JP2018178723A - Internal combustion engine control system - Google Patents
Internal combustion engine control system Download PDFInfo
- Publication number
- JP2018178723A JP2018178723A JP2017073662A JP2017073662A JP2018178723A JP 2018178723 A JP2018178723 A JP 2018178723A JP 2017073662 A JP2017073662 A JP 2017073662A JP 2017073662 A JP2017073662 A JP 2017073662A JP 2018178723 A JP2018178723 A JP 2018178723A
- Authority
- JP
- Japan
- Prior art keywords
- hydrogen peroxide
- supply
- internal combustion
- combustion engine
- temperature
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 title claims abstract description 194
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 claims abstract description 226
- 239000000446 fuel Substances 0.000 claims abstract description 51
- 239000000126 substance Substances 0.000 claims abstract description 34
- 239000000654 additive Substances 0.000 claims abstract description 29
- 230000000996 additive effect Effects 0.000 claims abstract description 29
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 26
- 238000009792 diffusion process Methods 0.000 claims abstract description 21
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 93
- 239000007789 gas Substances 0.000 claims description 24
- 239000004071 soot Substances 0.000 claims description 14
- 230000007704 transition Effects 0.000 claims description 7
- 238000009841 combustion method Methods 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000003134 recirculating effect Effects 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 18
- 239000007924 injection Substances 0.000 abstract description 18
- 239000000243 solution Substances 0.000 abstract description 2
- 230000006835 compression Effects 0.000 description 19
- 238000007906 compression Methods 0.000 description 19
- 238000000354 decomposition reaction Methods 0.000 description 14
- 230000007423 decrease Effects 0.000 description 6
- 238000000034 method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000007921 spray Substances 0.000 description 3
- 239000013543 active substance Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000009931 harmful effect Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005949 ozonolysis reaction Methods 0.000 description 1
- 238000005502 peroxidation Methods 0.000 description 1
- 231100000572 poisoning Toxicity 0.000 description 1
- 230000000607 poisoning effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Output Control And Ontrol Of Special Type Engine (AREA)
- Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
- Exhaust-Gas Circulating Devices (AREA)
Abstract
Description
本発明は、内燃機関の燃焼を制御する内燃機関制御システムに関する。 The present invention relates to an internal combustion engine control system that controls the combustion of an internal combustion engine.
従来、内燃機関の燃焼制御に関して、燃料の自己着火性を向上させる技術が知られている。例えば特許文献1に開示された圧縮自己着火式エンジンは、燃焼室内にオゾンを供給する手段を備え、オゾンの分解によって生じるOラジカルにより、予混合圧縮着火(HCCI)燃焼における燃料の自己着火を促進させる。また、エンジンの負荷に応じて、高負荷時には燃料の噴射時期を遅らせてオゾンの供給タイミングを調整する。
Heretofore, there has been known a technique for improving the self-ignitability of fuel with respect to combustion control of an internal combustion engine. For example, the compression self-ignition engine disclosed in
特許文献1にも記載されている通り、オゾンは、燃焼室内温度が500〜600K程度で分解し、Oラジカルを生成する。以下、温度単位の[K]はケルビンである。
ラジカルは不安定な活性物質であり、生成されてから短時間で大部分が消失する。例えばOラジカルの時定数は数十μsであり、生成後1msも経過しないうちに数千〜数万分の一以下のオーダーにまで減少すると考えられる。
As described in
Radicals are unstable active substances, and most of them disappear in a short time after being generated. For example, the time constant of the O radical is several tens of μs, and it is considered to decrease to several thousand to several tens of thousands or less in less than 1 ms after generation.
また、高圧縮比エンジンにおける圧縮端(すなわちピストンの上死点)付近の温度は、オゾンの分解温度を上回る800〜900K程度である。そのため、高圧縮比エンジンの圧縮端付近で燃料を噴射する場合、オゾンの供給によって燃料にOラジカルを供給することは困難である。したがって、特許文献1の従来技術では、燃焼室内温度が高温の場合に燃料の着火性を向上させることができないという問題がある。
Further, the temperature near the compression end (i.e., the top dead center of the piston) in the high compression ratio engine is about 800 to 900 K which is higher than the decomposition temperature of ozone. Therefore, when injecting a fuel near the compression end of a high compression ratio engine, it is difficult to supply O radicals to the fuel by the supply of ozone. Therefore, in the prior art of
本発明はこのような点に鑑みて創作されたものであり、その目的は、自着火燃焼方式の内燃機関において、燃焼室内温度が高温の場合に燃料の着火性を向上させる内燃機関制御システムを提供することにある。 The present invention has been made in view of such a point, and its object is to provide an internal combustion engine control system for improving the ignitability of fuel when the temperature in the combustion chamber is high in a self-igniting combustion type internal combustion engine. It is to provide.
本発明の内燃機関制御システムは、空気中の燃料を自着火燃焼させる燃焼モードにより内燃機関(10)の運転を制御する内燃機関制御システムであって、一つ以上の添加物質供給装置(33、35、40)と、供給制御部(71)と、を備える。
添加物質供給装置は、吸気通路(21)又は燃焼室(12)内にラジカルを発生させる添加物質を供給可能である。供給制御部は、添加物質の供給量を制御する。
そして、添加物質には、700K以上の温度でラジカルを生成可能な物質が少なくとも含まれる。
The internal combustion engine control system of the present invention is an internal combustion engine control system that controls the operation of the internal combustion engine (10) by a combustion mode in which fuel in air is self-ignited and comprises one or more additive supply devices (33, 35, 40) and a supply control unit (71).
The additive supply device can supply an additive that generates radicals in the intake passage (21) or the combustion chamber (12). The supply control unit controls the supply amount of the additive substance.
And, the additive substance contains at least a substance capable of generating a radical at a temperature of 700 K or more.
ここで、「700K以上の温度でラジカルを生成可能」とは、この技術分野の技術常識に鑑みて現実的に有効な量のラジカルを生成可能、という意味で解釈される。
つまり、一般に化学物質の分解は、反応の開始から化学平衡が分解側に移動し無限時間後に収束する一次遅れ応答の現象として理解される。言い換えれば、反応開始から有限時間後には分解が100%完了するわけではなく、厳密にはごく微量の物質が未分解の状態で残留している。
例えば特許文献1に開示されているオゾンは、700Kでほぼ分解し、発生したOラジカルの大部分は直ちに消失すると考えられるが、それでも、内燃機関の燃焼サイクルオーダーの時間で、ごく微量のOラジカルは存在するはずである。
Here, "capable of generating radicals at a temperature of 700 K or more" is interpreted in the sense that it is capable of generating a practically effective amount of radicals in view of technical common knowledge in this technical field.
That is, in general, decomposition of a chemical substance is understood as a phenomenon of first-order lag response in which chemical equilibrium moves from the start of reaction to decomposition and converges after infinite time. In other words, the decomposition is not 100% complete after a finite time from the start of the reaction, and a very small amount of substance strictly remains undegraded.
For example, ozone disclosed in
しかし、その程度の微量のOラジカルは、技術常識に照らして、着火性の向上効果に現実的に有効であるとは到底考えられない。したがって、たとえ生成量が厳密には0でないとしても、そのレベルのOラジカルの生成は、「ラジカルを生成可能」という解釈からは除外されるものとする。
要するに、「700K以上の温度でラジカルを生成可能」という特定事項は、燃焼室内にオゾンのみが供給される特許文献1の従来技術を排除する趣旨である。
However, such a small amount of O radical is not considered to be practically effective in improving the ignitability in light of common technical knowledge. Therefore, even if the amount of production is not strictly 0, the generation of O radicals at that level is excluded from the interpretation of “the ability to generate radicals”.
In short, the specific matter “the radical can be generated at a temperature of 700 K or more” is intended to exclude the prior art of
また、「700K以上の温度でラジカルを生成可能」とは、700K以上のあらゆる高温領域、例えば数千Kでラジカルを生成可能である、という意味ではない。添加物質によるラジカルの生成が例えば800〜900Kの温度領域で実現可能であれば、この要件を満足するものと解釈する。もちろん、内燃機関の技術常識に照らして、現実的な燃焼室内の温度を上回る温度領域まで想定する必要が無いことは自明である。 Also, "capable of generating radicals at a temperature of 700 K or more" does not mean that radicals can be generated at any high temperature range of 700 K or more, for example, several thousand K. If the formation of radicals by the additive substance can be realized, for example, in a temperature range of 800 to 900 K, it is interpreted that this requirement is satisfied. Of course, in light of the technical common knowledge of internal combustion engines, it is self-evident that it is not necessary to assume a temperature range that exceeds the temperature in a realistic combustion chamber.
本発明では、700K以上の温度で吸気通路又は燃焼室内にラジカルを生成可能な添加物質が供給される。これにより、例えばガソリンの拡散燃焼方式において、上死点付近での燃料噴射時における燃焼室内温度が800〜900Kの場合にも、有効量のラジカルを発生させ、着火性を向上させることができる。 In the present invention, the additive capable of generating radicals in the intake passage or the combustion chamber is supplied at a temperature of 700 K or more. As a result, for example, in the case of the diffusion combustion system of gasoline, even when the temperature in the combustion chamber at the time of fuel injection near the top dead center is 800 to 900 K, effective amounts of radicals can be generated to improve the ignitability.
この内燃機関制御システムは、添加物質供給装置として具体的に、700K以上の温度で吸気通路又は燃焼室内にOHラジカルを発生させる過酸化水素を供給可能な過酸化水素供給装置(33、35)を備えることが好ましい。また、過酸化水素とオゾンとの両方が供給される構成としてもよい。
なお、過酸化水素供給装置として、例えば特許第4103525号公報に開示された、水に超音波を照射して過酸化水素に変化させる技術を利用可能である。
Specifically, the internal combustion engine control system is a hydrogen peroxide supply device (33, 35) capable of supplying hydrogen peroxide which generates OH radicals in the intake passage or combustion chamber at a temperature of 700 K or more as an additive substance supply device. It is preferable to have. Alternatively, both hydrogen peroxide and ozone may be supplied.
In addition, as a hydrogen peroxide supply device, for example, a technology disclosed in Japanese Patent No. 4103525, in which water is irradiated with ultrasonic waves to be changed to hydrogen peroxide can be used.
以下、内燃機関制御システムの複数の実施形態を図面に基づいて説明する。以下の第1〜第4実施形態を包括して「本実施形態」という。複数の実施形態において実質的に同一の構成には、同一の符号を付して説明を省略する。
本実施形態の内燃機関制御システムは、空気中の燃料を自着火燃焼させる燃焼方式により内燃機関の運転を制御する制御システムである。本実施形態は、基本的に燃料としてガソリンを用いるガソリンエンジンに適用されることを想定する。なお、ガソリン以外の燃料への適用の可能性について、その他の実施形態に記載する。
Hereinafter, a plurality of embodiments of an internal combustion engine control system will be described based on the drawings. The following first to fourth embodiments are collectively referred to as "the present embodiment". Substantially the same configurations in the plurality of embodiments will be assigned the same reference numerals and descriptions thereof will be omitted.
The internal combustion engine control system of the present embodiment is a control system that controls the operation of the internal combustion engine by a combustion method in which fuel in the air is self-ignited and burned. The present embodiment assumes that the present invention is basically applied to a gasoline engine that uses gasoline as fuel. In addition, about the possibility of application to fuels other than gasoline, it describes in other embodiment.
ガソリンエンジンにおいては圧縮比を大きくすることにより理論効率を向上させることが高効率化のために有効である。この理論は、熱効率η、圧縮比ε、及び比熱比γの関係を表す下式において、圧縮比εを大きくするほど熱効率ηが1に近づくことに基づく。
しかし、高圧縮比とするとノック、すなわちエンドガスの自着火が発生しやすくなるため、ノックを抑制することが課題となっている。その解決策として、圧縮された空気に燃料を噴射しながら自着火させて燃焼させる、ディーゼルエンジンと同様の燃焼方式である「拡散燃焼方式」がある。
この拡散燃焼方式ではエンドガスに混合気が存在しないため、ノックフリー化が可能となる。しかし、ガソリンは着火性が低いため自着火が困難であり、着火性を向上させる技術が求められている。
However, when the compression ratio is high, knocking, that is, self-ignition of the end gas tends to occur, and therefore, it is an issue to suppress the knocking. As a solution, there is a "diffuse combustion method" which is a combustion method similar to a diesel engine, in which the compressed air is injected with fuel while being self-ignited while being injected with fuel.
In this diffusion combustion method, since there is no mixture in the end gas, knock freeing is possible. However, gasoline has low ignitability, so self-ignition is difficult, and a technique for improving the ignitability is required.
上記の課題に対して、特許文献1(特許第5906982号公報)には、オゾン添加によるガソリンの着火性向上技術が提案されている。この技術では、化学式1によるオゾン分解で生成されるOラジカルにより燃焼反応を促進することができる。
しかし、オゾンは500〜600K程度で分解し、Oラジカルを生成する。生成されたラジカルは不安定な活性物質であり、時定数が数十μs程度のオーダーで大部分が急速に消失する。
一方、拡散燃焼方式において、圧縮端(すなわちピストンの上死点)付近で燃料を噴射する場合、高圧縮比エンジンにおける圧縮端の温度は800〜900K程度となる。したがって、特許文献1の従来技術によるオゾン添加の技術では、燃料にラジカルを供給することは困難である。
However, ozone decomposes at about 500 to 600 K to generate O radicals. The generated radicals are unstable active substances, and most of them disappear rapidly with a time constant on the order of several tens of μs.
On the other hand, when the fuel is injected near the compression end (that is, the top dead center of the piston) in the diffusion combustion system, the temperature of the compression end in the high compression ratio engine is about 800 to 900 K. Therefore, in the technology of ozone addition according to the prior art of
そこで第1〜第3実施形態では、高圧縮比ガソリンエンジンの拡散燃焼方式において、燃焼室内温度が800〜900K程度の高温となる上死点付近で燃料噴射される場合に、効果的にラジカルを燃料に供給する技術を提案する。
具体的には、「700K以上の温度でラジカルを生成可能な添加物質」を供給することで、生成されたラジカルが800〜900Kの環境でも直ちに消失しにくいようにする。その添加物質の例として、OHラジカルを発生させる過酸化水素を供給する実施形態について詳しく説明する。
Therefore, in the first to third embodiments, in the diffusion combustion method of a high compression ratio gasoline engine, radicals are effectively injected when fuel injection is performed near the top dead center where the temperature in the combustion chamber becomes a high temperature of about 800 to 900K. We propose the technology to supply fuel.
Specifically, by supplying "the additive capable of generating radicals at a temperature of 700 K or more", the generated radicals are prevented from being eliminated immediately even in an environment of 800 to 900 K. As an example of the additive substance, an embodiment in which hydrogen peroxide generating OH radical is supplied will be described in detail.
また、第4実施形態では、ラジカルを発生させる添加物質として過酸化水素を供給するモードと、オゾンを供給するモードとを切り替える実施形態について説明する。
以下、添加物質の記載について、原則として明細書中では「過酸化水素」、「オゾン」と記載し、図面中では化学式を用いて「H2O2」、「O3」と記載する。
In the fourth embodiment, an embodiment in which a mode in which hydrogen peroxide is supplied as an additive that generates radicals and a mode in which ozone is supplied is switched will be described.
Hereinafter, the descriptions of the additive substances will in principle be described as “hydrogen peroxide” and “ozone” in the specification and in the drawings as “H 2 O 2 ” and “O 3 ” using chemical formulas.
(第1実施形態)
第1実施形態について、図1〜図6を参照して説明する。
内燃機関10は、例えば車両に搭載される多気筒エンジンであり、各気筒のシリンダ15内をピストン13が往復移動する。図1には、一気筒のヘッド側部分断面を図示する。吸気通路21から吸気マニホールド11への分流、及び、排気マニホールド14から排気通路22への合流の図示を省略する。
First Embodiment
The first embodiment will be described with reference to FIGS. 1 to 6.
The
燃焼室12は、シリンダ15の内側面、シリンダヘッド16の下面、及び、ピストン13の冠面130に区画された空間である。吸気弁17は、吸気マニホールド11から燃焼室12に連通する吸気ポートを開閉する。排気弁18は、燃焼室12から排気マニホールド14に連通する排気ポートを開閉する。燃料噴射弁30は、燃焼室12内に燃料を噴射する。
The
図1では、吸気通路21におけるエアフィルタやスロットル弁、また、排気通路22における排気浄化触媒等の図示を省略する。
第1実施形態の内燃機関制御システム801では、水タンク31、水供給通路32、及び、水タンク31の水(すなわちH2O)を吸気通路21に導入する水導入部33が設けられている。また、水供給通路32の導入口34よりも下流の吸気通路21に、超音波生成装置35が設けられている。
In FIG. 1, the air filter and the throttle valve in the
In the internal combustion
水導入部33により吸気通路21に導入された水に超音波生成装置35が超音波を照射することで、過酸化水素が生成される。つまり、第1実施形態における水導入部33及び超音波生成装置35は「過酸化水素供給装置」として機能する。
特許第4103525号公報には、三元触媒等の上流域で排気に200kHz付近の超音波を照射し、排気中に含まれている水分を過酸化水素に変化させる排気浄化装置の技術が開示されている。この技術では、HC、COの未燃物を酸化させることによる浄化性能の向上や、NOx吸蔵還元触媒に対するHC被毒の解消に過酸化水素を利用している。
それに対し第1実施形態では、別の目的で吸気中に過酸化水素を生成する。
The
Japanese Patent No. 4103525 discloses a technology of an exhaust gas purification apparatus in which the exhaust gas is irradiated with ultrasonic waves around 200 kHz in the upstream of a three-way catalyst or the like, and water contained in the exhaust gas is changed to hydrogen peroxide. ing. In this technology, hydrogen peroxide is used to improve purification performance by oxidizing unburned substances of HC and CO, and to eliminate HC poisoning to the NOx storage reduction catalyst.
In the first embodiment, on the other hand, hydrogen peroxide is generated during inhalation for another purpose.
第1実施形態において、過酸化水素は、「吸気通路21又は燃焼室12内にラジカルを発生させる添加物質」の一例である。また、水導入部33及び超音波生成装置35により構成される「過酸化水素供給装置」は、「添加物質供給装置」の一形態に相当する。
過酸化水素は、吸気通路21又は燃焼室12内において化学式2により分解し、OHラジカルを生成する。燃焼室12内にOHラジカルが供給されることで燃料の着火性が向上する。
Hydrogen peroxide is decomposed by the chemical formula 2 in the
図1には、吸気通路21の内燃機関10の近傍に、吸気温度を検出する熱電対等の温度センサ61が設けられている。また、シリンダ15の内側面から燃焼室12に突き出し、燃焼室内温度を直接検出する熱電対等の温度センサ62が設けられている。ただし、温度センサ61、62は、少なくともいずれか一方が設けられればよい。
In FIG. 1, in the vicinity of the
また、燃焼室12に温度センサが設けられる構成として、図2に示すように、シリンダヘッド16の下面に、燃料噴射弁30に隣接して、温度センサ63が設けられてもよい。ただし、燃料噴射弁30から噴射される噴霧が温度センサ63にかかると、燃焼室内温度を精度良く検出することができない。そのため、温度センサ63の燃焼室12内への突き出し量d3は、噴霧との干渉を避けるため0又はできるだけ微量とすることが好ましい。一方、燃料噴射弁30から離れた位置に設けられる温度センサ62は、噴霧による影響が少ないため、突き出し量d2が比較的大きくても問題ない。
Further, as a configuration in which the temperature sensor is provided in the
エンジンECU70は、供給制御部71、噴射制御部72等を含み、内燃機関10の運転を制御する。
供給制御部71は、一般化した表現では、「ラジカルを発生させる添加物質の供給量」を制御する。具体的に第1実施形態では、供給制御部71は、水導入部33及び超音波生成装置35による過酸化水素供給量を制御する。
噴射制御部72は、燃料噴射弁30による燃料噴射量や噴射タイミングを制御する。
The
The
The
供給制御部71は、吸気通路21に設けられた温度センサ61が検出した吸気温度に基づいて燃焼室内温度を推定するか、或いは、燃焼室12に設けられた温度センサ62が検出した温度を燃焼室内温度として取得する。
また、供給制御部71は、内燃機関10の運転負荷を取得する。例えば車両の内燃機関10の場合、運転負荷を表すパラメータとして、アクセル開度がアクセルECU75から取得される。
The
Further, the
図3に第1実施形態による過酸化水素供給制御のフローチャートを示す。以下のフローチャートの説明で記号Sは「ステップ」を表す。また、後出の実施形態のフローチャートにおいて、第1実施形態のステップと実質的に同一のステップには同一のステップ番号を付して説明を省略する。
供給制御部71は、S1で温度センサ61又は62から燃焼室内温度を取得し、S2でアクセルECU75から運転負荷を取得する。S1及びS2の実行順序は問わない。
FIG. 3 shows a flowchart of hydrogen peroxide supply control according to the first embodiment. In the following description of the flowchart, the symbol S represents "step". In the flowcharts of the later embodiments, the same steps as those in the first embodiment are denoted by the same step numbers, and the description thereof is omitted.
The
S4Aでは、供給制御部71は、燃焼室内温度及び運転負荷に応じて過酸化水素供給量を決定する。燃料は、燃焼室内温度が低いほど、また、運転負荷が低いほど自着火しにくいため、そのような自着火しにくい条件では過酸化水素を増量し、着火性を向上させることが好ましい。
そこで供給制御部71は、図4(a)に示すように、燃焼室内温度が低いほど、過酸化水素供給量を増加させる。また、供給制御部71は、図4(b)に示すように、運転負荷が低いほど、過酸化水素供給量を増加させる。
S5Aでは、供給制御部71は、決定した供給量に基づいて、「過酸化水素供給装置」としての水導入部33及び超音波生成装置35を作動させる。
In S4A, the
Therefore, as shown in FIG. 4A, the
In S5A, the
続いて図5、図6を参照し、第1実施形態による作用効果を説明する。
図5に、温度と、過酸化水素及びオゾンの分解速度との関係を示す。
オゾンは、低温のL領域においても分解速度が高く、温度上昇に伴い、高温のH領域に向かって分解速度が比較的緩やかな傾きで上昇する。一方、過酸化水素は、低温のL領域では、オゾンに対して分解速度が顕著に低い。そして、温度上昇に伴い、高温のH領域に向かって分解速度が比較的急な傾きで上昇する。
例えば、L領域は500〜600K程度の温度領域に相当し、H領域は800〜900K程度の温度領域に相当すると考えられる。
Next, with reference to FIG. 5 and FIG. 6, the operation and effect according to the first embodiment will be described.
FIG. 5 shows the relationship between the temperature and the decomposition rate of hydrogen peroxide and ozone.
Ozone has a high decomposition rate even in the low temperature L region, and as the temperature rises, the decomposition rate rises toward the high temperature H region with a relatively gentle slope. On the other hand, hydrogen peroxide has a remarkably low decomposition rate to ozone in the low temperature L region. Then, as the temperature rises, the decomposition rate rises with a relatively rapid inclination toward the high temperature H region.
For example, the L region corresponds to a temperature region of about 500 to 600 K, and the H region corresponds to a temperature region of about 800 to 900 K.
図6に、ピストン13の位置に相関するクランク角と、燃焼室内温度との関係を示す。
吸気行程から圧縮行程の途中まで、燃焼室内温度は、オゾンの分解温度Tres_O3より低い。圧縮行程の終期から燃焼室内温度は急に上がり始め、上死点で燃料噴射されるときの温度は、過酸化水素の分解温度Tres_H2O2と同等である。上死点後の燃焼行程では燃焼室内温度は更に上昇しピークに達した後、徐々に低下する。
ここで、例えば700Kを基準とすると、オゾンが分解し、Oラジカルを生成する温度Tres_O3は700Kより低く、過酸化水素の分解温度Tres_H2O2は700Kより高い。要するに、過酸化水素はオゾンに比べて高温で分解し、700K以上の温度でOHラジカルを生成可能である。
FIG. 6 shows the relationship between the crank angle correlated with the position of the
From the intake stroke to the middle of the compression stroke, the temperature in the combustion chamber is lower than the decomposition temperature Tres_O 3 of ozone. From the end of the compression stroke, the temperature in the combustion chamber starts to rise rapidly, and the temperature when fuel is injected at the top dead center is equal to the decomposition temperature Tres_H 2 O 2 of hydrogen peroxide. In the combustion stroke after the top dead center, the temperature in the combustion chamber further rises and reaches a peak, and then gradually falls.
Here, for example, based on 700 K, the temperature Tres_O 3 at which ozone is decomposed to generate O radicals is lower than 700 K, and the decomposition temperature Tres_H 2 O 2 of hydrogen peroxide is higher than 700 K. In short, hydrogen peroxide decomposes at high temperature compared to ozone, and can generate OH radical at a temperature of 700 K or more.
このように、第1実施形態では、吸気に過酸化水素を供給することで、燃焼室12内にOHラジカルを発生させ、拡散燃焼における燃料の着火性を向上させることができる。
また、供給制御部71は、燃焼室内温度が低い場合や運転負荷が低い場合のように燃料が着火しにくい条件ほど過酸化水素供給量を増加させることで、着火性を向上させることができる。
また、吸気通路21に導入された水に超音波生成装置35により超音波を照射することで、簡易に過酸化水素を生成することができる。
As described above, in the first embodiment, by supplying hydrogen peroxide to the intake air, OH radicals can be generated in the
Further, the
Further, by irradiating the water introduced into the
(第2実施形態)
第2実施形態について、図7を参照して説明する。
排気再循環(いわゆるEGR)システムを有する第2実施形態の内燃機関制御システム802は、排気通路22から分岐し吸気通路21に連通するEGR通路23が設けられている。EGRバルブ24が開いているとき、燃焼により生成された水分を含む排気の一部がEGR通路23を経由して吸気通路21に還流される。
Second Embodiment
The second embodiment will be described with reference to FIG.
In the internal combustion
EGR通路23には、超音波生成装置35が設けられている。超音波生成装置35は、還流される排気に超音波を照射し、排気中の水分を過酸化水素に変化させることにより、「過酸化水素供給装置」として機能する。
超音波生成装置35から供給された過酸化水素は、吸気と共に燃焼室12に供給され、OHラジカルを生成することで、拡散燃焼での燃料の着火性を向上させる。
An
The hydrogen peroxide supplied from the
第2実施形態による過酸化水素供給制御のフローチャート、及び、燃焼室温度、運転負荷に応じた過酸化水素供給量のマップは、第1実施形態の図3、図4が援用される。フローチャートのS5Aで、供給制御部71は、「過酸化水素供給装置」としての超音波生成装置35を作動させ、吸気通路21に還流される排気中に過酸化水素を供給する。
第2実施形態は、第1実施形態と同様の作用効果を奏する。また、排気再循環システムを有する内燃機関制御システム80において、排気中の水分を有効に利用して過酸化水素を供給することができる。
The flowchart of the hydrogen peroxide supply control according to the second embodiment and the map of the hydrogen peroxide supply amount according to the combustion chamber temperature and the operation load can be applied to FIGS. 3 and 4 of the first embodiment. In S5A of the flowchart, the
The second embodiment has the same effects as the first embodiment. Further, in the internal combustion engine control system 80 having the exhaust gas recirculation system, the water content in the exhaust gas can be effectively used to supply hydrogen peroxide.
(第3実施形態)
第3実施形態について、図8〜図10を参照して説明する。
図8に示すように、第3実施形態の内燃機関制御システム803は、第1実施形態の制御システム801の構成に加え、排気中の排出未燃HC、SOOT(いわゆる「すす」)量を測定し供給制御部71に通知する測定装置50が排気通路22に設けられている。
車両の内燃機関10では、例えば車両の加速時や冷間時等に排出未燃HCやSOOT量が増加する傾向にあり、これを低減することが求められる。
Third Embodiment
The third embodiment will be described with reference to FIGS.
As shown in FIG. 8, in addition to the configuration of the
In the
図9の供給制御フローチャートのS1、S2は、第1、第2実施形態の図3と共通である。S2の後のS3で、供給制御部71は、排出未燃HC、SOOT量を取得する。
図10のマップに示すように、供給制御部71は、排気中の排出未燃HC、SOOT量が多いほど過酸化水素供給量を増加させることにより、未燃物質の排出量を低減させる。
S1 and S2 of the supply control flowchart of FIG. 9 are the same as those of FIG. 3 of the first and second embodiments. At S3 after S2, the
As shown in the map of FIG. 10, the
つまり、供給制御部71は、フローチャートのS4Aで、燃焼室内温度、運転負荷、排出未燃HC、SOOT量の3つのパラメータに応じて過酸化水素供給量を決定する。そして、供給制御部71は、S5Aで、決定した供給量に基づいて、「過酸化水素供給装置」としての超音波生成装置35を作動させる。
第3実施形態は、第1実施形態と同様の作用効果を奏する。また、排出未燃HC、SOOT量が多いほど過酸化水素供給量を増加させることで、酸化力を高め、未燃物質の排出量を低減させることができる。
That is, the
The third embodiment has the same effects as the first embodiment. In addition, by increasing the hydrogen peroxide supply amount as the amount of discharged unburned HC and SOOT increases, the oxidizing power can be increased and the amount of unburned substance discharged can be reduced.
(第4実施形態)
第4実施形態について、図11〜図16を参照して説明する。
図11に示すように、第4実施形態の内燃機関制御システム804は、第2実施形態の制御システム802と同様に、排気再循環システムのEGR通路23が設けられている。
また、内燃機関制御システム804は、吸気通路21又は燃焼室12にOラジカルを発生させる添加物質として、オゾンを供給可能なオゾン供給装置40を備えている。
Fourth Embodiment
The fourth embodiment will be described with reference to FIGS. 11 to 16.
As shown in FIG. 11, in the internal combustion
In addition, the internal combustion
吸気の一部は、吸気通路21の上流側から分岐した流入通路41を経由してオゾン供給装置40に流入する。オゾン供給装置40で供給されたオゾンを含む吸気は、第1バルブ44が開かれると、第1流出通路43を経由して吸気通路21の下流側に導入され、第2バルブ46が開かれると、第2流出通路45を経由してEGR通路23に導入される。
第1流出通路43を経由して吸気通路21に供給されたオゾンは、吸気通路21又は燃焼室12内にOラジカルを発生させる。
A part of the intake air flows into the
The ozone supplied to the
第2流出通路45を経由してEGR通路23に供給されたオゾンは、化学式3により、還流された排気中の水分を過酸化水素に変化させる。
ところで、第2バルブ46を常に閉じたまま、オゾン供給装置40で供給されたオゾンを全て吸気通路21に供給する構成では、特許文献1の従来技術と実質的に違いが無い。一方、第1バルブ44を常に閉じたまま、オゾン供給装置40で供給されたオゾンを全てEGR通路23に供給する構成では、過酸化水素の生成に使われないオゾンが多少残る可能性があるとしても、ほぼ、第1〜第3実施形態と大差が無いと考えられる。
By the way, in the configuration in which all the ozone supplied by the
したがって、第4実施形態では、燃焼室温度及び運転負荷の少なくとも一部の領域で、第1バルブ44と第2バルブ46との両方が同時に開かれ、過酸化水素及びオゾンの両方が供給される点に技術的意義がある。
供給制御部71は、過酸化水素及びオゾンの両方を供給する領域において、各バルブ44、46の開度調整により、過酸化水素供給量及びオゾン供給量の絶対量や、オゾン供給量に対する過酸化水素供給量の比を制御する。
Therefore, in the fourth embodiment, both the
The
上述のように、オゾンは500〜600K程度で分解し、生成されたOラジカルの大部分が直ちに消失するため、特に700K以上の温度では、オゾンよりも分解しにくい過酸化水素を主に供給する方が着火性の向上に有利である。しかし、たとえ700K以上の温度であっても、燃焼室12内のOラジカルが完全に消失するわけではなく、オゾン供給の効果はある程度期待できる。そこで、オゾン及び過酸化水素の供給量を総合的に制御することが第4実施形態の課題となる。
As described above, ozone decomposes at about 500 to 600 K, and most of the generated O radicals disappear immediately. Therefore, particularly at a temperature of 700 K or more, hydrogen peroxide which is more difficult to decompose than ozone is mainly supplied Is more advantageous for improving the ignitability. However, even if the temperature is 700 K or more, the O radicals in the
なお、過酸化水素を供給する構成としては、図11に示す「EGR通路23にオゾンを供給し排気中の水分を過酸化水素に変化させる構成」に代えて、第1、第2実施形態と同様に超音波生成装置35を用いてもよい。その場合、オゾン供給装置と過酸化水素供給装置とは独立して構成される。
また、図11の制御システム804には、第3実施形態と同様に、排気通路22に排出未燃HC、SOOT量測定装置50が設けられているが、これは設けられなくてもよい。
Note that, as a configuration for supplying hydrogen peroxide, instead of “a configuration for supplying ozone to the
Further, in the
図12の供給制御フローチャートのS1、S2、S3は、第3実施形態の図9と共通である。S4Bでは、図3、図9のS4Aにオゾンが加わり、供給制御部71は、過酸化水素及びオゾンの供給量を決定する。同様にS5Bでは、図3、図9のS5Aにオゾンが加わり、供給制御部71は、過酸化水素及びオゾンの供給装置を作動する。
S <b> 1, S <b> 2 and S <b> 3 of the supply control flowchart of FIG. 12 are the same as those of FIG. 9 of the third embodiment. In S4B, ozone is added to S4A in FIG. 3 and FIG. 9, and the
図13(a)、(b)、(c)は、それぞれ、図4(a)、(b)、図10の縦軸の「過酸化水素供給量」を「過酸化水素又はオゾン供給量」に置き換えたマップである。
供給制御部71は、燃焼室内温度が低いほど、又は、内燃機関10の運転負荷が低いほど、過酸化水素又はオゾンの少なくとも一方の供給量を増加させる。また、供給制御部71は、排気中の排出未燃HC、SOOT量が多いほど、過酸化水素又はオゾンの少なくとも一方の供給量を増加させる。例えば供給制御部71は、過酸化水素又はオゾンの一方の供給量を上記関係により増加させ、他方の供給量を、燃焼室内温度、運転負荷、排出未燃HC、SOOT量によらず一定としてもよい。
13 (a), (b), and (c) respectively indicate the “hydrogen peroxide supply amount” in the vertical axis in FIGS. 4 (a), (b) and FIG. 10 as the “hydrogen peroxide or ozone supply amount”. It is a map replaced by.
The
また、供給制御部71は、燃焼室内温度に応じて、過酸化水素供給量とオゾン供給量とのバランスを変更する。すなわち、供給制御部71は、燃焼室内温度が高いほど、オゾン供給量に対する過酸化水素供給量の比を増加させ、燃焼室内温度が低いほど、オゾン供給量に対する過酸化水素供給量の比を減少させる。
つまり、例えば700K程度を基準として、燃焼室内温度が比較的低いときには、低温で分解するオゾンが優先的に供給され、燃焼室内温度が比較的高いときには、高温で分解する過酸化水素が優先的に供給される。これにより、燃焼室内温度に応じて燃料の着火性を有効に向上させることができる。
Further, the
That is, based on, for example, about 700 K, ozone decomposed at low temperature is preferentially supplied when the temperature in the combustion chamber is relatively low, and hydrogen peroxide decomposed at high temperature is preferentially supplied when the temperature in the combustion chamber is relatively high. Supplied. Thereby, the ignitability of the fuel can be effectively improved according to the temperature in the combustion chamber.
一例として、図14(a)に実線で示すように、供給制御部71は、燃焼室内温度の低下量に対するオゾン供給量の増加勾配を過酸化水素供給量の増加勾配よりも大きくするように、燃焼室内温度が低いほど、過酸化水素供給量及びオゾン供給量を共に増加させる。
これにより、図14(b)に実線で示すように、(過酸化水素供給量/オゾン供給量)の比は、燃焼室内温度が高いほど増加する。
As one example, as indicated by a solid line in FIG. 14A, the
As a result, as indicated by the solid line in FIG. 14B, the ratio of (the amount of supplied hydrogen peroxide / the amount of supplied ozone) increases as the temperature in the combustion chamber increases.
別の例として、図14(a)に破線で示すように、供給制御部71は、燃焼室内温度が臨界温度Tc以上の領域でオゾン供給量を0とし、燃焼室内温度が臨界温度Tc未満の領域で、燃焼室内温度が低いほど、オゾン供給量を増加させる。
この場合、図14(b)に破線で示すように、臨界温度Tc以上の領域で、(過酸化水素供給量/オゾン供給量)の比は無限大となる。このように、「供給量比を増加させる」の概念には、無限大までの増加が含まれる。
As another example, as indicated by a broken line in FIG. 14A, the
In this case, as indicated by a broken line in FIG. 14B, the ratio of (the amount of supplied hydrogen peroxide / the amount of supplied ozone) becomes infinite in the region above the critical temperature Tc. Thus, the concept of "increasing the feed ratio" includes an increase to infinity.
次に第4実施形態を応用した燃焼モード切替制御について、図15、図16を参照して説明する。内燃機関制御システム804は、拡散燃焼モードと予混合自着火燃焼モードとを切替可能なシステムとして構成されている。
予混合自着火燃焼モードは、燃料及び空気の予混合気を圧縮して自着火燃焼させるモードであり、特許文献1に記載されたHCCI燃焼等に該当する。なお、予混合自着火燃焼モード用に、吸気通路に別の燃料噴射弁が設けられてもよい。
拡散燃焼モードは、上述の通りディーゼルエンジンと同様に、圧縮された空気に燃料を噴射することで燃焼させるモードである。
Next, combustion mode switching control to which the fourth embodiment is applied will be described with reference to FIG. 15 and FIG. The internal combustion
The premixed auto-ignition combustion mode is a mode in which a premixed mixture of fuel and air is compressed for auto-ignition combustion, and corresponds to HCCI combustion or the like described in
The diffusion combustion mode is a mode in which combustion is performed by injecting fuel into compressed air, as described above, as in the diesel engine.
予混合自着火燃焼モードは、着火性が良いが、運転負荷が高い場合に適さない。拡散燃焼モードは、高負荷時にも適用できるが、着火性が悪いという特徴がある。そこで、エンジンECU70は、両モードの利点を使い分けるように、運転負荷等に応じて燃焼モードを切り替える。例えば、エンジンECU70の噴射制御部72は、燃料噴射弁30の噴射時期を変更する。
The premixed auto-ignition combustion mode is good in ignitability but not suitable when the operation load is high. The diffusion combustion mode can be applied even at high loads, but is characterized by having poor ignitability. Therefore,
図15に示すように、予混合自着火燃焼モードでは、燃料と空気とを混合させるため、吸気行程又は圧縮行程の初期、つまり、オゾンが主に分解する圧縮行程の途中以前に燃料が噴射される。したがってこのモードでは、供給制御部71は、オゾンを優先的に供給することで、燃料にOラジカルを供給し、着火性を向上させることができる。
一方、拡散燃焼モードでは、圧縮行程終期の上死点付近で燃料が噴射される。したがってこのモードでは、供給制御部71は、オゾンより高温で分解する過酸化水素を優先的に供給することで、燃料にOHラジカルを供給し、着火性を向上させることができる。
As shown in FIG. 15, in the premixed self-ignition combustion mode, fuel is injected at the beginning of the intake stroke or compression stroke, that is, before the middle of the compression stroke where ozone is mainly decomposed, in order to mix fuel and air. Ru. Therefore, in this mode, the
On the other hand, in the diffusion combustion mode, fuel is injected near the top dead center at the end of the compression stroke. Therefore, in this mode, the
図16(a)に、各燃焼モードでの供給制御のフローチャートを示す。
S11では、燃焼モードが判別される。拡散燃焼モードのとき、S11でYESと判断され、S12に移行する。予混合自着火燃焼モードのとき、S11でNOと判断され、S13に移行する。
FIG. 16 (a) shows a flowchart of supply control in each combustion mode.
In S11, the combustion mode is determined. In the diffusion combustion mode, YES is determined in S11, and the process proceeds to S12. In the case of the premixed self-ignition combustion mode, it is determined as NO in S11, and the process proceeds to S13.
拡散燃焼モードのとき、供給制御部71は、S12で、過酸化水素のみを供給するか、或いは、(過酸化水素供給量/オゾン供給量)の比を増加させる。なお、過酸化水素のみを供給することは、(過酸化水素供給量/オゾン供給量)の比を無限大に増加させることに等しい。
予混合自着火燃焼モードのとき、供給制御部71は、S13で、オゾンのみを供給するか、或いは、(過酸化水素供給量/オゾン供給量)の比を減少させる。なお、オゾンのみを供給することは、(過酸化水素供給量/オゾン供給量)の比を0にすることに等しい。
これにより、予混合自着火燃焼モードでは、主にオゾンが生成するOラジカルにより、拡散燃焼モードでは、主に過酸化水素が生成するOHラジカルにより、着火性を向上させることができる。
In the diffusion combustion mode, the
In the premixed auto-ignition combustion mode, the
As a result, in the premixed self-ignition combustion mode, the ignitability can be improved by O radicals mainly generated by ozone, and in the diffusion combustion mode mainly by OH radicals generated by hydrogen peroxide.
図16(b)に、モード移行期間における供給制御のフローチャートを示す。
ここでは、拡散燃焼モードのとき過酸化水素のみを供給し、予混合自着火燃焼モードのときオゾンのみを供給する構成を想定する。運転負荷等の変動に伴って、エンジンECU70が燃焼モードの変更を決定した時から、例えば所定の時間、又は、所定のクランク角範囲を移動する期間を「モード移行期間」と定義する。
FIG. 16B shows a flowchart of supply control in the mode transition period.
Here, it is assumed that only hydrogen peroxide is supplied in the diffusion combustion mode and only ozone is supplied in the premixed self-ignition combustion mode. For example, a predetermined time or a period in which a predetermined crank angle range is moved is defined as a “mode transition period” from when the
S21では、モード移行期間中であるか判定される。
モード移行期間中で、S21でYESと判断された場合、供給制御部71は、S22で過酸化水素及びオゾンの両方を供給する。モード移行期間が終了すると、移行後の燃焼モードに応じて、過酸化水素又はオゾンの一方が供給されるようになる。これにより、燃焼モード切替時の着火安定性を確保することができる。
In S21, it is determined whether it is in the mode transition period.
If it is determined YES in S21 during the mode transition period, the
このように、第4実施形態は、拡散燃焼モードと予混合自着火燃焼モードとを切替可能なシステムに有効に適用される。なお、予混合自着火燃焼モードでオゾンを供給すること自体は特許文献1に開示された技術であるが、特許文献1には拡散燃焼モードとの切替については言及されていない。さらに、特許文献1には拡散燃焼モードで過酸化水素を供給することによりOHラジカルを発生させるという思想は全く示唆されていない。
よって、第4実施形態は、燃焼モードの切替に伴い、添加物質を適切に使い分けてラジカルを発生させるという点に特有の技術的意義を有するものである。
As described above, the fourth embodiment is effectively applied to a system capable of switching between the diffusion combustion mode and the premixed self-ignition combustion mode. Although supplying ozone in the premixed self-ignition combustion mode itself is a technique disclosed in
Therefore, the fourth embodiment has a technical significance that is unique to appropriately using the additive substance to generate a radical along with the switching of the combustion mode.
(他の実施形態)
(a)添加物質が生成するラジカルは、上記実施形態で例示したOラジカル、OHラジカル以外のラジカルでもよい。言い換えれば、添加物質供給装置が供給する添加物質は、オゾン又は過酸化水素以外に、何らかのラジカルを700K以上の温度で生成可能な物質であればよい。また、化学反応における弊害が生じない限り、複数種類のラジカルが混在して供給されてもよい。
(b)内燃機関の燃料は、ガソリンの他、アルコール燃料やガス燃料であってもよい。
(c)内燃機関の用途は車両に限らず、他の乗物用や一般機械用のものでもよい。
(Other embodiments)
The radical generated by the additive substance (a) may be a radical other than the O radical and the OH radical exemplified in the above embodiment. In other words, the additive substance supplied by the additive substance supply device may be a substance capable of generating any radical at a temperature of 700 K or more, in addition to ozone or hydrogen peroxide. Moreover, as long as the harmful effect in a chemical reaction does not arise, multiple types of radicals may be mixed and supplied.
(B) The fuel of the internal combustion engine may be alcohol fuel or gas fuel other than gasoline.
(C) The application of the internal combustion engine is not limited to vehicles, and may be for other vehicles and general machines.
以上、本発明は、上記実施形態になんら限定されるものではなく、発明の趣旨を逸脱しない範囲において種々の形態で実施可能である。 As mentioned above, the present invention is not limited to the above-mentioned embodiment at all, and can be implemented in various forms in the range which does not deviate from the meaning of an invention.
10・・・内燃機関、
12・・・燃焼室、
21・・・吸気通路、
35・・・超音波生成装置(過酸化水素供給装置、添加物質供給装置)、
40・・・オゾン供給装置(過酸化水素供給装置、添加物質供給装置)、
71・・・供給制御部、
801−804・・・内燃機関制御システム。
10 ... Internal combustion engine,
12 ... combustion chamber,
21 ... Intake passage,
35: Ultrasonic generator (hydrogen peroxide supply device, additive material supply device),
40 ... ozone supply device (hydrogen peroxide supply device, additive substance supply device),
71 ··· Supply control unit,
801-804 ... internal combustion engine control system.
Claims (15)
吸気通路(21)又は燃焼室(12)内にラジカルを発生させる添加物質を供給可能な一つ以上の添加物質供給装置(33、35、40)と、
前記添加物質の供給量を制御する供給制御部(71)と、
を備え、
前記添加物質には、700K以上の温度でラジカルを生成可能な物質が少なくとも含まれる内燃機関制御システム。 An internal combustion engine control system for controlling the operation of an internal combustion engine (10) by a combustion method in which fuel in air is self-ignited and burned,
One or more additive substance supply devices (33, 35, 40) capable of supplying additive substances that generate radicals in the intake passage (21) or the combustion chamber (12);
A supply control unit (71) for controlling the supply amount of the additive substance;
Equipped with
The internal combustion engine control system, wherein the additive substance includes at least a substance capable of generating a radical at a temperature of 700 K or more.
前記過酸化水素供給装置は、前記EGR通路を還流する排気中の水分に超音波を照射して過酸化水素を生成可能な超音波照射装置(35)を含む請求項2または3に記載の内燃機関制御システム。 An EGR passage (23) is provided to recirculate part of the exhaust into the intake passage,
The internal combustion apparatus according to claim 2 or 3, wherein the hydrogen peroxide supply device includes an ultrasonic wave irradiation device (35) capable of generating hydrogen peroxide by irradiating the water in the exhaust gas flowing back through the EGR passage with ultrasonic waves. Engine control system.
前記供給制御部は、燃焼室内温度、又は、内燃機関の運転負荷の少なくとも一部の領域で、過酸化水素及びオゾンの両方を供給する請求項2〜6のいずれか一項に記載の内燃機関制御システム。 The additive substance supply apparatus further includes an ozone supply apparatus (40) capable of supplying ozone that generates O radicals in the intake passage or the combustion chamber,
The internal combustion engine according to any one of claims 2 to 6, wherein the supply control unit supplies both hydrogen peroxide and ozone in a region of the combustion chamber temperature or at least a part of the operating load of the internal combustion engine. Control system.
前記オゾン供給装置は、前記EGR通路を還流する排気中の水分に超音波を照射して過酸化水素を生成可能な過酸化水素供給装置としての機能を兼ねる請求項7に記載の内燃機関制御システム。 An EGR passage (23) is provided to recirculate part of the exhaust into the intake passage,
The internal combustion engine control system according to claim 7, wherein the ozone supply device also has a function as a hydrogen peroxide supply device capable of generating hydrogen peroxide by irradiating the water in the exhaust gas recirculating the EGR passage with ultrasonic waves. .
前記供給制御部は、
拡散燃焼モードのとき、過酸化水素のみを供給するか、或いは、オゾン供給量に対する過酸化水素供給量の比を増加させ、
予混合自着火燃焼モードのとき、オゾンのみを供給するか、或いは、オゾン供給量に対する過酸化水素供給量の比を減少させる請求項7〜11のいずれか一項に記載の内燃機関制御システム。 In an internal combustion engine control system capable of switching between a diffusion combustion mode in which fuel is injected and burned into compressed air and a premixed self-ignition combustion mode in which pre-mixture of fuel and air is compressed and self-ignition combustion
The supply control unit is
In the diffusion combustion mode, only hydrogen peroxide is supplied, or the ratio of hydrogen peroxide supply to ozone supply is increased;
The internal combustion engine control system according to any one of claims 7 to 11, wherein in the premixed self-ignition combustion mode, only ozone is supplied or the ratio of hydrogen peroxide supply amount to ozone supply amount is decreased.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073662A JP2018178723A (en) | 2017-04-03 | 2017-04-03 | Internal combustion engine control system |
US15/847,170 US20180179995A1 (en) | 2016-12-23 | 2017-12-19 | Internal combusition engine control apparatus |
DE102017131116.5A DE102017131116A1 (en) | 2016-12-23 | 2017-12-22 | Engine control unit |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017073662A JP2018178723A (en) | 2017-04-03 | 2017-04-03 | Internal combustion engine control system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018178723A true JP2018178723A (en) | 2018-11-15 |
Family
ID=64282487
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017073662A Pending JP2018178723A (en) | 2016-12-23 | 2017-04-03 | Internal combustion engine control system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018178723A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12282906B2 (en) | 2014-09-04 | 2025-04-22 | Toshiba Tec Kabushiki Kaisha | Transaction data processing apparatus connected to an external device for data communication |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124799A (en) * | 2002-10-02 | 2004-04-22 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
JP2009085069A (en) * | 2007-09-28 | 2009-04-23 | Toyota Motor Corp | Control device for internal combustion engine |
WO2010041308A1 (en) * | 2008-10-07 | 2010-04-15 | トヨタ自動車株式会社 | Fuel injection control device for internal-combustion engine |
JP2012157814A (en) * | 2011-01-31 | 2012-08-23 | Imagineering Inc | Engine cleaning device |
WO2012131949A1 (en) * | 2011-03-30 | 2012-10-04 | トヨタ自動車株式会社 | Fuel injection control device for internal-combustion engine |
JP2012237260A (en) * | 2011-05-12 | 2012-12-06 | Toyota Central R&D Labs Inc | Diesel engine controller and diesel engine system |
WO2014081009A1 (en) * | 2012-11-26 | 2014-05-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
-
2017
- 2017-04-03 JP JP2017073662A patent/JP2018178723A/en active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004124799A (en) * | 2002-10-02 | 2004-04-22 | Toyota Motor Corp | Exhaust gas purification device for internal combustion engine |
JP2009085069A (en) * | 2007-09-28 | 2009-04-23 | Toyota Motor Corp | Control device for internal combustion engine |
WO2010041308A1 (en) * | 2008-10-07 | 2010-04-15 | トヨタ自動車株式会社 | Fuel injection control device for internal-combustion engine |
JP2012157814A (en) * | 2011-01-31 | 2012-08-23 | Imagineering Inc | Engine cleaning device |
WO2012131949A1 (en) * | 2011-03-30 | 2012-10-04 | トヨタ自動車株式会社 | Fuel injection control device for internal-combustion engine |
JP2012237260A (en) * | 2011-05-12 | 2012-12-06 | Toyota Central R&D Labs Inc | Diesel engine controller and diesel engine system |
WO2014081009A1 (en) * | 2012-11-26 | 2014-05-30 | トヨタ自動車株式会社 | Control device for internal combustion engine |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12282906B2 (en) | 2014-09-04 | 2025-04-22 | Toshiba Tec Kabushiki Kaisha | Transaction data processing apparatus connected to an external device for data communication |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2411386C2 (en) | Internal combustion engine operating on gaseous fuel and control method of internal combustion engine operating on gaseous fuel | |
EP2606215B1 (en) | Internal combustion engine provided with a stoichiometric mixture of two fuels with a compression ignition | |
KR101693895B1 (en) | Variable ignition type engine for complex combustion using diesel and gasoline, method for controlling of the same and complex combustion system using diesel and gasoline | |
Hardy et al. | An experimental investigation of partially premixed combustion strategies using multiple injections in a heavy-duty diesel engine | |
KR101745005B1 (en) | Diesel - Gasoline Complex Engine | |
JP6252647B1 (en) | Control device for premixed compression ignition engine | |
JP2009299490A (en) | Fuel injection control device for internal combustion engine | |
KR101900229B1 (en) | Control method and apparatus for internal combustion engine | |
KR20050051584A (en) | Homogeneous-charge compression-ignition engine | |
JP2010138743A (en) | Diesel engine and control method for diesel engine | |
JP2019105222A (en) | Premixing compression ignition type engine | |
US20180179995A1 (en) | Internal combusition engine control apparatus | |
US20070028890A1 (en) | Turbocharged internal combustion engine and method of operating same | |
JP2018178723A (en) | Internal combustion engine control system | |
JP2008184970A (en) | Control device of gasoline engine | |
CN111102068A (en) | Engine lean combustion device, control method, engine and automobile | |
Najar et al. | Pilot Injection and Thermal Nitrogen Oxides | |
CN1560440A (en) | Method for forming stratified mixture of gasoline direct injection engine based on multi-section injection | |
JP4315053B2 (en) | Internal combustion engine | |
Cha et al. | Effects of equivalence ratio on the near-stoichiometric combustion and emission characteristics of a compression ignition (CI) engine | |
JP2015124738A (en) | Control device of direct injection engine | |
Kinikar et al. | Application of HCCI concept for a constant speed diesel genset–A review | |
JP2008163918A (en) | Combustion method in cylinder injection internal combustion engine and cylinder injection internal combustion engine | |
JP2008504481A (en) | Fueling a diesel engine by selectively using a fueling map to extend the range of HCCI combustion | |
JP2018025116A (en) | Combustion chamber structure of direct-injection engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200318 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210129 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210209 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20210817 |