス樹脂として熱可塑性樹脂を炭素繊維で強化した複合材料は、成形材料として易加工性およびリサイクル性に優れており、様々な分野への応用が期待されている。 As a means for obtaining a resin material having high strength and suppressed brittle fracture, it is known that the resin is a composite material reinforced with carbon fibers. In particular, a composite material in which a thermoplastic resin reinforced with a carbon fiber as a matrix resin is excellent in easy processability and recyclability as a molding material, and is expected to be applied in various fields.
例えば、特許文献1には、含浸助剤を付着させた炭素繊維束にポリカーボネート樹脂を被覆させ、ペレット状にカットすることで、射出成形の溶融混練時に炭素繊維が容易に分散する成形材料が提案されている。特許文献2には、フェノール樹脂を付着させた炭素繊維束にポリカーボネート樹脂を被覆させた成形材料が提案されている。 For example, Patent Document 1 proposes a molding material in which carbon fiber is easily dispersed during melt-kneading in injection molding by coating a polycarbonate resin on a carbon fiber bundle to which an impregnation aid is attached and cutting it into pellets. Has been. Patent Document 2 proposes a molding material in which a carbon fiber bundle to which a phenol resin is attached is coated with a polycarbonate resin.
しかしながら、炭素繊維束を含んだ成形材料では、製造効率向上のために、成形材料に含まれる炭素繊維束内部は熱可塑性樹脂で濡らされていない場合がある(特許文献1)。この場合、従来の射出成形方法では、混練工程において炭素繊維と熱可塑性樹脂が互いに混ざり合ったとしても、炭素繊維表面の官能基と、熱可塑性樹脂とは十分に作用しておらず(十分に接着しておらず)、より一層機械物性の高い成形体が求められる用途には使いにくい。 However, in a molding material containing a carbon fiber bundle, the carbon fiber bundle inside the molding material may not be wetted with a thermoplastic resin in order to improve manufacturing efficiency (Patent Document 1). In this case, in the conventional injection molding method, even if the carbon fiber and the thermoplastic resin are mixed with each other in the kneading step, the functional group on the surface of the carbon fiber and the thermoplastic resin are not sufficiently acting (sufficiently It is difficult to use for applications where a molded product with higher mechanical properties is required.
そこで、本発明の目的は、従来の問題点を解決し、炭素繊維と熱可塑性樹脂との接着力を向上させ、より機械的強度が高い成形体を製造するための製造方法を提供することにある。 Therefore, an object of the present invention is to provide a manufacturing method for solving the conventional problems, improving the adhesive force between the carbon fiber and the thermoplastic resin, and manufacturing a molded article having higher mechanical strength. is there.
上記課題を解決するために、本発明は以下の手段を提供する。
1. 炭素繊維束と熱可塑性樹脂とを含む成形材料を射出成形して成形体を製造する方法であって、
成形型キャビティ体積100に対して、射出容量を400以上2000以下に計量して成形する、成形体の製造方法。
2. 炭素繊維束の周囲に熱可塑性樹脂が被覆された芯鞘構造であって、炭素繊維束の軸方向の長さL1と、成形材料の長さL2とが、0.9<L1/L2<1.0である請求項1に記載の成形体の製造方法。
3. 成形材料に含まれる熱可塑性樹脂は炭素繊維束内部に含浸していない、前記2に記載の成形体の製造方法。
4. 炭素繊維100質量部に対して、熱可塑性樹脂の重量割合が150質量部以上900質量部以下である、前記1〜3いずれか1項に記載の成形体の製造方法。
5. 熱可塑性樹脂の溶解性パラメーターSP値(単位:(J/cm3)1/2)が18以上21以下である、前記1〜4いずれか1項に記載の成形体の製造方法。
6. 熱可塑性樹脂がポリカーボネートである、前記1〜5いずれか1項に記載の成形体の製造方法。
7. 成形材料がシリンダー内を通過する時間が、1min以上10min未満である、前記1〜6いずれか1項に記載の成形体の製造方法。
8. 炭素繊維束を構成する炭素繊維の表面酸素濃度比[O/C]が0.1〜0.5である、前記1〜7いずれか1項に記載の成形体の製造方法。
In order to solve the above problems, the present invention provides the following means.
1. A method for producing a molded body by injection molding a molding material containing a carbon fiber bundle and a thermoplastic resin,
A method for manufacturing a molded body, in which a molding cavity volume 100 is molded by measuring an injection capacity of 400 to 2000.
2. A core-sheath structure in which a thermoplastic resin is coated around a carbon fiber bundle, and the length L1 in the axial direction of the carbon fiber bundle and the length L2 of the molding material are 0.9 <L1 / L2 <1. The method for producing a molded article according to claim 1, which is 0.0.
3. 3. The method for producing a molded article according to 2 above, wherein the thermoplastic resin contained in the molding material is not impregnated inside the carbon fiber bundle.
4). The manufacturing method of the molded object of any one of said 1-3 whose weight ratio of a thermoplastic resin is 150 to 900 mass parts with respect to 100 mass parts of carbon fibers.
5. The manufacturing method of the molded object of any one of said 1-4 whose solubility parameter SP value (unit: (J / cm < 3 >) < 1/2 >) of a thermoplastic resin is 18-21.
6). 6. The method for producing a molded article according to any one of 1 to 5, wherein the thermoplastic resin is polycarbonate.
7). The method for producing a molded body according to any one of 1 to 6, wherein the time for the molding material to pass through the cylinder is 1 min or more and less than 10 min.
8). The manufacturing method of the molded object of any one of said 1-7 whose surface oxygen concentration ratio [O / C] of the carbon fiber which comprises a carbon fiber bundle is 0.1-0.5.
本発明における成形体の製造方法体を用いれば、炭素繊維表面の官能基と、熱可塑性樹脂とは十分に作用させることができ、機械的強度の高い成形体を製造できる。 If the manufacturing method body of a molded object in the present invention is used, the functional group on the carbon fiber surface and the thermoplastic resin can sufficiently act, and a molded object with high mechanical strength can be manufactured.
[炭素繊維]
本発明の成形材料に含まれる炭素繊維は、ポリアクリロニトリル(PAN)系、石油・石油ピッチ系、レーヨン系、リグニン系など、何れの炭素繊維であっても良い。特に、PANを原料としたPAN系炭素繊維が、工場規模における生産性及び機械的特性に優れており好ましい。
[Carbon fiber]
The carbon fiber contained in the molding material of the present invention may be any carbon fiber such as polyacrylonitrile (PAN), petroleum / petroleum pitch, rayon, and lignin. In particular, PAN-based carbon fibers using PAN as a raw material are preferable because they are excellent in productivity and mechanical properties on a factory scale.
炭素繊維としては、平均直径5〜10μmのものが好ましく使用できる。なお、一般的な炭素繊維は、1000〜50000本の単繊維が繊維束となった炭素繊維フィラメントである。本発明における炭素繊維束には、そのような一般的な炭素繊維フィラメントも含まれるが、該炭素繊維フィラメントを、更に重ね合わせて合糸したものや、合糸に撚りを掛け撚糸としたもの等も含まれる。本発明の成形材料に含まれる炭素繊維としては、炭素繊維と熱可塑性樹脂との接着性を高めるため、表面処理によって、表面に含酸素官能基を導入されたものも好ましい。 Carbon fibers having an average diameter of 5 to 10 μm can be preferably used. A general carbon fiber is a carbon fiber filament in which 1000 to 50000 single fibers are bundled. The carbon fiber bundle in the present invention includes such general carbon fiber filaments, and the carbon fiber filaments are further overlapped and combined, or the combined yarn is twisted into a twisted yarn. Is also included. As the carbon fiber contained in the molding material of the present invention, one in which an oxygen-containing functional group is introduced to the surface by a surface treatment is preferable in order to improve the adhesion between the carbon fiber and the thermoplastic resin.
また、炭素繊維束に含浸助剤を含ませることにより易含浸性の炭素繊維束を作る場合、含浸助剤を炭素繊維束に均一に付着させる工程を安定させるため、炭素繊維束としては、収束性を持たせる為の収束剤で処理されたものであると好ましい。収束剤としては、炭素繊維フィラメント製造用に公知のものを使用することができる。また、炭素繊維束としては、製造時に滑り性を上げるために使用された油剤が残存したものであっても、本願発明において問題無く使用することができる。 In addition, when making an easily impregnable carbon fiber bundle by including an impregnation aid in the carbon fiber bundle, the carbon fiber bundle is converged to stabilize the process of uniformly attaching the impregnation aid to the carbon fiber bundle. It is preferable that it is what was processed with the sizing agent for giving property. As the sizing agent, those known for producing carbon fiber filaments can be used. Further, as the carbon fiber bundle, even if the oil agent used for increasing the slipping property at the time of production remains, it can be used without any problem in the present invention.
[炭素繊維束]
本発明における成形材料に含まれる炭素繊維束とは、炭素繊維が単糸状ではなく束状に存在していることをいう。上述のように、炭素繊維は一般的に1000〜50000本の短繊維が繊維束となっており、これがそのまま成形材料中に含まれていることが好ましい。すなわち、本発明における成形材料は、炭素繊維と熱可塑性樹脂を混練して得られたものではない。
[Carbon fiber bundle]
The carbon fiber bundle contained in the molding material in the present invention means that the carbon fibers are present in a bundle rather than in a single yarn form. As described above, the carbon fiber generally has 1000 to 50000 short fibers as a fiber bundle, and it is preferable that the carbon fiber is included in the molding material as it is. That is, the molding material in the present invention is not obtained by kneading carbon fiber and a thermoplastic resin.
[芯鞘構造と、炭素繊維束内部の熱可塑性樹脂の含浸状態]
成形材料に炭素繊維束が含まれる場合(特に成形材料が炭素繊維束の周囲に熱可塑性樹脂が被覆された芯鞘構造である場合)、炭素繊維束内部の炭素繊維は含浸助剤によって一部濡らされていることがあったとしても、熱可塑性樹脂にはほとんど接触していない。そのため、炭素繊維の表面に存在する多くの官能基は熱可塑性樹脂と高い接着力を示す状態では無い。
[Core-sheath structure and impregnated state of thermoplastic resin inside carbon fiber bundle]
When the molding material contains a carbon fiber bundle (especially when the molding material has a core-sheath structure in which a thermoplastic resin is coated around the carbon fiber bundle), the carbon fiber inside the carbon fiber bundle is partially absorbed by the impregnation aid. Even if it is wet, it is hardly in contact with the thermoplastic resin. Therefore, many functional groups present on the surface of the carbon fiber are not in a state of exhibiting high adhesive force with the thermoplastic resin.
したがって、炭素繊維の表面官能基は、射出成形前の混練工程において、熱可塑性樹脂と作用させる必要がある。しかしながら従来の成形方法の場合、混練工程の時間が短く、炭素繊維束内部の炭素繊維が有する表面官能基の多くは、熱可塑性樹脂と十分作用しないまま残って成形体となってしまうものが多かった。 Therefore, the surface functional group of the carbon fiber needs to act with the thermoplastic resin in the kneading step before injection molding. However, in the case of the conventional molding method, the time for the kneading process is short, and many of the surface functional groups possessed by the carbon fibers inside the carbon fiber bundle remain in a state where they do not sufficiently function with the thermoplastic resin and often become molded bodies. It was.
一方、本発明においては、成形型キャビティ体積100に対して、射出容量を400以上2000以下に計量して成形しているため、成形材料がシリンダー内を通過する時間が、従来よりも長くなっている。したがって、炭素繊維束を含む成形材料(好ましくは成形材料に含まれる熱可塑性樹脂が炭素繊維束の内部に含浸していない成形材料)を用いた場合であっても、炭素繊維表面官能基の多くは熱可塑性樹脂と作用できる。 On the other hand, in the present invention, since the injection capacity is measured from 400 to 2000 with respect to the mold cavity volume 100, the molding material passes through the cylinder for a longer time than before. Yes. Therefore, even when a molding material containing a carbon fiber bundle (preferably a molding material in which the thermoplastic resin contained in the molding material is not impregnated inside the carbon fiber bundle) is used, many carbon fiber surface functional groups are used. Can work with thermoplastics.
また、本発明において、成形材料の製造効率の観点より、成形材料に含まれる熱可塑性樹脂は炭素繊維束内部に含浸していないことが好ましい。ここで、炭素繊維束内部に熱可塑性樹脂が含浸していないとは、炭素繊維束の周囲に熱可塑性樹脂が被覆された芯鞘構造であって、成形材料を軸心方向に切断して観察した際、熱可塑性樹脂の炭素繊維束内部方向への浸入厚みが、50μm以下であることをいう。なお、軸心方向とは、軸の中心方向に向かう方向であり、図1でいうZ軸方向である。炭素繊維束内部に熱可塑性樹脂が含浸していない場合、炭素繊維束内部の炭素繊維表面官能基の多くは熱可塑性樹脂と十分に作用しないまま残った状態であるため、上述の課題がより顕著にあらわれる。 Moreover, in this invention, it is preferable that the thermoplastic resin contained in a molding material is not impregnated inside a carbon fiber bundle from a viewpoint of the manufacturing efficiency of a molding material. Here, the carbon fiber bundle is not impregnated with a thermoplastic resin means a core-sheath structure in which a thermoplastic resin is coated around the carbon fiber bundle, and the molding material is cut in the axial direction and observed. It means that the penetration thickness of the thermoplastic resin into the carbon fiber bundle is 50 μm or less. Note that the axial direction is the direction toward the center of the axis, which is the Z-axis direction in FIG. When the thermoplastic resin is not impregnated inside the carbon fiber bundle, many of the functional groups on the surface of the carbon fiber inside the carbon fiber bundle remain in a state where they do not sufficiently function with the thermoplastic resin. Appears.
[表面酸素濃度比[O/C]]
本発明における炭素繊維束を構成する炭素繊維は、X線光電子分光法により測定される繊維表面の酸素(O)と炭素(C)の原子数の比である表面酸素濃度比[O/C]が0.1〜0.5であるものが好ましい。
[Surface oxygen concentration ratio [O / C]]
The carbon fiber constituting the carbon fiber bundle in the present invention has a surface oxygen concentration ratio [O / C] which is a ratio of the number of atoms of oxygen (O) and carbon (C) on the fiber surface measured by X-ray photoelectron spectroscopy. Is preferably from 0.1 to 0.5.
一般的に、表面酸素濃度比が0.1以上であることにより、炭素繊維表面に十分な官能基量を確保でき、(C)熱可塑性樹脂とより強固な接着を得ることができることから、成形品の衝撃強度をより向上させることができる。従来の製造方法では、炭素繊維束を含んだ成形材料を用いた場合、仮に表面酸素濃度比が大きい炭素繊維を用いても、全ての表面官能基を熱可塑性樹脂と作用させることが難しかったが、本発明においては、表面酸素濃度比[O/C]が比較的高い炭素繊維束を含んだ成形材料を用いた場合であってもほとんど全ての表面官能基を熱可塑性樹脂と作用することができる。これは、成形型キャビティ体積100に対して、射出容量を400以上2000以下にして計量して成形しているためである。表面酸素濃度比[O/C]は0.15以上がより好ましく、0.2以上がさらに好ましい。 In general, when the surface oxygen concentration ratio is 0.1 or more, a sufficient amount of functional groups can be secured on the carbon fiber surface, and (C) a stronger bond with the thermoplastic resin can be obtained. The impact strength of the product can be further improved. In the conventional manufacturing method, when a molding material containing a carbon fiber bundle is used, even if carbon fibers having a large surface oxygen concentration ratio are used, it is difficult to cause all surface functional groups to act on the thermoplastic resin. In the present invention, even if a molding material containing a carbon fiber bundle having a relatively high surface oxygen concentration ratio [O / C] is used, almost all surface functional groups can act on the thermoplastic resin. it can. This is because the injection volume is set to 400 to 2000 with respect to the mold cavity volume 100 and is measured and molded. The surface oxygen concentration ratio [O / C] is more preferably 0.15 or more, and further preferably 0.2 or more.
一方、表面酸素濃度比の上限は特に制限はないが、炭素繊維の取扱い性、生産性のバランスから、一般的に0.5以下が好ましく、0.4以下がより好ましく、0.3以下が更に好ましい。
なお、本発明における炭素繊維の表面酸素濃度比とは、サイズ剤や含侵助剤が付着していない状態での値である。
On the other hand, the upper limit of the surface oxygen concentration ratio is not particularly limited, but is generally preferably 0.5 or less, more preferably 0.4 or less, and more preferably 0.3 or less, from the balance of carbon fiber handleability and productivity. Further preferred.
In addition, the surface oxygen concentration ratio of the carbon fiber in the present invention is a value in a state where no sizing agent or impregnating aid is attached.
[含浸助剤]
本発明にて用いられる含浸助剤に特に限定は無く、1種類であっても、複数種の含浸助剤を含むものでも良く、具体的には米国特許出願番号14/384857、名称「Material for Molding, Shaped Product Therefrom, and Method for Manufacturing the Shaped Product」に詳しく記載されている。
[Impregnation aid]
The impregnation aid used in the present invention is not particularly limited, and may be one kind or may contain plural kinds of impregnation aids. Specifically, US Patent Application No. 14/384857, name “Material for Molding, Shaped Product Thefrom, and Method for Manufacturing the Shaped Product ”.
本発明において用いられる含浸助剤としては、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルからなる群より選ばれる1種類以上のものであると好ましく、当然、リン酸エステルおよび脂肪族ヒドロキシカルボン酸系ポリエステルの双方を含むものであっても良い。 The impregnation aid used in the present invention is preferably at least one selected from the group consisting of phosphate esters and aliphatic hydroxycarboxylic acid polyesters, and of course, phosphate esters and aliphatic hydroxycarboxylic acid based resins. It may contain both polyesters.
炭素繊維束に含まれる含浸助剤の量に特に限定は無いが、炭素繊維100質量部に対し3〜15質量部が好ましく、5〜12質量部がより好ましい。 Although there is no limitation in particular in the quantity of the impregnation adjuvant contained in a carbon fiber bundle, 3-15 mass parts is preferable with respect to 100 mass parts of carbon fibers, and 5-12 mass parts is more preferable.
[熱可塑性樹脂]
本発明に用いられる熱可塑性樹脂としては、例えば、ポリオレフィン樹脂、ポリスチレン樹脂、ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、熱可塑性ポリベンゾイミダゾール樹脂、ビニル系樹脂等を挙げることができる。
[Thermoplastic resin]
Examples of the thermoplastic resin used in the present invention include polyolefin resin, polystyrene resin, polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), polycarbonate resin, (meth) acrylic resin, polyarylate resin, polyphenylene ether resin. , Polyimide resin, polyether nitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin, polyketone resin, polyether ketone resin, thermoplastic urethane resin, fluorine resin, thermoplastic polybenzimidazole resin, vinyl resin, etc. Can do.
上記ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブタジエン樹脂、ポリメチルペンテン樹脂等を上げることができる。上記ビニル系樹脂としては、塩化ビニル樹脂、塩化ビニリデン樹脂、酢酸ビニル樹脂、ポリビニルアルコール樹脂等を挙げることができる。上記ポリスチレン樹脂としては、例えば、ポリスチレン樹脂、アクリロニトリル−スチレン樹脂(AS樹脂)、アクリロニトリル−ブタジエン−スチレン樹脂(ABS樹脂)等を挙げることができる。上記ポリアミド樹脂としては、例えば、ポリアミド6樹脂(ナイロン6)、ポリアミド11樹脂(ナイロン11)、ポリアミド12樹脂(ナイロン12)、ポリアミド46樹脂(ナイロン46)、ポリアミド66樹脂(ナイロン66)、ポリアミド610樹脂(ナイロン610)等を挙げることができる。上記ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリエチレンナフタレート樹脂、ボリブチレンテレフタレート樹脂、ポリトリメチレンテレフタレート樹脂、液晶ポリエステル等を挙げることができる。上記(メタ)アクリル樹脂としては、例えば、ポリメチルメタクリレートを挙げることができる。上記ポリフェニレンエーテル樹脂としては、例えば、変性ポリフェニレンエーテル等を挙げることができる。上記ポリイミド樹脂としては、例えば、熱可塑性ポリイミド、ポリアミドイミド樹脂、ポリエーテルイミド樹脂等を挙げることができる。上記ポリスルホン樹脂としては、例えば、変性ポリスルホン樹脂、ポリエーテルスルホン樹脂等を挙げることができる。上記ポリエーテルケトン樹脂としては、例えば、ポリエーテルケトン樹脂、ポリエーテルエーテルケトン樹脂、ポリエーテルケトンケトン樹脂を挙げることができる。 Examples of the polyolefin resin include polyethylene resin, polypropylene resin, polybutadiene resin, and polymethylpentene resin. Examples of the vinyl resin include vinyl chloride resin, vinylidene chloride resin, vinyl acetate resin, and polyvinyl alcohol resin. Examples of the polystyrene resin include polystyrene resin, acrylonitrile-styrene resin (AS resin), acrylonitrile-butadiene-styrene resin (ABS resin), and the like. Examples of the polyamide resin include polyamide 6 resin (nylon 6), polyamide 11 resin (nylon 11), polyamide 12 resin (nylon 12), polyamide 46 resin (nylon 46), polyamide 66 resin (nylon 66), and polyamide 610. Resin (nylon 610) etc. can be mentioned. Examples of the polyester resin include polyethylene terephthalate resin, polyethylene naphthalate resin, boribylene terephthalate resin, polytrimethylene terephthalate resin, and liquid crystal polyester. Examples of the (meth) acrylic resin include polymethyl methacrylate. Examples of the polyphenylene ether resin include modified polyphenylene ether. Examples of the polyimide resin include thermoplastic polyimide, polyamideimide resin, polyetherimide resin, and the like. Examples of the polysulfone resin include a modified polysulfone resin and a polyethersulfone resin. Examples of the polyetherketone resin include polyetherketone resin, polyetheretherketone resin, and polyetherketoneketone resin.
本発明に用いられる熱可塑性樹脂は1種類のみであってもよく、2種類以上であってもよい。本発明において2種類以上の熱可塑性樹脂を併用する態様としては、例えば、相互に軟化点又は融点が異なる熱可塑性樹脂を併用する態様や、相互に平均分子量が異なる熱可塑性樹脂を併用する態様等を挙げることができるが、この限りではない。 The thermoplastic resin used in the present invention may be only one type or two or more types. In the present invention, as an aspect of using two or more types of thermoplastic resins in combination, for example, an aspect in which thermoplastic resins having different softening points or melting points are used in combination, an aspect in which thermoplastic resins having different average molecular weights are used in combination, etc. This is not a limitation.
[熱可塑性樹脂の溶解性パラメーターSP値]
本発明における熱可塑性樹脂の溶解性パラメーターSP値(単位:(J/cm3)1/2)が18以上21以下であることが好ましい。
[Solubility parameter SP value of thermoplastic resin]
The solubility parameter SP value (unit: (J / cm 3 ) 1/2 ) of the thermoplastic resin in the present invention is preferably 18 or more and 21 or less.
従来、熱可塑性樹脂の溶解性パラメーターSP値(単位:(J/cm3)1/2)が18以上21以下の範囲にある熱可塑性樹脂と、上述の表面酸素濃度比[O/C]を有する炭素繊維とを含む成形材料を用いて成形した場合、炭素繊維と熱可塑性樹脂のシリンダー内で混ぜ合わされる時間が短いために、炭素繊維の表面官能基全ては作用しにくい。 Conventionally, the thermoplastic resin has a solubility parameter SP value (unit: (J / cm 3 ) 1/2 ) in the range of 18 or more and 21 or less, and the surface oxygen concentration ratio [O / C] described above. When molding is performed using a molding material containing carbon fibers, all the surface functional groups of the carbon fibers are difficult to act because the time for mixing the carbon fibers and the thermoplastic resin in the cylinder is short.
