[go: up one dir, main page]

JP2018195509A - Secondary battery electrode covered with polymer layer - Google Patents

Secondary battery electrode covered with polymer layer Download PDF

Info

Publication number
JP2018195509A
JP2018195509A JP2017099966A JP2017099966A JP2018195509A JP 2018195509 A JP2018195509 A JP 2018195509A JP 2017099966 A JP2017099966 A JP 2017099966A JP 2017099966 A JP2017099966 A JP 2017099966A JP 2018195509 A JP2018195509 A JP 2018195509A
Authority
JP
Japan
Prior art keywords
secondary battery
active material
meth
acrylic acid
polymer layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017099966A
Other languages
Japanese (ja)
Other versions
JP6855922B2 (en
Inventor
佑介 杉山
Yusuke Sugiyama
佑介 杉山
友邦 阿部
Tomokuni Abe
友邦 阿部
浩平 間瀬
Kohei Mase
浩平 間瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2017099966A priority Critical patent/JP6855922B2/en
Publication of JP2018195509A publication Critical patent/JP2018195509A/en
Application granted granted Critical
Publication of JP6855922B2 publication Critical patent/JP6855922B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

【課題】イオン伝導性に優れるポリマーを含む保護層で被覆されている二次電池用電極の提供。【解決手段】スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を含むポリマー層3で被覆されている二次電池用電極4であって、ポリマー層3におけるスチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内である二次電池用電極4。集電体1と集電体1上に形成された負極活物質層2と、負極活物質層2を複覆するポリマー層3とを具備する二次電池用電極4。負極活物層2が、複数枚の板状シリコン体が厚さ方向に積層してなる構造であることが好ましい、二次電池用電極4。【選択図】図1PROBLEM TO BE SOLVED: To provide a secondary battery electrode coated with a protective layer containing a polymer having excellent ionic conductivity. A secondary battery electrode (4) covered with a polymer layer (3) containing a copolymer of styrene sulfonic acid or a salt thereof and a (meth)acrylic acid-based monomer, wherein styrene sulfonic acid in the polymer layer (3) is used. The secondary battery electrode 4 in which the molar ratio of the monomer unit to the (meth)acrylic acid-based monomer unit is in the range of 9.5:0.5 to 7:3. An electrode 4 for a secondary battery, comprising a current collector 1, a negative electrode active material layer 2 formed on the current collector 1, and a polymer layer 3 that covers the negative electrode active material layer 2 in a double layer. The secondary battery electrode 4 preferably has a structure in which the negative electrode active material layer 2 has a structure in which a plurality of plate-shaped silicon bodies are laminated in the thickness direction. [Selection diagram] Figure 1

Description

本発明は、スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を含むポリマー層で被覆されている二次電池用電極に関するものである。   The present invention relates to an electrode for a secondary battery coated with a polymer layer containing a copolymer of styrenesulfonic acid or a salt thereof and a (meth) acrylic acid monomer.

リチウムイオン二次電池に代表される二次電池は、現在、携帯電子機器用の電源として主に用いられており、さらに、電気自動車用の電源としても実用化されている。そして、産業界からは、より長寿命の二次電池が求められている。一般に、二次電池は正極活物質を含む正極、負極活物質を含む負極及び電解液を具備するが、これらの構成要素の劣化に伴い、二次電池の性能は劣化する。   Secondary batteries typified by lithium ion secondary batteries are currently used mainly as power sources for portable electronic devices, and are also put into practical use as power sources for electric vehicles. Further, a secondary battery having a longer life is required from the industry. Generally, a secondary battery includes a positive electrode including a positive electrode active material, a negative electrode including a negative electrode active material, and an electrolytic solution. However, the performance of the secondary battery deteriorates as these constituent elements deteriorate.

正極、負極及び電解液の劣化を防止するため、正極活物質及び/又は負極活物質と電解液との直接接触を低減する技術として、正極活物質を含有する正極活物質層の表面や、負極活物質を含有する負極活物質層の表面に、ポリマーを含む保護層を形成する技術が提案されている。   As a technique for reducing the direct contact between the positive electrode active material and / or the negative electrode active material and the electrolytic solution in order to prevent deterioration of the positive electrode, the negative electrode, and the electrolytic solution, the surface of the positive electrode active material layer containing the positive electrode active material, the negative electrode A technique for forming a protective layer containing a polymer on the surface of a negative electrode active material layer containing an active material has been proposed.

例えば、特許文献1には、正極活物質の表面をポリマーで被覆する技術が開示されている。具体的には、集電体及び正極活物質層からなる正極を、ポリエチレンイミン溶液及びポリエチレングリコール溶液に浸漬させて、正極をポリマーで被覆する技術が開示されている。   For example, Patent Document 1 discloses a technique for coating the surface of a positive electrode active material with a polymer. Specifically, a technique is disclosed in which a positive electrode composed of a current collector and a positive electrode active material layer is immersed in a polyethyleneimine solution and a polyethylene glycol solution, and the positive electrode is coated with a polymer.

特許文献2にも、正極活物質の表面をポリマーで被覆する技術が開示されている。具体的には、集電体及び正極活物質層からなる正極を、ポリエチレングリコール溶液に浸漬させて、正極をポリマーで被覆する技術が開示されている。   Patent Document 2 also discloses a technique for coating the surface of the positive electrode active material with a polymer. Specifically, a technique is disclosed in which a positive electrode composed of a current collector and a positive electrode active material layer is immersed in a polyethylene glycol solution, and the positive electrode is coated with a polymer.

特許文献3には、電極の活物質層表面にポリエチレンオキサイドを塗布して電極構造を強化する技術が開示されており、かかる技術を採用した二次電池の容量維持率が改善されたことが記載されている。   Patent Document 3 discloses a technique for strengthening the electrode structure by applying polyethylene oxide to the surface of the active material layer of the electrode, and describes that the capacity retention rate of the secondary battery adopting such a technique has been improved. Has been.

特許文献4には、表面をポリ(メタ)アクリル酸で被覆した電極が記載されており、その具体例として、表面をポリアクリル酸で被覆した負極、及び、当該負極を具備するリチウムイオン二次電池が記載されている。   Patent Document 4 describes an electrode whose surface is coated with poly (meth) acrylic acid. Specific examples thereof include a negative electrode whose surface is coated with polyacrylic acid, and a lithium ion secondary comprising the negative electrode. A battery is described.

特開2013−243105号公報JP 2013-243105 A 特開2014−096343号公報JP 2014-096343 A 特開2013−175477号公報JP 2013-175477 A 特開2016−9670号公報Japanese Patent Laid-Open No. 2006-9670

しかしながら、本来、ポリマーはリチウムイオンなどの電荷担体の移動に対する抵抗因子であるため、ポリマーを含む保護層の技術を適用した二次電池は電池としての機能面に課題があるといえる。   However, since the polymer is inherently a resistance factor against the movement of charge carriers such as lithium ions, it can be said that the secondary battery to which the technology of the protective layer containing the polymer is applied has a problem in terms of the function as a battery.

本発明はかかる事情に鑑みて為されたものであり、イオン伝導性に優れるポリマーで被覆されている二次電池用電極を提供することを目的とする。   This invention is made | formed in view of this situation, and it aims at providing the electrode for secondary batteries coat | covered with the polymer which is excellent in ion conductivity.

さて、イオン伝導性に優れるポリマーには、電荷を有するイオンが円滑に移動するための、極性基で囲われた移動空間が必要と考えられる。そこで、本発明者は、カルボン酸基含有ポリマーを用いることを着想した。しかしながら、カルボン酸基含有ポリマーとしてポリアクリル酸を用いて製造した材料は、イオン伝導性ではあったものの、その程度が低く、必ずしも満足できるものではなかった。   Now, it is considered that a polymer having excellent ion conductivity needs a moving space surrounded by polar groups for smoothly moving charged ions. Therefore, the present inventor has conceived of using a carboxylic acid group-containing polymer. However, although the material manufactured using polyacrylic acid as a carboxylic acid group-containing polymer was ion-conductive, its degree was low and not always satisfactory.

本発明者は、ポリアクリル酸を用いて製造した材料に対する改良策として、アクリル酸とスチレンスルホン酸塩との共重合体を用いて製造した材料について、検討を行った。そして、アクリル酸とスチレンスルホン酸塩との比が特定の範囲内である共重合体を用いた材料が、満足する水準でイオン伝導性を示すことを、本発明者は発見した。かかる発見に基づき、本発明者は本発明を完成するに至った。   The present inventor has studied a material manufactured using a copolymer of acrylic acid and styrene sulfonate as an improvement measure for a material manufactured using polyacrylic acid. The inventors have found that a material using a copolymer having a ratio of acrylic acid to styrene sulfonate within a specific range exhibits ionic conductivity at a satisfactory level. Based on this discovery, the present inventor has completed the present invention.

本発明の二次電池用電極は、スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を含むポリマー層で被覆されている二次電池用電極であって、
前記ポリマー層におけるスチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内であることを特徴とする。
The electrode for a secondary battery of the present invention is an electrode for a secondary battery coated with a polymer layer containing a copolymer of styrene sulfonic acid or a salt thereof and a (meth) acrylic acid monomer,
The molar ratio of the styrene sulfonic acid monomer unit to the (meth) acrylic acid monomer unit in the polymer layer is in the range of 9.5: 0.5 to 7: 3.

本発明の二次電池用電極は新しい保護層で被覆されている二次電池用電極であり、これにより、長寿命の二次電池を提供することができる。   The secondary battery electrode of the present invention is a secondary battery electrode coated with a new protective layer, whereby a long-life secondary battery can be provided.

本発明の二次電池用電極の一態様を示す断面模式図である。It is a cross-sectional schematic diagram which shows the one aspect | mode of the electrode for secondary batteries of this invention.

以下に、本発明を実施するための形態を説明する。なお、特に断らない限り、本明細書に記載された数値範囲「a〜b」は、下限a及び上限bをその範囲に含む。そして、これらの上限値及び下限値、ならびに実施例中に列記した数値も含めてそれらを任意に組み合わせることで数値範囲を構成し得る。さらに、これらの数値範囲内から任意に選択した数値を、新たな上限や下限の数値とすることができる。   Below, the form for implementing this invention is demonstrated. Unless otherwise specified, the numerical range “ab” described herein includes the lower limit “a” and the upper limit “b”. The numerical range can be configured by arbitrarily combining these upper limit value and lower limit value and the numerical values listed in the examples. Furthermore, numerical values arbitrarily selected from these numerical ranges can be used as new upper and lower numerical values.

本発明の二次電池用電極は、スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を含むポリマー層で被覆されている二次電池用電極であって、前記ポリマー層におけるスチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内であることを特徴とする。
以下、スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を含み、スチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内であるポリマー層を「本発明のポリマー層」という場合がある。また、スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を、単に「共重合体」という場合がある。
An electrode for a secondary battery according to the present invention is an electrode for a secondary battery coated with a polymer layer containing a copolymer of styrene sulfonic acid or a salt thereof and a (meth) acrylic acid monomer, the polymer layer The molar ratio of the styrene sulfonic acid monomer unit to the (meth) acrylic acid monomer unit is in the range of 9.5: 0.5 to 7: 3.
Hereinafter, a copolymer of styrene sulfonic acid or a salt thereof and a (meth) acrylic acid monomer is included, and the molar ratio of the styrene sulfonic acid monomer unit to the (meth) acrylic acid monomer unit is 9.5: 0.5. The polymer layer in the range of ˜7: 3 may be referred to as “polymer layer of the present invention”. In addition, a copolymer of styrene sulfonic acid or a salt thereof and a (meth) acrylic acid monomer may be simply referred to as “copolymer”.

スチレンスルホン酸の塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩、アンモニウム塩を例示できる。   Examples of the styrene sulfonic acid salt include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, and ammonium salt.

(メタ)アクリル酸系モノマーの具体例としては、(メタ)アクリル酸、(メタ)アクリル酸塩、(メタ)アクリロニトリル、(メタ)アクリルアミド及び(メタ)アクリル酸エステル、並びに、これらの誘導体を例示できる。なお、本明細書において、(メタ)アクリル酸とは、アクリル酸、メタクリル酸、又はアクリル酸とメタクリル酸の両者を意味する。(メタ)アクリル酸塩、(メタ)アクリロニトリル、(メタ)アクリルアミド及び(メタ)アクリル酸エステルについても同様である。   Specific examples of (meth) acrylic acid monomers include (meth) acrylic acid, (meth) acrylate, (meth) acrylonitrile, (meth) acrylamide and (meth) acrylic acid esters, and derivatives thereof. it can. In the present specification, (meth) acrylic acid means acrylic acid, methacrylic acid, or both acrylic acid and methacrylic acid. The same applies to (meth) acrylate, (meth) acrylonitrile, (meth) acrylamide and (meth) acrylic acid ester.

(メタ)アクリル酸塩の塩としては、リチウム塩、ナトリウム塩、カリウム塩などのアルカリ金属塩、マグネシウム塩、カルシウム塩などのアルカリ土類金属塩、アンモニウム塩を例示できる。また、(メタ)アクリル酸エステルのアルコール部位としては、炭素数1〜6のアルキル基、置換基を有する炭素数1〜6のアルキル基を例示できる。炭素数1〜6のアルキル基としては、メチル基、エチル基、n−プロピル基、i−プロピル基、n−ブチル基、s−ブチル基、i−ブチル基、t−ブチル基を例示できる。誘導体とは、(メタ)アクリル酸、(メタ)アクリル酸塩、(メタ)アクリロニトリル、(メタ)アクリルアミド及び(メタ)アクリル酸エステルなる基本骨格に対して、何らかの置換基を有するものを意味する。   Examples of the salt of (meth) acrylate include alkali metal salts such as lithium salt, sodium salt and potassium salt, alkaline earth metal salts such as magnesium salt and calcium salt, and ammonium salt. Moreover, as an alcohol site | part of (meth) acrylic acid ester, a C1-C6 alkyl group and a C1-C6 alkyl group which has a substituent can be illustrated. Examples of the alkyl group having 1 to 6 carbon atoms include methyl group, ethyl group, n-propyl group, i-propyl group, n-butyl group, s-butyl group, i-butyl group, and t-butyl group. A derivative means what has a certain substituent with respect to basic skeletons, such as (meth) acrylic acid, (meth) acrylate, (meth) acrylonitrile, (meth) acrylamide and (meth) acrylate.

本明細書における置換基としては、アルキル基、アルケニル基、アルキニル基、シクロアルキル基、不飽和シクロアルキル基、芳香族基、複素環基、ハロゲン、OH、SH、CN、ニトロ基、アルコキシ基、不飽和アルコキシ基、アミノ基、アルキルアミノ基、ジアルキルアミノ基、アリールオキシ基、アシル基、アルコキシカルボニル基、アシルオキシ基、アリールオキシカルボニル基、アシルアミノ基、アルコキシカルボニルアミノ基、アリールオキシカルボニルアミノ基、スルホニルアミノ基、スルファモイル基、カルバモイル基、アルキルチオ基、アリールチオ基、スルホニル基、スルフィニル基等が挙げられる。これらの置換基はさらに置換されてもよい。また置換基が2つ以上ある場合、置換基は同一でも異なっていてもよい。   Examples of the substituent in the present specification include an alkyl group, an alkenyl group, an alkynyl group, a cycloalkyl group, an unsaturated cycloalkyl group, an aromatic group, a heterocyclic group, a halogen, OH, SH, CN, a nitro group, an alkoxy group, Unsaturated alkoxy group, amino group, alkylamino group, dialkylamino group, aryloxy group, acyl group, alkoxycarbonyl group, acyloxy group, aryloxycarbonyl group, acylamino group, alkoxycarbonylamino group, aryloxycarbonylamino group, sulfonyl Amino group, sulfamoyl group, carbamoyl group, alkylthio group, arylthio group, sulfonyl group, sulfinyl group and the like can be mentioned. These substituents may be further substituted. When there are two or more substituents, the substituents may be the same or different.

本発明のポリマー層は、スチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内であることを特徴とする。モル比が9.5:0.5〜7:3の範囲内であることにより、本発明のポリマー層は好適なイオン伝導度を示し、さらに、本発明のポリマー層で被覆された二次電池用電極は好適な特性を示す。モル比が9.5:0.5〜7:3の範囲外のポリマー層ではイオン伝導度が低く、また、かかるポリマー層で被覆された二次電池用電極は、一部好適な特性を示すものが存在するが、総合的な特性としては、満足できるものとはいえない。   The polymer layer of the present invention is characterized in that the molar ratio of the styrene sulfonic acid monomer unit to the (meth) acrylic acid monomer unit is in the range of 9.5: 0.5 to 7: 3. When the molar ratio is in the range of 9.5: 0.5 to 7: 3, the polymer layer of the present invention exhibits suitable ionic conductivity, and the secondary battery is coated with the polymer layer of the present invention. The working electrode exhibits suitable characteristics. In the polymer layer having a molar ratio outside the range of 9.5: 0.5 to 7: 3, the ionic conductivity is low, and the secondary battery electrode coated with such a polymer layer partially exhibits suitable characteristics. Some exist, but the overall characteristics are not satisfactory.

本発明のポリマー層における、スチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比は、9.5:0.5〜7.5:2.5の範囲内が好ましく、9.5:0.5〜8:2の範囲内がより好ましく、9.5:0.5〜8.5:1.5の範囲内がさらに好ましい。共重合体におけるスチレンスルホン酸モノマー単位は、スチレンスルホン酸若しくはその塩に由来する単一の構造のみを含んでいてもよいし、複数の構造を含んでいてもよい。同様に、共重合体における(メタ)アクリル酸系モノマー単位は、(メタ)アクリル酸系モノマーに由来する単一の構造のみを含んでいてもよいし、複数の構造を含んでいてもよい。   The molar ratio of the styrene sulfonic acid monomer unit to the (meth) acrylic acid monomer unit in the polymer layer of the present invention is preferably in the range of 9.5: 0.5 to 7.5: 2.5. The range of 5: 0.5 to 8: 2 is more preferable, and the range of 9.5: 0.5 to 8.5: 1.5 is more preferable. The styrene sulfonic acid monomer unit in the copolymer may contain only a single structure derived from styrene sulfonic acid or a salt thereof, or may contain a plurality of structures. Similarly, the (meth) acrylic acid monomer unit in the copolymer may include only a single structure derived from the (meth) acrylic acid monomer, or may include a plurality of structures.

スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体は、通常の重合条件下で、製造すればよい。具体的には、スチレンスルホン酸若しくはその塩と、(メタ)アクリル酸系モノマーと、これらを溶解する溶媒との存在下、公知の触媒及び/又は重合開始剤を添加して、共重合反応を開始すればよい。光重合開始剤や熱重合開始剤を用いる場合には、対応する光又は熱を供給して、共重合反応を開始すればよい。共重合反応は、窒素、アルゴン、ヘリウムなどの不活性ガス存在下で実施されるのが好ましく、適切な温度制御条件下で実施されるのが好ましい。   A copolymer of styrene sulfonic acid or a salt thereof and a (meth) acrylic acid monomer may be produced under normal polymerization conditions. Specifically, a known catalyst and / or polymerization initiator is added in the presence of styrene sulfonic acid or a salt thereof, a (meth) acrylic acid monomer, and a solvent for dissolving them, and a copolymerization reaction is performed. Just start. In the case of using a photopolymerization initiator or a thermal polymerization initiator, the corresponding light or heat may be supplied to start the copolymerization reaction. The copolymerization reaction is preferably performed in the presence of an inert gas such as nitrogen, argon or helium, and is preferably performed under appropriate temperature control conditions.

スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体の平均分子量には特に制限は無い。共重合体の重量平均分子量としては、5000〜4000000、10000〜2000000、20000〜1000000、500000〜500000の範囲を例示できる。   There is no restriction | limiting in particular in the average molecular weight of the copolymer of a styrenesulfonic acid or its salt, and a (meth) acrylic-acid type monomer. As a weight average molecular weight of a copolymer, the range of 5000-4 million, 10000-2000000, 20000-1000000, 500,000-500000 can be illustrated.

本発明のポリマー層には、本発明の趣旨を逸脱しない範囲内で、公知のポリマーなどの添加物を配合することができる。本発明のポリマー層は、50質量%以上で共重合体を含むものが好ましく、70質量%以上で共重合体を含むものがより好ましく、90質量%以上で共重合体を含むものがさらに好ましい。本発明のポリマー層として、共重合体のみで構成されるものも例示できる。   In the polymer layer of the present invention, additives such as known polymers can be blended without departing from the spirit of the present invention. The polymer layer of the present invention preferably contains a copolymer at 50% by mass or more, more preferably contains a copolymer at 70% by mass or more, and more preferably contains a copolymer at 90% by mass or more. . Examples of the polymer layer of the present invention include those composed only of a copolymer.

本発明の二次電池用電極は、正極でもよいし、負極でもよい。本発明の二次電池は本発明の二次電池用電極を具備する。本発明の二次電池において、正極及び負極の両者が本発明の二次電池用電極であってもよいし、電極のいずれか一方が本発明の二次電池用電極であって、他方が本発明のポリマー層を具備しない一般的な電極であってもよい。   The secondary battery electrode of the present invention may be a positive electrode or a negative electrode. The secondary battery of the present invention comprises the secondary battery electrode of the present invention. In the secondary battery of the present invention, both the positive electrode and the negative electrode may be the electrode for the secondary battery of the present invention, and either one of the electrodes is the electrode for the secondary battery of the present invention, and the other is the book. It may be a general electrode not having the polymer layer of the invention.

以下、二次電池の代表例であるリチウムイオン二次電池についての説明を通じて、本発明の二次電池用電極及び本発明の二次電池用電極を具備する本発明の二次電池の説明をする。本発明の二次電池用電極の具体的な態様は、集電体と、集電体の表面に形成された活物質層と、活物質層の表面に形成された本発明のポリマー層とを具備する構成である。   Hereinafter, the secondary battery of the present invention including the electrode for the secondary battery of the present invention and the electrode for the secondary battery of the present invention will be described through the description of the lithium ion secondary battery which is a representative example of the secondary battery. . A specific embodiment of the electrode for a secondary battery of the present invention includes a current collector, an active material layer formed on the surface of the current collector, and a polymer layer of the present invention formed on the surface of the active material layer. It is the structure which comprises.

集電体は、リチウムイオン二次電池などの二次電池の放電又は充電の間、電極に電流を流し続けるための化学的に不活性な電子伝導体をいう。集電体の材料は、使用する活物質に適した電圧に耐え得る金属であれば特に制限はない。集電体の材料としては、銀、銅、金、アルミニウム、タングステン、コバルト、亜鉛、ニッケル、鉄、白金、錫、インジウム、チタン、ルテニウム、タンタル、クロム、モリブデンから選ばれる少なくとも一種、並びにステンレス鋼などの金属材料を例示することができる。集電体は公知の保護層で被覆されていても良い。集電体の表面を公知の方法で処理したものを集電体として用いても良い。   A current collector refers to a chemically inert electronic conductor that keeps current flowing through an electrode during discharge or charging of a secondary battery such as a lithium ion secondary battery. The material of the current collector is not particularly limited as long as it is a metal that can withstand a voltage suitable for the active material to be used. The current collector material is at least one selected from silver, copper, gold, aluminum, tungsten, cobalt, zinc, nickel, iron, platinum, tin, indium, titanium, ruthenium, tantalum, chromium, molybdenum, and stainless steel Examples of such a metal material can be given. The current collector may be covered with a known protective layer. What collected the surface of the electrical power collector by the well-known method may be used as an electrical power collector.

正極の電位をリチウム基準で4V以上とする場合には、正極用集電体としてアルミニウムを採用するのが好ましい。   When the potential of the positive electrode is 4 V or more on the basis of lithium, it is preferable to employ aluminum as the positive electrode current collector.

具体的には、正極用集電体として、アルミニウム又はアルミニウム合金からなるものを用いるのが好ましい。ここでアルミニウムは、純アルミニウムを指し、純度99.0%以上のアルミニウムを純アルミニウムと称する。純アルミニウムに種々の元素を添加して合金としたものをアルミニウム合金と称する。アルミニウム合金としては、Al−Cu系、Al−Mn系、Al−Fe系、Al−Si系、Al−Mg系、Al−Mg−Si系、Al−Zn−Mg系が挙げられる。   Specifically, it is preferable to use a positive electrode current collector made of aluminum or an aluminum alloy. Here, aluminum refers to pure aluminum, and aluminum having a purity of 99.0% or more is referred to as pure aluminum. An alloy obtained by adding various elements to pure aluminum is referred to as an aluminum alloy. Examples of the aluminum alloy include Al—Cu, Al—Mn, Al—Fe, Al—Si, Al—Mg, Al—Mg—Si, and Al—Zn—Mg.

また、アルミニウム又はアルミニウム合金として、具体的には、例えばJIS A1085、A1N30等のA1000系合金(純アルミニウム系)、JIS A3003、A3004等のA3000系合金(Al−Mn系)、JIS A8079、A8021等のA8000系合金(Al−Fe系)が挙げられる。   Specific examples of aluminum or aluminum alloy include A1000 series alloys (pure aluminum series) such as JIS A1085 and A1N30, A3000 series alloys (Al-Mn series) such as JIS A3003 and A3004, JIS A8079, A8021, etc. A8000-based alloy (Al-Fe-based).

集電体は箔、シート、フィルム、線状、棒状、メッシュなどの形態をとることができる。そのため、集電体として、例えば、銅箔、ニッケル箔、アルミニウム箔、ステンレス箔などの金属箔を好適に用いることができる。集電体が箔、シート、フィルム形態の場合は、その厚みが1μm〜100μmの範囲内であることが好ましい。   The current collector can take the form of a foil, a sheet, a film, a linear shape, a rod shape, a mesh, or the like. Therefore, for example, a metal foil such as a copper foil, a nickel foil, an aluminum foil, and a stainless steel foil can be suitably used as the current collector. When the current collector is in the form of foil, sheet or film, the thickness is preferably in the range of 1 μm to 100 μm.

活物質層は、リチウムイオンなどの電荷担体を吸蔵及び放出し得る活物質、並びに必要に応じて結着剤及び導電助剤を含む。活物質層には、活物質が活物質層全体の質量に対して、60〜99質量%で含まれるのが好ましく、70〜95質量%で含まれるのがより好ましい。   The active material layer includes an active material that can occlude and release charge carriers such as lithium ions, and a binder and a conductive aid as necessary. The active material layer preferably contains the active material in an amount of 60 to 99% by mass, more preferably 70 to 95% by mass with respect to the mass of the entire active material layer.

正極活物質としては、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3)で表されるリチウム複合金属酸化物、LiMnOを挙げることができる。また、正極活物質として、LiMn等のスピネル構造の金属酸化物、スピネル構造の金属酸化物と層状化合物の混合物で構成される固溶体、LiMPO、LiMVO又はLiMSiO(式中のMはCo、Ni、Mn、Feのうちの少なくとも一種から選択される)などで表されるポリアニオン系化合物を挙げることができる。さらに、正極活物質として、LiFePOFなどのLiMPOF(Mは遷移金属)で表されるタボライト系化合物、LiFeBOなどのLiMBO(Mは遷移金属)で表されるボレート系化合物を挙げることができる。正極活物質として用いられるいずれの金属酸化物も上記の組成式を基本組成とすればよく、基本組成に含まれる金属元素を他の金属元素で置換したものも使用可能である。また、正極活物質として、電荷担体(例えば充放電に寄与するリチウムイオン)を含まないものを用いても良い。例えば、硫黄単体、硫黄と炭素を複合化した化合物、TiSなどの金属硫化物、V、MnOなどの酸化物、ポリアニリン及びアントラキノン並びにこれら芳香族を化学構造に含む化合物、共役二酢酸系有機物などの共役系材料、その他公知の材料を用いることもできる。さらに、ニトロキシド、ニトロニルニトロキシド、ガルビノキシル、フェノキシルなどの安定なラジカルを有する化合物を正極活物質として採用してもよい。リチウム等の電荷担体を含まない正極活物質材料を用いる場合には、正極及び/又は負極に、公知の方法により、予め電荷担体を添加しておく必要がある。電荷担体は、イオンの状態で添加しても良いし、金属等の非イオンの状態で添加しても良い。例えば、電荷担体がリチウムである場合には、リチウム箔を正極及び/又は負極に貼り付けるなどして一体化しても良い。 As the positive electrode active material, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, Rh, Fe, Ge, Zn, Ru, At least one element selected from Sc, Sn, In, Y, Bi, S, Si, Na, K, P, and V, a lithium mixed metal oxide represented by 1.7 ≦ f ≦ 3), Li 2 MnO 3 can be mentioned. Further, as a positive electrode active material, a spinel structure metal oxide such as LiMn 2 O 4 , a solid solution composed of a mixture of a spinel structure metal oxide and a layered compound, LiMPO 4 , LiMVO 4 or Li 2 MSiO 4 (wherein M is selected from at least one of Co, Ni, Mn, and Fe). Furthermore, as the positive electrode active material, tavorite compound (the M a transition metal) LiMPO 4 F, such as LiFePO 4 F represented by, Limbo 3 such LiFeBO 3 (M is a transition metal) include borate-based compound represented by be able to. Any metal oxide used as the positive electrode active material may have the above composition formula as a basic composition, and a metal element contained in the basic composition may be substituted with another metal element. Moreover, you may use as a positive electrode active material the thing which does not contain a charge carrier (for example, lithium ion which contributes to charging / discharging). For example, sulfur alone, compounds in which sulfur and carbon are compounded, metal sulfides such as TiS 2 , oxides such as V 2 O 5 and MnO 2 , compounds containing polyaniline and anthraquinone, and aromatics in their chemical structures, conjugated two Conjugated materials such as acetic acid organic materials and other known materials can also be used. Further, a compound having a stable radical such as nitroxide, nitronyl nitroxide, galvinoxyl, phenoxyl, etc. may be adopted as the positive electrode active material. When using a positive electrode active material that does not contain a charge carrier such as lithium, it is necessary to add a charge carrier to the positive electrode and / or the negative electrode in advance by a known method. The charge carrier may be added in an ionic state or in a non-ionic state such as a metal. For example, when the charge carrier is lithium, it may be integrated by attaching a lithium foil to the positive electrode and / or the negative electrode.

高容量及び耐久性などに優れる点から、正極活物質として、層状岩塩構造の一般式:LiNiCoMn(0.2≦a≦2、b+c+d+e=1、0≦e<1、DはW、Mo、Re、Pd、Ba、Cr、B、Sb、Sr、Pb、Ga、Al、Nb、Mg、Ta、Ti、La、Zr、Cu、Ca、Ir、Hf、Rh、Fe、Ge、Zn、Ru、Sc、Sn、In、Y、Bi、S、Si、Na、K、P、Vから選ばれる少なくとも1の元素、1.7≦f≦3) で表されるリチウム複合金属酸化物を採用することが好ましい。 From the viewpoint of excellent and high capacity, and durability, as the positive electrode active material, the general formula of the layered rock salt structure: Li a Ni b Co c Mn d D e O f (0.2 ≦ a ≦ 2, b + c + d + e = 1,0 ≦ e <1, D is W, Mo, Re, Pd, Ba, Cr, B, Sb, Sr, Pb, Ga, Al, Nb, Mg, Ta, Ti, La, Zr, Cu, Ca, Ir, Hf, At least one element selected from Rh, Fe, Ge, Zn, Ru, Sc, Sn, In, Y, Bi, S, Si, Na, K, P, V, 1.7 ≦ f ≦ 3) It is preferable to employ a lithium composite metal oxide.

上記一般式において、b、c、dの値は、上記条件を満足するものであれば特に制限はないが、0<b<1、0<c<1、0<d<1であるものが良く、また、b、c、dの少なくともいずれか一つが10/100<b<90/100、10/100<c<90/100、5/100<d<70/100の範囲であることが好ましく、20/100<b<80/100、12/100<c<70/100、10/100<d<60/100の範囲であることがより好ましく、30/100<b<70/100、15/100<c<50/100、12/100<d<50/100の範囲であることがさらに好ましい。   In the above general formula, the values of b, c, and d are not particularly limited as long as the above conditions are satisfied, but those in which 0 <b <1, 0 <c <1, 0 <d <1 are satisfied. And at least one of b, c, and d is in the range of 10/100 <b <90/100, 10/100 <c <90/100, 5/100 <d <70/100. More preferably, the ranges are 20/100 <b <80/100, 12/100 <c <70/100, 10/100 <d <60/100, 30/100 <b <70/100, More preferably, the ranges are 15/100 <c <50/100 and 12/100 <d <50/100.

a、e、fについては、上記一般式で規定する範囲内の数値であればよく、好ましくは0.5≦a≦1.5、0≦e<0.2、1.8≦f≦2.5、より好ましくは0.8≦a≦1.3、0≦e<0.1、1.9≦f≦2.1をそれぞれ例示することができる。   About a, e, and f, what is necessary is just a numerical value within the range prescribed | regulated by the said general formula, Preferably 0.5 <= a <= 1.5, 0 <= e <0.2, 1.8 <= f <= 2 0.5, more preferably 0.8 ≦ a ≦ 1.3, 0 ≦ e <0.1, 1.9 ≦ f ≦ 2.1, respectively.

高容量及び耐久性などに優れる点から、正極活物質として、スピネル構造のLiMn2―y(Aは、Ca、Mg、S、Si、Na、K、Al、P、Ga、Geから選ばれる少なくとも1の元素、及び、Niなどの遷移金属元素から選ばれる少なくとも1種の金属元素から選択される。0<x≦2.2、0≦y≦1)を例示できる。xの値の範囲としては、0.5≦x≦1.8、0.7≦x≦1.5、0.9≦x≦1.2を例示でき、yの値の範囲としては、0≦y≦0.8、0≦y≦0.6を例示できる。具体的なスピネル構造の化合物として、LiMn、LiMn1.5Ni0.5を例示できる。 From the viewpoint of excellent and high capacity, and durability, as a positive electrode active material, the Li x Mn 2-y A y O 4 (A spinel structure, Ca, Mg, S, Si , Na, K, Al, P, Ga And at least one element selected from Ge and at least one metal element selected from transition metal elements such as Ni. 0 <x ≦ 2.2, 0 ≦ y ≦ 1). Examples of the value range of x include 0.5 ≦ x ≦ 1.8, 0.7 ≦ x ≦ 1.5, and 0.9 ≦ x ≦ 1.2. The value range of y is 0 ≦ y ≦ 0.8, 0 ≦ y ≦ 0.6 can be exemplified. Specific examples of the spinel structure compound include LiMn 2 O 4 and LiMn 1.5 Ni 0.5 O 4 .

具体的な正極活物質として、LiFePO、LiFeSiO、LiCoPO、LiCoPO、LiMnPO、LiMnSiO、LiCoPOFを例示できる。他の具体的な正極活物質として、LiMnO−LiCoOを例示できる。 Specific examples of the positive electrode active material include LiFePO 4 , Li 2 FeSiO 4 , LiCoPO 4 , Li 2 CoPO 4 , Li 2 MnPO 4 , Li 2 MnSiO 4 , and Li 2 CoPO 4 F. As another specific positive electrode active material, Li 2 MnO 3 —LiCoO 2 can be exemplified.

負極活物質としては、電荷担体を吸蔵及び放出し得る材料が使用可能である。したがって、リチウムイオンなどの電荷担体を吸蔵及び放出可能である単体、合金又は化合物であれば特に限定はない。たとえば、負極活物質としてLiや、炭素、ケイ素、ゲルマニウム、錫などの14族元素、アルミニウム、インジウムなどの13族元素、亜鉛、カドミウムなどの12族元素、アンチモン、ビスマスなどの15族元素、マグネシウム、カルシウムなどのアルカリ土類金属、銀、金などの11族元素をそれぞれ単体で採用すればよい。合金又は化合物の具体例としては、Ag−Sn合金、Cu−Sn合金、Co−Sn合金等の錫系材料、各種黒鉛などの炭素系材料、ケイ素単体と二酸化ケイ素に不均化するSiO(0.3≦x≦1.6)などのケイ素系材料、ケイ素単体若しくはケイ素系材料と炭素系材料を組み合わせた複合体が挙げられる。また、負極活物質して、Nb、TiO、LiTi12、WO、MoO、Fe等の酸化物、又は、Li3−xN(M=Co、Ni、Cu)で表される窒化物を採用しても良い。負極活物質として、これらのものの一種以上を使用することができる。 As the negative electrode active material, a material that can occlude and release charge carriers can be used. Therefore, there is no particular limitation as long as it is a simple substance, alloy, or compound that can occlude and release charge carriers such as lithium ions. For example, as a negative electrode active material, Li, group 14 elements such as carbon, silicon, germanium and tin, group 13 elements such as aluminum and indium, group 12 elements such as zinc and cadmium, group 15 elements such as antimony and bismuth, magnesium , Alkaline earth metals such as calcium, and group 11 elements such as silver and gold may be employed alone. Specific examples of the alloy or compound include tin-based materials such as Ag-Sn alloy, Cu-Sn alloy, Co-Sn alloy, carbon-based materials such as various graphites, SiO x (disproportionated to silicon simple substance and silicon dioxide). Examples thereof include silicon-based materials such as 0.3 ≦ x ≦ 1.6), silicon alone, or composites obtained by combining silicon-based materials and carbon-based materials. In addition, as the negative electrode active material, oxides such as Nb 2 O 5 , TiO 2 , Li 4 Ti 5 O 12 , WO 2 , MoO 2 , Fe 2 O 3 , or Li 3-x M x N (M = A nitride represented by (Co, Ni, Cu) may be employed. One or more of these materials can be used as the negative electrode active material.

高容量化の可能性の点から、好ましい負極活物質として、黒鉛、Si含有材料、Sn含有材料を挙げることができる。   In view of the possibility of increasing the capacity, preferable negative electrode active materials include graphite, Si-containing materials, and Sn-containing materials.

Si含有材料の具体例として、Si単体や、Si相とケイ素酸化物相との2相に不均化されたSiO(0.3≦x≦1.6)を例示できる。SiOにおけるSi相は、リチウムイオンを吸蔵及び放出でき、二次電池の充放電に伴って体積変化する。ケイ素酸化物相はSi相に比べて充放電に伴う体積変化が少ない。つまり、負極活物質としてのSiOは、Si相により高容量を実現するとともに、ケイ素酸化物相を有することにより負極活物質全体の体積変化を抑制する。なお、xが下限値未満であると、Siの比率が過大になるため、充放電時の体積変化が大きくなりすぎて二次電池のサイクル特性が低下する。一方、xが上限値を超えると、Si比率が過小になってエネルギー密度が低下する。xの範囲は0.5≦x≦1.5であるのがより好ましく、0.7≦x≦1.2であるのがさらに好ましい。 Specific examples of the Si-containing material include Si alone and SiO x (0.3 ≦ x ≦ 1.6) disproportionated into two phases of a Si phase and a silicon oxide phase. The Si phase in SiO x can occlude and release lithium ions, and changes in volume as the secondary battery is charged and discharged. The silicon oxide phase has less volume change associated with charge / discharge than the Si phase. That is, SiO x as the negative electrode active material realizes a high capacity by the Si phase and suppresses the volume change of the entire negative electrode active material by having the silicon oxide phase. If x is less than the lower limit value, the Si ratio becomes excessive, so that the volume change during charging and discharging becomes too large, and the cycle characteristics of the secondary battery deteriorate. On the other hand, when x exceeds the upper limit value, the Si ratio becomes too small and the energy density decreases. The range of x is more preferably 0.5 ≦ x ≦ 1.5, and further preferably 0.7 ≦ x ≦ 1.2.

なお、上記したSiOにおいては、リチウムイオン二次電池の充放電時にリチウムとSi相のケイ素とによる合金化反応が生じると考えられている。そして、この合金化反応がリチウムイオン二次電池の充放電に寄与すると考えられている。後述するSn含有材料についても、同様に、スズとリチウムとの合金化反応によって充放電できると考えられている。 In the SiO x as described above, it is believed to alloying reaction with the silicon lithium and Si phase during charging and discharging of the lithium ion secondary battery may occur. And it is thought that this alloying reaction contributes to charging / discharging of a lithium ion secondary battery. Similarly, it is considered that the Sn-containing material described later can be charged and discharged by an alloying reaction between tin and lithium.

Sn含有材料の具体例として、Sn単体、Cu−SnやCo−Snなどのスズ合金、アモルファススズ酸化物、スズケイ素酸化物を例示できる。アモルファススズ酸化物としてはSnB0.40.63.1を例示でき、スズケイ素酸化物としてはSnSiOを例示できる。 Specific examples of the Sn-containing material include Sn alone, tin alloys such as Cu—Sn and Co—Sn, amorphous tin oxide, and tin silicon oxide. SnB 0.4 P 0.6 O 3.1 can be exemplified as the amorphous tin oxide, and SnSiO 3 can be exemplified as the tin silicon oxide.

Si含有材料、及び、Sn含有材料は、炭素材料と複合化して負極活物質とすることが好ましい。複合化に因り、特にケイ素及び/又はスズの構造が安定し、負極の耐久性が向上する。上記複合化は、既知の方法で行えば良い。複合化に用いられる炭素材料としては、黒鉛、ハードカーボン、ソフトカーボン等を採用すればよい。黒鉛は、天然黒鉛でもよく、人造黒鉛でもよい。   The Si-containing material and the Sn-containing material are preferably combined with a carbon material to form a negative electrode active material. Due to the composite, the structure of silicon and / or tin is particularly stabilized, and the durability of the negative electrode is improved. The above compounding may be performed by a known method. As the carbon material used for the composite, graphite, hard carbon, soft carbon or the like may be employed. The graphite may be natural graphite or artificial graphite.

Si含有材料の具体例として、国際公開第2014/080608号などに開示されるシリコン材料(以下、単に「シリコン材料」という。)を挙げることができる。   Specific examples of the Si-containing material include a silicon material disclosed in International Publication No. 2014/080608 (hereinafter simply referred to as “silicon material”).

シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するものである。シリコン材料は、例えば、CaSiと酸とを反応させてポリシランを主成分とする層状シリコン化合物を合成する工程、さらに、当該層状シリコン化合物を300℃以上で加熱して水素を離脱させる工程を経て製造されるものである。 The silicon material has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. For example, the silicon material is subjected to a process of synthesizing a layered silicon compound containing polysilane as a main component by reacting CaSi 2 with an acid, and further a process of heating the layered silicon compound at 300 ° C. or higher to desorb hydrogen. It is manufactured.

シリコン材料の製造方法を、酸として塩化水素を用いた場合の理想的な反応式で示すと以下のとおりとなる。
3CaSi+6HCl → Si+3CaCl
Si → 6Si+3H
The production method of the silicon material is represented by the following ideal reaction formula when hydrogen chloride is used as the acid.
3CaSi 2 + 6HCl → Si 6 H 6 + 3CaCl 2
Si 6 H 6 → 6Si + 3H 2

ただし、ポリシランであるSiを合成する上段の反応では、副生物や不純物除去の観点から、通常、反応溶媒として水が用いられる。そして、Siは水と反応し得るため、上段の反応を含む層状シリコン化合物を合成する工程において、層状シリコン化合物がSiのみを含むものとして製造されることはほとんどなく、層状シリコン化合物はSi(OH)(Xは酸のアニオン由来の元素若しくは基、s+t+u=6、0<s<6、0<t<6、0<u<6)で表されるものとして製造される。なお、上記の化学式においては、残存し得るCaなどの不可避不純物については、考慮していない。そして、当該層状シリコン化合物を加熱して得られるシリコン材料も、酸素や酸のアニオン由来の元素を含む。 However, in the upper reaction for synthesizing Si 6 H 6 which is polysilane, water is usually used as a reaction solvent from the viewpoint of removing by-products and impurities. Since Si 6 H 6 can react with water, in the step of synthesizing the layered silicon compound including the upper reaction, the layered silicon compound is hardly manufactured as containing only Si 6 H 6 , and the layered The silicon compound is represented by Si 6 H s (OH) t X u (X is an element or group derived from an acid anion, s + t + u = 6, 0 <s <6, 0 <t <6, 0 <u <6). Manufactured as a product. In the above chemical formula, inevitable impurities such as Ca that can remain are not taken into consideration. A silicon material obtained by heating the layered silicon compound also contains an element derived from an anion of oxygen or acid.

既述のとおり、シリコン材料は、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有する。リチウムイオン等の電荷担体が効率的に吸蔵及び放出されるためには、板状シリコン体は厚さが10nm〜100nmの範囲内のものが好ましく、20nm〜50nmの範囲内のものがより好ましい。板状シリコン体の長手方向の長さは、0.1μm〜50μmの範囲内のものが好ましい。また、板状シリコン体は、(長手方向の長さ)/(厚さ)が2〜1000の範囲内であるのが好ましい。板状シリコン体の積層構造は走査型電子顕微鏡などによる観察で確認できる。また、この積層構造は、原料のCaSiにおけるSi層の名残りであると考えられる。 As described above, the silicon material has a structure in which a plurality of plate-like silicon bodies are laminated in the thickness direction. In order to efficiently store and release charge carriers such as lithium ions, the plate-like silicon body preferably has a thickness in the range of 10 nm to 100 nm, more preferably in the range of 20 nm to 50 nm. The length in the longitudinal direction of the plate-like silicon body is preferably within a range of 0.1 μm to 50 μm. The plate-like silicon body preferably has (length in the longitudinal direction) / (thickness) in the range of 2 to 1000. The laminated structure of the plate-like silicon body can be confirmed by observation with a scanning electron microscope or the like. This laminated structure is considered to be a remnant of the Si layer in the raw material CaSi 2 .

シリコン材料には、アモルファスシリコン及び/又はシリコン結晶子が含まれるのが好ましい。特に、上記板状シリコン体において、アモルファスシリコンをマトリックスとし、シリコン結晶子が当該マトリックス中に点在している状態が好ましい。シリコン結晶子のサイズは、0.5nm〜300nmの範囲内が好ましく、1nm〜100nmの範囲内がより好ましく、1nm〜50nmの範囲内がさらに好ましく、1nm〜10nmの範囲内が特に好ましい。なお、シリコン結晶子のサイズは、シリコン材料に対してX線回折測定を行い、得られたX線回折チャートのSi(111)面の回折ピークの半値幅を用いたシェラーの式から算出される。   The silicon material preferably includes amorphous silicon and / or silicon crystallites. In particular, the above plate-like silicon body is preferably in a state where amorphous silicon is used as a matrix and silicon crystallites are scattered in the matrix. The size of the silicon crystallite is preferably in the range of 0.5 nm to 300 nm, more preferably in the range of 1 nm to 100 nm, still more preferably in the range of 1 nm to 50 nm, and particularly preferably in the range of 1 nm to 10 nm. The size of the silicon crystallite is calculated from the Scherrer equation using X-ray diffraction measurement on the silicon material and using the half-value width of the diffraction peak of the Si (111) plane of the obtained X-ray diffraction chart. .

シリコン材料に含まれる板状シリコン体、アモルファスシリコン及びシリコン結晶子の存在量や大きさは、主に加熱温度や加熱時間に左右される。加熱温度は、350℃〜950℃の範囲内が好ましく、400℃〜900℃の範囲内がより好ましい。   The abundance and size of the plate-like silicon body, amorphous silicon and silicon crystallite contained in the silicon material mainly depend on the heating temperature and the heating time. The heating temperature is preferably in the range of 350 ° C to 950 ° C, more preferably in the range of 400 ° C to 900 ° C.

シリコン材料は炭素で被覆されていてもよい。炭素で被覆されたシリコン材料は導電性に優れる。   The silicon material may be coated with carbon. A silicon material coated with carbon is excellent in conductivity.

シリコン材料の平均粒子径は、2〜7μmの範囲内が好ましく、2.5〜6.5μmの範囲内がより好ましい。平均粒子径が小さすぎるシリコン材料を用いると、凝集性や濡れ性の観点から、負極製造が困難になる場合がある。具体的には、負極製造時に調製するスラリー中において、平均粒子径が小さすぎるシリコン材料が凝集する場合がある。他方、平均粒子径が大きすぎるシリコン材料を用いた負極を具備するリチウムイオン二次電池は、好適な充放電ができない場合がある。平均粒子径が大きすぎるシリコン材料においては、リチウムイオンが当該シリコン材料の内部まで十分に拡散し得ないことが原因と推測される。なお、本明細書における平均粒子径とは、一般的なレーザー回折式粒度分布測定装置で試料を測定した場合におけるD50を意味する。   The average particle size of the silicon material is preferably in the range of 2 to 7 μm, and more preferably in the range of 2.5 to 6.5 μm. If a silicon material having an average particle size that is too small is used, it may be difficult to manufacture the negative electrode from the viewpoint of cohesion and wettability. Specifically, in the slurry prepared at the time of manufacturing the negative electrode, a silicon material having an average particle size that is too small may aggregate. On the other hand, a lithium ion secondary battery including a negative electrode using a silicon material having an excessively large average particle size may not be able to be charged / discharged appropriately. In the case of a silicon material having an average particle size that is too large, it is presumed that lithium ions cannot sufficiently diffuse into the silicon material. In addition, the average particle diameter in this specification means D50 when a sample is measured with a general laser diffraction type particle size distribution measuring apparatus.

結着剤としては、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、フッ素ゴム等の含フッ素樹脂、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、ポリイミド、ポリアミドイミド等のイミド系樹脂、アルコキシシリル基含有樹脂、カルボキシメチルセルロース、スチレンブタジエンゴムなどの公知のものを採用すればよい。   Examples of the binder include fluorine-containing resins such as polyvinylidene fluoride, polytetrafluoroethylene, and fluororubber, thermoplastic resins such as polypropylene and polyethylene, imide resins such as polyimide and polyamideimide, alkoxysilyl group-containing resins, and carboxymethylcellulose. What is necessary is just to employ | adopt well-known things, such as a styrene butadiene rubber.

また、国際公開第2016/063882号に開示される、ポリアクリル酸やポリメタクリル酸などのカルボキシル基含有ポリマーをジアミンなどのポリアミンで架橋した架橋ポリマーを、結着剤として用いてもよい。   A cross-linked polymer obtained by cross-linking a carboxyl group-containing polymer such as polyacrylic acid or polymethacrylic acid with a polyamine such as diamine disclosed in International Publication No. 2016/063882 may be used as a binder.

架橋ポリマーに用いられるジアミンとしては、エチレンジアミン、プロピレンジアミン、ヘキサメチレンジアミン等のアルキレンジアミン、1,4−ジアミノシクロヘキサン、1,3−ジアミノシクロヘキサン、イソホロンジアミン、ビス(4−アミノシクロヘキシル)メタン等の含飽和炭素環ジアミン、m−フェニレンジアミン、p−フェニレンジアミン、4,4’−ジアミノジフェニルメタン、4,4’−ジアミノジフェニルエーテル、ビス(4−アミノフェニル)スルホン、ベンジジン、o−トリジン、2,4−トリレンジアミン、2,6−トリレンジアミン、キシリレンジアミン、ナフタレンジアミン等の芳香族ジアミンが挙げられる。   Examples of the diamine used in the crosslinked polymer include alkylene diamines such as ethylene diamine, propylene diamine, and hexamethylene diamine, 1,4-diaminocyclohexane, 1,3-diaminocyclohexane, isophorone diamine, and bis (4-aminocyclohexyl) methane. Saturated carbocyclic diamine, m-phenylenediamine, p-phenylenediamine, 4,4′-diaminodiphenylmethane, 4,4′-diaminodiphenyl ether, bis (4-aminophenyl) sulfone, benzidine, o-tolidine, 2,4- Aromatic diamines such as tolylenediamine, 2,6-tolylenediamine, xylylenediamine, and naphthalenediamine are exemplified.

活物質層中の結着剤の配合割合は、質量比で、活物質:結着剤=1:0.005〜1:0.3であるのが好ましい。結着剤が少なすぎると電極の成形性が低下し、また、結着剤が多すぎると電極のエネルギー密度が低くなるためである。   The blending ratio of the binder in the active material layer is preferably a mass ratio of active material: binder = 1: 0.005 to 1: 0.3. This is because when the amount of the binder is too small, the moldability of the electrode is lowered, and when the amount of the binder is too large, the energy density of the electrode is lowered.

導電助剤は、電極の導電性を高めるために添加される。そのため、導電助剤は、電極の導電性が不足する場合に任意に加えればよく、電極の導電性が十分に優れている場合には加えなくても良い。導電助剤としては化学的に不活性な電子高伝導体であれば良く、炭素質微粒子であるカーボンブラック、黒鉛、気相法炭素繊維(Vapor Grown Carbon Fiber)、および各種金属粒子などが例示される。カーボンブラックとしては、アセチレンブラック、ケッチェンブラック(登録商標)、ファーネスブラック、チャンネルブラックなどが例示される。これらの導電助剤を単独又は二種以上組み合わせて活物質層に添加することができる。活物質層中の導電助剤の配合割合は、質量比で、活物質:導電助剤=1:0.01〜1:0.5であるのが好ましい。導電助剤が少なすぎると効率のよい導電パスを形成できず、また、導電助剤が多すぎると活物質層の成形性が悪くなるとともに電極のエネルギー密度が低くなるためである。   The conductive assistant is added to increase the conductivity of the electrode. Therefore, the conductive auxiliary agent may be added arbitrarily when the electrode conductivity is insufficient, and may not be added when the electrode conductivity is sufficiently excellent. The conductive auxiliary agent may be any chemically inert electronic high conductor, and examples thereof include carbon black, graphite, Vapor Grown Carbon Fiber, and various metal particles. The Examples of carbon black include acetylene black, ketjen black (registered trademark), furnace black, and channel black. These conductive assistants can be added to the active material layer alone or in combination of two or more. The blending ratio of the conductive assistant in the active material layer is preferably a mass ratio of active material: conductive assistant = 1: 0.01 to 1: 0.5. This is because if the amount of the conductive auxiliary is too small, an efficient conductive path cannot be formed, and if the amount of the conductive auxiliary is too large, the moldability of the active material layer is deteriorated and the energy density of the electrode is lowered.

集電体の表面に活物質層を形成させるには、ロールコート法、ダイコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いて、集電体の表面に活物質を塗布すればよい。具体的には、活物質、結着剤、溶剤、並びに必要に応じて導電助剤を混合してスラリーにしてから、当該スラリーを集電体の表面に塗布後、乾燥する。溶剤としては、N−メチル−2−ピロリドン、メタノール、メチルイソブチルケトン、水を例示できる。電極密度を高めるべく、乾燥後のものを圧縮しても良い。   In order to form an active material layer on the surface of the current collector, a current collecting method such as a roll coating method, a die coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method can be used. An active material may be applied to the surface of the body. Specifically, an active material, a binder, a solvent, and a conductive additive as necessary are mixed to form a slurry, and the slurry is applied to the surface of the current collector and then dried. Examples of the solvent include N-methyl-2-pyrrolidone, methanol, methyl isobutyl ketone, and water. In order to increase the electrode density, the dried product may be compressed.

本発明の二次電池用電極は本発明のポリマー層で被覆されている。そのため、正極活物質を含む正極活物質層及び/又は負極活物質を含む負極活物質層が、電解液と直接接触することを抑制できる。また、本発明のポリマー層は一定程度の柔軟性を有しているため、充放電に伴う正極活物質及び負極活物質の膨張及び収縮に追従可能であり、正極活物質及び負極活物質の電極からの脱落を防止することができる。   The electrode for a secondary battery of the present invention is coated with the polymer layer of the present invention. Therefore, it can suppress that the positive electrode active material layer containing a positive electrode active material and / or the negative electrode active material layer containing a negative electrode active material contact with electrolyte solution directly. In addition, since the polymer layer of the present invention has a certain degree of flexibility, it can follow the expansion and contraction of the positive electrode active material and the negative electrode active material accompanying charge / discharge, and the positive electrode active material and the negative electrode active material electrode Can be prevented from falling off.

本発明のポリマー層の厚みには特に制限が無いが、0.05〜20μmが好ましく、0.1〜15μmがより好ましく、0.5〜10μmがさらに好ましく、0.5〜5μmが特に好ましい。   Although there is no restriction | limiting in particular in the thickness of the polymer layer of this invention, 0.05-20 micrometers is preferable, 0.1-15 micrometers is more preferable, 0.5-10 micrometers is further more preferable, 0.5-5 micrometers is especially preferable.

活物質層の表面に本発明のポリマー層を設けるには、例えば、共重合体を製造した反応液を、適宜適切な濃度に調製して、活物質層の表面に塗布する塗布工程を実施した後、乾燥工程を実施すれば良い。または、共重合体を製造した反応液から共重合体を単離した上で、単離した共重合体を溶媒に溶解した溶液を調製して、本発明のポリマー層を設けてもよい。塗布工程では、ロールコート法、ディップコート法、ドクターブレード法、スプレーコート法、カーテンコート法などの従来から公知の方法を用いればよい。乾燥工程は、常圧条件で行っても良いし、真空乾燥機を用いた減圧条件下で行っても良い。乾燥温度は共重合体が分解しない範囲内で適宜設定すればよく、溶媒の沸点以上の温度が好ましい。乾燥時間は塗布量及び乾燥温度に応じ適宜設定すればよい。   In order to provide the polymer layer of the present invention on the surface of the active material layer, for example, a reaction solution in which a copolymer was produced was appropriately adjusted to an appropriate concentration, and an application step of applying to the surface of the active material layer was performed. Thereafter, a drying process may be performed. Or after isolating a copolymer from the reaction liquid which manufactured the copolymer, the solution which melt | dissolved the isolated copolymer in a solvent may be prepared, and the polymer layer of this invention may be provided. In the coating process, a conventionally known method such as a roll coating method, a dip coating method, a doctor blade method, a spray coating method, or a curtain coating method may be used. The drying step may be performed under normal pressure conditions or under reduced pressure conditions using a vacuum dryer. What is necessary is just to set a drying temperature suitably within the range which a copolymer does not decompose | disassemble, and the temperature beyond the boiling point of a solvent is preferable. What is necessary is just to set drying time suitably according to an application quantity and drying temperature.

図1は、本発明の二次電池用電極の一態様を示す断面模式図である。集電体1は電子伝導体からなる。そして、該集電体1の表面に活物質及び結着剤を有する活物質層2が形成されており、さらに、活物質層2の表面を被覆するポリマー層3が形成されている。二次電池用電極4は、集電体1、活物質層2及びポリマー層3で構成される。   FIG. 1 is a schematic cross-sectional view showing one embodiment of the electrode for a secondary battery of the present invention. The current collector 1 is made of an electron conductor. An active material layer 2 having an active material and a binder is formed on the surface of the current collector 1, and a polymer layer 3 that covers the surface of the active material layer 2 is further formed. The secondary battery electrode 4 includes a current collector 1, an active material layer 2, and a polymer layer 3.

本発明のリチウムイオン二次電池における電極以外の具体的な構成として、セパレータ及び電解液を挙げることができる。   Specific configurations other than the electrodes in the lithium ion secondary battery of the present invention include a separator and an electrolytic solution.

セパレータは、正極と負極とを隔離し、両極の接触による短絡を防止しつつ、リチウムイオンを通過させるものである。セパレータとしては、公知のものを採用すればよく、ポリテトラフルオロエチレン、ポリプロピレン、ポリエチレン、ポリイミド、ポリアミド、ポリアラミド(Aromatic polyamide)、ポリエステル、ポリアクリロニトリル等の合成樹脂、セルロース、アミロース等の多糖類、フィブロイン、ケラチン、リグニン、スベリン等の天然高分子、セラミックスなどの電気絶縁性材料を1種若しくは複数用いた多孔体、不織布、織布などを挙げることができる。また、セパレータは多層構造としてもよい。   The separator separates the positive electrode and the negative electrode and allows lithium ions to pass while preventing a short circuit due to contact between the two electrodes. A known separator may be employed, such as polytetrafluoroethylene, polypropylene, polyethylene, polyimide, polyamide, polyaramid (Aromatic polyamide), polyester, polyacrylonitrile or other synthetic resin, cellulose, amylose or other polysaccharide, fibroin. And porous materials, nonwoven fabrics, woven fabrics, and the like using one or more electrical insulating materials such as natural polymers such as keratin, lignin, and suberin, and ceramics. The separator may have a multilayer structure.

電解液は、非水溶媒と非水溶媒に溶解した電解質とを含んでいる。   The electrolytic solution includes a nonaqueous solvent and an electrolyte dissolved in the nonaqueous solvent.

非水溶媒としては、環状エステル類、鎖状エステル類、エーテル類等が使用できる。環状エステル類としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ガンマブチロラクトン、ビニレンカーボネート、2−メチル−ガンマブチロラクトン、アセチル−ガンマブチロラクトン、ガンマバレロラクトンを例示できる。鎖状エステル類としては、ジメチルカーボネート、ジエチルカーボネート、ジブチルカーボネート、ジプロピルカーボネート、エチルメチルカーボネート、プロピオン酸アルキルエステル、マロン酸ジアルキルエステル、酢酸アルキルエステル等を例示できる。エーテル類としては、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,4−ジオキサン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、1,2−ジブトキシエタンを例示できる。非水溶媒としては、上記具体的な溶媒の化学構造のうち一部又は全部の水素がフッ素に置換した化合物を採用しても良い。   As the non-aqueous solvent, cyclic esters, chain esters, ethers and the like can be used. Examples of cyclic esters include ethylene carbonate, propylene carbonate, butylene carbonate, gamma butyrolactone, vinylene carbonate, 2-methyl-gamma butyrolactone, acetyl-gamma butyrolactone, and gamma valerolactone. Examples of chain esters include dimethyl carbonate, diethyl carbonate, dibutyl carbonate, dipropyl carbonate, ethyl methyl carbonate, propionic acid alkyl ester, malonic acid dialkyl ester, and acetic acid alkyl ester. Examples of ethers include tetrahydrofuran, 2-methyltetrahydrofuran, 1,4-dioxane, 1,2-dimethoxyethane, 1,2-diethoxyethane, and 1,2-dibutoxyethane. As the non-aqueous solvent, a compound in which part or all of hydrogen in the chemical structure of the specific solvent is substituted with fluorine may be employed.

電解質としては、LiClO、LiAsF、LiPF、LiBF、LiCFSO、LiN(CFSO等のリチウム塩を例示できる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiAsF 6 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , and LiN (CF 3 SO 2 ) 2 .

電解液としては、フルオロエチレンカーボネート、エチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネートなどの非水溶媒に、LiClO、LiPF、LiBF、LiCFSOなどのリチウム塩を0.5mol/Lから1.7mol/L程度の濃度で溶解させた溶液を例示できる。 As an electrolytic solution, 0.5 mol / liter of a lithium salt such as LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 is added to a non-aqueous solvent such as fluoroethylene carbonate, ethylene carbonate, dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate. A solution dissolved at a concentration of about 1.7 mol / L from L can be exemplified.

本発明のリチウムイオン二次電池の具体的な製造方法について述べる。
例えば、正極と負極とでセパレータを挟持して電極体とする。電極体は、正極、セパレータ及び負極を重ねた積層型、又は、正極、セパレータ及び負極の積層体を捲いた捲回型のいずれの型にしても良い。正極の集電体および負極の集電体から外部に通ずる正極端子および負極端子までを、集電用リード等を用いて接続した後に、電極体に電解液を加えてリチウムイオン二次電池とするとよい。
A specific method for producing the lithium ion secondary battery of the present invention will be described.
For example, a separator is sandwiched between a positive electrode and a negative electrode to form an electrode body. The electrode body may be any of a stacked type in which a positive electrode, a separator and a negative electrode are stacked, or a wound type in which a positive electrode, a separator and a negative electrode are stacked. After connecting the positive electrode current collector and the negative electrode current collector to the positive electrode terminal and the negative electrode terminal connected to the outside using a current collecting lead or the like, an electrolyte is added to the electrode body to form a lithium ion secondary battery. Good.

本発明のリチウムイオン二次電池の形状は特に限定されるものでなく、円筒型、角型、コイン型、ラミネート型等、種々の形状を採用することができる。   The shape of the lithium ion secondary battery of the present invention is not particularly limited, and various shapes such as a cylindrical shape, a square shape, a coin shape, and a laminate shape can be adopted.

本発明のリチウムイオン二次電池は、車両に搭載してもよい。車両は、その動力源の全部あるいは一部にリチウムイオン二次電池による電気エネルギーを使用している車両であればよく、例えば、電気車両、ハイブリッド車両などであるとよい。車両にリチウムイオン二次電池を搭載する場合には、リチウムイオン二次電池を複数直列に接続して組電池とするとよい。リチウムイオン二次電池を搭載する機器としては、車両以外にも、パーソナルコンピュータ、携帯通信機器など、電池で駆動される各種の家電製品、オフィス機器、産業機器などが挙げられる。さらに、本発明のリチウムイオン二次電池は、風力発電、太陽光発電、水力発電その他電力系統の蓄電装置及び電力平滑化装置、船舶等の動力及び/又は補機類の電力供給源、航空機、宇宙船等の動力及び/又は補機類の電力供給源、電気を動力源に用いない車両の補助用電源、移動式の家庭用ロボットの電源、システムバックアップ用電源、無停電電源装置の電源、電動車両用充電ステーションなどにおいて充電に必要な電力を一時蓄える蓄電装置に用いてもよい。   The lithium ion secondary battery of the present invention may be mounted on a vehicle. The vehicle may be a vehicle that uses electric energy generated by a lithium ion secondary battery for all or a part of its power source. For example, the vehicle may be an electric vehicle or a hybrid vehicle. When a lithium ion secondary battery is mounted on a vehicle, a plurality of lithium ion secondary batteries may be connected in series to form an assembled battery. Examples of devices equipped with lithium ion secondary batteries include various home appliances driven by batteries such as personal computers and portable communication devices, office devices, and industrial devices in addition to vehicles. Furthermore, the lithium ion secondary battery of the present invention includes wind power generation, solar power generation, hydroelectric power generation and other power system power storage devices and power smoothing devices, power supplies for ships and / or auxiliary power supply sources, aircraft, Power supply for spacecraft and / or auxiliary equipment, auxiliary power supply for vehicles that do not use electricity as a power source, power supply for mobile home robots, power supply for system backup, power supply for uninterruptible power supply, You may use for the electrical storage apparatus which stores temporarily the electric power required for charge in the charging station for electric vehicles.

以上、本発明の実施形態を説明したが、本発明は、上記実施形態に限定されるものではない。本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良等を施した種々の形態にて実施することができる。   As mentioned above, although embodiment of this invention was described, this invention is not limited to the said embodiment. The present invention can be implemented in various forms without departing from the gist of the present invention, with modifications and improvements that can be made by those skilled in the art.

以下に、実施例及び比較例などを示し、本発明をより具体的に説明する。なお、本発明は、これらの実施例によって限定されるものではない。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In addition, this invention is not limited by these Examples.

(実施例1)
スチレンスルホン酸ナトリウム6g(29.1mmol)とアクリル酸0.233g(3.2mmol)を30gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、共重合反応を開始させた。反応液を60℃で5時間撹拌した後に、反応液を室温まで冷却し、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比が9:1である、実施例1の共重合体溶液を製造した。
Example 1
6 g (29.1 mmol) of sodium styrenesulfonate and 0.233 g (3.2 mmol) of acrylic acid were dissolved in 30 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the copolymerization reaction. After stirring the reaction solution at 60 ° C. for 5 hours, the reaction solution is cooled to room temperature, and the molar ratio of styrene sulfonic acid monomer units to acrylic acid monomer units is 9: 1. Manufactured.

実施例1の共重合体溶液をアルミニウム箔の表面に膜状に塗布し、次いで、加熱して水を除去することで、膜状の実施例1のポリマー層を製造した。   The copolymer solution of Example 1 was applied to the surface of an aluminum foil in a film shape, and then heated to remove water, whereby a film-shaped polymer layer of Example 1 was produced.

また、実施例1の共重合体溶液を用いて、実施例1の負極及びリチウムイオン二次電池を以下のとおり製造した。   Moreover, the negative electrode and lithium ion secondary battery of Example 1 were manufactured as follows using the copolymer solution of Example 1.

撹拌条件下の0℃の濃塩酸溶液に、CaSiを加えて1時間反応させた。反応液に水を加え、濾過を行い、黄色の粉体を濾取した。黄色の粉体を水洗し、さらにエタノール洗浄した後に、減圧乾燥して、層状ポリシランを含有する層状シリコン化合物を得た。次いで、層状シリコン化合物をアルゴン雰囲気下、500℃で加熱して、水素を離脱させて、シリコン材料を製造した。プロパンガス雰囲気下、シリコン材料を880℃で加熱することで、炭素被覆シリコン材料を製造した。 CaSi 2 was added to a concentrated hydrochloric acid solution at 0 ° C. under stirring conditions and reacted for 1 hour. Water was added to the reaction solution, filtration was performed, and a yellow powder was collected by filtration. The yellow powder was washed with water, further washed with ethanol, and then dried under reduced pressure to obtain a layered silicon compound containing layered polysilane. Next, the layered silicon compound was heated at 500 ° C. in an argon atmosphere to release hydrogen to produce a silicon material. A carbon-coated silicon material was manufactured by heating the silicon material at 880 ° C. in a propane gas atmosphere.

ポリアクリル酸(重量平均分子量250000、和光純薬工業株式会社)をN−メチル−2−ピロリドンに溶解して、ポリアクリル酸が15質量%で含有されるポリアクリル酸溶液を製造した。また、4,4’−ジアミノジフェニルメタン(東京化成工業株式会社)をN−メチル−2−ピロリドンに溶解して、4,4’−ジアミノジフェニルメタンが50質量%で含有される4,4’−ジアミノジフェニルメタン溶液を製造した。窒素雰囲気下、ポリアクリル酸溶液の12.7質量部と4,4’−ジアミノジフェニルメタン溶液の1.05質量部を混合した混合物を室温で30分間撹拌し、さらに110℃で2時間撹拌して、結着剤溶液を製造した。   Polyacrylic acid (weight average molecular weight 250,000, Wako Pure Chemical Industries, Ltd.) was dissolved in N-methyl-2-pyrrolidone to produce a polyacrylic acid solution containing 15% by mass of polyacrylic acid. Further, 4,4′-diaminodiphenylmethane (Tokyo Chemical Industry Co., Ltd.) is dissolved in N-methyl-2-pyrrolidone, and 4,4′-diaminomethane containing 50% by mass of 4,4′-diaminodiphenylmethane is contained. A diphenylmethane solution was prepared. Under a nitrogen atmosphere, a mixture of 12.7 parts by mass of the polyacrylic acid solution and 1.05 parts by mass of the 4,4′-diaminodiphenylmethane solution was stirred at room temperature for 30 minutes, and further stirred at 110 ° C. for 2 hours. A binder solution was produced.

負極活物質として炭素被覆シリコン材料72.5質量部、導電助剤としてアセチレンブラック13.5質量部、結着剤として固形分が14質量部となる量の上記結着剤溶液、及び、適量のN−メチル−2−ピロリドンを混合して、スラリーを製造した。負極用集電体として厚み30μmの銅箔を準備した。この銅箔の表面に、ドクターブレードを用いて、上記スラリーを膜状に塗布した。スラリーが塗布された銅箔を乾燥することで、N−メチル−2−ピロリドンを除去した。その後、銅箔をプレスし、接合物を得た。得られた接合物を真空乾燥機で180℃、2時間、加熱乾燥することで、厚み20μmの負極活物質層が形成された負極前駆体を製造した。なお、結着剤として用いたポリアクリル酸と4,4’−ジアミノジフェニルメタンとの混合物は、上記加熱乾燥にて脱水反応が進行して、ポリアクリル酸を4,4’−ジアミノジフェニルメタンで架橋した架橋ポリマーに変化する。   72.5 parts by mass of a carbon-coated silicon material as a negative electrode active material, 13.5 parts by mass of acetylene black as a conductive additive, and the above binder solution in an amount of 14 parts by mass as a binder, and an appropriate amount N-methyl-2-pyrrolidone was mixed to produce a slurry. A copper foil having a thickness of 30 μm was prepared as a negative electrode current collector. The slurry was applied in a film form on the surface of the copper foil using a doctor blade. The copper foil coated with the slurry was dried to remove N-methyl-2-pyrrolidone. Thereafter, the copper foil was pressed to obtain a bonded product. The obtained joined product was heat-dried at 180 ° C. for 2 hours with a vacuum dryer to produce a negative electrode precursor on which a negative active material layer having a thickness of 20 μm was formed. The mixture of polyacrylic acid and 4,4′-diaminodiphenylmethane used as the binder was subjected to a dehydration reaction by the above-mentioned heat drying, and the polyacrylic acid was crosslinked with 4,4′-diaminodiphenylmethane. Change to cross-linked polymer.

実施例1の共重合体溶液を負極前駆体の表面に膜状に塗布し、次いで、加熱して水を除去することで、厚み数μmのポリマー層で被覆された負極活物質層を具備する実施例1の負極を製造した。   The copolymer solution of Example 1 was applied to the surface of the negative electrode precursor in the form of a film, and then heated to remove water, thereby providing a negative electrode active material layer coated with a polymer layer having a thickness of several μm. The negative electrode of Example 1 was manufactured.

実施例1の負極を径11mmに裁断し、評価極とした。厚さ500μmの金属リチウム箔を径16mmに裁断し対極とした。セパレータとしてガラスフィルター(ヘキストセラニーズ社)及び単層ポリプロピレンであるcelgard2400(ポリポア株式会社)を準備した。また、エチレンカーボネート50体積部及びジエチルカーボネート50体積部を混合した溶媒にLiPF6を1mol/Lで溶解した電解液を準備した。対極、ガラスフィルター、celgard2400、評価極の順に、2種のセパレータを対極と評価極で挟持し電極体とした。この電極体をコイン型電池ケースCR2032(宝泉株式会社)に収容し、さらに電解液を注入して、コイン型電池を得た。これを実施例1のリチウムイオン二次電池とした。 The negative electrode of Example 1 was cut into a diameter of 11 mm to obtain an evaluation electrode. A metal lithium foil having a thickness of 500 μm was cut into a diameter of 16 mm to obtain a counter electrode. As a separator, a glass filter (Hoechst Celanese) and celgard 2400 (Polypore Corporation), which is a single-layer polypropylene, were prepared. It was also prepared an electrolyte solution obtained by dissolving LiPF 6 at 1 mol / L in a solvent obtained by mixing 50 parts by volume of ethylene carbonate and diethyl carbonate 50 parts by volume. Two kinds of separators were sandwiched between the counter electrode and the evaluation electrode in the order of the counter electrode, the glass filter, celgard 2400, and the evaluation electrode, thereby forming an electrode body. This electrode body was accommodated in a coin-type battery case CR2032 (Hosen Co., Ltd.), and an electrolyte was further injected to obtain a coin-type battery. This was designated as the lithium ion secondary battery of Example 1.

(実施例2)
アクリル酸0.526g(7.3mmol)を用いた以外は、実施例1と同様の方法で、実施例2の共重合体溶液、ポリマー層、負極及びリチウムイオン二次電池を製造した。実施例2の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は8:2である。
(Example 2)
A copolymer solution, a polymer layer, a negative electrode, and a lithium ion secondary battery of Example 2 were produced in the same manner as in Example 1 except that 0.526 g (7.3 mmol) of acrylic acid was used. In the copolymer solution of Example 2, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 8: 2.

(実施例3)
アクリル酸0.899g(12.5mmol)を用いた以外は、実施例1と同様の方法で、実施例3の共重合体溶液、ポリマー層、負極及びリチウムイオン二次電池を製造した。実施例3の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は7:3である。
Example 3
A copolymer solution, a polymer layer, a negative electrode, and a lithium ion secondary battery of Example 3 were produced in the same manner as in Example 1 except that 0.899 g (12.5 mmol) of acrylic acid was used. In the copolymer solution of Example 3, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 7: 3.

(比較例1)
スチレンスルホン酸ナトリウム6.67g(32.2mmol)を30gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、重合反応を開始させた。以下、実施例1と同様の方法で、比較例1の重合体溶液、ポリマー層、負極及びリチウムイオン二次電池を製造した。比較例1の重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は10:0である。
なお、実施例1と同様の方法で、比較例1の重合体溶液から比較例1のポリマー層を製造しようとしたところ、水の除去に伴い、重合体溶液が徐々に白濁して、最終的には、粉末状態のポリマーが製造された。当該粉末状態のポリマーを比較例1のポリマー層として、以下の評価に供した。
(Comparative Example 1)
6.67 g (32.2 mmol) of sodium styrenesulfonate was dissolved in 30 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the polymerization reaction. Hereinafter, the polymer solution, polymer layer, negative electrode, and lithium ion secondary battery of Comparative Example 1 were produced in the same manner as in Example 1. In the polymer solution of Comparative Example 1, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 10: 0.
In addition, when an attempt was made to produce the polymer layer of Comparative Example 1 from the polymer solution of Comparative Example 1 in the same manner as in Example 1, the polymer solution gradually became cloudy with the removal of water, and finally A polymer in powder form was produced. The polymer in the powder state was subjected to the following evaluation as a polymer layer of Comparative Example 1.

(比較例2)
スチレンスルホン酸ナトリウム3g(14.6mmol)とアクリル酸2.45g(34.0mmol)を用いた以外は、実施例1と同様の方法で、比較例2の共重合体溶液、ポリマー層、負極及びリチウムイオン二次電池を製造した。比較例2の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は3:7である。
(Comparative Example 2)
The copolymer solution, polymer layer, negative electrode and comparative example 2 were prepared in the same manner as in Example 1 except that 3 g (14.6 mmol) of sodium styrenesulfonate and 2.45 g (34.0 mmol) of acrylic acid were used. A lithium ion secondary battery was manufactured. In the copolymer solution of Comparative Example 2, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 3: 7.

(比較例3)
スチレンスルホン酸ナトリウム1g(4.9mmol)とアクリル酸3.15g(43.7mmol)を20gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、共重合反応を開始させた。以下、実施例1と同様の方法で、比較例3の共重合体溶液、ポリマー層、負極及びリチウムイオン二次電池を製造した。比較例3の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は1:9である。
(Comparative Example 3)
1 g (4.9 mmol) of sodium styrenesulfonate and 3.15 g (43.7 mmol) of acrylic acid were dissolved in 20 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the copolymerization reaction. Thereafter, a copolymer solution, a polymer layer, a negative electrode, and a lithium ion secondary battery of Comparative Example 3 were produced in the same manner as in Example 1. In the copolymer solution of Comparative Example 3, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 1: 9.

(比較例4)
アクリル酸2.45g(34.0mmol)を10gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、重合反応を開始させた。以下、実施例1と同様の方法で、比較例4の重合体溶液、ポリマー層、負極及びリチウムイオン二次電池を製造した。比較例4の重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は0:10である。
(Comparative Example 4)
2.45 g (34.0 mmol) of acrylic acid was dissolved in 10 g of water to make an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the polymerization reaction. Hereinafter, the polymer solution, polymer layer, negative electrode, and lithium ion secondary battery of Comparative Example 4 were produced in the same manner as in Example 1. In the polymer solution of Comparative Example 4, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 0:10.

(比較例5)
アクリル酸2.45g(34.0mmol)を10gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、重合反応を開始させた。反応液を60℃で5時間撹拌した後に、反応液を室温まで冷却し、10質量%の水酸化ナトリウム水溶液0.107gを加えて、30分間撹拌した。撹拌後の重合体溶液を、比較例5の重合体溶液とした。
以下、実施例1と同様の方法で、比較例5のポリマー層、負極及びリチウムイオン二次電池を製造した。比較例5の重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は0:10であり、アクリル酸系モノマー単位はアクリル酸ナトリウムである。
(Comparative Example 5)
2.45 g (34.0 mmol) of acrylic acid was dissolved in 10 g of water to make an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the polymerization reaction. After the reaction solution was stirred at 60 ° C. for 5 hours, the reaction solution was cooled to room temperature, 0.107 g of a 10 mass% sodium hydroxide aqueous solution was added, and the mixture was stirred for 30 minutes. The polymer solution after stirring was used as the polymer solution of Comparative Example 5.
Thereafter, the polymer layer, the negative electrode, and the lithium ion secondary battery of Comparative Example 5 were produced in the same manner as in Example 1. In the polymer solution of Comparative Example 5, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 0:10, and the acrylic acid monomer unit is sodium acrylate.

(比較例6)
ポリマー層で被覆されていない実施例1の負極前駆体を負極として用いた以外は、実施例1と同様の方法で、比較例6のリチウムイオン二次電池を製造した。
(Comparative Example 6)
A lithium ion secondary battery of Comparative Example 6 was produced in the same manner as in Example 1, except that the negative electrode precursor of Example 1 that was not coated with the polymer layer was used as the negative electrode.

(評価例1:イオン伝導度)
実施例1〜実施例3及び比較例1〜比較例5のポリマー層について、複素交流インピーダンス測定装置を用いて、イオン伝導度を測定した。結果を表1に示す。表1及びそれ以降の表におけるモル比とは、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比を意味する。また、比較例5のアクリル酸系モノマー単位は、アクリル酸ナトリウムである。
(Evaluation Example 1: Ionic conductivity)
With respect to the polymer layers of Examples 1 to 3 and Comparative Examples 1 to 5, the ionic conductivity was measured using a complex alternating current impedance measuring device. The results are shown in Table 1. The molar ratio in Table 1 and the subsequent tables means the molar ratio of styrene sulfonic acid monomer units to acrylic acid monomer units. The acrylic acid monomer unit of Comparative Example 5 is sodium acrylate.

Figure 2018195509
Figure 2018195509

表1から、各実施例のポリマー層は、各比較例のポリマー層と比較して、優れたイオン伝導性を示したことがわかる。特に、実施例1のポリマー層のイオン伝導度は、著しく高いといえる。   From Table 1, it can be seen that the polymer layer of each example showed excellent ionic conductivity as compared with the polymer layer of each comparative example. In particular, it can be said that the ionic conductivity of the polymer layer of Example 1 is remarkably high.

(評価例2:赤外吸収スペクトル)
赤外分光光度計を用いて、実施例1のポリマー層の赤外吸収スペクトルを測定した。実施例1のポリマー層からは、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位に由来するピークが明確に観察された。
(Evaluation Example 2: Infrared absorption spectrum)
The infrared absorption spectrum of the polymer layer of Example 1 was measured using an infrared spectrophotometer. From the polymer layer of Example 1, peaks derived from styrene sulfonic acid monomer units and acrylic acid monomer units were clearly observed.

(評価例3:電池評価)
実施例1〜実施例3及び比較例1〜比較例6のリチウムイオン二次電池につき、0.05Cレートの電流で、0.01Vまで充電を行い、その後、0.05Cレートの電流で1.0Vまで放電を行った。この充放電で観測された充電容量と放電容量の値から、以下の式で、初回効率を算出した。
初回効率(%)=100×(放電容量)/(充電容量)
また、実施例1〜実施例3及び比較例1〜比較例6のリチウムイオン二次電池につき、0.05Cレートの電流で、0.01Vまで充電を行い、その後、0.5Cレートの電流で1.0Vまで放電を行い、放電容量を測定した。当該放電容量を、初回効率を算出した際の放電容量で除した値を算出して、レート特性とした。ここでのレート特性とは、放電電流が10倍異なる場合の放電容量を比較したパラメータである。
さらに、実施例1〜実施例3及び比較例1〜比較例6のリチウムイオン二次電池につき、0.3Cレートの一定電流で0.01Vまで充電を行い、その後、0.3Cレートの一定電流で1.0Vまで放電を行うとの充放電サイクルを20回繰り返した。以下の式に従い、容量維持率を算出した。
容量維持率(%)=100×(20サイクル目の放電容量)/(1サイクル目の放電容量)
以上の結果を表2に示す。
(Evaluation example 3: battery evaluation)
The lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 6 were charged to 0.01 V at a current of 0.05 C rate, and then 1. Discharge was performed to 0V. From the charge capacity and discharge capacity values observed in this charge / discharge, the initial efficiency was calculated by the following equation.
Initial efficiency (%) = 100 × (discharge capacity) / (charge capacity)
Further, with respect to the lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 6, the battery was charged to 0.01 V at a current of 0.05 C rate, and thereafter, at a current of 0.5 C rate. The battery was discharged to 1.0 V, and the discharge capacity was measured. A value obtained by dividing the discharge capacity by the discharge capacity when the initial efficiency was calculated was calculated as a rate characteristic. Here, the rate characteristic is a parameter comparing the discharge capacities when the discharge currents differ by 10 times.
Further, the lithium ion secondary batteries of Examples 1 to 3 and Comparative Examples 1 to 6 were charged to 0.01 V at a constant current of 0.3 C rate, and thereafter, constant current of 0.3 C rate. The charge / discharge cycle of discharging to 1.0 V was repeated 20 times. The capacity retention rate was calculated according to the following formula.
Capacity maintenance rate (%) = 100 × (discharge capacity at 20th cycle) / (discharge capacity at 1st cycle)
The results are shown in Table 2.

Figure 2018195509
Figure 2018195509

表2の結果から、実施例のリチウムイオン二次電池は、初回効率、レート特性、容量維持率すべての評価項目において、比較例と同等以上の結果を示したのがわかる。他方、比較例1及び比較例6のリチウムイオン二次電池は、他のリチウムイオン二次電池と比較して、容量維持率が著しく低い。比較例2〜比較例5のリチウムイオン二次電池は、実施例のリチウムイオン二次電池と比較して、初回効率及びレート特性が低い。   From the results in Table 2, it can be seen that the lithium ion secondary batteries of the examples showed results equal to or higher than those of the comparative example in all evaluation items of initial efficiency, rate characteristics, and capacity retention rate. On the other hand, the lithium ion secondary batteries of Comparative Example 1 and Comparative Example 6 have a significantly lower capacity retention rate than other lithium ion secondary batteries. The lithium ion secondary batteries of Comparative Examples 2 to 5 have lower initial efficiency and rate characteristics than the lithium ion secondary batteries of the examples.

表1と表2の結果から、スチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内であることにより、本発明のポリマー層はイオン伝導度が良好であり、そして、本発明のポリマー層を具備する本発明の二次電池は、電池特性に優れるといえる。また、容量維持率の結果から、本発明のポリマー層は、充放電に伴うシリコン材料の膨張及び収縮に追従可能であったといえる。   From the results in Table 1 and Table 2, the molar ratio of the styrene sulfonic acid monomer unit to the (meth) acrylic acid monomer unit is in the range of 9.5: 0.5 to 7: 3. The polymer layer has good ionic conductivity, and the secondary battery of the present invention having the polymer layer of the present invention can be said to have excellent battery characteristics. From the results of the capacity retention rate, it can be said that the polymer layer of the present invention was able to follow the expansion and contraction of the silicon material accompanying charge / discharge.

(実施例4)
スチレンスルホン酸ナトリウム6g(29.1mmol)とアクリル酸0.233g(3.2mmol)を30gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、共重合反応を開始させた。反応液を60℃で5時間撹拌した後に、反応液を室温まで冷却し、10質量%の水酸化ナトリウム水溶液1.28gを加えて、30分間撹拌した。撹拌後の共重合体溶液を、実施例4の共重合体溶液とした。
以下、実施例1と同様の方法で、実施例4のポリマー層、負極及びリチウムイオン二次電池を製造した。実施例4の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は9:1であり、アクリル酸系モノマー単位はアクリル酸ナトリウムである。
(Example 4)
6 g (29.1 mmol) of sodium styrenesulfonate and 0.233 g (3.2 mmol) of acrylic acid were dissolved in 30 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the copolymerization reaction. After the reaction solution was stirred at 60 ° C. for 5 hours, the reaction solution was cooled to room temperature, 1.28 g of a 10 mass% sodium hydroxide aqueous solution was added, and the mixture was stirred for 30 minutes. The copolymer solution after stirring was used as the copolymer solution of Example 4.
Hereinafter, the polymer layer, negative electrode, and lithium ion secondary battery of Example 4 were produced in the same manner as in Example 1. In the copolymer solution of Example 4, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 9: 1, and the acrylic acid monomer unit is sodium acrylate.

(実施例5)
スチレンスルホン酸ナトリウム6g(29.1mmol)とアクリロニトリル0.170g(3.2mmol)を30gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、共重合反応を開始させた。反応液を60℃で5時間撹拌した後に、反応液を室温まで冷却し、30分間撹拌した。撹拌後の共重合体溶液を、実施例5の共重合体溶液とした。
以下、実施例1と同様の方法で、実施例5のポリマー層、負極及びリチウムイオン二次電池を製造した。実施例5の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は9:1であり、アクリル酸系モノマー単位はアクリロニトリルである。
(Example 5)
6 g (29.1 mmol) of sodium styrenesulfonate and 0.170 g (3.2 mmol) of acrylonitrile were dissolved in 30 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the copolymerization reaction. After stirring the reaction solution at 60 ° C. for 5 hours, the reaction solution was cooled to room temperature and stirred for 30 minutes. The copolymer solution after stirring was used as the copolymer solution of Example 5.
Thereafter, the polymer layer, negative electrode, and lithium ion secondary battery of Example 5 were produced in the same manner as in Example 1. In the copolymer solution of Example 5, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 9: 1, and the acrylic acid monomer unit is acrylonitrile.

(実施例6)
スチレンスルホン酸ナトリウム6g(29.1mmol)とアクリルアミド0.230g(3.2mmol)を30gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、共重合反応を開始させた。反応液を60℃で5時間撹拌した後に、反応液を室温まで冷却し、30分間撹拌した。撹拌後の共重合体溶液を、実施例6の共重合体溶液とした。
以下、実施例1と同様の方法で、実施例6のポリマー層、負極及びリチウムイオン二次電池を製造した。実施例6の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は9:1であり、アクリル酸系モノマー単位はアクリルアミドである。
(Example 6)
6 g (29.1 mmol) of sodium styrenesulfonate and 0.230 g (3.2 mmol) of acrylamide were dissolved in 30 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the copolymerization reaction. After stirring the reaction solution at 60 ° C. for 5 hours, the reaction solution was cooled to room temperature and stirred for 30 minutes. The copolymer solution after stirring was used as the copolymer solution of Example 6.
Hereinafter, the polymer layer, negative electrode, and lithium ion secondary battery of Example 6 were produced in the same manner as in Example 1. In the copolymer solution of Example 6, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 9: 1, and the acrylic acid monomer unit is acrylamide.

(実施例7)
スチレンスルホン酸ナトリウム3g(14.6mmol)と2−ヒドロキシエチルアクリレート0.186g(1.6mmol)を150gの水に溶解させて水溶液とした。窒素雰囲気下、当該水溶液に過硫酸アンモニウム30mgを加え、その後、撹拌条件下、水溶液の温度を60℃に加熱して、共重合反応を開始させた。反応液を60℃で5時間撹拌した後に、反応液を室温まで冷却し、30分間撹拌した。撹拌後の共重合体溶液を、実施例7の共重合体溶液とした。
以下、実施例1と同様の方法で、実施例7のポリマー層、負極及びリチウムイオン二次電池を製造した。実施例7の共重合体溶液において、スチレンスルホン酸モノマー単位とアクリル酸系モノマー単位とのモル比は9:1であり、アクリル酸系モノマー単位は2−ヒドロキシエチルアクリレートである。
(Example 7)
3 g (14.6 mmol) of sodium styrenesulfonate and 0.186 g (1.6 mmol) of 2-hydroxyethyl acrylate were dissolved in 150 g of water to obtain an aqueous solution. Under a nitrogen atmosphere, 30 mg of ammonium persulfate was added to the aqueous solution, and then the temperature of the aqueous solution was heated to 60 ° C. under stirring conditions to initiate the copolymerization reaction. After stirring the reaction solution at 60 ° C. for 5 hours, the reaction solution was cooled to room temperature and stirred for 30 minutes. The copolymer solution after stirring was used as the copolymer solution of Example 7.
Hereinafter, the polymer layer, negative electrode, and lithium ion secondary battery of Example 7 were produced in the same manner as in Example 1. In the copolymer solution of Example 7, the molar ratio of the styrene sulfonic acid monomer unit to the acrylic acid monomer unit is 9: 1, and the acrylic acid monomer unit is 2-hydroxyethyl acrylate.

(評価例4:イオン伝導度及び電池評価)
実施例4〜実施例7のポリマー層につき、評価例1と同様の方法で、イオン伝導度を測定した。さらに、実施例4〜実施例7のリチウムイオン二次電池につき、評価例3と同様の方法で、電池評価を行った。実施例1の結果とともに、以上の結果を表3及び表4に示す。
(Evaluation Example 4: Ionic conductivity and battery evaluation)
With respect to the polymer layers of Examples 4 to 7, ion conductivity was measured in the same manner as in Evaluation Example 1. Furthermore, battery evaluation was performed on the lithium ion secondary batteries of Examples 4 to 7 in the same manner as in Evaluation Example 3. Together with the results of Example 1, the above results are shown in Tables 3 and 4.

Figure 2018195509
Figure 2018195509

Figure 2018195509
Figure 2018195509

表3の結果から、イオン伝導度の点からは、アクリル酸系モノマー単位の好ましい順は、アクリルアミド、アクリル酸ナトリウム、アクリル酸、アクリロニトリル、2−ヒドロキシエチルアクリレートであるといえる。   From the results of Table 3, it can be said that the preferable order of acrylic monomer units is acrylamide, sodium acrylate, acrylic acid, acrylonitrile, and 2-hydroxyethyl acrylate from the viewpoint of ion conductivity.

また、表4の結果から、いずれの種類のアクリル酸系モノマー単位を有していても、実施例のリチウムイオン二次電池は、優れた電池特性を示したことがわかる。初回効率及びレート特性の点からは、いずれの実施例のリチウムイオン二次電池も同等であり、容量維持率の点からは、実施例1、実施例4及び実施例5のリチウムイオン二次電池が特に優れているといえる。   Moreover, even if it has any kind of acrylic acid type monomer unit from the result of Table 4, it turns out that the lithium ion secondary battery of the Example showed the outstanding battery characteristic. From the standpoint of initial efficiency and rate characteristics, the lithium ion secondary batteries of any of the examples are equivalent, and from the point of capacity maintenance rate, the lithium ion secondary batteries of Examples 1, 4 and 5 Is particularly good.

Claims (6)

スチレンスルホン酸若しくはその塩と(メタ)アクリル酸系モノマーとの共重合体を含むポリマー層で被覆されている二次電池用電極であって、
前記ポリマー層におけるスチレンスルホン酸モノマー単位と(メタ)アクリル酸系モノマー単位とのモル比が9.5:0.5〜7:3の範囲内であることを特徴とする二次電池用電極。
An electrode for a secondary battery coated with a polymer layer containing a copolymer of styrenesulfonic acid or a salt thereof and a (meth) acrylic acid monomer,
An electrode for a secondary battery, wherein a molar ratio of a styrene sulfonic acid monomer unit to a (meth) acrylic acid monomer unit in the polymer layer is in a range of 9.5: 0.5 to 7: 3.
前記(メタ)アクリル酸系モノマーが、(メタ)アクリル酸、(メタ)アクリル酸塩、(メタ)アクリロニトリル、(メタ)アクリルアミド及び(メタ)アクリル酸エステルから選択される請求項1に記載の二次電池用電極。   The said (meth) acrylic-acid type monomer is selected from (meth) acrylic acid, (meth) acrylate, (meth) acrylonitrile, (meth) acrylamide and (meth) acrylic acid ester. Secondary battery electrode. 前記二次電池用電極が、集電体と、前記集電体上に形成された負極活物質層と、前記負極活物質層を被覆する前記ポリマー層を具備する請求項1又は2に記載の二次電池用電極。   The said secondary battery electrode is equipped with the electrical power collector, the negative electrode active material layer formed on the said electrical power collector, and the said polymer layer which coat | covers the said negative electrode active material layer. Secondary battery electrode. 前記負極活物質層が、複数枚の板状シリコン体が厚さ方向に積層されてなる構造を有するシリコン材料を含む請求項3に記載の二次電池用電極。   The secondary battery electrode according to claim 3, wherein the negative electrode active material layer includes a silicon material having a structure in which a plurality of plate-like silicon bodies are laminated in a thickness direction. 前記ポリマー層の厚みが0.5〜10μmである請求項1〜4のいずれか1項に記載の二次電池用電極。   The electrode for a secondary battery according to any one of claims 1 to 4, wherein the polymer layer has a thickness of 0.5 to 10 µm. 請求項1〜5のいずれか1項に記載の二次電池用電極を具備する二次電池。   The secondary battery which comprises the electrode for secondary batteries of any one of Claims 1-5.
JP2017099966A 2017-05-19 2017-05-19 Electrodes for secondary batteries coated with a polymer layer Expired - Fee Related JP6855922B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017099966A JP6855922B2 (en) 2017-05-19 2017-05-19 Electrodes for secondary batteries coated with a polymer layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017099966A JP6855922B2 (en) 2017-05-19 2017-05-19 Electrodes for secondary batteries coated with a polymer layer

Publications (2)

Publication Number Publication Date
JP2018195509A true JP2018195509A (en) 2018-12-06
JP6855922B2 JP6855922B2 (en) 2021-04-07

Family

ID=64571705

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017099966A Expired - Fee Related JP6855922B2 (en) 2017-05-19 2017-05-19 Electrodes for secondary batteries coated with a polymer layer

Country Status (1)

Country Link
JP (1) JP6855922B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994509A (en) * 2019-09-23 2022-01-28 株式会社Lg新能源 Binder for negative electrode of lithium secondary battery and negative electrode for lithium secondary battery comprising same
CN115411228A (en) * 2022-11-01 2022-11-29 江苏贝特瑞纳米科技有限公司 Lithium iron manganese phosphate positive plate and preparation method thereof
WO2024138713A1 (en) * 2022-12-30 2024-07-04 宁德时代新能源科技股份有限公司 Protective plate for battery cell, battery cell, battery, and electric device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280947A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2009076433A (en) * 2007-08-30 2009-04-09 Sony Corp Negative electrode and its manufacturing method, secondary battery and its manufacturing method
JP2009135104A (en) * 2007-11-28 2009-06-18 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2013033692A (en) * 2011-08-03 2013-02-14 Toyota Industries Corp Binder for lithium ion secondary battery negative electrode, and lithium ion secondary battery with binder for negative electrode
JP2014229427A (en) * 2013-05-21 2014-12-08 協立化学産業株式会社 Coating material composition for battery electrodes or separators having excellent dispersibility

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007280947A (en) * 2006-03-17 2007-10-25 Sanyo Electric Co Ltd Nonaqueous electrolyte battery and its manufacturing method
JP2009076433A (en) * 2007-08-30 2009-04-09 Sony Corp Negative electrode and its manufacturing method, secondary battery and its manufacturing method
JP2009135104A (en) * 2007-11-28 2009-06-18 Samsung Sdi Co Ltd Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP2013033692A (en) * 2011-08-03 2013-02-14 Toyota Industries Corp Binder for lithium ion secondary battery negative electrode, and lithium ion secondary battery with binder for negative electrode
JP2014229427A (en) * 2013-05-21 2014-12-08 協立化学産業株式会社 Coating material composition for battery electrodes or separators having excellent dispersibility

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113994509A (en) * 2019-09-23 2022-01-28 株式会社Lg新能源 Binder for negative electrode of lithium secondary battery and negative electrode for lithium secondary battery comprising same
CN113994509B (en) * 2019-09-23 2024-05-28 株式会社Lg新能源 Binder for negative electrode of lithium secondary battery and negative electrode for lithium secondary battery including the same
US12244017B2 (en) 2019-09-23 2025-03-04 Lg Energy Solution, Ltd. Binder for negative electrode of lithium secondary battery and negative electrode for lithium secondary battery including the same
CN115411228A (en) * 2022-11-01 2022-11-29 江苏贝特瑞纳米科技有限公司 Lithium iron manganese phosphate positive plate and preparation method thereof
WO2024138713A1 (en) * 2022-12-30 2024-07-04 宁德时代新能源科技股份有限公司 Protective plate for battery cell, battery cell, battery, and electric device

Also Published As

Publication number Publication date
JP6855922B2 (en) 2021-04-07

Similar Documents

Publication Publication Date Title
WO2017179682A1 (en) Electrolyte solution and lithium ion secondary battery
WO2017104145A1 (en) Lithium ion secondary battery
JP2018085221A (en) Lithium ion secondary battery
WO2016042728A1 (en) Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same
JP2019185920A (en) Lithium ion secondary battery
JP2016167408A (en) Electrolyte
JP2019021451A (en) Fluorine layer coating, carbon layer coating, and negative electrode active material
JP6855922B2 (en) Electrodes for secondary batteries coated with a polymer layer
JP7107195B2 (en) Electrolyte and power storage device
WO2017175518A1 (en) Method for manufacturing silicon material
CN110637008B (en) Vinyl sulfone compound, electrolyte for lithium ion battery, and lithium ion battery
JP2019096561A (en) Lithium ion secondary battery
US12132201B2 (en) Negative electrode and method for producing negative electrode, and electrode binding agent
JP7131258B2 (en) Composite particle manufacturing method
JP6841156B2 (en) Power storage device and its manufacturing method and manufacturing method of ionic conductive material
JP2020027737A (en) Lithium ion secondary battery
JP6252864B2 (en) Method for producing silicon material
JP2019083121A (en) Negative electrode
JP2017157385A (en) Secondary battery
JP2019021393A (en) Lithium ion secondary battery
JP2018026259A (en) Negative electrode and lithium ion secondary battery
KR102147076B1 (en) Electrolyte
JP2020043047A (en) Electrolyte and lithium ion secondary battery
JP6984349B2 (en) Crosslinked polymer
JP2020043000A (en) Electrolyte and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210301

R151 Written notification of patent or utility model registration

Ref document number: 6855922

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees