[go: up one dir, main page]

JP2018182150A - Nozzle standby method, and paint application equipment - Google Patents

Nozzle standby method, and paint application equipment Download PDF

Info

Publication number
JP2018182150A
JP2018182150A JP2017081873A JP2017081873A JP2018182150A JP 2018182150 A JP2018182150 A JP 2018182150A JP 2017081873 A JP2017081873 A JP 2017081873A JP 2017081873 A JP2017081873 A JP 2017081873A JP 2018182150 A JP2018182150 A JP 2018182150A
Authority
JP
Japan
Prior art keywords
nozzle
resist
pot
organic solvent
tip
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017081873A
Other languages
Japanese (ja)
Other versions
JP6981032B2 (en
Inventor
公栄 大塚
Koei Otsuka
公栄 大塚
卓嗣 冨田
Takatsugu Tomita
卓嗣 冨田
寛知 今里
Hirotomo Imazato
寛知 今里
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2017081873A priority Critical patent/JP6981032B2/en
Publication of JP2018182150A publication Critical patent/JP2018182150A/en
Application granted granted Critical
Publication of JP6981032B2 publication Critical patent/JP6981032B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Details Or Accessories Of Spraying Plant Or Apparatus (AREA)
  • Coating Apparatus (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nozzle standby method and paint application equipment each of which allows for prevention of a deposited resist from being dried and fixed, thereby allowing for improvement in a yield, and allows for dispensing with the need of dummy dispense work, thereby allowing for reduction in amount of use of a resist and a solvent.SOLUTION: The nozzle standby method is provided for use in paint application equipment comprising: a nozzle; a nozzle pot in which the nozzle stands by; and a storage tank for an organic solvent in the nozzle pot, the nozzle standby method causing the nozzle to stand by while holding a tip of the nozzle at a position lower than a level of the organic solvent by 0 to 3 mm during the nozzle standby. The paint application equipment is also provided, comprising a nozzle, a nozzle pot in which the nozzle stands by, and a storage tank for an organic solvent in the nozzle pot. The paint application equipment further comprises a mechanism for detecting a position of a tip of the nozzle and a position of a level of the organic solvent, and a mechanism for variably controlling a height of the nozzle.SELECTED DRAWING: Figure 1

Description

本発明は、レジスト等の塗布物を基板上に塗布する塗布装置においてノズルを待機させる方法、及び塗布装置に関するものである。   The present invention relates to a method for causing a nozzle to stand by in a coating apparatus that applies a coating material such as a resist onto a substrate, and a coating apparatus.

ビデオカメラや電子スチルカメラなどには、CCD型、CMOS型等の固体撮像素子が使用されている。このような固体撮像素子では、カラー画像を得るために、光電変換部の上方にオンチップカラーフィルタ(OCF)層が形成されている。通常、OCF層は、顔料等の色素を含む感光性カラーレジストを回転塗布(スピンコート)し、プレベーク、マスク露光、現像、ポストベークの順にフォトリソグラフィの処理を施すことによって形成されている。   Solid-state imaging devices such as CCD type and CMOS type are used in video cameras and electronic still cameras. In such a solid-state imaging device, an on-chip color filter (OCF) layer is formed above the photoelectric conversion unit in order to obtain a color image. In general, the OCF layer is formed by spin-coating (spin coating) a photosensitive color resist containing a pigment such as a pigment, and performing photolithography processing in the order of prebaking, mask exposure, development, and postbaking.

回転塗布装置は、真空チャックで吸着された基板(OCFでは直径8インチや12インチのシリコンウエハ)の中央部に、カラーレジスト塗布液を、先端にノズルを有する塗布液滴下部(ディスペンサ)より滴下後、基板を500〜1200rpm程度で高速回転させ、遠心力を利用して約1μmの薄いカラーレジスト膜に塗り広げるものである。   The spin coater applies a color resist coating solution to the center of a substrate (silicon wafer with a diameter of 8 or 12 in the case of OCF) adsorbed by a vacuum chuck and drops it from the lower part (dispenser) of the coated droplet having a nozzle at its tip. After that, the substrate is rotated at a high speed of about 500 to 1200 rpm, and spread on a thin color resist film of about 1 μm using centrifugal force.

図2に一般的な回転塗布装置1の基本構成を側面図で示す。基板2は前工程にて表面の洗浄等を行った後、スピンカップ7内の真空チャック8上に搬送され設置される。基板2と真空チャック8は真空吸引により密着するようになっている。また、真空チャック8はモータ9により回転するようになっており、真空チャック8上に置かれる基板2は、基板中心と回転軸の中心が一致するよう設置される。   FIG. 2 shows a basic configuration of a general spin coater 1 in a side view. The substrate 2 is transported and set on the vacuum chuck 8 in the spin cup 7 after cleaning the surface and the like in the previous step. The substrate 2 and the vacuum chuck 8 are in close contact with each other by vacuum suction. The vacuum chuck 8 is rotated by the motor 9, and the substrate 2 placed on the vacuum chuck 8 is placed so that the center of the substrate coincides with the center of the rotation axis.

ノズルアーム4は、塗布液12を基板2上へ滴下する前に、駆動機構6と連結するスキャナ5により上下(±Z)及び水平(±X)方向に移動し、ノズル3を基板2の中心に移動させる。タンク11内のレジスト等の塗布液12は、例えば加圧機構13によりタンク11内を加圧することにより、チューブ14を通りノズル3に供給され、ノズル3の塗布液吐出口より基板2上に滴下される。図示の都合上図2では省略しているが、回転塗布装置1は後述のように、塗布動作に関与しない時間中にノズル3を待機させるノズルポットを備える。   The nozzle arm 4 is moved vertically (± Z) and horizontally (± X) by the scanner 5 connected to the drive mechanism 6 before dropping the coating solution 12 onto the substrate 2, and the nozzle 3 is moved to the center of the substrate 2. Move to The application liquid 12 such as the resist in the tank 11 is supplied to the nozzle 3 through the tube 14 by, for example, pressurizing the inside of the tank 11 by the pressurizing mechanism 13 and dripped onto the substrate 2 from the application liquid discharge port of the nozzle 3 Be done. Although not shown in FIG. 2 for convenience of illustration, the spin coating apparatus 1 is provided with a nozzle pot for allowing the nozzle 3 to stand by while not involved in the coating operation, as described later.

図3(a)は図2の主要部を上部から見た平面図であるが、特に回転塗布装置1がカラーレジスト塗布用でありノズル3を6個備える場合を示している。図3(a)の矢印で示すように、ノズルアーム4はスキャナ5により±X方向に移動可能なようになっており、また、ノズルポット10は±Y方向に移動可能なようになっている。これらによりノズル3−1)〜3−6)は基板2の中心、またはノズルポット10上の各々の待機位置へ移動することができる。ノズル3−1)〜3−6)は、例えばR(赤)、G(緑)、B(青)、各々2個ずつのカラーレジスト塗布用である。尚、図示しないが、複数色用のノズルを備える場合は、タンク11からチューブ14を経由するレジスト供給系も複数存在する。   FIG. 3 (a) is a plan view of the main part of FIG. 2 as viewed from the top, but particularly shows the case where the spin coating apparatus 1 is for color resist coating and six nozzles 3 are provided. As shown by the arrow in FIG. 3A, the nozzle arm 4 is movable in the ± X direction by the scanner 5, and the nozzle pot 10 is movable in the ± Y direction. . By these, the nozzles 3-1) to 3-6) can be moved to the center of the substrate 2 or each standby position on the nozzle pot 10. The nozzles 3-1) to 3-6) are used, for example, to apply two color resists each for R (red), G (green), and B (blue). Although not shown, in the case where nozzles for a plurality of colors are provided, there are also a plurality of resist supply systems via the tank 11 and the tube 14.

各ノズルがノズルポット10上にある待機状態のとき、真空チャック8上に基板2が搬入、設置されると、塗布する色(R、G、B)に応じてノズルポット10及びスキャナ5が移動し、ノズルアーム4が所望のノズルを選択して抽出し、該ノズルを基板2の中心の位置まで移動させる(図3(a)はノズル3−3)が基板2の中心の位置に来た状態を例示している)。次に、ノズルより基板2上にレジスト液が滴下され、真空チャック8の回転により基板2にレジストが塗布される。通常、塗布は基板2を連続して投入し、同じ色のレジストで所定の枚数が連続して行われる。   When the substrate 2 is carried in and placed on the vacuum chuck 8 in a standby state where each nozzle is on the nozzle pot 10, the nozzle pot 10 and the scanner 5 move according to the color (R, G, B) to be applied The nozzle arm 4 selects and extracts the desired nozzle, and moves the nozzle to the center position of the substrate 2 (the nozzle 3-3 in FIG. 3A is at the center position of the substrate 2). State is illustrated). Next, a resist solution is dropped onto the substrate 2 from the nozzle, and the resist is applied to the substrate 2 by the rotation of the vacuum chuck 8. Usually, the coating is performed by continuously introducing the substrate 2 and continuously performing a predetermined number of the same color resist.

所定の枚数の塗布が終わると、次の色のレジストの塗布のために、スキャナ5の移動により使用したノズルはノズルポット10まで移動され、ノズルポット10の移動により所定の差込み部(不図示)に差込まれ、他の色の塗布期間中は待機状態となる。しかしながら、レジストを滴下した後はノズルの吐出口周辺にはレジストが付着しているので、そのまま待機していると、図3(b)に示すように、付着したレジストが乾燥し固着物33となり、次の塗布時にレジストと一緒に吐出され、パーティクルとなって基板表面を汚染する。   After the application of a predetermined number of sheets, the nozzle used by the movement of the scanner 5 is moved to the nozzle pot 10 for the application of the resist of the next color, and the movement of the nozzle pot 10 causes a predetermined insertion portion (not shown) And is in a standby state during the application period of other colors. However, after the resist is dropped, the resist adheres around the discharge port of the nozzle. Therefore, when waiting as it is, as shown in FIG. At the next application, it is discharged together with the resist, becoming particles and contaminating the substrate surface.

前記の問題への対策技術として、ノズルポットでのノズルの待機環境を溶剤雰囲気とし、溶剤の揮発性を利用して乾燥を防止する技術が開示されている(例えば特許文献1)。図4には、ノズルポット30を溶剤雰囲気とする様態を、図3(a)のA−A’線で切断した切断面について示す。   As a countermeasure against the above-mentioned problems, there is disclosed a technique of using a solvent atmosphere as a standby environment of the nozzles in the nozzle pot and preventing the drying by utilizing the volatility of the solvent (for example, Patent Document 1). In FIG. 4, the aspect which makes the nozzle pot 30 a solvent atmosphere is shown about the cut surface cut | disconnected by the A-A 'line | wire of FIG. 3 (a).

しかしながら、前記の方法ではレジストの乾燥を完全に防止することは難しい。そのため、実際には次の塗布前の段取り作業として、ノズル先端の清掃とレジスト液出し(ダミーディスペンス)作業が必要となり、作業ロスを生じている。また、ダミーディスペンスは、ノズルポット30内の溶剤雰囲気中にノズル3を保持した状態で行われるので、吐出された薬液には溶剤が混入する。このため、回収した薬液は再利用されることなく廃棄処分され、産業廃棄物を増加させる一因となっている。   However, it is difficult to completely prevent the drying of the resist by the above method. Therefore, as a setup work before the next application, the work of cleaning the tip of the nozzle and the resist dispensing (dummy dispense) work is actually required, resulting in an operation loss. In addition, since the dummy dispensing is performed with the nozzle 3 held in the solvent atmosphere in the nozzle pot 30, the solvent is mixed in the discharged chemical solution. For this reason, the recovered chemical solution is disposed of without being reused, which contributes to an increase in industrial waste.

また、溶剤等の洗浄液を満たした貯留槽にノズルを浸漬する技術も開示されている(例えば特許文献2)。しかしながら、ノズルを溶剤に浸漬するとノズル内に溶剤が拡散し、次の塗布時に先端部のレジストが薄まることとなり、次の塗布前に薄まったレジストを排出するために前記と同様にダミーディスペンスが必要となる。この際、問題ない濃度のレジストとなるまで吐出するには、結果として無視できない量のレジスト(OCF用のレジストは特に高価である)を廃棄することになる。さらには、ノズルを浸漬する溶剤にレジストが溶け出すため、溶剤の交換頻度が多くなり、コスト的、環境的な負担となる。   Moreover, the technique which immerses a nozzle in the storage tank filled with washing | cleaning liquids, such as a solvent, is also disclosed (for example, patent document 2). However, if the nozzle is immersed in the solvent, the solvent diffuses into the nozzle, and the resist on the tip end becomes thinner at the next coating, and a dummy dispense is required as described above to discharge the thinned resist before the next coating. It becomes. Under the present circumstances, in order to discharge until it becomes a problem-free resist, as a result, an unignorable amount of resist (resist for OCF is particularly expensive) will be discarded. Furthermore, since the resist dissolves in the solvent for immersing the nozzle, the frequency of solvent replacement increases, which causes cost and environmental burden.

特開平4−118067号公報Japanese Patent Application Laid-Open No. 4-118067 特開平5−166715号公報Japanese Patent Application Laid-Open No. 5-166715

本発明は、上記の問題に鑑みてなされたもので、その目的とするところは、ノズルの待機中における付着レジストの乾燥固着を防止して、パーティクルの発生による歩留まりの低下を改善するとともに、ダミーディスペンス作業を不要としレジスト及び溶剤の使用量を削減してコスト的、環境的に有利にOCFを製造することができる、ノズルの待機方法、及び塗布装置を提供することにある。   The present invention has been made in view of the above problems, and the object of the present invention is to prevent the dry adhesion of the adhesion resist while the nozzle is waiting and to improve the reduction in yield due to the generation of particles, and It is an object of the present invention to provide a nozzle waiting method and a coating apparatus capable of manufacturing OCF in a cost and environmentally advantageous manner by eliminating the dispensing operation and reducing the amount of use of resist and solvent.

上記の課題を解決するために、請求項1に記載の発明は、ノズルと、前記ノズルを待機させるノズルポットと、前記ノズルポットに有機溶剤の貯留槽とを備える塗布装置において、前記ノズルを待機させる方法であって、
前記ノズルの待機中、前記ノズルの先端を前記有機溶剤の液面から0〜3mm下の位置に保持しながら待機させることを特徴とするノズルの待機方法としたものである。
In order to solve the above-mentioned subject, the invention according to claim 1 waits in the nozzle in the coating device provided with the nozzle, the nozzle pot which makes the nozzle stand by, and the storage tank of the organic solvent in the nozzle pot. How to
While the nozzle is waiting, the nozzle is kept waiting while holding the tip of the nozzle at a position 0 to 3 mm below the liquid surface of the organic solvent.

請求項2に記載の発明は、ノズルと、前記ノズルを待機させるノズルポットと、前記ノズルポットに有機溶剤の貯留槽を備える塗布装置であって、
さらに前記ノズルの先端の位置と前記有機溶剤の液面の位置とを検出する機構と、前記ノズルの高さを可変制御する機構と、を備えることを特徴とする塗布装置としたものである。
The invention according to claim 2 is a coating apparatus including a nozzle, a nozzle pot for making the nozzle stand by, and a reservoir for storing an organic solvent in the nozzle pot,
The coating apparatus further includes a mechanism for detecting the position of the tip of the nozzle and the position of the liquid surface of the organic solvent, and a mechanism for variably controlling the height of the nozzle.

本発明のノズルの待機方法、及び塗布装置によれば、ノズルの待機中における付着レジストの乾燥固着を防止してパーティクルの発生による歩留まりの低下を改善するとともに、ダミーディスペンス作業を不要としレジスト及び溶剤の使用量を削減してコスト的、環境的に有利にOCFを製造することができる。   According to the nozzle standby method and coating apparatus of the present invention, it is possible to prevent the dry adhesion of the adhesion resist while the nozzle is waiting and to improve the reduction in yield due to the generation of particles, and to eliminate the need for dummy dispensing operation. It is possible to produce OCF in a cost and environmentally advantageous manner by reducing the amount of

本発明の塗布装置に係るノズルポットを図3(a)のA−A’線での切断面で示す模式断面図。The schematic cross section which shows the nozzle pot which concerns on the coating device of this invention with the cut surface in the A-A 'line | wire of Fig.3 (a). 一般的な回転塗布装置の基本構成を示す模式側面図。FIG. 1 is a schematic side view showing the basic configuration of a general spin coater. (a)図2の主要部を上部から見た模式平面図であり、ノズルを6個備える場合を示す。(b)ノズルにレジストが固着した様態を示す模式断面図。(A) It is the model top view which looked at the principal part of FIG. 2 from the upper part, and shows the case where six nozzles are provided. (B) The schematic cross section which shows the aspect which the resist adhered to the nozzle. 従来のノズルポットを溶剤雰囲気とする様態を図3(a)のA−A’線での切断面で示す模式断面図。The schematic cross section which shows the aspect which makes the conventional nozzle pot a solvent atmosphere by the cutting surface in the A-A 'line | wire of Fig.3 (a).

以下、本発明の実施形態に係るノズルの待機方法、及び塗布装置について説明する。尚、同一の構成要素については便宜上の理由がない限り同一の符号を付け、重複する説明は省略する。また、以下の説明で用いる図面は、特徴をわかりやすくするために、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率などは実際と同じではない。   Hereinafter, a nozzle standby method and a coating apparatus according to an embodiment of the present invention will be described. In addition, about the same component, unless there is a reason for convenience, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted. Moreover, in order to make a feature intelligible, the drawing used by the following description may expand and show the feature part, and the dimensional ratio of each component etc. is not the same as actual.

説明の都合上、本発明の塗布装置を先に説明する。
本発明の塗布装置は、従来の塗布装置が備える、塗布液を吐出するノズルと、ノズルを待機させるノズルポットと、ノズルポットに有機溶剤の貯留槽とに加えて、さらにノズルの先端の位置と有機溶剤の液面の位置とを検出する機構と、ノズルの高さを可変制御する機構と、を備える塗布装置である。
For convenience of explanation, the coating apparatus of the present invention will be described first.
The coating apparatus according to the present invention includes a nozzle for discharging a coating liquid, a nozzle pot for waiting the nozzle, a reservoir for the organic solvent in the nozzle pot, and a position of the tip of the nozzle, which the conventional coating apparatus comprises. It is a coating device provided with the mechanism which detects the position of the liquid level of the organic solvent, and the mechanism which carries out variable control of the height of a nozzle.

ここで、図2の一般的な回転塗布装置1の基本構成を示す模式側面図では、都合上、ノズル3を待機させるノズルポットの図示を省略しているため、図2の模式側面図は本発明の塗布装置に対しても有効である。また、図3(a)の、図2の主要部を上部から見た模式平面図はノズルポット10を図示しているものの、簡略な平面図のみであるため、同様に本発明の塗布装置に対しても有効である。   Here, in the schematic side view showing the basic configuration of the general spin-coating apparatus 1 of FIG. 2, the nozzle pot for waiting the nozzle 3 is omitted for convenience, so the schematic side view of FIG. It is also effective to the coating device of the invention. Moreover, although the schematic plan view which looked at the principal part of FIG. 2 from the upper part of FIG. 3 (a) has illustrated the nozzle pot 10, since it is only a simple top view, it is the coating apparatus of this invention similarly It is also effective against

本発明の塗布装置の特徴である、ノズルの先端の位置と有機溶剤の液面の位置とを検出する機構と、ノズルの高さを可変制御する機構は、図1の、ノズルポット20を図3(a)のA−A’線に相当する切断面で示す模式断面図によって示される。   The mechanism for detecting the position of the tip of the nozzle and the position of the liquid surface of the organic solvent, which is the feature of the coating apparatus of the present invention, and the mechanism for variably controlling the height of the nozzle are shown in FIG. It is shown by the schematic cross section shown with the cut surface equivalent to the AA 'line of 3 (a).

図1に示すように、本発明の塗布装置のノズルポット20は、溶剤の貯留槽21にノズル保持冶具22を備えている。ノズル保持冶具22は、貯留槽21の側面の内側に形成された溝等(不図示)に沿って上下(±Z)方向に可動及び停止できるようになっている。ノズル保持冶具22は中央部にノズル3の下段部が通孔可能な開孔部を有している。ノズル3の下段部よりも径が大きい中段部はノズル保持冶具22(図1の例では凸部)に載置する構成となっているので、ノズル3の上下位置はノズル保持冶具22によって定まる。   As shown in FIG. 1, the nozzle pot 20 of the coating apparatus of the present invention is provided with a nozzle holding jig 22 in a storage tank 21 of a solvent. The nozzle holding jig 22 can move and stop in the vertical (± Z) direction along a groove (not shown) formed inside the side surface of the storage tank 21. The nozzle holding jig 22 has an opening at its central portion through which the lower portion of the nozzle 3 can pass. The middle step portion having a diameter larger than the lower step portion of the nozzle 3 is mounted on the nozzle holding jig 22 (a convex portion in the example of FIG. 1).

液面検出機構23はノズルの先端の位置と有機溶剤の液面の位置とを検出する。検出手段は限定されないが、例えばレーザ変位計を使用できる。液面検出機構23はノズル高さ制御部25と電気的に接続しており、取得したノズルの先端の位置と有機溶剤の液面の位置情報、もしくはそれらの離間距離(図1のd)情報をノズル高さ制御部25に送信する。ノズル高さ制御部25は受信した情報を基に、ノズル保持冶具22の好適な移動方向(+Z方向または−Z方向)と移動距離を算出する。   The liquid level detection mechanism 23 detects the position of the tip of the nozzle and the position of the liquid level of the organic solvent. Although a detection means is not limited, For example, a laser displacement meter can be used. The liquid level detection mechanism 23 is electrically connected to the nozzle height control unit 25, and the acquired position of the tip of the nozzle and the position information of the liquid level of the organic solvent, or the distance between them (d in FIG. 1) Are sent to the nozzle height control unit 25. The nozzle height control unit 25 calculates a suitable moving direction (+ Z direction or −Z direction) and a moving distance of the nozzle holding jig 22 based on the received information.

ノズル高さ制御部25はサーボモータ24と電気的に接続し、これらはノズル3の高さを可変制御する機構を構成しており、ノズル保持冶具22が、算出された好適な方向(+Z方向または−Z方向)と距離で移動するように、サーボモータ24の回転方向、回転数を可変制御する。   The nozzle height control unit 25 is electrically connected to the servo motor 24, and these constitute a mechanism for variably controlling the height of the nozzle 3, and the nozzle holding jig 22 is calculated in the preferred direction (+ Z direction). Or, the direction of rotation and the number of rotations of the servomotor 24 are variably controlled so as to move at a distance from -Z direction).

サーボモータ24はノズル保持冶具22と機械的に接続している。このため、サーボモータ24の回転方向、回転数に応じて、ノズル保持冶具22は好適な方向と距離に移動し、従ってノズル保持冶具22に載置しているノズル3は、有機溶剤の液面と好適な離間距離dを保つように移動する。   The servomotor 24 is mechanically connected to the nozzle holding jig 22. For this reason, the nozzle holding jig 22 moves to a suitable direction and distance according to the rotation direction and the number of rotations of the servomotor 24, and accordingly, the nozzle 3 mounted on the nozzle holding jig 22 is a liquid surface of the organic solvent. And move so as to maintain a suitable separation distance d.

以上のように、本発明の塗布装置では、ノズルの先端の位置と有機溶剤の液面の位置とを検出する機構と、ノズルの高さを可変制御する機構とを備えることにより、ノズルの先端の位置と有機溶剤の液面との上下方向の離間距離dを、常に好適な距離を保つように可変制御する。   As described above, the coating apparatus of the present invention includes the mechanism for detecting the position of the tip of the nozzle and the position of the liquid surface of the organic solvent, and the mechanism for variably controlling the height of the nozzle. The variable distance d between the position of and the liquid surface of the organic solvent in the vertical direction is variably controlled so as to always maintain a suitable distance.

尚、ノズル保持冶具22を好適な方向と距離に移動させる機器はサーボモータだけではなく、サーボモータとボールねじであっても良く、サーボモータとサーボモータに取り付けられた偏心カムであっても良い。さらに、サーボモータとサーボモータに取り付けられたクランク機構であっても良い。   The device for moving the nozzle holding jig 22 to a suitable direction and distance may be not only the servomotor but also a servomotor and a ball screw, or may be an eccentric cam attached to the servomotor and the servomotor . Furthermore, it may be a servomotor and a crank mechanism attached to the servomotor.

本発明のノズルの待機方法では、ノズルの先端の位置は有機溶剤の液面よりも下にあり、ノズルの先端の位置と有機溶剤の液面との上下方向の離間距離dは0〜3mmである。すなわち、ノズルの待機中、ノズルの先端を有機溶剤の液面から0〜3mm下の位置に保持しながら待機させる。   In the nozzle standby method of the present invention, the position of the tip of the nozzle is below the liquid level of the organic solvent, and the vertical distance d between the position of the tip of the nozzle and the liquid level of the organic solvent is 0 to 3 mm. is there. That is, while the nozzle is waiting, the nozzle tip is held while being held at a position 0 to 3 mm below the liquid surface of the organic solvent.

ノズルの先端の位置と有機溶剤の液面との上下方向の離間距離dが0mmよりも小さい、すなわちノズルの先端の位置が有機溶剤の液面よりも上にあると、レジストの乾燥を完全に防止することが難しくなる。そのため、ダミーディスペンス作業が必要となり、作業ロスを生じるとともに、産業廃棄物を増加させる一因となる。   If the vertical separation distance d between the position of the nozzle tip and the liquid surface of the organic solvent is smaller than 0 mm, that is, if the position of the nozzle tip is above the liquid surface of the organic solvent, the resist is completely dried. It becomes difficult to prevent. Therefore, a dummy dispensing operation is required, which causes an operation loss and contributes to an increase in industrial waste.

ノズルの先端の位置と有機溶剤の液面との上下方向の離間距離dが3mmよりも大きいと、ノズル内に溶剤が拡散する影響が無視できなくなり、同様にダミーディスペンスが必要となって、廃棄するレジストの量が増えるとともに、溶剤の交換頻度が多くなり、コスト的、環境的に不利となる。   If the vertical separation distance d between the position of the tip of the nozzle and the liquid surface of the organic solvent is greater than 3 mm, the influence of the solvent diffusing into the nozzle can not be ignored, and a dummy dispensing is similarly required, resulting in waste As the amount of resist to be added increases, the frequency of solvent replacement increases, which is disadvantageous in cost and environment.

本発明のノズルの待機方法は、本発明の塗布装置を使用して実施することが望ましいが、必ずしも本発明の塗布装置を要するものではない。すなわち、ノズルの先端の位置と有機溶剤の液面の位置とを検出する機構と、ノズルの高さを可変制御する機構とを備えない従来の塗布装置であっても、特にノズルの待機時間がそれほど長くない工程においては、ノズルの待機中、ノズルの先端を有機溶剤の液面から0〜3mm下の位置に保持するような構造として注視することにより、必要に応じ手動等で調整することにより本発明のノズルの待機方法を実施することができる。   The nozzle standby method of the present invention is preferably carried out using the coating apparatus of the present invention, but does not necessarily require the coating apparatus of the present invention. That is, even in the conventional coating apparatus which does not include the mechanism for detecting the position of the tip of the nozzle and the position of the liquid surface of the organic solvent and the mechanism for variably controlling the height of the nozzle In the process which is not so long, by adjusting the position manually, etc. by watching as a structure to hold the tip of the nozzle at a position 0 to 3 mm below the liquid surface of the organic solvent while waiting for the nozzle. The nozzle standby method of the present invention can be implemented.

以下、実施例に基づいて本発明をより具体的に説明するが、本発明は以下の実施例に限定されるものではない。   Hereinafter, the present invention will be more specifically described based on examples, but the present invention is not limited to the following examples.

<実施例1>
レジストの塗布を行った後、使用したノズルを24時間、ノズルの先端をノズルポット内の溶剤の液面よりも1mm下げた位置で待機させた。次に、該ノズルを使用してレジストを塗布する基板である直径8インチのシリコンウエハに、緑色画素の形成に用いるネガ型カラーレジスト(顔料分散型)を、画素が0.7μmの厚さとなるよう回転塗布しレジスト膜を形成する作業を5枚連続して行った。
Example 1
After applying the resist, the used nozzle was allowed to stand by for 24 hours at a position where the tip of the nozzle was lowered by 1 mm from the liquid surface of the solvent in the nozzle pot. Next, a negative color resist (pigment dispersed type) used to form a green pixel is formed on a silicon wafer having a diameter of 8 inches, which is a substrate to which a resist is applied using the nozzle, and the pixel has a thickness of 0.7 μm. As described above, five sheets were continuously applied to form a resist film by spin coating.

<実施例2>
実施例1の24時間を48時間とした以外は実施例1と同じ方法でレジスト膜を形成した。
Example 2
A resist film was formed in the same manner as in Example 1 except that 24 hours in Example 1 was changed to 48 hours.

<比較例1>
1枚目は従来の溶剤雰囲気での待機と塗布前のノズル先端の清掃とレジスト液出し(ダミーディスペンス)をいずれも行わず、2枚目の塗布前に従来の溶剤雰囲気での12時間の待機とノズル先端の清掃とレジスト液出しを行った以外は実施例1と同じ方法でレジスト膜を形成した。
Comparative Example 1
The first sheet does not stand-by in the conventional solvent atmosphere, does not clean the nozzle tip before application and cleans the resist solution (dummy dispense), and waits for 12 hours in the conventional solvent atmosphere before the second sheet application A resist film was formed in the same manner as in Example 1 except that cleaning of the tip of the nozzle and removal of the resist solution were performed.

<比較例2>
1枚目の塗布前に従来の溶剤雰囲気での12時間の待機とノズル先端の清掃とレジスト液出しを行った以外は実施例1と同じ方法でレジスト膜を形成した。
Comparative Example 2
A resist film was formed in the same manner as in Example 1 except that standby for 12 hours in a conventional solvent atmosphere, cleaning of the nozzle tip and removal of the resist solution were performed before coating the first sheet.

[評価方法と結果]
実施例1、2及び比較例1、2の1〜5枚目の塗布で発生したパーティクルを検出し、個数を計測した。結果を表1に示す。
[Evaluation method and result]
The particles generated in the first to fifth coating of Examples 1 and 2 and Comparative Examples 1 and 2 were detected, and the number of particles was measured. The results are shown in Table 1.

比較例1では1枚目の塗布前に溶剤雰囲気での待機とノズル先端の清掃とレジスト液出しを行わなかったため、レジスト固着の影響が出て、1枚目のパーティクル検出数が多くなった。比較例2は1枚目の塗布前に溶剤雰囲気での待機を行ったが、レジストの固着がノズルのより深部で起き、2枚目でのパーティクル検出数が多くなった。   In Comparative Example 1, the standby in the solvent atmosphere, the cleaning of the nozzle tip, and the discharge of the resist solution were not performed before the application of the first sheet, so the influence of the resist sticking out appeared and the number of particles detected in the first sheet increased. In Comparative Example 2, standby in a solvent atmosphere was performed before coating the first sheet, but sticking of the resist occurred at a deeper portion of the nozzle, and the number of particles detected in the second sheet increased.

実施例1、2では、いずれも本発明のノズルの待機方法を用いた結果、48時間の長い待機であってもレジストの乾燥固着の影響は見られず、平均のパーティクル検出数は従来の結果と同等となった。これにより従来のように溶剤雰囲気での待機と塗布前にノズル先端の清掃とレジスト液出しを行う必要はなくなり、作業ロスを改善するとともにレジスト及び溶剤の使用量を削減することができることを確認した。   In Examples 1 and 2, as a result of using the nozzle waiting method according to the present invention, even in the long standby for 48 hours, the influence of dry adhesion of the resist is not seen, and the average number of detected particles is the conventional result. It became equal to. As a result, it is not necessary to clean the tip of the nozzle and remove the resist solution before waiting in a solvent atmosphere and before coating as in the prior art, and it has been confirmed that working loss can be improved and the amount of resist and solvent used can be reduced. .

本発明のノズルの待機方法、及び塗布装置は、OCF製造用途に限られず、ノズルの待機時間が長く、塗布物の乾燥が問題となる塗布工程において有効に応用できる。可能性としては、固体撮像素子以外の半導体デバイスやその他の種々のデバイスの製造、絶縁膜としてスピンオングラス(SOG)膜、保護膜、酸素遮断膜等の塗膜を形成する場合等が挙げられ、塗布方法としても回転塗布に限られず、同様の問題を有する塗布方法に応用できる。   The nozzle standby method and the coating apparatus of the present invention are not limited to the use for OCF production, and can be effectively applied to a coating process in which the nozzle standby time is long and drying of a coated product is a problem. Possibilities include the production of semiconductor devices other than solid-state imaging devices and various other devices, and the formation of a coating such as a spin-on-glass (SOG) film, a protective film, or an oxygen blocking film as an insulating film. The coating method is not limited to spin coating, but can be applied to coating methods having similar problems.

1・・・・・・・回転塗布装置
10、20、30・・・ノズルポット
2・・・・・・・基板
3、3−1)〜3−6)・・・ノズル
4・・・・・・・ノズルアーム
5・・・・・・・スキャナ
6・・・・・・・駆動機構
7・・・・・・・スピンカップ
8・・・・・・・真空チャック
9・・・・・・・モータ
11・・・・・・タンク
12・・・・・・塗布液
13・・・・・・加圧機構
14・・・・・・チューブ
21、31・・・溶剤の貯留槽
22・・・・・・ノズル保持冶具
23・・・・・・液面検出機構
24・・・・・・サーボモータ
25・・・・・・ノズル高さ制御部
33・・・・・・レジストの乾燥固着物
1 ............ spin coating apparatus 10, 20, 30 ... nozzle pot 2 ....... substrate 3, 3-1) ~3-6) ... nozzle 4 .... ... Nozzle head 5 ... ... Scanner 6 ... ... Drive mechanism 7 ... ... Spin cup 8 ... ... Vacuum chuck 9 ... · · · · · · · · · Motor 11 · · · · · · · · · · · · tank 12 · · · · · · coating solution 13 · · · · · · · pressurization mechanism 14 · · · · · tubes 21, 31 · · · · storage tank of the solvent 22 · · · drying of ..... nozzle holding jig 23 ...... liquid level detection mechanism 24 ...... servomotor 25 ...... nozzle height control unit 33 ...... resist Fixed material

Claims (2)

ノズルと、前記ノズルを待機させるノズルポットと、前記ノズルポットに有機溶剤の貯留槽とを備える塗布装置において、前記ノズルを待機させる方法であって、
前記ノズルの待機中、前記ノズルの先端を前記有機溶剤の液面から0〜3mm下の位置に保持しながら待機させることを特徴とするノズルの待機方法。
In a coating apparatus including a nozzle, a nozzle pot for causing the nozzle to stand by, and a reservoir of an organic solvent in the nozzle pot, the method for making the nozzle stand by,
While waiting for the nozzle, the method for waiting for the nozzle comprises holding the tip of the nozzle at a position 0 to 3 mm below the liquid surface of the organic solvent.
ノズルと、前記ノズルを待機させるノズルポットと、前記ノズルポットに有機溶剤の貯留槽を備える塗布装置であって、
さらに前記ノズルの先端の位置と前記有機溶剤の液面の位置とを検出する機構と、前記ノズルの高さを可変制御する機構と、を備えることを特徴とする塗布装置。
A coating apparatus comprising a nozzle, a nozzle pot for holding the nozzle on standby, and a reservoir of an organic solvent in the nozzle pot,
And a mechanism for detecting the position of the tip of the nozzle and the position of the liquid surface of the organic solvent, and a mechanism for variably controlling the height of the nozzle.
JP2017081873A 2017-04-18 2017-04-18 Nozzle standby method and coating device Active JP6981032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017081873A JP6981032B2 (en) 2017-04-18 2017-04-18 Nozzle standby method and coating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017081873A JP6981032B2 (en) 2017-04-18 2017-04-18 Nozzle standby method and coating device

Publications (2)

Publication Number Publication Date
JP2018182150A true JP2018182150A (en) 2018-11-15
JP6981032B2 JP6981032B2 (en) 2021-12-15

Family

ID=64277095

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017081873A Active JP6981032B2 (en) 2017-04-18 2017-04-18 Nozzle standby method and coating device

Country Status (1)

Country Link
JP (1) JP6981032B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198356A (en) * 2019-05-31 2020-12-10 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120132A (en) * 1992-10-02 1994-04-28 Tokyo Electron Ltd Resist coater
JPH1076203A (en) * 1996-08-30 1998-03-24 Tokyo Electron Ltd Method and apparatus for solution treatment
JPH10178008A (en) * 1996-12-19 1998-06-30 Fujitsu Ltd Method and apparatus for applying flattening material
JPH1199354A (en) * 1997-09-27 1999-04-13 Tdk Corp Rotary type coating method and coating applicator
KR20060074541A (en) * 2004-12-27 2006-07-03 동부일렉트로닉스 주식회사 Solvent Bath in Semiconductor Wafer Photoresist Coating Equipment
JP2009136797A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Liquid level height adjusting device and liquid level height adjusting method
JP2010103131A (en) * 2008-10-21 2010-05-06 Tokyo Electron Ltd Apparatus and method for treating liquid
JP2012043949A (en) * 2010-08-18 2012-03-01 Tokyo Electron Ltd Coating device and nozzle maintenance method
US20120107514A1 (en) * 2010-10-27 2012-05-03 Jeong Tae-Kyun Coating apparatus and method of forming coating layer using the same
JP2013187365A (en) * 2012-03-08 2013-09-19 Toshiba Corp Coating applicator and manufacturing method of coated body

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06120132A (en) * 1992-10-02 1994-04-28 Tokyo Electron Ltd Resist coater
JPH1076203A (en) * 1996-08-30 1998-03-24 Tokyo Electron Ltd Method and apparatus for solution treatment
JPH10178008A (en) * 1996-12-19 1998-06-30 Fujitsu Ltd Method and apparatus for applying flattening material
JPH1199354A (en) * 1997-09-27 1999-04-13 Tdk Corp Rotary type coating method and coating applicator
KR20060074541A (en) * 2004-12-27 2006-07-03 동부일렉트로닉스 주식회사 Solvent Bath in Semiconductor Wafer Photoresist Coating Equipment
JP2009136797A (en) * 2007-12-07 2009-06-25 Toyota Motor Corp Liquid level height adjusting device and liquid level height adjusting method
JP2010103131A (en) * 2008-10-21 2010-05-06 Tokyo Electron Ltd Apparatus and method for treating liquid
JP2012043949A (en) * 2010-08-18 2012-03-01 Tokyo Electron Ltd Coating device and nozzle maintenance method
US20120107514A1 (en) * 2010-10-27 2012-05-03 Jeong Tae-Kyun Coating apparatus and method of forming coating layer using the same
JP2013187365A (en) * 2012-03-08 2013-09-19 Toshiba Corp Coating applicator and manufacturing method of coated body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020198356A (en) * 2019-05-31 2020-12-10 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus
JP7194645B2 (en) 2019-05-31 2022-12-22 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
JP6981032B2 (en) 2021-12-15

Similar Documents

Publication Publication Date Title
KR100700237B1 (en) Substrate Coating System and Method
KR101521901B1 (en) A method for filming ink-jet
TWI425557B (en) Liquid treatment apparatus and liquid treatment method
TWI803575B (en) Liquid processing device and cleaning method of liquid processing device
CN105289923A (en) Wafer gumming machine and gumming method
US10155252B2 (en) Semiconductor apparatus and washing method
CN109494174B (en) Substrate processing apparatus, substrate processing method, and computer storage medium
US10773425B2 (en) Imprint template manufacturing apparatus and imprint template manufacturing method
US10766054B2 (en) Substrate processing method and substrate processing apparatus
US20180117796A1 (en) Imprint template manufacturing apparatus and imprint template manufacturing method
JP2009224653A (en) Photoresist coating device
JP2018182150A (en) Nozzle standby method, and paint application equipment
JP4792787B2 (en) Coating device with cleaning device
US7673582B2 (en) Apparatus and method for removing an edge bead of a spin-coated layer
TWI437627B (en) Substrate cleaning process
TWI648767B (en) Substrate processing method and substrate processing apparatus
JP5276912B2 (en) Coating processing method, program, computer storage medium, and coating processing apparatus
JP2006263535A (en) Slit coater
JP2004081988A (en) Film forming method, film forming apparatus, device manufacturing method, and device manufacturing apparatus
JP7136543B2 (en) Substrate processing method and substrate processing apparatus
JPH07283184A (en) Processing device
JP4141805B2 (en) Single wafer coating method
JP7607230B2 (en) Coating device and coating method
TW201913792A (en) Substrate processing apparatus and substrate processing method
JP3988452B2 (en) Method for forming a thin film on a substrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200318

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210405

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211019

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211101

R150 Certificate of patent or registration of utility model

Ref document number: 6981032

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250