一方、本発明は成形型キャビティ体積100に対して、射出容量を400以上2000以下としているため、熱可塑性樹脂の溶解性パラメーターSP値(単位:(J/cm3)1/2)が18以上21以下の範囲にある熱可塑性樹脂と、上述の表面酸素濃度比[O/C]を有する炭素繊維とを含む成形材料を用いて成形した場合であっても、炭素繊維の表面官能基の多くは作用しやすい。結果、成形体となったときの機械物性が向上する。
好ましい溶解性パラメーターSP値(単位:(J/cm3)1/2)は、19.5以上20.5以下である。
On the other hand, the present invention relative to the mold cavity volume 100, since the 400 to 2,000 injection capacity, solubility parameter SP value of the thermoplastic resin (unit: (J / cm 3) 1/2 ) is 18 or more Even when molded using a molding material containing a thermoplastic resin in a range of 21 or less and carbon fibers having the above-mentioned surface oxygen concentration ratio [O / C], many of the surface functional groups of the carbon fibers Is easy to act. As a result, mechanical properties when formed into a molded body are improved.
A preferable solubility parameter SP value (unit: (J / cm 3 ) 1/2 ) is 19.5 or more and 20.5 or less.
[ポリカーボネート]
本発明における熱可塑性樹脂はポリカーボネートを用いることが好ましい。なお、ポリカーボネートの溶解性パラメーターSP値(単位:(J/cm3)1/2)は、20.2である。
[Polycarbonate]
The thermoplastic resin in the present invention is preferably a polycarbonate. The solubility parameter SP value of polycarbonate (unit: (J / cm 3 ) 1/2 ) is 20.2.
この場合、ポリカーボネートの種類は特に限定されず、種々のジヒドロキシアリール化合物とホスゲンとの反応によって得られるもの、又はジヒドロキシアリール化合物とジフェニルカーボネートとのエステル交換反応により得られるものが挙げられる。代表的なものとしては、2,2’−ビス(4−ヒドロキシフェニル)プロパン、所謂ビスフェノールAとホスゲンまたはジフェニルカーボネートの反応で得られるポリカーボネートである。 In this case, the kind of polycarbonate is not particularly limited, and examples thereof include those obtained by reaction of various dihydroxyaryl compounds with phosgene, or those obtained by transesterification reaction of dihydroxyaryl compounds and diphenyl carbonate. A typical example is 2,2'-bis (4-hydroxyphenyl) propane, a polycarbonate obtained by reacting so-called bisphenol A with phosgene or diphenyl carbonate.
ポリカーボネートの原料となるジヒドロキシアリール化合物としては、ビス(4−ヒドロキシフェニル)メタン、1,1’−ビス(4−ヒドロキシフェニル)エタン、2,2’−ビス(4−ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシフェニル)ブタン、2,2’−ビス(4−ヒドロキシフェニル)オクタン、2,2’−ビス(4−ヒドロキシ−3−メチルフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−t−ブチルフェニル)プロパン、2,2’−ビス(3,5−ジメチル−4−ヒドロキシフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−シクロヘキシルフェニル)プロパン、2,2’−ビス(4−ヒドロキシ−3−メトキシフェニル)プロパン、1,1’−ビス(4−ヒドロキシフェニル)シクロペンタン、1,1’−ビス(4−ヒドロキシフェニル)シクロヘキサン、1,1’−ビス(4−ヒドロキシフェニル)シクロドデカン、4,4’−ジヒドロキシフェニルエーテル、4,4’−ジヒドロキシ−3,3’−ジメチルフェニルエーテル、4,4’−ジヒドロキシジフェニルスルフィド、4,4’−ジヒドロキシ−3,3’−ジメチルジフェニルスルフィド、4,4’−ジヒドロキシジフェニルスルホキシド、4,4’−ジヒドロキシジフェニルスルホン、ビス(4−ヒドロキシフェニル)ケトンなどがある。これらのジヒドロキシアリール化合物は単独で又は2種以上組み合わせて使用できる。 Examples of the dihydroxyaryl compound used as a raw material for polycarbonate include bis (4-hydroxyphenyl) methane, 1,1′-bis (4-hydroxyphenyl) ethane, 2,2′-bis (4-hydroxyphenyl) propane, 2, 2'-bis (4-hydroxyphenyl) butane, 2,2'-bis (4-hydroxyphenyl) octane, 2,2'-bis (4-hydroxy-3-methylphenyl) propane, 2,2'-bis (4-hydroxy-3-tert-butylphenyl) propane, 2,2′-bis (3,5-dimethyl-4-hydroxyphenyl) propane, 2,2′-bis (4-hydroxy-3-cyclohexylphenyl) Propane, 2,2′-bis (4-hydroxy-3-methoxyphenyl) propane, 1,1′-bis (4-hydroxyphenyl) Cyclopentane, 1,1′-bis (4-hydroxyphenyl) cyclohexane, 1,1′-bis (4-hydroxyphenyl) cyclododecane, 4,4′-dihydroxyphenyl ether, 4,4′-dihydroxy-3, 3'-dimethylphenyl ether, 4,4'-dihydroxydiphenyl sulfide, 4,4'-dihydroxy-3,3'-dimethyldiphenyl sulfide, 4,4'-dihydroxydiphenyl sulfoxide, 4,4'-dihydroxydiphenyl sulfone, Examples include bis (4-hydroxyphenyl) ketone. These dihydroxyaryl compounds can be used alone or in combination of two or more.
好ましいジヒドロキシアリール化合物には、耐熱性の高い芳香族ポリカーボネートを形成するビスフェノール類、2,2’−ビス(4−ヒドロキシフェニル)プロパンなどのビス(ヒドロキシフェニル)アルカン、ビス(4−ヒドロキシフェニル)シクロヘキサンなどのビス(ヒドロキシフェニル)シクロアルカン、ジヒドロキシジフェニルスルフィド、ジヒドロキシジフェニルスルホン、ジヒドロキシジフェニルケトンなどが含まれる。特に好ましいジヒドロキシアリール化合物には、ビスフェノールA型芳香族ポリカーボネートを形成する2,2’−ビス(4−ヒドロキシフェニル)プロパンが含まれる。 Preferred dihydroxyaryl compounds include bisphenols that form highly heat-resistant aromatic polycarbonates, bis (hydroxyphenyl) alkanes such as 2,2′-bis (4-hydroxyphenyl) propane, and bis (4-hydroxyphenyl) cyclohexane. Bis (hydroxyphenyl) cycloalkane, dihydroxydiphenyl sulfide, dihydroxydiphenyl sulfone, dihydroxydiphenyl ketone and the like. Particularly preferred dihydroxyaryl compounds include 2,2'-bis (4-hydroxyphenyl) propane which forms bisphenol A type aromatic polycarbonate.
なお、耐熱性、機械的強度などを損なわない範囲で、ビスフェノールA型芳香族ポリカーボネートを製造する際、ビスフェノールAの一部を、他のジヒドロキシアリール化合物で置換してもよい。また、流動性、外観光沢、難燃特性、熱安定性、耐候性、耐衝撃性などを上げる目的で、機械的強度を損なわない範囲で、各種ポリマー、充填剤、安定剤、顔料などを配合してもよい。なお、難燃性を向上させる目的で、難燃剤としてリン酸エステルをポリカーボネートに配合させることも可能である。 In addition, when manufacturing bisphenol A type aromatic polycarbonate within a range not impairing heat resistance and mechanical strength, a part of bisphenol A may be substituted with another dihydroxyaryl compound. In addition, various polymers, fillers, stabilizers, pigments, etc. are blended within the range that does not impair the mechanical strength in order to increase fluidity, appearance gloss, flame retardancy, thermal stability, weather resistance, impact resistance, etc. May be. In addition, it is also possible to mix | blend a phosphoric acid ester with a polycarbonate as a flame retardant for the purpose of improving a flame retardance.
[成形材料]
本発明における成形材料の形状は特に限定されず、柱状、板状、粒状、塊状、糸状(紐状)、網状等が挙げられ、異なる形状の成形材料を複数種用いて成形することも可能である。
[Molding materials]
The shape of the molding material in the present invention is not particularly limited, and examples thereof include a columnar shape, a plate shape, a granular shape, a lump shape, a thread shape (string shape), a net shape, and the like, and it is possible to mold using a plurality of types of molding materials having different shapes. is there.
成形材料は、炭素繊維束の周囲に熱可塑性樹脂が被覆された芯鞘構造であって、炭素繊維束の軸方向の長さL1と、成形材料の長さL2とが、0.9<L1/L2<1.0であることが好ましく、L1とL2が実質同一であることがより好ましい。このとき、炭素繊維束が芯、熱可塑性樹脂が鞘となる。 The molding material has a core-sheath structure in which a thermoplastic resin is coated around the carbon fiber bundle, and the length L1 in the axial direction of the carbon fiber bundle and the length L2 of the molding material are 0.9 <L1. It is preferable that /L2<1.0, and it is more preferable that L1 and L2 are substantially the same. At this time, the carbon fiber bundle is the core and the thermoplastic resin is the sheath.
すなわち、炭素繊維束の周囲が熱可塑性樹脂で被覆した被覆体をカッターにて切断するなどして得られる、炭素繊維束を芯成分、熱可塑性樹脂を鞘成分とする芯鞘型構造のペレットであることがより好ましい(芯鞘型ペレットと称することがある)。 That is, it is a pellet with a core-sheath type structure obtained by cutting a coated body in which the periphery of a carbon fiber bundle is coated with a thermoplastic resin with a cutter, etc., and having a carbon fiber bundle as a core component and a thermoplastic resin as a sheath component. More preferably (sometimes referred to as a core-sheath pellet).
また、このような粒状の成形材料は、炭素繊維束の軸方向の長さが1〜30mmであることが好ましく、2〜10mmであることがより好ましく、2〜5mmであれば更に好ましい。該芯鞘型ペレット(例えば図1に記載された芯鞘型ペレット)の直径に特に制限は無いが、ペレット長さの1/10以上2倍以下であると好ましく、ペレット長さの1/4以上かつペレット長さと同等以下であるとより好ましい。 Further, in such a granular molding material, the length of the carbon fiber bundle in the axial direction is preferably 1 to 30 mm, more preferably 2 to 10 mm, and even more preferably 2 to 5 mm. There is no particular limitation on the diameter of the core-sheath pellet (for example, the core-sheath pellet described in FIG. 1), but it is preferably 1/10 or more and twice or less the pellet length, and 1/4 of the pellet length. More preferably, it is equal to or less than the pellet length.
[質量割合]
本発明における成形体の製造方法では、炭素繊維100質量部に対して、熱可塑性樹脂の重量割合が150質量部以上900質量部以下の成形材料を用いることが好ましい。より好ましい熱可塑性樹脂の重量割合の下限は200質量部以上である。
[Mass ratio]
In the manufacturing method of the molded object in this invention, it is preferable to use the molding material whose weight ratio of a thermoplastic resin is 150 to 900 mass parts with respect to 100 mass parts of carbon fibers. The lower limit of the weight ratio of the more preferable thermoplastic resin is 200 parts by mass or more.
反対に、炭素繊維100質量部に対して、熱可塑性樹脂の質量割合の上限は900質量部以上であると好ましい。より好ましい熱可塑性樹脂の質量割合の上限は700質量部以下である。 On the contrary, the upper limit of the mass ratio of the thermoplastic resin is preferably 900 parts by mass or more with respect to 100 parts by mass of the carbon fibers. A more preferable upper limit of the mass ratio of the thermoplastic resin is 700 parts by mass or less.
[成形材料の製造方法]
本発明における成形材料の製造方法に特に限定は無く、例えば国際公開第2013/137246号パンフレットに記載の方法を用いれば良い。
[Method of manufacturing molding material]
There is no limitation in particular in the manufacturing method of the molding material in this invention, For example, what is necessary is just to use the method as described in international publication 2013/137246 pamphlet.
具体的には、炭素繊維束の表面に溶融状態の熱可塑性樹脂を被覆する方法、炭素繊維束を引き並べた上にTダイなどを使って溶融状態の熱可塑性樹脂をキャストし積層化する方法、引き並べた炭素繊維束にフィルム状熱可塑性樹脂を積層ラミネートする方法、炭素繊維束を引きそろえた上に粉末状熱可塑性樹脂を吹きつける方法などが挙げられる。連続上に引き並べられた炭素繊維束の替わりに、所定の長さに切断された炭素繊維束の集合体を同様に用いることも可能である。 Specifically, a method of coating the surface of the carbon fiber bundle with a molten thermoplastic resin, a method of casting and laminating the molten thermoplastic resin using a T-die or the like after arranging the carbon fiber bundles And a method of laminating and laminating a film-like thermoplastic resin on the aligned carbon fiber bundles, and a method of spraying a powdery thermoplastic resin after aligning the carbon fiber bundles. Instead of the carbon fiber bundles arranged continuously, an aggregate of carbon fiber bundles cut to a predetermined length can be used in the same manner.
本発明の成形材料は、炭素繊維束を芯成分、熱可塑性樹脂を鞘成分とする芯鞘型構造であることが好ましく、特に、炭素繊維束の周囲が熱可塑性樹脂で被覆されたストランドをストランドカッターにて切断するなどして得られる、炭素繊維束を芯成分、熱可塑性樹脂を鞘成分とする芯鞘型構造の、ペレットであることがより好ましい。 The molding material of the present invention preferably has a core-sheath structure in which a carbon fiber bundle is a core component and a thermoplastic resin is a sheath component, and in particular, a strand in which a carbon fiber bundle is coated with a thermoplastic resin is a strand. More preferably, it is a pellet of a core-sheath type structure obtained by cutting with a cutter, etc., using a carbon fiber bundle as a core component and a thermoplastic resin as a sheath component.
[成形体の製造方法]
1.射出容量
本発明における成形体の製造方法は、炭素繊維束と熱可塑性樹脂とを含む成形材料を射出成形して成形体を製造する方法であって、成形型キャビティ体積100に対して、射出容量を400〜2000に計量して成形する。
[Method for producing molded article]
1. Injection Capacity The method for producing a molded body according to the present invention is a method for producing a molded body by injection molding a molding material containing a carbon fiber bundle and a thermoplastic resin, and the injection volume for the mold cavity volume 100 Is molded to 400 to 2000.
本発明において、成形型キャビィティ体積とは、1ショットで作成されるスプルー、ランナー、ゲート、捨てキャビティ、及び成形体の合計体積をいう。なお、捨てキャビティ体積が無い場合はその体積を0で計算すれば良い。 In the present invention, the mold cavity volume means the total volume of sprue, runner, gate, waste cavity, and molded body created in one shot. If there is no discarded cavity volume, the volume may be calculated as zero.
成形型キャビティ体積100に対して、射出容量を400以上とする場合、熱可塑性樹脂と炭素繊維との作用時間が十分に確保され、炭素繊維表面の官能基のほとんどが熱可塑性樹脂と作用できる。より好ましい射出容量の体積の下限は500以上であり、600以上が更に好ましく、700以上がより一層好ましく、800以上が最も好ましい。 When the injection capacity is set to 400 or more with respect to the mold cavity volume 100, the working time of the thermoplastic resin and the carbon fiber is sufficiently secured, and most of the functional groups on the surface of the carbon fiber can work with the thermoplastic resin. The lower limit of the volume of the injection volume is more preferably 500 or more, more preferably 600 or more, still more preferably 700 or more, and most preferably 800 or more.
反対に、成形型キャビティ体積100に対する、射出容量の体積の上限は2000以下である。これを超える場合、熱可塑性樹脂が長時間混練されるため、熱可塑性樹脂が劣化してしまうため成形体の物性が悪化する。好ましい射出容量の体積の上限は1800以下がより好ましく、1600以下が更に好ましく、1400がより一層好ましく、1200以下が最も好ましい。この範囲であれば、熱可塑性樹脂の劣化の影響よりも、炭素繊維の表面官能基の作用による機械物性向上の効果が大きくなる。 On the contrary, the upper limit of the volume of the injection capacity with respect to the mold cavity volume 100 is 2000 or less. When exceeding this, since the thermoplastic resin is kneaded for a long time, the thermoplastic resin deteriorates, and the physical properties of the molded article deteriorate. The upper limit of the volume of the preferable injection volume is more preferably 1800 or less, further preferably 1600 or less, still more preferably 1400, and most preferably 1200 or less. If it is this range, the effect of the mechanical property improvement by the effect | action of the surface functional group of carbon fiber will become large rather than the influence of deterioration of a thermoplastic resin.
2.シリンダー通過時間
射出成形においては、成形材料をシリンダー内で溶融可塑化し、これを成形型内へ射出し、成形型内部で固化して成形体を得る。なお、可塑化するためのシリンダーは、ホッパから投入された成形材料に熱を加えて溶かす部分であり、シリンダーで溶融可塑化した後に成形型内へ射出する。射出成形機としてはインライン方式射出成形機が好ましい。
成形材料がシリンダー内を通過する時間は、1min以上10min未満であると好ましい。
ここで、シリンダー内を通過する時間は、下記式で計算できる。
シリンダー内を通過する時間 = (射出容量の体積÷成形型キャビティ体積)×1ショットサイクル時間
2. Cylinder passage time In injection molding, a molding material is melt-plasticized in a cylinder, injected into a mold, and solidified in the mold to obtain a molded body. Note that the cylinder for plasticization is a portion that melts the molding material introduced from the hopper by applying heat, and is injected into the mold after being melt plasticized by the cylinder. As the injection molding machine, an in-line injection molding machine is preferable.
The time for the molding material to pass through the cylinder is preferably 1 min or more and less than 10 min.
Here, the time for passing through the cylinder can be calculated by the following equation.
Time to pass through the cylinder = (volume of injection volume ÷ mold cavity volume) x 1 shot cycle time
熱可塑性樹脂と炭素繊維との相互作用を長くするために、シリンダー内を通過する時間をある程度長くすることが好ましいが、1ショットサイクル時間は短くして生産性を向上させたい。そこで、本発明においては、射出容量を大きくして、シリンダー内を通過する時間を長くし、熱可塑性樹脂と炭素繊維との相互作用を長くする。 In order to lengthen the interaction between the thermoplastic resin and the carbon fiber, it is preferable to increase the time for passing through the cylinder to some extent, but it is desired to improve the productivity by shortening the one-shot cycle time. Therefore, in the present invention, the injection capacity is increased, the time for passing through the cylinder is lengthened, and the interaction between the thermoplastic resin and the carbon fiber is lengthened.
シリンダー内を通過する時間が1min以上であると、炭素繊維束内部に存在する、炭素繊維の表面官能基は、熱可塑性樹脂と作用する時間が十分に長くなるため好ましい。好ましい通過時間は2min以上であり、4min以上が更に好ましい。
反対に、上限は10min以下が好ましい。10min以下である場合、熱可塑性樹脂の劣化度合いを抑制できる。
When the time for passing through the cylinder is 1 min or longer, the surface functional group of the carbon fiber present inside the carbon fiber bundle is preferable because the time for acting with the thermoplastic resin is sufficiently long. The preferred transit time is 2 min or more, and more preferably 4 min or more.
On the contrary, the upper limit is preferably 10 min or less. When it is 10 min or less, the degree of deterioration of the thermoplastic resin can be suppressed.
[成形体]
本発明の成形材料を用い、他の成形材料や添加剤を加えることなく、成形を行って成形体を得た場合、該成形材料と該成形体の炭素繊維を含有する量や割合、つまり質量基準の組成は当然同じである。よって本発明の成形体に含まれる炭素繊維や熱可塑性樹脂の量やその好ましい範囲については、成形材料と成形体とで同じであると良い。
[Molded body]
When using the molding material of the present invention to obtain a molded body by molding without adding other molding materials and additives, the amount and ratio of the molding material and carbon fiber of the molded body, that is, the mass The reference composition is naturally the same. Therefore, the amount of carbon fiber and thermoplastic resin contained in the molded article of the present invention and the preferred range thereof are preferably the same for the molding material and the molded article.
なお、本発明の成形材料を用いて、他の成形材料や添加剤を加えることなく成形を行った場合は、成形材料または得られた成形体のいずれか一方の炭素繊維含有量(率)を測定し、これを他方の炭素繊維含有量(率)とみなすことができる。また、本発明の成形材料に、他の成形材料や添加剤等を加えて成形を行った場合でも、それらの添加量を元に計算を行い、本発明の成形材料または成形体のいずれか一方の炭素繊維含有量(率)から、他方の炭素繊維含有量(率)を求めることができる。 In addition, when molding is performed without adding other molding materials and additives using the molding material of the present invention, the carbon fiber content (rate) of either the molding material or the obtained molded body is calculated. Measured and this can be regarded as the other carbon fiber content (rate). Further, even when molding is performed by adding other molding materials or additives to the molding material of the present invention, calculation is performed based on the amount of addition, and either the molding material or the molded body of the present invention is calculated. From the carbon fiber content (rate) of the other, the other carbon fiber content (rate) can be determined.
本発明の成形体は、成形体において、炭素繊維束が解かれた炭素繊維が、重量平均繊維長0.3mm以上の長さで分散しているものが好ましく、更に好ましくは該炭素繊維が重量平均繊維長0.4mm以上の長さで分散しているものである。本発明の成形体において、残存する炭素繊維の重量平均繊維長の上限に特に制限は無く、用途や採用される成形方法による。 In the molded body of the present invention, it is preferable that the carbon fiber in which the carbon fiber bundles are unwound in the molded body is dispersed with a weight average fiber length of 0.3 mm or more, and more preferably, the carbon fiber has a weight. The fiber is dispersed with an average fiber length of 0.4 mm or more. In the molded article of the present invention, the upper limit of the weight average fiber length of the remaining carbon fibers is not particularly limited, and depends on the application and the molding method employed.
[成形体の用途]
本発明の成形体の製造方法は、優れた機械強度を有する成形体を、簡素なプロセスにて製造することを可能とするものであり、自動車、船舶、航空機など輸送機器、電気・電子機器、事務用機器等の内外装材や部品といった種々の産業分野において極めて有用なものである。
[Use of molded body]
The method for producing a molded article of the present invention enables a molded article having excellent mechanical strength to be produced by a simple process, such as automobiles, ships, aircraft and other transportation equipment, electrical / electronic equipment, It is extremely useful in various industrial fields such as interior and exterior materials and parts of office equipment.
[評価・分析方法]
以下に実施例を示すが、本発明はこれらに制限されるものではない。なお、本実施例における各値は、以下の方法に従って求めた。
1.引張強度の測定
引張強度は、ダンベル状試験片の形状になっている本発明の成形体を用いて、JIS K 7161:1994に準拠した方法にて評価した。ダンベル状試験片としては、平行区間部の寸法が長さ80mm、幅10mm、厚み2mmのものである。
2.曲げ強度の測定
ダンベル状試験片(JIS K 7162:1994またはISO 527−2:1998の試験片1A形に準拠)の形状になっている本発明の成形体を用いて、JIS K 7171に準拠した方法にて評価した。
3.0.3mm以上の炭素繊維の割合
成形体の試料をルツボに入れ、550℃にて1.5時間有酸素雰囲気下で加熱し樹脂成分を燃焼除去した。残った炭素繊維を界面活性剤入りの水に投入し、超音波振動により十分に撹拌させた。撹拌させた分散液を計量スプーンによりランダムに採取し評価用サンプルを得て、ニレコ社製画像解析装置Luzex APにて、0.3mm以上の長さの炭素繊維の重量割合を算出した。
[Evaluation and analysis method]
Examples are shown below, but the present invention is not limited thereto. In addition, each value in a present Example was calculated | required according to the following method.
1. Measurement of Tensile Strength Tensile strength was evaluated by a method according to JIS K 7161: 1994, using the molded article of the present invention in the shape of a dumbbell-shaped test piece. The dumbbell-shaped test piece has a parallel section having a length of 80 mm, a width of 10 mm, and a thickness of 2 mm.
2. Measurement of bending strength Compliant with JIS K 7171 using the molded body of the present invention in the form of a dumbbell-shaped test piece (compliant with JIS K 7162: 1994 or ISO 527-2: 1998 test piece 1A type) The method was evaluated.
3. Ratio of carbon fiber of 0.3 mm or more A sample of the molded body was placed in a crucible and heated at 550 ° C. for 1.5 hours in an aerobic atmosphere to remove the resin component by combustion. The remaining carbon fiber was put into water containing a surfactant and sufficiently stirred by ultrasonic vibration. The stirred dispersion was randomly collected with a measuring spoon to obtain a sample for evaluation, and the weight ratio of carbon fibers having a length of 0.3 mm or more was calculated with an image analyzer Luzex AP manufactured by Nireco.
[原材料の準備]
本発明で用いた原材料は以下の通りである。
1.炭素繊維束の作製
(1)ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単糸数24,000本、単繊維径7μm、単位長さ当たりの質量1.6g/m、比重1.8g/cm3、表面酸素濃度[O/C]0.11の均質な炭素繊維束(1)を得た。この炭素繊維のストランド引張強度は4000MPa、ストランド引張弾性率は240GPaであった。
[Preparation of raw materials]
The raw materials used in the present invention are as follows.
1. Production of carbon fiber bundle (1) Spinning, baking treatment and surface oxidation treatment are carried out from a copolymer mainly composed of polyacrylonitrile, the total number of single yarns is 24,000, the single fiber diameter is 7 μm, and the mass per unit length is 1. A homogeneous carbon fiber bundle (1) having a density of 1.6 g / m, a specific gravity of 1.8 g / cm 3 and a surface oxygen concentration [O / C] of 0.11 was obtained. This carbon fiber had a strand tensile strength of 4000 MPa and a strand tensile modulus of 240 GPa.
(2)ポリアクリロニトリルを主成分とする共重合体から紡糸、焼成処理、表面酸化処理を行い、総単糸数24,000本、単繊維径7μm、単位長さ当たりの質量1.6g/m、比重1.8g/cm3、表面酸素濃度[O/C]0.23の均質な炭素繊維束(2)を得た。この炭素繊維のストランド引張強度は5000MPa、ストランド引張弾性率は240GPaであった。 (2) Spinning, baking treatment, surface oxidation treatment from a copolymer containing polyacrylonitrile as a main component, total number of single yarns 24,000, single fiber diameter 7 μm, mass per unit length 1.6 g / m, A homogeneous carbon fiber bundle (2) having a specific gravity of 1.8 g / cm 3 and a surface oxygen concentration [O / C] of 0.23 was obtained. This carbon fiber had a strand tensile strength of 5000 MPa and a strand tensile modulus of 240 GPa.
2.熱可塑性樹脂
ポリカーボネート:帝人株式会社製:L−1225Y
ガラス転移温度:150度
溶解性パラメーター((J/cm3)1/2):20.2
3.含浸助剤
(1)ビスフェノールA ビス(ジフェニルホスフェート)(大八化学株式会社製;CR―741)
2. Thermoplastic resin Polycarbonate: Teijin Limited: L-1225Y
Glass transition temperature: 150 degrees Solubility parameter ((J / cm 3 ) 1/2 ): 20.2
3. Impregnation aid (1) Bisphenol A bis (diphenyl phosphate) (Daihachi Chemical Co., Ltd .; CR-741)
[実施例1]
1.成形材料の準備
含浸助剤として、芳香族縮合リン酸エステルであるビスフェノールA ビス(ジフェニルホスフェート)(大八化学株式会社製;CR―741)を用い、これを不揮発分25質量%にエマルジョン化した溶液内に、炭素繊維束(1)を通過させた後、ニップロールにて過剰に付着した溶液を取り除き、更にその後、180℃に加熱された熱風乾燥炉内を2分間かけて通過させ、乾燥させた。この炭素繊維束の含浸助剤の含有率は炭素繊維100質量部あたり11.1質量部であった。
[Example 1]
1. Preparation of molding material As an impregnation aid, bisphenol A bis (diphenyl phosphate) (made by Daihachi Chemical Co., Ltd .; CR-741), which is an aromatic condensed phosphate, was used, and this was emulsified to a non-volatile content of 25% by mass. After the carbon fiber bundle (1) is passed through the solution, the excessively adhered solution is removed with a nip roll, and then further passed through a hot air drying furnace heated to 180 ° C. for 2 minutes to be dried. It was. The content of the carbon fiber bundle impregnation aid was 11.1 parts by mass per 100 parts by mass of the carbon fibers.
次に、上記で得られた炭素繊維束を、出口径3mmの電線被覆用クロスヘッドダイを用いて、ポリカーボネート(帝人株式会社製:L−1225Y)で被覆し、これを長さ3mmに切断し、炭素繊維含有率が15質量%(炭素繊維100質量部あたり、ポリカーボネートが566質量部)、直径3.2mm、長さ3mmの、射出成形に適した芯鞘型ペレットである成形材料を得た。 Next, the carbon fiber bundle obtained above was covered with polycarbonate (manufactured by Teijin Limited: L-1225Y) using a crosshead die for covering the wire with an outlet diameter of 3 mm, and this was cut into a length of 3 mm. A molding material which is a core-sheath pellet suitable for injection molding having a carbon fiber content of 15% by mass (566 parts by mass of polycarbonate per 100 parts by mass of carbon fiber), a diameter of 3.2 mm, and a length of 3 mm was obtained. .
2.成形体の製造
この成形材料を、成形型キャビティ体積100に対して射出容量の体積880に計量できるようにシリンダーを選定する。具体的には、成形型キャビティ体積PE換算96gに対して、東芝機械製「全電動式射出成形機EC450SX i26」(シリンダー容量PE換算842g)を選定した。
2. Manufacture of a molded body A cylinder is selected so that this molding material can be measured to a volume 880 of an injection capacity with respect to a mold cavity volume 100. Specifically, “all electric injection molding machine EC450SX i26” (cylinder capacity PE equivalent 842 g) manufactured by Toshiba Machine was selected for 96 g of mold cavity volume PE equivalent.
シリンダー温度C1/C2/C3/C4/N=280℃/290℃/320℃/320℃/310℃(C1〜C4はキャビティ、Nはノズル)にて1ショットサイクル時間45秒で射出成形し、引張強度と曲げ強度の試験用ダンベルを得た。成形材料がシリンダー内を通過する時間は6.6minであった。結果を表1に示す。 Cylinder temperature C1 / C2 / C3 / C4 / N = 280 ° C./290° C./320° C./320° C./310° C. (C1 to C4 are cavities, N is a nozzle), one shot cycle time is 45 seconds, Dumbbells for tensile strength and bending strength were obtained. The time for the molding material to pass through the cylinder was 6.6 min. The results are shown in Table 1.
[実施例2]
炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリカーボネートが233質量部)としたこと以外は、実施例1と同様にして成形体を製造した。結果を表1に示す。
[Example 2]
A molded body was produced in the same manner as in Example 1 except that the carbon fiber content was 30% by mass (the polycarbonate was 233 parts by mass per 100 parts by mass of the carbon fiber). The results are shown in Table 1.
[実施例3]
炭素繊維束として炭素繊維束(2)を使用し、炭素繊維含有率を30質量%(炭素繊維100質量部あたり、ポリカーボネートが233質量部)としたこと以外は、実施例1と同様にして成形体を製造した。結果を表1に示す。
[Example 3]
Molding is performed in the same manner as in Example 1 except that the carbon fiber bundle (2) is used as the carbon fiber bundle and the carbon fiber content is 30% by mass (the polycarbonate is 233 parts by mass per 100 parts by mass of the carbon fiber). The body was manufactured. The results are shown in Table 1.
[実施例4]
成形型キャビティ体積100に対する射出容量を617に調整して、成形型と射出成形機を準備したこと以外は、実施例3と同様にして成形体を製造した。成形材料がシリンダー内を通過する時間は4.6minであった。結果を表1に示す。
[Example 4]
A molded body was manufactured in the same manner as in Example 3 except that the injection capacity for the mold cavity volume 100 was adjusted to 617 and a mold and an injection molding machine were prepared. The time for the molding material to pass through the cylinder was 4.6 min. The results are shown in Table 1.
[比較例1]
成形型キャビティ体積100に対する射出容量を350に調整して、成形型と射出成形機を準備したこと以外は、実施例1と同様にして成形体を製造した。成形材料がシリンダー内を通過する時間は2.6minであった。結果を表1に示す。
[Comparative Example 1]
A molded body was manufactured in the same manner as in Example 1 except that the injection capacity for the mold cavity volume 100 was adjusted to 350 and a mold and an injection molding machine were prepared. The time for the molding material to pass through the cylinder was 2.6 min. The results are shown in Table 1.
[比較例2]
成形型キャビティ体積100に対する射出容量を350に調整して、成形型と射出成形機を準備したこと以外は、実施例3と同様にして成形体を製造した。成形材料がシリンダー内を通過する時間は2.6minであった。結果を表1に示す。
[Comparative Example 2]
A molded body was manufactured in the same manner as in Example 3 except that the injection capacity for the mold cavity volume 100 was adjusted to 350 and a mold and an injection molding machine were prepared. The time for the molding material to pass through the cylinder was 2.6 min. The results are shown in Table 1.
[比較例3]
芯鞘型の成形材料を用いず、成形材料中に炭素繊維が単糸状に分散したペレットを用いたこと以外は、実施例1と同様にして成形体を製造した。成形材料は炭素繊維束と熱可塑性樹脂を混練して製造したため、成形材料に含まれる炭素繊維の重量平均繊維長は0.3mmとなった。結果を表1に示す。
[Comparative Example 3]
A molded body was produced in the same manner as in Example 1, except that a core-sheath molding material was not used and pellets in which carbon fibers were dispersed in a single yarn shape were used in the molding material. Since the molding material was produced by kneading a carbon fiber bundle and a thermoplastic resin, the weight average fiber length of the carbon fibers contained in the molding material was 0.3 mm. The results are shown in Table 1.
[比較例4]
成形型キャビティ体積100に対する射出容量を350に調整して、成形型と射出成形機を準備したこと以外は、比較例3と同様にして成形体を製造した。結果を表1に示す。
炭素繊維束が含まれていない成形材料を用いた場合、成形型キャビティ体積100に対する、射出容量を変えても、ほとんど機械物性は変化しないことが分かる。
[Comparative Example 4]
A molded body was manufactured in the same manner as in Comparative Example 3 except that the injection capacity for the mold cavity volume 100 was adjusted to 350 and a mold and an injection molding machine were prepared. The results are shown in Table 1.
It can be seen that when a molding material containing no carbon fiber bundle is used, the mechanical properties hardly change even when the injection capacity for the mold cavity volume 100 is changed.
101 炭素繊維束
102 熱可塑性樹脂
101
Claims (8)
成形型キャビティ体積100に対して、射出容量を400以上2000以下に計量して成形する、成形体の製造方法。 A method for producing a molded body by injection molding a molding material containing a carbon fiber bundle and a thermoplastic resin,
A method for manufacturing a molded body, in which a molding cavity volume 100 is molded by measuring an injection capacity of 400 to 2000.
The manufacturing method of the molded object of any one of Claims 1-7 whose surface oxygen concentration ratio [O / C] of the carbon fiber which comprises a carbon fiber bundle is 0.1-0.5.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017101811A JP6902395B2 (en) | 2017-05-23 | 2017-05-23 | Manufacturing method of molded product |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017101811A JP6902395B2 (en) | 2017-05-23 | 2017-05-23 | Manufacturing method of molded product |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018196937A true JP2018196937A (en) | 2018-12-13 |
JP6902395B2 JP6902395B2 (en) | 2021-07-14 |
Family
ID=64663640
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017101811A Expired - Fee Related JP6902395B2 (en) | 2017-05-23 | 2017-05-23 | Manufacturing method of molded product |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6902395B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181893A (en) * | 2001-12-18 | 2003-07-02 | Sumitomo Chem Co Ltd | Manufacturing method of fiber reinforced molded product |
JP2012096424A (en) * | 2010-11-01 | 2012-05-24 | Sumitomo Chemical Co Ltd | Manufacturing method for thermoplastic resin molded article |
WO2013137246A1 (en) * | 2012-03-14 | 2013-09-19 | 帝人株式会社 | Molding material, molded product thereof, and method for producing said molded product |
JP2016203615A (en) * | 2015-04-27 | 2016-12-08 | 株式会社山本製作所 | Bent type injection molding apparatus and injection molding method |
-
2017
- 2017-05-23 JP JP2017101811A patent/JP6902395B2/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003181893A (en) * | 2001-12-18 | 2003-07-02 | Sumitomo Chem Co Ltd | Manufacturing method of fiber reinforced molded product |
JP2012096424A (en) * | 2010-11-01 | 2012-05-24 | Sumitomo Chemical Co Ltd | Manufacturing method for thermoplastic resin molded article |
WO2013137246A1 (en) * | 2012-03-14 | 2013-09-19 | 帝人株式会社 | Molding material, molded product thereof, and method for producing said molded product |
JP2016203615A (en) * | 2015-04-27 | 2016-12-08 | 株式会社山本製作所 | Bent type injection molding apparatus and injection molding method |
Also Published As
Publication number | Publication date |
---|---|
JP6902395B2 (en) | 2021-07-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4859260B2 (en) | Glass fiber reinforced thermoplastic resin composition and molded article | |
US8329280B2 (en) | Chopped fiber bundle, molding material, and fiber reinforced plastic, and process for producing them | |
US4713283A (en) | Reinforced composite structures | |
US9783646B2 (en) | Molding material for injection molding, extrusion molding or pultrusion molding, carbon-fiber-reinforced thermoplastic resin pellet, molding product, method for producing injection molded product, and injection molded product | |
JP2983569B2 (en) | Method for producing long fiber reinforced thermoplastic polyester resin and molded article made of the resin | |
WO2017203943A1 (en) | Fiber-containing particulate resin structure, method for producing fiber-containing particulate resin structure, cured fiber-reinforced resin product, and fiber-reinforced resin molded article | |
JP2021535004A (en) | Filament material for additional printing | |
JPWO2013183636A1 (en) | Molding material, molded body thereof, and method for producing the molded body | |
JP5255541B2 (en) | Propylene resin composition | |
JP2007284631A (en) | Thermoplastic resin pellet reinforced with basalt filament | |
JP5634638B2 (en) | Manufacturing method of molded body | |
WO2021153366A1 (en) | Cold press molded body containing carbon fiber and glass fiber, and manufacturing method thereof | |
JP6902395B2 (en) | Manufacturing method of molded product | |
EP3536472B1 (en) | Assembly of molding materials, and method for producing assembly of molding materials | |
JP6891516B2 (en) | Energy absorbing member and its manufacturing method | |
JP5238938B2 (en) | Long fiber reinforced composite resin composition and molded product | |
Bardi et al. | Review of Enhancement of Polymer for Material Extrusion Process by Combining with Filler Material | |
CN118742523B (en) | Flat-section glass fiber, glass fiber-reinforced resin composition, and glass fiber-reinforced resin molded article | |
KR102483485B1 (en) | Long fiber reinforced thermoplastics and molded article fabricated by the same | |
JP7443324B2 (en) | How to make pellets | |
WO2007055017A1 (en) | Composite and process for producing the same | |
WO2024090237A1 (en) | Glass roving | |
JP2024139869A (en) | Fiber-reinforced thermoplastic resin composition, fiber-reinforced thermoplastic resin molding material, and fiber-reinforced thermoplastic resin molded product | |
JP2020122243A (en) | Fiber complex for resin reinforcement and fiber-reinforced resin | |
JP2013155456A (en) | Wholly aromatic polyamide staple fiber bundle and method for producing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200217 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210121 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210202 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210302 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210608 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210621 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6902395 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |