JP2018174929A - Culture fluid additives for mammalian cell culture - Google Patents
Culture fluid additives for mammalian cell culture Download PDFInfo
- Publication number
- JP2018174929A JP2018174929A JP2018074793A JP2018074793A JP2018174929A JP 2018174929 A JP2018174929 A JP 2018174929A JP 2018074793 A JP2018074793 A JP 2018074793A JP 2018074793 A JP2018074793 A JP 2018074793A JP 2018174929 A JP2018174929 A JP 2018174929A
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- bfgf
- factor
- cell culture
- undifferentiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 210000004962 mammalian cell Anatomy 0.000 title claims abstract description 41
- 238000004113 cell culture Methods 0.000 title claims abstract description 28
- 239000012531 culture fluid Substances 0.000 title description 6
- 239000000654 additive Substances 0.000 title description 2
- 239000000758 substrate Substances 0.000 claims abstract description 309
- 210000004027 cell Anatomy 0.000 claims abstract description 104
- 239000001506 calcium phosphate Substances 0.000 claims abstract description 71
- 229910000389 calcium phosphate Inorganic materials 0.000 claims abstract description 71
- 235000011010 calcium phosphates Nutrition 0.000 claims abstract description 49
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 claims abstract description 49
- 239000002609 medium Substances 0.000 claims abstract description 35
- 230000004069 differentiation Effects 0.000 claims abstract description 21
- 230000035755 proliferation Effects 0.000 claims abstract description 13
- 239000006143 cell culture medium Substances 0.000 claims abstract description 10
- 230000005660 hydrophilic surface Effects 0.000 claims abstract 3
- 108090000379 Fibroblast growth factor 2 Proteins 0.000 claims description 339
- 102100024785 Fibroblast growth factor 2 Human genes 0.000 claims description 328
- 239000000463 material Substances 0.000 claims description 95
- 239000004698 Polyethylene Substances 0.000 claims description 58
- 238000000034 method Methods 0.000 claims description 58
- 229920000573 polyethylene Polymers 0.000 claims description 58
- 238000009832 plasma treatment Methods 0.000 claims description 55
- 239000004743 Polypropylene Substances 0.000 claims description 54
- 229920001155 polypropylene Polymers 0.000 claims description 54
- 239000004793 Polystyrene Substances 0.000 claims description 50
- 229920002223 polystyrene Polymers 0.000 claims description 49
- 239000007788 liquid Substances 0.000 claims description 42
- 229920000669 heparin Polymers 0.000 claims description 34
- HTTJABKRGRZYRN-UHFFFAOYSA-N Heparin Chemical compound OC1C(NC(=O)C)C(O)OC(COS(O)(=O)=O)C1OC1C(OS(O)(=O)=O)C(O)C(OC2C(C(OS(O)(=O)=O)C(OC3C(C(O)C(O)C(O3)C(O)=O)OS(O)(=O)=O)C(CO)O2)NS(O)(=O)=O)C(C(O)=O)O1 HTTJABKRGRZYRN-UHFFFAOYSA-N 0.000 claims description 33
- 229960002897 heparin Drugs 0.000 claims description 33
- -1 polyethylene Polymers 0.000 claims description 27
- 239000012592 cell culture supplement Substances 0.000 claims description 25
- 238000007654 immersion Methods 0.000 claims description 19
- 230000005484 gravity Effects 0.000 claims description 17
- 150000004676 glycans Chemical class 0.000 claims description 14
- 229920001282 polysaccharide Polymers 0.000 claims description 14
- 239000005017 polysaccharide Substances 0.000 claims description 14
- 238000004519 manufacturing process Methods 0.000 claims description 13
- 241000124008 Mammalia Species 0.000 claims description 12
- 238000012258 culturing Methods 0.000 claims description 12
- 102000003974 Fibroblast growth factor 2 Human genes 0.000 claims description 11
- 239000012528 membrane Substances 0.000 claims description 11
- 239000000835 fiber Substances 0.000 claims description 10
- 239000003795 chemical substances by application Substances 0.000 claims description 9
- 230000012010 growth Effects 0.000 claims description 7
- 238000010306 acid treatment Methods 0.000 claims description 5
- 230000024245 cell differentiation Effects 0.000 claims description 4
- 230000004663 cell proliferation Effects 0.000 claims description 4
- 238000010586 diagram Methods 0.000 abstract 1
- 239000000243 solution Substances 0.000 description 242
- 238000001179 sorption measurement Methods 0.000 description 130
- 239000002585 base Substances 0.000 description 93
- 238000011282 treatment Methods 0.000 description 63
- 238000010828 elution Methods 0.000 description 58
- 238000013268 sustained release Methods 0.000 description 55
- 239000012730 sustained-release form Substances 0.000 description 55
- 230000006399 behavior Effects 0.000 description 38
- 239000004745 nonwoven fabric Substances 0.000 description 33
- 239000011148 porous material Substances 0.000 description 32
- 239000002131 composite material Substances 0.000 description 25
- 239000001963 growth medium Substances 0.000 description 24
- 230000003746 surface roughness Effects 0.000 description 17
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 102000007651 Macrophage Colony-Stimulating Factor Human genes 0.000 description 16
- 108010046938 Macrophage Colony-Stimulating Factor Proteins 0.000 description 16
- 238000000975 co-precipitation Methods 0.000 description 16
- 238000002360 preparation method Methods 0.000 description 16
- 238000001878 scanning electron micrograph Methods 0.000 description 16
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 14
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 14
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 14
- 230000000694 effects Effects 0.000 description 13
- 238000011156 evaluation Methods 0.000 description 12
- 239000000126 substance Substances 0.000 description 12
- 238000002965 ELISA Methods 0.000 description 11
- 239000007789 gas Substances 0.000 description 11
- 210000001519 tissue Anatomy 0.000 description 11
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 239000003814 drug Substances 0.000 description 10
- 238000012423 maintenance Methods 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- 238000010186 staining Methods 0.000 description 9
- 239000002033 PVDF binder Substances 0.000 description 8
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 8
- 238000012545 processing Methods 0.000 description 8
- 210000000130 stem cell Anatomy 0.000 description 8
- 230000007423 decrease Effects 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 238000008157 ELISA kit Methods 0.000 description 6
- 239000002671 adjuvant Substances 0.000 description 6
- 239000007864 aqueous solution Substances 0.000 description 6
- 239000013256 coordination polymer Substances 0.000 description 6
- 230000002354 daily effect Effects 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 229910021642 ultra pure water Inorganic materials 0.000 description 6
- 239000012498 ultrapure water Substances 0.000 description 6
- 102000004887 Transforming Growth Factor beta Human genes 0.000 description 5
- 108090001012 Transforming Growth Factor beta Proteins 0.000 description 5
- 230000008859 change Effects 0.000 description 5
- 239000011248 coating agent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 239000003102 growth factor Substances 0.000 description 5
- 238000011835 investigation Methods 0.000 description 5
- 150000002500 ions Chemical class 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000002244 precipitate Substances 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- ZRKFYGHZFMAOKI-QMGMOQQFSA-N tgfbeta Chemical compound C([C@H](NC(=O)[C@H](C(C)C)NC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CC(C)C)NC(=O)CNC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC)C(C)C)[C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N1[C@@H](CCC1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O)C1=CC=C(O)C=C1 ZRKFYGHZFMAOKI-QMGMOQQFSA-N 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 229920002971 Heparan sulfate Polymers 0.000 description 4
- 108090000723 Insulin-Like Growth Factor I Proteins 0.000 description 4
- 102000014429 Insulin-like growth factor Human genes 0.000 description 4
- 239000003463 adsorbent Substances 0.000 description 4
- 238000011088 calibration curve Methods 0.000 description 4
- 238000007667 floating Methods 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 210000004379 membrane Anatomy 0.000 description 4
- 238000010899 nucleation Methods 0.000 description 4
- 229920001606 poly(lactic acid-co-glycolic acid) Polymers 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 102000018233 Fibroblast Growth Factor Human genes 0.000 description 3
- 108050007372 Fibroblast Growth Factor Proteins 0.000 description 3
- 239000004775 Tyvek Substances 0.000 description 3
- 229920000690 Tyvek Polymers 0.000 description 3
- 108010073929 Vascular Endothelial Growth Factor A Proteins 0.000 description 3
- 102000005789 Vascular Endothelial Growth Factors Human genes 0.000 description 3
- 108010019530 Vascular Endothelial Growth Factors Proteins 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 210000004748 cultured cell Anatomy 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- 238000010790 dilution Methods 0.000 description 3
- 239000012895 dilution Substances 0.000 description 3
- 210000001671 embryonic stem cell Anatomy 0.000 description 3
- 230000003203 everyday effect Effects 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 229940126864 fibroblast growth factor Drugs 0.000 description 3
- 238000003018 immunoassay Methods 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 230000006911 nucleation Effects 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 210000001778 pluripotent stem cell Anatomy 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002062 proliferating effect Effects 0.000 description 3
- 108090000623 proteins and genes Proteins 0.000 description 3
- 230000001172 regenerating effect Effects 0.000 description 3
- 239000012890 simulated body fluid Substances 0.000 description 3
- DHKHKXVYLBGOIT-UHFFFAOYSA-N 1,1-Diethoxyethane Chemical compound CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 2
- 102100030009 Azurocidin Human genes 0.000 description 2
- 101710154607 Azurocidin Proteins 0.000 description 2
- 102000007350 Bone Morphogenetic Proteins Human genes 0.000 description 2
- 108010007726 Bone Morphogenetic Proteins Proteins 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 2
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 2
- 102000034615 Glial cell line-derived neurotrophic factor Human genes 0.000 description 2
- 108091010837 Glial cell line-derived neurotrophic factor Proteins 0.000 description 2
- 102000004269 Granulocyte Colony-Stimulating Factor Human genes 0.000 description 2
- 108010017080 Granulocyte Colony-Stimulating Factor Proteins 0.000 description 2
- 102000003745 Hepatocyte Growth Factor Human genes 0.000 description 2
- 108090000100 Hepatocyte Growth Factor Proteins 0.000 description 2
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 102000014150 Interferons Human genes 0.000 description 2
- 108010050904 Interferons Proteins 0.000 description 2
- 102000015696 Interleukins Human genes 0.000 description 2
- 108010063738 Interleukins Proteins 0.000 description 2
- 102000004058 Leukemia inhibitory factor Human genes 0.000 description 2
- 108090000581 Leukemia inhibitory factor Proteins 0.000 description 2
- 102000010780 Platelet-Derived Growth Factor Human genes 0.000 description 2
- 108010038512 Platelet-Derived Growth Factor Proteins 0.000 description 2
- 239000004372 Polyvinyl alcohol Substances 0.000 description 2
- 101710093543 Probable non-specific lipid-transfer protein Proteins 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 102400001320 Transforming growth factor alpha Human genes 0.000 description 2
- 101800004564 Transforming growth factor alpha Proteins 0.000 description 2
- 239000011354 acetal resin Substances 0.000 description 2
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- 229940112869 bone morphogenetic protein Drugs 0.000 description 2
- 229910001424 calcium ion Inorganic materials 0.000 description 2
- 230000010261 cell growth Effects 0.000 description 2
- 229920002678 cellulose Polymers 0.000 description 2
- 239000001913 cellulose Substances 0.000 description 2
- 230000001276 controlling effect Effects 0.000 description 2
- 238000003851 corona treatment Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 208000028659 discharge Diseases 0.000 description 2
- 238000007876 drug discovery Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- ZFGMDIBRIDKWMY-PASTXAENSA-N heparin Chemical compound CC(O)=N[C@@H]1[C@@H](O)[C@H](O)[C@@H](COS(O)(=O)=O)O[C@@H]1O[C@@H]1[C@@H](C(O)=O)O[C@@H](O[C@H]2[C@@H]([C@@H](OS(O)(=O)=O)[C@@H](O[C@@H]3[C@@H](OC(O)[C@H](OS(O)(=O)=O)[C@H]3O)C(O)=O)O[C@@H]2O)CS(O)(=O)=O)[C@H](O)[C@H]1O ZFGMDIBRIDKWMY-PASTXAENSA-N 0.000 description 2
- 229960001008 heparin sodium Drugs 0.000 description 2
- 102000057041 human TNF Human genes 0.000 description 2
- 230000002209 hydrophobic effect Effects 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 229940079322 interferon Drugs 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 239000011325 microbead Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- 229920001542 oligosaccharide Polymers 0.000 description 2
- 150000002482 oligosaccharides Chemical class 0.000 description 2
- 210000000056 organ Anatomy 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 229920002492 poly(sulfone) Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920002451 polyvinyl alcohol Polymers 0.000 description 2
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 2
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 2
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 2
- NMWKYTGJWUAZPZ-WWHBDHEGSA-N (4S)-4-[[(4R,7S,10S,16S,19S,25S,28S,31R)-31-[[(2S)-2-[[(1R,6R,9S,12S,18S,21S,24S,27S,30S,33S,36S,39S,42R,47R,53S,56S,59S,62S,65S,68S,71S,76S,79S,85S)-47-[[(2S)-2-[[(2S)-4-amino-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-amino-3-methylbutanoyl]amino]-3-methylbutanoyl]amino]-3-hydroxypropanoyl]amino]-3-(1H-imidazol-4-yl)propanoyl]amino]-3-phenylpropanoyl]amino]-4-oxobutanoyl]amino]-3-carboxypropanoyl]amino]-18-(4-aminobutyl)-27,68-bis(3-amino-3-oxopropyl)-36,71,76-tribenzyl-39-(3-carbamimidamidopropyl)-24-(2-carboxyethyl)-21,56-bis(carboxymethyl)-65,85-bis[(1R)-1-hydroxyethyl]-59-(hydroxymethyl)-62,79-bis(1H-imidazol-4-ylmethyl)-9-methyl-33-(2-methylpropyl)-8,11,17,20,23,26,29,32,35,38,41,48,54,57,60,63,66,69,72,74,77,80,83,86-tetracosaoxo-30-propan-2-yl-3,4,44,45-tetrathia-7,10,16,19,22,25,28,31,34,37,40,49,55,58,61,64,67,70,73,75,78,81,84,87-tetracosazatetracyclo[40.31.14.012,16.049,53]heptaoctacontane-6-carbonyl]amino]-3-methylbutanoyl]amino]-7-(3-carbamimidamidopropyl)-25-(hydroxymethyl)-19-[(4-hydroxyphenyl)methyl]-28-(1H-imidazol-4-ylmethyl)-10-methyl-6,9,12,15,18,21,24,27,30-nonaoxo-16-propan-2-yl-1,2-dithia-5,8,11,14,17,20,23,26,29-nonazacyclodotriacontane-4-carbonyl]amino]-5-[[(2S)-1-[[(2S)-1-[[(2S)-3-carboxy-1-[[(2S)-1-[[(2S)-1-[[(1S)-1-carboxyethyl]amino]-4-methyl-1-oxopentan-2-yl]amino]-4-methyl-1-oxopentan-2-yl]amino]-1-oxopropan-2-yl]amino]-1-oxopropan-2-yl]amino]-3-(1H-imidazol-4-yl)-1-oxopropan-2-yl]amino]-5-oxopentanoic acid Chemical compound CC(C)C[C@H](NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](Cc1c[nH]cn1)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H]1CSSC[C@H](NC(=O)[C@@H](NC(=O)[C@@H]2CSSC[C@@H]3NC(=O)[C@H](Cc4ccccc4)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@@H](NC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]4CCCN4C(=O)[C@H](CSSC[C@H](NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](Cc4c[nH]cn4)NC(=O)[C@H](Cc4ccccc4)NC3=O)[C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](Cc3ccccc3)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N3CCC[C@H]3C(=O)N[C@@H](C)C(=O)N2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](Cc2ccccc2)NC(=O)[C@H](Cc2c[nH]cn2)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)C(C)C)[C@@H](C)O)C(C)C)C(=O)N[C@@H](Cc2c[nH]cn2)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](Cc2ccc(O)cc2)C(=O)N[C@@H](C(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1)C(=O)N[C@@H](C)C(O)=O NMWKYTGJWUAZPZ-WWHBDHEGSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 108010059616 Activins Proteins 0.000 description 1
- NVMMUAUTQCWYHD-ABHRYQDASA-N Asp-Val-Pro-Pro Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 NVMMUAUTQCWYHD-ABHRYQDASA-N 0.000 description 1
- 102000015225 Connective Tissue Growth Factor Human genes 0.000 description 1
- 108010039419 Connective Tissue Growth Factor Proteins 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- 208000035859 Drug effect increased Diseases 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 102000003951 Erythropoietin Human genes 0.000 description 1
- 108090000394 Erythropoietin Proteins 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 229920000219 Ethylene vinyl alcohol Polymers 0.000 description 1
- 229920001474 Flashspun fabric Polymers 0.000 description 1
- 102100020715 Fms-related tyrosine kinase 3 ligand protein Human genes 0.000 description 1
- 101710162577 Fms-related tyrosine kinase 3 ligand protein Proteins 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000012981 Hank's balanced salt solution Substances 0.000 description 1
- 102100031000 Hepatoma-derived growth factor Human genes 0.000 description 1
- 101001052035 Homo sapiens Fibroblast growth factor 2 Proteins 0.000 description 1
- 101001083798 Homo sapiens Hepatoma-derived growth factor Proteins 0.000 description 1
- 102000002265 Human Growth Hormone Human genes 0.000 description 1
- 108010000521 Human Growth Hormone Proteins 0.000 description 1
- 239000000854 Human Growth Hormone Substances 0.000 description 1
- 102100026818 Inhibin beta E chain Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 102400000058 Neuregulin-1 Human genes 0.000 description 1
- 108090000556 Neuregulin-1 Proteins 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 229920001244 Poly(D,L-lactide) Polymers 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004697 Polyetherimide Substances 0.000 description 1
- 229920001328 Polyvinylidene chloride Polymers 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 101150086694 SLC22A3 gene Proteins 0.000 description 1
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 102000036693 Thrombopoietin Human genes 0.000 description 1
- 108010041111 Thrombopoietin Proteins 0.000 description 1
- 102000040945 Transcription factor Human genes 0.000 description 1
- 108091023040 Transcription factor Proteins 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000000488 activin Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 239000002156 adsorbate Substances 0.000 description 1
- 230000003113 alkalizing effect Effects 0.000 description 1
- 210000002469 basement membrane Anatomy 0.000 description 1
- 229920000229 biodegradable polyester Polymers 0.000 description 1
- 239000004622 biodegradable polyester Substances 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical compound OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000005754 cellular signaling Effects 0.000 description 1
- 230000005757 colony formation Effects 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 229940105423 erythropoietin Drugs 0.000 description 1
- 210000001723 extracellular space Anatomy 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000004751 flashspun nonwoven Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000002073 fluorescence micrograph Methods 0.000 description 1
- 230000005251 gamma ray Effects 0.000 description 1
- 238000010559 graft polymerization reaction Methods 0.000 description 1
- 229940095529 heparin calcium Drugs 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 210000004263 induced pluripotent stem cell Anatomy 0.000 description 1
- 239000000411 inducer Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229910001410 inorganic ion Inorganic materials 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 239000003055 low molecular weight heparin Substances 0.000 description 1
- 229940127215 low-molecular weight heparin Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 108010082117 matrigel Proteins 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000000877 morphologic effect Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 239000003900 neurotrophic factor Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000006174 pH buffer Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 229920002866 paraformaldehyde Polymers 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229940085991 phosphate ion Drugs 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001601 polyetherimide Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000005033 polyvinylidene chloride Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- OXCMYAYHXIHQOA-UHFFFAOYSA-N potassium;[2-butyl-5-chloro-3-[[4-[2-(1,2,4-triaza-3-azanidacyclopenta-1,4-dien-5-yl)phenyl]phenyl]methyl]imidazol-4-yl]methanol Chemical compound [K+].CCCCC1=NC(Cl)=C(CO)N1CC1=CC=C(C=2C(=CC=CC=2)C2=N[N-]N=N2)C=C1 OXCMYAYHXIHQOA-UHFFFAOYSA-N 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 229910000077 silane Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 238000007447 staining method Methods 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 230000009469 supplementation Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 238000013518 transcription Methods 0.000 description 1
- 230000035897 transcription Effects 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 238000004506 ultrasonic cleaning Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Landscapes
- Apparatus Associated With Microorganisms And Enzymes (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
【課題】未分化細胞を未分化の状態に維持し、あるいは、目的とする分化細胞や組織に分化・増殖させるために、細胞培養培地中に、未分化細胞を未分化のまま増殖させる液性因子、あるいは、細胞の分化・増殖に影響を与える各種液性因子を徐放させる新たな手段を提供すること。【解決手段】少なくとも表面が親水性を有する多孔質構造を有する基材に、哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子が吸着してなる、細胞培養補助剤、若しくは、少なくとも表面が親水性を有する基材の表面に、これらの液性因子を含むリン酸カルシウム層を有する、細胞培養補助剤。これを細胞培養培地に投入することにより、これらの液性因子を長時間に亘って培地中に徐放させることができる。【選択図】 図4PROBLEM TO BE SOLVED: To proliferate undifferentiated cells in a cell culture medium in a cell culture medium in order to maintain undifferentiated cells in an undifferentiated state or to differentiate / proliferate into target differentiated cells or tissues. To provide a new means for slowly releasing a factor or various humoral factors that affect the differentiation and proliferation of cells. SOLUTION: A humoral factor that proliferates undifferentiated mammalian cells in an undifferentiated state on a substrate having a porous structure having at least a hydrophilic surface, or an influence on the differentiation and proliferation of mammalian cells. A cell culture aid to which a humoral factor is adsorbed, or a cell culture aid having a calcium phosphate layer containing these humoral factors on the surface of a substrate having at least a hydrophilic surface. By putting this into a cell culture medium, these humoral factors can be slowly released into the medium for a long period of time. [Selection diagram] Fig. 4
Description
本発明は、細胞の培養技術の分野、さらにはこれを利用する再生医療分野、医療分野などに関するものであり、特に、哺乳動物の幹細胞や前駆細胞などの未分化細胞を未分化のまま維持培養し、あるいは、これらを目的とする分化細胞に分化・増殖させるための細胞培養補助剤に関するものである。 The present invention relates to the field of cell culture technology, and further to the field of regenerative medicine and medical fields utilizing the same, and in particular, maintenance culture of undifferentiated cells such as mammalian stem cells and progenitor cells in an undifferentiated state The present invention also relates to a cell culture supplement for differentiating and proliferating target cells into target cells.
近年、哺乳動物の胚性幹細胞(ES細胞)や人工多能性幹細胞(iPS細胞)、あるいは前駆細胞などの未分化細胞を用い、意図した方向にこれを分化させることで、患者の損なわれた各種組織や臓器を生体内や生体外で再生する、あるいは哺乳動物の各種組織や臓器を人工的に調製し、これを用いて、より実際の生体環境に近い状況で新たな医薬品のスクリーニングを行うなどの、再生医療や創薬に関連する技術の研究・開発が、各方面で進められている。
これらの未分化細胞の利用にあたっては、利用前の細胞を未分化の状態で維持することが重要である。
また、これらの未分化細胞を分化させるにあたっては、目的とする分化細胞や組織に適確に分化・増殖させることが重要である。
In recent years, the patient's loss was caused by differentiating in the intended direction using undifferentiated cells such as mammalian embryonic stem cells (ES cells), induced pluripotent stem cells (iPS cells), or precursor cells. Reproduce various tissues and organs in vivo and in vitro, or artificially prepare various tissues and organs of mammals, and use them to screen new medicines in a situation closer to the actual living environment. The research and development of technologies related to regenerative medicine and drug discovery, such as, are being promoted in various fields.
In using these undifferentiated cells, it is important to maintain the cells before use in an undifferentiated state.
In addition, in order to differentiate these undifferentiated cells, it is important to appropriately differentiate / proliferate target differentiated cells and tissues.
上記幹細胞や前駆細胞は、培地に繊維芽細胞増殖因子−2(塩基性繊維芽細胞増殖因子、FGF-β、FGF-2、bFGFなどともいう、本明細書では、以後、bFGFという)などの液性の因子を添加することにより、未分化の状態で維持できることが知られている。
例えば、特許文献1には、胚性幹細胞を、フィーダー細胞や血清を含まない、フィーダーフリー・無血清培養条件下、bFGFを10ng/mL程度の濃度で添加した培地中で培養することにより、未分化状態で維持することが開示されている。しかしながら、bFGFの培地中における半減期は短く、この方法で細胞を必要な期間未分化の状態に保つためには、高頻度でbFGFを培地中に補充する必要がある。
また、未分化細胞が分化・増殖するにあたって、例えば上皮細胞成長因子、血管内皮細胞増殖因子など、各種の液性因子が影響を与えることが知られており、上記幹細胞や前駆細胞などの未分化細胞を培養により目的とする分化細胞や組織に分化・増殖させるにあたっても、これらの液性因子を適切に添加する必要があるが、これらの液性因子の多くもまた、培地中の半減期が短いことが知られている。
The above-mentioned stem cells and progenitor cells are, for example, fibroblast growth factor-2 (also referred to as basic fibroblast growth factor, FGF-β, FGF-2, bFGF, etc. in the present specification, hereinafter referred to as bFGF) in a medium. It is known that the addition of a fluid factor can maintain the undifferentiated state.
For example,
In addition, it is known that various liquid factors such as epidermal growth factor and vascular endothelial growth factor affect the differentiation and proliferation of undifferentiated cells, and the above-mentioned undifferentiated stem cells and progenitor cells In order to differentiate and proliferate cells into target differentiated cells and tissues by culture, it is necessary to appropriately add these humoral factors, but many of these humoral factors also have half-lives in the medium. It is known to be short.
このような欠点を解消する方法として、増殖因子を培地中に持続して放出する徐放性組成物の形で添加する方法が開発されている(特許文献2、非特許文献1)。この方法は、生分解性のポリエステルであるポリ(DL-ラクチドコグリコリド)(PLGA)のマイクロビーズ中にbFGFを担持させたものを徐放性組成物として用いている。
この方法により、bFGFを培地中に徐放させることによって、bFGFの補充の頻度を少なくすることができる。
As a method of solving such a defect, a method of adding a growth factor in the form of a sustained release composition which continuously releases in the medium has been developed (
By this method, the frequency of bFGF supplementation can be reduced by releasing bFGF into the medium slowly.
また、薬物を培地中に徐放させる技術ではないが、増殖因子などの薬物を体液などの環境中に徐放する方法として、ヘパリンを共有結合により架橋させた基材に対しヘパリン接合性成長因子を結合させて、ヘパリン結合性成長因子徐放剤として用いること(特許文献3)、低分子ヘパリンとプロタミンとから構成される平均粒径が10μm未満の微粒子からなる薬物包接担体を用いて、bFGFなどの薬物を包摂させ、環境中に徐放させること(特許文献4)等が知られている。 Also, although it is not a technique for releasing the drug into the culture medium, as a method for releasing the drug such as a growth factor into the environment such as body fluid, heparin-conjugated growth factor is used to the substrate on which heparin is covalently crosslinked. Are bound and used as a heparin-binding growth factor sustained release agent (Patent Document 3), using a drug inclusion carrier consisting of fine particles having a mean particle size of less than 10 μm, composed of low molecular weight heparin and protamine, It is known that a drug such as bFGF is included and slowly released into the environment (Patent Document 4).
上述の、PLGAのマイクロビーズ中にbFGFを担持させたものを徐放性組成物として用いる方法は、PLGAが培地中で徐々に分解することによってbFGFが培地中に溶出するものであり、PLGAの分解により生じた乳酸等が培地中に溶解、混入することにより、培地が徐々に変質し、培養液のpHが下がったり、分解生成物が微粉化して培養細胞内に取り込まれたりするなどのおそれがある。また、このPLGAビーズは培養皿の底に沈み細胞に接触するため、細胞への物理刺激や細胞表面との相互作用等で細胞に影響を及ぼす可能性も否定できない。
本発明は、培地中にbFGFなどの未分化細胞を未分化のまま増殖させる液性因子、あるいは、細胞の分化・増殖に影響を与える各種液性因子を徐放させ、これにより、幹細胞などの未分化細胞を未分化の状態に維持し、あるいは、未分化細胞を目的とする分化細胞や組織に分化・増殖させるにあたって、従来技術の上記欠点を有さない、より有効な方法を提供することを課題とする。
The method of using bFGF supported in PLGA microbeads as a sustained release composition as described above is that PLGA elutes bFGF into the medium as it is gradually degraded in the medium. Dissolving and mixing of lactic acid and the like generated in the medium into the medium may cause the medium to gradually deteriorate and the pH of the culture solution to decrease, or the decomposition product may be pulverized and be taken into cultured cells, etc. There is. Moreover, since this PLGA bead sinks to the bottom of the culture dish and contacts the cells, the possibility of affecting the cells by physical stimulation to the cells, interaction with the cell surface, etc. can not be denied.
In the present invention, a humoral factor that allows undifferentiated cells such as bFGF to proliferate in an undifferentiated state in the medium, or various humoral factors that affect cell differentiation / proliferation are sustained-released, whereby stem cells etc. To provide a more effective method for maintaining undifferentiated cells in an undifferentiated state or differentiating / proliferating undifferentiated cells into target differentiated cells or tissues, without the above disadvantages of the prior art. As an issue.
本発明者らは、多孔質基材の表面を親水化し、これをbFGF含有溶液に浸漬することで、bFGFを多孔質基材に吸着させることができ、当該多孔質基材を培地中に投入することで、bFGFが良好に培地中に徐放されることを見出した。
具体的には、本発明者らは、市販のポリエチレン製の不織布、および、市販のポリプロピレン製のメンブレンフィルターをプラズマ処理することにより、その表面を親水化し、これをbFGF含有溶液に浸漬することで、bFGFがこれらの不織布等に良好に吸着すること、そして、これを細胞培養用の培地(培養液)に投入すると、bFGFを良好に徐放することを見出し、また、当該不織布等は培地中に沈下することなく、その上面に浮遊することを見出した。
このように、多孔質基材の多孔度を適宜調節することにより、bFGFを良好に吸着させ、また、良好に徐放させることができる。
また、多孔質基材の材質を適宜選択することで、当該基材の比重を培地の比重よりも小さくすることによって、当該基材を培地表面に浮かすことができる。このようにすることで、基材の培地への投入および除去を容易に行うことができ、また、培地中で培養される細胞が当該基材に直接接触することを避けることができる。
多孔質基材の形態は特に限定されず、ビーズ状などでもよいが、上述の不織布やメンブレンフィルターのように、平板やシートなどの平面状の形態に成形すれば、基材の培地への投入・除去が更に容易となる。
The present inventors hydrophilize the surface of the porous substrate, and immerse the surface in a bFGF-containing solution so that bFGF can be adsorbed onto the porous substrate, and the porous substrate is introduced into the medium. By doing this, it was found that bFGF was well released in the medium.
Specifically, the present inventors hydrophilize the surface by plasma treating a commercially available polyethylene non-woven fabric and a commercially available polypropylene membrane filter, and immersing the surface in a bFGF-containing solution. BFGF is well adsorbed to these non-woven fabrics etc., and when it is put into a medium for cell culture (culture medium), it is found that bFGF is sustainedly released well, and the non-woven fabrics etc. It was found that it floated on its top surface without sinking.
Thus, by adjusting the porosity of the porous substrate appropriately, bFGF can be adsorbed well and sustained release can be performed well.
Moreover, the base material can be floated on the surface of the culture medium by appropriately selecting the material of the porous base material and setting the specific gravity of the base material smaller than the specific gravity of the culture medium. In this way, it is possible to easily load and remove the substrate from the medium, and to avoid direct contact of cells cultured in the medium with the substrate.
The form of the porous substrate is not particularly limited, and may be in the form of beads or the like, but if it is formed into a planar form such as a flat plate or a sheet like the non-woven fabric and membrane filter described above, the substrate is added to the culture medium・ It becomes easier to remove.
本発明者らは、更に、表面を親水化処理した基材を、bFGFを添加したリン酸カルシウム析出用溶液に浸漬し、基材表面にbFGF−リン酸カルシウム複合層を析出させることによって得られた基材についても、bFGFを良好に培地中に徐放すること、この場合も、基材の材質を適宜選択することで、当該基材の比重を培地の比重よりも小さくすることによって、当該基材を培地表面に浮かすことができること、また、この場合は、リン酸カルシウム複合層からbFGFが徐放されるため、基材自体は必ずしも多孔質構造を有さなくてもよいことを見出した。 The present inventors further immerse the base material having the surface subjected to hydrophilization treatment in a solution for calcium phosphate precipitation to which bFGF is added, and the base material obtained by depositing the bFGF-calcium phosphate composite layer on the base material surface Also, by slowly releasing bFGF well into the medium, and also in this case, by appropriately selecting the material of the base, the base is made to be a medium by making the specific gravity of the base smaller than the specific gravity of the medium. It has been found that the substrate itself may not necessarily have a porous structure, because it can float on the surface, and in this case, bFGF is slowly released from the calcium phosphate composite layer.
本発明者らは、更に、多孔質基材にbFGFとともにヘパリンを吸着させ、あるいは、基材表面に、bFGFとともにヘパリンを添加したリン酸カルシウム析出用溶液を用いてbFGF、ヘパリン−リン酸カルシウム複合層を析出させることにより、得られたこれらの基材から培地中にbFGFがさらに良好に徐放されることを見出した。
本発明は、本発明者らによって得られたこれらの知見に基づいてなされたものである。
The present inventors further adsorb heparin with bFGF to a porous substrate, or deposit a bFGF / heparin-calcium phosphate composite layer on the substrate surface using a solution for calcium phosphate precipitation with heparin added with bFGF Thus, it was found that bFGF was more favorably sustained-released from the obtained substrates into the medium.
The present invention has been made based on these findings obtained by the present inventors.
すなわち、この出願は、以下の発明を提供するものである。
〈1〉少なくとも表面が親水性を有する多孔質構造を有する基材に、哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子が吸着してなる、細胞培養補助剤。
〈2〉多孔質構造を有する基材が、繊維集合体、多孔質膜、表面のみを多孔質化した基材、あるいは表面にこれらの多孔質基材を接着させた基材である、〈1〉に記載の細胞培養補助剤。
〈3〉多孔質構造を有する基材がポリエチレン、ポリプロピレンまたはポリスチレンを素材として含む、〈1〉または〈2〉に記載の細胞培養補助剤。
〈4〉細胞培養液よりも小さな比重を有する、〈1〉〜〈3〉のいずれかに記載の細胞培養補助剤。
〈5〉液性因子がヘパリン結合性の因子であり、多孔質構造を有する基材上に、さらに硫酸化多糖が吸着してなる、〈1〉〜〈4〉のいずれかに記載の細胞培養補助剤。
〈6〉液性因子が線維芽細胞増殖因子−2(bFGF)である、〈1〉〜〈5〉のいずれかに記載の細胞培養補助剤。
〈7〉多孔質構造を有する基材の表面を親水化し、これを哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子を含有する溶液に浸漬することで、当該因子を、多孔質構造を有する基材に吸着させることを特徴とする、〈1〉〜〈4〉および〈6〉のいずれかに記載の細胞培養補助剤の製造方法。
〈8〉多孔質構造を有する基材の表面を親水化し、これを哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子、並びに硫酸化多糖を含有する溶液に浸漬することで、当該因子および硫酸化多糖を、多孔質構造を有する基材に吸着させることを特徴とする、〈5〉または〈6〉に記載の細胞培養補助剤の製造方法。
〈9〉多孔質構造を有する基材の表面の親水化が、プラズマ処理により、または、酸処理により行われる、〈7〉または〈8〉に記載の細胞培養補助剤の製造方法。
〈10〉〈1〉〜〈6〉のいずれかに記載の細胞培養補助剤を、哺乳動物細胞を培養する細胞培養培地に投入し、当該培地中に液性因子を徐放させながら、哺乳動物細胞を培養する方法。
〈11〉哺乳動物細胞が未分化の細胞であり、液性因子が未分化細胞を未分化のまま増殖させる液性因子であり、未分化細胞を未分化の状態に維持して培養することを特徴とする、〈10〉に記載の方法。
〈12〉液性因子が哺乳動物細胞を分化細胞または組織に分化・増殖させる液性因子であり、培養により哺乳動物細胞を分化細胞または組織に分化・増殖させることを特徴とする、〈10〉に記載の方法。
〈13〉少なくとも表面が親水性を有する基材の表面に、哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子を含むリン酸カルシウム層を有する、細胞培養補助剤。
〈14〉基材が、繊維集合体、多孔質膜、表面のみを多孔質化した基材、あるいは表面にこれらの多孔質基材を接着させた基材である、多孔質構造を有する基材である、〈13〉に記載の細胞培養補助剤。
〈15〉基材がポリエチレン、ポリプロピレンまたはポリスチレンを素材として含む、〈13〉または〈14〉に記載の細胞培養補助剤。
〈16〉細胞培養液よりも小さな比重を有する、〈13〉〜〈15〉のいずれかに記載の細胞培養補助剤。
〈17〉液性因子がヘパリン結合性の因子であり、リン酸カルシウム層がさらに硫酸化多糖を含む、〈13〉〜〈16〉のいずれかに記載の細胞培養補助剤。
〈18〉液性因子が線維芽細胞増殖因子−2(bFGF)である、〈13〉〜〈17〉のいずれかに記載の細胞培養補助剤。
〈19〉基材の表面を親水化し、これを、哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子を含むリン酸カルシウム過飽和溶液に浸漬することで、当該因子を含むリン酸カルシウム層を基材表面に形成させることを特徴とする、〈13〉〜〈16〉および〈18〉のいずれかに記載の細胞培養補助剤の製造方法。
〈20〉基材の表面を親水化し、これを、哺乳動物の未分化細胞を未分化のまま増殖させる液性因子、または、哺乳動物細胞の分化・増殖に影響を与える液性因子、並びに硫酸化多糖を含むリン酸カルシウム過飽和溶液に浸漬することで、当該因子および硫酸化多糖を含むリン酸カルシウム層を基材表面に形成させることを特徴とする、〈17〉または〈18〉に記載の細胞培養補助剤の製造方法。
〈21〉基材の表面の親水化が、プラズマ処理により、または、酸処理により行われる、〈19〉または〈20〉のいずれかに記載の細胞培養補助剤の製造方法。
〈22〉〈13〉〜〈18〉のいずれかに記載の細胞培養補助剤を、哺乳動物細胞を培養する細胞培養培地に投入し、当該培地中に液性因子を徐放させながら、哺乳動物細胞を培養する方法。
〈23〉哺乳動物細胞が未分化の細胞であり、液性因子が未分化細胞を未分化のまま増殖させる液性因子であり、未分化細胞を未分化の状態に維持して培養することを特徴とする、〈22〉に記載の方法。
〈24〉液性因子が哺乳動物細胞を分化細胞または組織に分化・増殖させる液性因子であり、培養により哺乳動物細胞を分化細胞または組織に分化・増殖させることを特徴とする、〈22〉に記載の方法。
That is, this application provides the following invention.
(1) A liquid factor that causes undifferentiated cells of a mammal to proliferate undifferentiated in a base material having a porous structure at least the surface of which is hydrophilic, or a liquid that affects differentiation and growth of mammalian cells Cell culture supplements that are adsorbed by sex factors.
<2> The substrate having a porous structure is a fiber assembly, a porous membrane, a substrate having a porous surface only, or a substrate having the porous substrate adhered to the surface, <1 Cell culture supplement as described in>.
The cell culture adjuvant as described in <1> or <2> in which the base material which has <3> porous structure contains polyethylene, a polypropylene, or a polystyrene as a raw material.
<4> The cell culture support according to any one of <1> to <3>, which has a specific gravity smaller than that of the cell culture solution.
<5> The cell culture according to any one of <1> to <4>, wherein the liquid factor is a factor capable of binding to heparin, and a sulfated polysaccharide is further adsorbed on a substrate having a porous structure. Adjuvant.
<6> The cell culture support according to any one of <1> to <5>, wherein the humoral factor is fibroblast growth factor-2 (bFGF).
(7) A liquid factor that hydrophilizes the surface of a substrate having a porous structure and causes undifferentiated cells of a mammal to grow undifferentiated as such, or a liquid that affects differentiation and growth of mammalian cells The cell culture according to any one of <1> to <4> and <6>, wherein the factor is adsorbed to a substrate having a porous structure by immersing in a solution containing the factor. Method of producing adjuvants.
<8> A liquid factor that hydrophilizes the surface of a substrate having a porous structure and causes undifferentiated cells of a mammal to grow undifferentiated as such, or a liquid that affects differentiation and growth of mammalian cells The factor and the sulfated polysaccharide are adsorbed to a substrate having a porous structure by being immersed in a solution containing the factor and the sulfated polysaccharide, described in <5> or <6> Method for producing cell culture supplements.
<9> The method for producing a cell culture support according to <7> or <8>, wherein the surface of the substrate having a porous structure is hydrophilized by plasma treatment or acid treatment.
The cell culture supplement described in any one of <10><1> to <6> is added to a cell culture medium for culturing a mammalian cell, and the mammal is released while releasing the liquid factor into the medium. How to culture cells.
<11> A mammalian cell is an undifferentiated cell, a humoral factor is a humoral factor that causes an undifferentiated cell to grow in an undifferentiated state, and the undifferentiated cell is maintained in an undifferentiated state and cultured. The method according to <10>, characterized in that
<12> The humoral factor is a humoral factor that causes mammalian cells to differentiate and proliferate mammalian cells into differentiated cells or tissues, and is characterized in that mammalian cells are differentiated and proliferated into differentiated cells or tissues by culture, <10> The method described in.
<13> A humoral factor that causes an undifferentiated cell of a mammal to proliferate undifferentiated on the surface of a substrate at least the surface of which has hydrophilicity, or a humoral factor that affects differentiation and proliferation of mammalian cells A cell culture supplement having a calcium phosphate layer containing.
<14> A substrate having a porous structure in which the substrate is a fiber assembly, a porous membrane, a substrate having a porous surface only, or a substrate having the porous substrate adhered to the surface. The cell culture adjuvant as described in <13> which is.
<15> The cell culture support according to <13> or <14>, wherein the substrate contains polyethylene, polypropylene or polystyrene as a material.
<16> The cell culture supplement according to any one of <13> to <15>, which has a specific gravity smaller than that of the cell culture solution.
<17> The cell culture support according to any one of <13> to <16>, wherein the humoral factor is a factor capable of binding to heparin, and the calcium phosphate layer further contains a sulfated polysaccharide.
<18> The cell culture support according to any one of <13> to <17>, wherein the humoral factor is fibroblast growth factor-2 (bFGF).
<19> Calcium phosphate containing a humoral factor that hydrophilizes the surface of a substrate and allows undifferentiated cells of a mammal to proliferate undifferentiated, or a humoral factor that affects differentiation and proliferation of mammalian cells Production of the cell culture adjuvant according to any one of <13> to <16> and <18>, characterized in that a calcium phosphate layer containing the factor is formed on the substrate surface by immersion in a supersaturated solution. Method.
<20> A humoral factor that hydrophilizes the surface of a substrate and allows undifferentiated cells of a mammal to grow undifferentiated, or a humoral factor that affects differentiation and proliferation of mammalian cells, and sulfate The cell culture adjuvant according to <17> or <18>, characterized in that the calcium phosphate layer containing the factor and the sulfated polysaccharide is formed on the substrate surface by immersing in a calcium phosphate supersaturated solution containing the immobilized polysaccharide. Manufacturing method.
<21> The method for producing a cell culture supplement according to <19> or <20>, wherein the surface of the substrate is hydrophilized by plasma treatment or acid treatment.
The cell culture supplement as described in any one of <22><13> to <18> is added to a cell culture medium for culturing a mammalian cell, and the mammal is released while releasing the liquid factor into the medium. How to culture cells.
<23> A mammalian cell is an undifferentiated cell, a humoral factor is a humoral factor that causes an undifferentiated cell to proliferate in an undifferentiated state, and the undifferentiated cell is maintained in an undifferentiated state and cultured. The method according to <22>, characterized in that
<24> The humoral factor is a humoral factor that causes mammalian cells to differentiate and proliferate mammalian cells into differentiated cells or tissues, and is characterized in that mammalian cells are differentiated and proliferated into differentiated cells or tissues by culturing, <22> The method described in.
本発明によれば、基材として、市販のポリエチレンないしポリプロピレン製の不織布やメンブレンフィルター等の、入手容易な、多孔質構造を有する基材を用いることができ、親水化処理することにより表面が親水化されたこれらの多孔質基材を、bFGF等の液性因子含有溶液に浸漬し、当該液性因子を吸着させる、あるいは、当該液性因子を添加したリン酸カルシウム析出用溶液を用いて、その表面に液性因子−リン酸カルシウム複合層を析出させるという簡便・安価なプロセスにより、液性因子を培地中に徐放する徐放剤を得ることができる。表面に液性因子−リン酸カルシウム複合層を析出させる場合には、リン酸カルシウム複合層から液性因子が徐放されるため、基材自体は必ずしも多孔質構造を有さなくてもよいが、複合層の形成量を増やす観点から、多孔質構造、ないし、微細粒子状などの、高比表面積を有する形状であることが好ましい。
本発明においては、基材の材質を適宜選択することにより、基材の比重を培地培養液の比重よりも小さなものとすることによって、培養液の上面に浮遊する徐放剤を得ることができる。これによって、徐放剤の培地への投入・除去が容易となり、また、徐放剤が培養細胞に直接触れることを避けることができる。
本発明においては、基材として、それ自体、化学的に安定な素材のものを用いることができ、徐放剤を培地中に投入した際に、基材の分解生成物が培地中に溶出し、培養細胞に影響を与えるおそれがない。
According to the present invention, a readily available base material having a porous structure such as a commercially available non-woven fabric made of polyethylene or polypropylene or a membrane filter can be used as the base material, and the surface is made hydrophilic by subjecting it to a hydrophilization treatment. These formed porous substrates are immersed in a solution containing a liquid factor such as bFGF to adsorb the liquid factor or the surface of the calcium phosphate precipitation solution to which the liquid factor is added. It is possible to obtain a controlled release agent for releasing the liquid factor into the medium by a simple and inexpensive process of precipitating the liquid factor-calcium phosphate composite layer. In the case of depositing the liquid factor-calcium phosphate composite layer on the surface, the base material itself does not necessarily have a porous structure, since the liquid factor is released slowly from the calcium phosphate composite layer. From the viewpoint of increasing the formation amount, it is preferable to have a shape having a high specific surface area such as a porous structure or fine particles.
In the present invention, by appropriately selecting the material of the base material, by setting the specific gravity of the base material to be smaller than the specific gravity of the culture medium, it is possible to obtain a sustained release agent floating on the upper surface of the culture solution. . This facilitates the addition and removal of the sustained release agent to the culture medium, and prevents the sustained release agent from directly contacting the cultured cells.
In the present invention, it is possible to use a chemically stable material as a substrate itself, and when the sustained release agent is introduced into the medium, decomposition products of the substrate are eluted in the medium. , There is no risk of affecting cultured cells.
本発明によれば、哺乳類の未分化細胞を未分化のまま増殖させる液性因子を細胞培養培地中に徐放させることにより、未分化細胞を未分化の状態に維持して培養することができる。本発明における液性因子とは、ホルモン、サイトカイン、神経伝達物質など、細胞にシグナルを伝えることで哺乳類の細胞の未分化維持・分化・増殖に影響を与える情報伝達物質で、通常は、培地に溶解する性質を持つ。液性因子の役割に応じて、未分化維持因子のほか、増殖因子、分化誘導因子、接着因子、転写因子などに分類することもできる。
本発明に用いる未分化維持因子としては、繊維芽細胞増殖因子(FGF)ファミリー、白血病阻止因子(LIF)、CCL2、トランスフォーミング増殖因子−β(TGF-β)ファミリー、インスリン、インスリン様増殖因子(IGF)ファミリー、トランスフェリンファミリーなどが挙げられる。中でも、繊維芽細胞増殖因子−2(塩基性繊維芽細胞増殖因子、FGF-β、FGF-2、bFGFなどともいう)が好ましい。
According to the present invention, it is possible to maintain and culture undifferentiated cells in an undifferentiated state by slowly releasing a humoral factor that causes undifferentiated mammalian cells to proliferate in an undifferentiated state into the cell culture medium. . The humoral factor in the present invention is a hormone, cytokine, neurotransmitter, etc., a signal transduction substance that affects the undifferentiated maintenance / differentiation / proliferation of mammalian cells by transmitting a signal to the cells, and is usually used in a medium. It has the property of dissolving. Depending on the role of humoral factors, in addition to undifferentiated maintenance factors, they can be classified into growth factors, differentiation inducers, adhesion factors, transcription factors, and the like.
As the undifferentiated maintenance factor used in the present invention, fibroblast growth factor (FGF) family, leukemia inhibitory factor (LIF), CCL2, transforming growth factor-beta (TGF-beta) family, insulin, insulin-like growth factor ( And IGF) family, transferrin family and the like. Among them, fibroblast growth factor-2 (also referred to as basic fibroblast growth factor, FGF-β, FGF-2, bFGF, etc.) is preferable.
本発明によれば、また、哺乳類の細胞の分化・増殖に影響を与える各種液性因子を細胞培養培地中に徐放させながら培養することにより、哺乳類細胞を分化細胞または組織に分化・増殖させることができる。
これにより、未分化な細胞から目的とする細胞を作成する、目的の細胞を効率よく培養する、細胞と液性因子との相互作用を解析する、といった目的を達成する。
細胞の増殖や分化などに影響する液性因子としては、培地に溶解する液性因子であれば特に限定されない。例えば、上皮細胞成長因子(EGF)ファミリー、結合組織成長因子ファミリー、血管内皮細胞増殖因子(VEGF)ファミリー、神経栄養因子ファミリー、グリア細胞株由来神経栄養因子(GDNF)ファミリー、血小板由来成長因子(PDGF)ファミリー、肝細胞増殖因子(HGF)ファミリー、骨形成タンパク質(BMP)ファミリー、トランスフォーミング増殖因子−α(TGF-α)ファミリー、トランスフォーミング増殖因子−β(TGF-β)ファミリー、アクチビンファミリー、ヒト成長ホルモン、ヘレグリンファミリー、インスリン様増殖因子(IGF)ファミリー、インターロイキン(IL)ファミリー、インターフェロン(INF)ファミリー、顆粒球コロニー刺激因子(G-CSF)ファミリー、顆粒球マクロファージコロニー刺激因子(GM-CSF)ファミリー、マクロファージコロニー刺激因子(M-CSF)ファミリー、マイトーゲン活性化タンパク(MAP)キナーゼファミリー、Flt3 リガンド、幹細胞因子(SCF)ファミリー、腫瘍壊死因子(TNF)ファミリー、遺伝子転写調節因子(GATA)ファミリー、エリスロポエチン、トロンボポエチンなどが挙げられるが、これに限定されない。
According to the present invention, mammalian cells are differentiated and proliferated into differentiated cells or tissues by culturing various humoral factors that affect differentiation and proliferation of mammalian cells in a cell culture medium with slow release. be able to.
In this way, the object of producing the target cell from undifferentiated cells, efficiently culturing the target cell, and analyzing the interaction between the cell and the liquid factor is achieved.
The liquid factor that affects cell growth, differentiation, etc. is not particularly limited as long as it is a liquid factor that dissolves in a culture medium. For example, epidermal growth factor (EGF) family, connective tissue growth factor family, vascular endothelial growth factor (VEGF) family, neurotrophic factor family, glial cell line-derived neurotrophic factor (GDNF) family, platelet derived growth factor (PDGF) ) Family, hepatocyte growth factor (HGF) family, bone morphogenetic protein (BMP) family, transforming growth factor-α (TGF-α) family, transforming growth factor-β (TGF-β) family, activin family, human Growth hormone, heregulin family, insulin-like growth factor (IGF) family, interleukin (IL) family, interferon (INF) family, granulocyte colony stimulating factor (G-CSF) family, granulocyte macrophage colony stimulating factor (GM-) CSF) family, macrophage colony stimulating factor (M-CSF) family Activated protein (MAP) kinase family, Flt3 ligand, stem cell factor (SCF) family, tumor necrosis factor (TNF) family, gene transcription regulatory factor (GATA) family, erythropoietin, thrombopoietin, etc., but not limited thereto .
本発明に用いる基材の素材としては、例えば、ポリエチレン、ポリスチレン、ポリプロピレン、ABS樹脂、AS樹脂、ポリ塩化ビニル、アクリル樹脂、ポリビニルアルコール、ポリビニルピロリドン、ナイロン、セルロース、アセタール樹脂、ポリカーボネート、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリスルフォン、ポリウレタン、ポリイミド樹脂、ポリエーテルイミド、ポリアミドイミド、アセタール樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、これらの共重合体や複合体などを含む基材が挙げられる。 Examples of the base material used in the present invention include polyethylene, polystyrene, polypropylene, ABS resin, AS resin, polyvinyl chloride, acrylic resin, polyvinyl alcohol, polyvinyl pyrrolidone, nylon, cellulose, acetal resin, polycarbonate, polyethylene terephthalate, Polybutylene terephthalate, polyvinylidene chloride, polyvinylidene fluoride, polysulfone, polyurethane, polyimide resin, polyetherimide, polyamide imide, acetal resin, phenol resin, melamine resin, epoxy resin, copolymers and composites of these, etc. A base material is mentioned.
これらの基材は、例えば、酸処理、アルカリ処理、酸化処理、プラズマ処理、コロナ放電処理、フレーム処理、グロー放電処理、イオンスパッタ処理、レーザー照射、紫外線照射、ガンマ線照射、表面研磨、エッチング処理、親水性官能基の導入(シランカップリング処理、親水性官能基を持つ分子のグラフト重合などによる)、親水性膜・塗材の表面コーティング、界面活性剤の表面塗布などの手法により、表面を親水化できる。また、親水性の高分子や無機フィラーを混錬することで、基材表面を親水化することもできる。
なお、ある種のポリビニルアルコール、エチレン−ビニルアルコール共重合体、ポリビニルピロリドン、ポリスルフォンなどのように、素材自体が培地などの浸透・接触に十分な親水性を示す場合は、親水化処理を行わなくてもよい。
These base materials are, for example, acid treatment, alkali treatment, oxidation treatment, plasma treatment, corona discharge treatment, flame treatment, glow discharge treatment, ion sputtering treatment, laser irradiation, ultraviolet irradiation, gamma ray irradiation, surface polishing, etching treatment, Introduction of hydrophilic functional groups (by silane coupling treatment, graft polymerization of molecules with hydrophilic functional groups, etc.), surface coating of hydrophilic film / coating material, surface coating of surfactant etc. Can be In addition, the base material surface can be made hydrophilic by mixing and kneading a hydrophilic polymer or an inorganic filler.
When the material itself exhibits sufficient hydrophilicity for permeation and contact of a culture medium, such as certain polyvinyl alcohol, ethylene-vinyl alcohol copolymer, polyvinyl pyrrolidone, polysulfone, etc., a hydrophilization treatment is performed. It does not have to be.
本発明の基材が多孔質構造を有する場合の基材の形状としては、不織布、織物、編物などの繊維の集合体、あるいはメンブレンフィルター、メッシュシートなどの多孔質の膜や平板が好ましい。これらの多孔質基材はいずれも、既知の製造法により作製できる。
本発明において、多孔質構造を有する基材とは、平滑な表面を有する基材の表面積よりも大きな表面粗さ、大きな表面積(10mm角の基材においては100mm2以上)を有する基材を指す。好ましい表面粗さとしては、高さ方向の振幅算術平均(Sa)で1〜90μm、さらに好ましくは2〜10μmである。大きさ10mm×10mmの基材の片面(完全平滑の場合の理論表面積 = 100mm2)の表面積(A)としては、好ましくは150〜2500mm2(完全平滑面の1.5〜25倍)、さらに好ましくは150〜500mm2(完全平滑面の1.5〜5倍)である。
ただし、メッシュシートにおいてオープニング(繊維と繊維の隙間)の大きな基材については、たとえ基材全体としての表面粗さ・表面積の増大効果が大きくても、培地に浮遊した場合に、実際に吸着液および培地に接触できる実効表面積が少ないと、目的の徐放性能を達成できないので注意が必要である。
基材に持たせる多孔質構造は、吸着液や培地などとの十分な接触面積を確保できるよう、培地に浮遊した状態で、吸着液および培地に接触できる実効表面積が大きな構造であることが望ましい。そのような多孔質構造としては、マイクロメートルスケールの多孔構造であって、孔と孔とが連続的につながっている連通多孔構造であることが望ましいが、これに限定されない。望ましい多孔質基材の例としては、Saが5〜6μm、Aが160〜170mm2のポリエチレン不織布や、Saが2μm、Aが240mm2のポリプロピレンフィルターなどが挙げられる。
また、基材が全体に渡って多孔質である必要はなく、基材の少なくとも片面が多孔質構造を有していれば良い。基材の少なくとも片面が多孔質構造を有する基材は、多孔質基材と緻密な基材を張り合わせるなど、複数の基材を複合化することでも得ることができる。あるいは、ち密な基材に対し、酸処理、アルカリ処理、酸化処理、プラズマ処理、コロナ放電処理、フレーム処理、グロー放電処理、イオンスパッタ処理、レーザー照射、紫外線照射、ガンマ線照射、表面研磨、エッチング処理、多孔質膜・塗材の表面コーティングなどを施すことによって、その表面を多孔質化しても良い。
When the substrate of the present invention has a porous structure, the shape of the substrate is preferably an aggregate of fibers such as non-woven fabric, woven fabric and knitted fabric, or a porous membrane or flat plate such as a membrane filter or mesh sheet. Any of these porous substrates can be produced by known production methods.
In the present invention, a substrate having a porous structure refers to a substrate having a surface roughness larger than that of a substrate having a smooth surface and a large surface area (100 mm 2 or more for a 10 mm square substrate). . The surface roughness is preferably 1 to 90 μm, more preferably 2 to 10 μm in height arithmetic average (Sa) in the height direction. The surface area (A) of one side (theoretical surface area in the case of perfect smoothness = 100 mm 2 ) of a substrate of 10 mm × 10 mm is preferably 150 to 2500 mm 2 (1.5 to 25 times the perfect smooth surface), more preferably It is 150-500 mm < 2 > (1.5-5 times the perfect smooth surface).
However, in the case of a substrate having a large opening (a gap between fibers and fibers) in the mesh sheet, even if the effect of increasing the surface roughness and surface area of the entire substrate is large, the adsorption liquid is actually adsorbed when suspended in the culture medium. And, when the effective surface area that can be in contact with the culture medium is small, it is necessary to be careful because the desired sustained release performance can not be achieved.
It is desirable that the porous structure to be provided to the substrate has a large effective surface area capable of being in contact with the adsorption solution and the culture medium while suspended in the culture medium so as to ensure a sufficient contact area with the adsorption solution and the culture medium. . As such a porous structure, it is desirable that it is a porous structure of micrometer scale, and it is desirable that it is a connected porous structure in which the pores and the pores are continuously connected, but it is not limited thereto. Examples of preferred porous substrate, Sa is 5 to 6 .mu.m, A polyethylene nonwoven fabric or 160~170mm 2, Sa is 2 [mu] m, A is like polypropylene filter 240 mm 2.
In addition, the base material does not have to be porous throughout, and at least one side of the base material may have a porous structure. A substrate having a porous structure on at least one side of the substrate can also be obtained by combining a plurality of substrates, such as laminating a porous substrate and a dense substrate. Alternatively, acid, alkali, oxidation, plasma treatment, corona discharge treatment, flame treatment, glow discharge treatment, ion sputtering treatment, laser irradiation, ultraviolet irradiation, gamma irradiation, surface polishing, etching treatment to a dense substrate The surface may be made porous by applying a surface coating of a porous film or a coating material.
本発明の基材を培地に浮遊させるためには、基材の比重は1未満であることが好ましい。そのような低比重基材としては、ポリエチレン、ポリスチレン、ポリプロピレン、ABS樹脂などを挙げることができる。
比重1以上の基材を、比重1未満の基材と複合化することで、基材全体としての比重を1未満にし、培地浮遊性を確保しても良い。あるいは、基材内に気泡を導入したり、低比重成分を混錬することで、基材全体としての比重を1未満にし、培地浮遊性を確保しても良い。
In order to suspend the substrate of the present invention in a culture medium, the specific gravity of the substrate is preferably less than 1. As such a low specific gravity substrate, polyethylene, polystyrene, polypropylene, ABS resin and the like can be mentioned.
By combining the base material having a specific gravity of 1 or more with the base material having a specific gravity of less than 1, the specific gravity of the whole base material may be less than 1 and the culture medium floatability may be secured. Alternatively, air bubbles may be introduced into the base material or a low specific gravity component may be mixed to make the specific gravity of the whole base material less than 1, thereby securing the medium floating property.
本発明に用いるリン酸カルシウム過飽和溶液としては、飽和濃度以上のカルシウムイオンとリン酸イオンを少なくとも含む水溶液が用いられる。ただし、溶液調製直後はリン酸カルシウムに対して不飽和であって、時間とともに成分濃度が変化して過飽和になる溶液でも良い。あるいは、使用時に、溶液の温度を高める、アルカリ化剤を添加する、イオン強度を調整するなどの操作を加えることによって、過飽和溶液に変化させても良い。
リン酸カルシウム過飽和溶液にはさらに、溶液のイオン強度を調整するための成分(NaClなど)や、pHを調整するための成分(TRISバッファー、HEPESバッファーなど)、リン酸カルシウムの核形成・成長を調節する成分(マグネシウム、炭酸イオンなど)などが含まれていても良い。
このようなリン酸カルシウム過飽和溶液として、例えば、ヒトの体液とほぼ等しい無機イオン濃度を有する擬似体液、擬似体液の特定のイオン濃度を高めた溶液(5倍濃度擬似体液など)、CP液(Uchida et al. Adv. Mater. Volume 16, 1071, 2004)、RKM液(Sogo et al. Curr. Appl. Phys. Volume 5, 526, 2005)、ハンクス液などを用いることができる。これらの過飽和溶液はいずれも、既知の方法で調製することができる。リン酸カルシウム過飽和溶液のpHは5〜12、好ましくは6〜10、さらに好ましくは7〜8の中性であると良い。
As a calcium phosphate supersaturated solution to be used in the present invention, an aqueous solution containing at least a calcium ion and a phosphate ion at or above a saturation concentration is used. However, the solution may be a solution which is unsaturated with respect to calcium phosphate immediately after preparation of the solution, and the component concentration changes with time to be supersaturated. Alternatively, it may be converted to a supersaturated solution by adding operations such as raising the temperature of the solution, adding an alkalizing agent, adjusting the ionic strength, etc. at the time of use.
The calcium phosphate supersaturated solution further contains components for adjusting the ionic strength of the solution (such as NaCl), components for adjusting the pH (TRIS buffer, HEPES buffer, etc.), and components for controlling nucleation and growth of calcium phosphate ( Magnesium, carbonate ion, etc. may be contained.
As such a calcium phosphate supersaturated solution, for example, a simulated body fluid having an inorganic ion concentration substantially equal to that of human body fluid, a solution (such as 5-fold concentration simulated body fluid) in which a specific ion concentration of the simulated body fluid is increased, CP solution (Uchida et al. Adv. Mater.
本発明に用いる硫酸化多糖としては、ヘパリン、ヘパラン硫酸、ヘパリン由来オリゴ糖、ヘパラン硫酸由来オリゴ糖などが挙げられる。中でも、ヘパリン、ヘパラン硫酸が好ましい。
液性因子がヘパリン結合性タンパク質である場合、これらの硫酸化多糖が結合することで、当該液性因子は、本発明の徐放剤の製造に用いる吸着液またはリン酸カルシウム過飽和溶液中において、本発明の徐放剤中において、また、徐放後の培地中において、安定化される。
The sulfated polysaccharides used in the present invention include heparin, heparan sulfate, heparin-derived oligosaccharides, heparan sulfate-derived oligosaccharides and the like. Among them, heparin and heparan sulfate are preferable.
When the liquid factor is a heparin-binding protein, binding of these sulfated polysaccharides enables the liquid factor to be used in the adsorption liquid or calcium phosphate supersaturated solution used for producing the sustained release agent of the present invention. And in the medium after sustained release.
次に、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES The present invention will next be described in more detail by way of examples, which should not be construed as limiting the invention thereto.
(実施例1)吸着法における基材の検討
多孔質基材に親水化処理を施した後、繊維芽細胞増殖因子−2(bFGF)を吸着させた。表面積の大きな多孔質基材を用いることで、ち密で平滑な表面を有するポリスチレン(PS)基材に比べて、培養液中へのbFGF溶出量が増大することを確認した。
Example 1 Examination of Substrate in Adsorption Method After a porous substrate was subjected to a hydrophilization treatment, fibroblast growth factor-2 (bFGF) was adsorbed. By using a porous substrate having a large surface area, it was confirmed that the elution amount of bFGF into the culture solution is increased as compared to a polystyrene (PS) substrate having a dense and smooth surface.
bFGF徐放性多孔質基材(bFGF吸着型)の作製
ポリエチレン(PE)およびポリプロピレン(PP)製の下記4種の多孔質基材(図1)を使用し、下記の手順でbFGFを吸着させた。また比較のために、ち密で平滑な表面を有するPSの平板状基材を用いた。なお、PS基材以外の基材はいずれも水に浮遊する。
・PE不織布(薄):タイベック 1442R(旭・デュポンフラッシュスパンプロダクツ製)厚さ 約145μm
・PE不織布(厚):ベクサーS(タイベック)(旭・デュポンフラッシュスパンプロダクツ製)厚さ 約160μm
・PPフィルター(細孔):AN1204700(メルクミリポア製)孔径1.2μm、厚さ150μm
・PPフィルター(大孔):AN1H04700(メルクミリポア製)孔径10μm、厚さ150μm
まず、各多孔質基材をカッターで大きさ10mm×10mmの切片に切り出した。PE不織布は、超純水中で30分超音波洗浄後、さらにエタノール中で30分超音波洗浄した。PPフィルターは洗浄せずそのまま使用した。PS平板状基材は、PSペレット(Aldrich Chemical製)を溶融・成型して作製した厚さ1mmの基板を大きさ10mm×10mmの切片に切り出し、表面を研磨剤(タミヤコンパウンド(仕上げ目))で磨いた後、エタノールで超音波洗浄して作製した。
各基材の表面粗さ(高さ方向の振幅算術平均:Sa)を、3D測定レーザー顕微鏡(LEXT OLS4100、オリンパス製)により測定した。また、基板片面(大きさ10mm×10mm = 100mm2)あたりの表面積(A)を算出した。結果を以下に示す(数値は、3カ所の測定値の平均値 ± 標準偏差)。
PS平板状基材 Sa = 0.5 ± 0.0μm、A = 109.3 ± 1.1mm2
PE不織布(薄) Sa = 5.3 ± 0.6μm、A = 171 ± 12mm2
PE不織布(厚) Sa = 5.6 ± 1.1μm、A = 157 ± 4mm2
PPフィルター(細孔) Sa = 2.4 ± 0.3μm、A = 237 ± 17mm2
PPフィルター(大孔) Sa = 4.8 ± 0.0μm、A = 419 ± 6mm2
この結果から、いずれの多孔質基材も、PS平板状基材に比べて大きな表面粗さ(5〜11倍増)、ならびに表面積(1.5〜4倍増)を有することが確認された。
続いて各基材に、親水化のための酸素プラズマ処理(30Pa、13.56MHz、30秒間)をコンパクトエッチャー FA-1(サムコ株式会社製)を用いて施した。プラズマ処理の電力密度は、PE不織布(薄)およびPE不織布(厚)に対しては0.1W/cm2、PPフィルター(大孔)に対しては0.3W/cm2、PPフィルター(細孔)およびPS平板状基材に対しては0.5W/cm2とした。以上の処理条件は、基材を変形・変色させずに、基材の表面を親水化できる条件として、予備検討の結果から決定した。プラズマ処理後、各基材をエチレンオキサイド(EOG)ガスで滅菌した。
リン酸緩衝生理食塩水(D-PBS(-)、和光純薬工業製、以後PBS)に、bFGF(1mg/mL、片山化学工業製)を最終濃度4μg/mLとなるよう添加することにより、吸着液を調製した。吸着液2mLを24ウェルプレートのウェル内に分注し、同吸着液中に各基材を25℃で30分間あるいは24時間浸漬した。この際、多孔質基材は水に浮かぶため、プラズマ処理面が吸着液に接触するように処理面を下にして設置した。PS平板状基材は水に沈むため、プラズマ処理面が上になるように設置した。24ウェルプレートは、吸着液の蒸発防止のためにチャック付きビニール袋(ユニパック)に入れ、25℃に保ったクールインキュベーター内に静置した。浸漬後、基材を溶液から取り出し、2mLのPBS(bFGF無添加)に3回浸漬(1秒)して洗浄した。
Preparation of bFGF sustained-release porous substrate (bFGF adsorption type) Using the following four porous substrates (Figure 1) made of polyethylene (PE) and polypropylene (PP), bFGF was adsorbed according to the following procedure The Also, for comparison, a PS flat substrate having a dense and smooth surface was used. In addition, all base materials other than PS base material float in water.
・ PE non-woven fabric (thin): Tyvek 1442R (Asahi, DuPont Flash Span Products) thickness about 145μm
・ PE non-woven fabric (thick): Bexar S (Tyvek) (made by Asahi DuPont Flash Spun Products) Thickness about 160μm
・ PP filter (pore): AN 1204700 (Merck Millipore) pore size 1.2 μm, thickness 150 μm
・ PP filter (large pore): AN1H04700 (made by Merck Millipore)
First, each porous substrate was cut into pieces of 10 mm × 10 mm in size with a cutter. The PE non-woven fabric was ultrasonically cleaned in ultrapure water for 30 minutes and then ultrasonically cleaned in ethanol for 30 minutes. The PP filter was used as it was without washing. A PS flat substrate is prepared by melting and molding PS pellets (manufactured by Aldrich Chemical) into a 1 mm thick substrate cut into 10 mm × 10 mm pieces, and the surface is an abrasive (Tamiya compound (finished grain)) And then ultrasonically cleaned with ethanol.
The surface roughness (amplitude arithmetic mean in the height direction: Sa) of each substrate was measured by a 3D measurement laser microscope (LEXT OLS 4100, manufactured by Olympus). Further, the surface area (A) per one side of the substrate (size: 10 mm × 10 mm = 100 mm 2 ) was calculated. The results are shown below (numbers are the mean of three measurements ± standard deviation).
PS flat substrate Sa = 0.5 ± 0.0 μm, A = 109.3 ± 1.1 mm 2
PE non-woven fabric (thin) Sa = 5.3 ± 0.6 μm, A = 171 ± 12 mm 2
PE non-woven fabric (thickness) Sa = 5.6 ± 1.1 μm, A = 157 ± 4 mm 2
PP filter (pore) Sa = 2.4 ± 0.3 μm, A = 237 ± 17 mm 2
PP filter (large hole) Sa = 4.8 ± 0.0 μm, A = 419 ± 6 mm 2
From this result, it was confirmed that all porous substrates have large surface roughness (5 to 11 times) and surface area (1.5 to 4 times) as compared to PS flat substrates.
Subsequently, each substrate was subjected to oxygen plasma treatment (30 Pa, 13.56 MHz, 30 seconds) for hydrophilization using a compact etcher FA-1 (manufactured by Samco Inc.). Power density of the plasma treatment, PE nonwoven (thin) and PE nonwoven 0.1 W / cm 2 for (thick), PP filter for the (large hole) 0.3W / cm 2, PP filter (pore) And 0.5 W / cm 2 for PS and flat plate substrates. The above processing conditions were determined from the results of preliminary examination as conditions capable of hydrophilizing the surface of the substrate without deforming or discoloring the substrate. After plasma treatment, each substrate was sterilized with ethylene oxide (EOG) gas.
By adding bFGF (1 mg / mL, manufactured by Katayama Chemical Industry Co., Ltd.) to a final concentration of 4 μg / mL in phosphate buffered saline (D-PBS (-), manufactured by Wako Pure Chemical Industries, Ltd., hereinafter PBS), An adsorption solution was prepared. 2 mL of the adsorption solution was dispensed into the wells of a 24-well plate, and each substrate was immersed in the adsorption solution at 25 ° C. for 30 minutes or 24 hours. At this time, since the porous substrate floats on water, the plasma-treated surface was placed with the treated surface down so that the plasma-treated surface was in contact with the adsorption solution. Since the PS flat plate-like substrate was submerged in water, it was placed with the plasma-treated surface on top. The 24-well plate was placed in a zippered plastic bag (Unipack) to prevent evaporation of the adsorption solution, and was allowed to stand in a cool incubator maintained at 25 ° C. After immersion, the substrate was removed from the solution and washed three times (1 second) with 2 mL PBS (without bFGF added) for 3 times.
基材の評価
図2にプラズマ処理後の各多孔質基材の走査型電子顕微鏡(SEM)像を示す。PPフィルター(細孔)表面には、サブミクロンスケールのドット状の凹凸構造の形成が観察されたが、それ以外の基材については、プラズマ処理前(図1)に比べて顕著な構造変化は認められなかった。プラズマ処理前後の基材表面に超純水を滴下したところ、いずれの基材についても、プラズマ処理により基材表面の水濡れ性が向上することが分かった。疎水性のPPおよびPEの表面が、プラズマ処理により親水化されたためと考えられる。
Evaluation of Substrates FIG. 2 shows a scanning electron microscope (SEM) image of each porous substrate after plasma treatment. On the surface of the PP filter (pores), formation of a submicron-scale dot-like concavo-convex structure was observed, but for the other substrates, a remarkable structural change was observed compared to before the plasma treatment (FIG. 1) I was not able to admit. When ultrapure water was dropped on the substrate surface before and after the plasma treatment, it was found that the water wettability of the substrate surface was improved by the plasma treatment for any substrate. It is considered that the hydrophobic PP and PE surfaces were hydrophilized by plasma treatment.
bFGF溶出挙動
多能性幹細胞の培養に使用される培養液(Essential 6 Medium、Thermo Fisher Scientific製)2mLを24ウェルプレートのウェル内に分注し、上記の手順でbFGFを吸着させた各基材を、処理面(bFGF吸着面)が培養液に接触するように設置した(多孔質基材:処理面が下、PS平板状基材:処理面が上)。図3に、培養液に浮かべたPE不織布(厚)とPPフィルター(細孔)の写真(上)およびその模式図(下)を示す。各基材を設置後、24ウェルプレートは、37℃の炭酸インキュベーター内に静置した。1、2、3日後、ウェル内の培養液(bFGF溶出液)を150μL採取し、新しい培養液150μLを添加した。採取した培養液(bFGF溶出液)は直ちに−80℃で保管し、bFGF濃度測定時に解凍した。溶出液中のbFGF濃度は、ELISAキット(Quatikine ELISA Human FGF basic Immunoassay、R&D製)を用いて測定した。検量線は、bFGF(片山化学工業製)を用いて作成した。
各基材からのbFGF溶出挙動を図4に示す。吸着時間30分の基材(図4上)よりも24時間の基材(図4下)の方が、bFGF溶出量が増大した。吸着時間を長くすることで、より多量のbFGFが基材上に担持されたためと考えられる。吸着時間24時間の結果(図4下)から、ち密で平滑な表面を有するPS平板状基材に対し、表面粗さならびに表面積の大きな多孔質基材を用いることで、bFGF溶出量を増大できることが確認された。なお、PPフィルターでは、大孔径よりも小孔径のフィルターの方が、bFGF溶出量が多かった。PE不織布(薄)とPPフィルター(細孔)では、1日後に10ng/mL以上のbFGF濃度を達成し、3日後にも8ng/mLを保った。
なお、同じ培養液にbFGF(片山化学工業製)を初期濃度10ng/mLで添加した場合、1日後にELISAで検出されたbFGFは0.5ng/mL以下であった。すなわち、フリーの状態のbFGFは培養液環境下、1日以内にその95%以上がELISAで検出できない状態に変化する。これは、bFGFの半減期が極めて短いためである。
本吸着法により作製されたbFGF徐放性多孔質基材(bFGF吸着型)は、培養液中に浮かび(細胞に接触しない)、3日間にわたって8〜10ng/mLのbFGF濃度を維持した。以上より本基材は、多能性幹細胞の多能性維持培養に望まれる細胞非接触性とbFGF長期徐放性能(非特許文献1)を満たしているといえる。しかも本基材は、先行品(非特許文献1)で使用されている動物由来のヘパリンや合成高分子、有機溶媒などの薬品を使用することなく作製でき、先行品と同等のbFGF長期徐放性能を達成している。
The bFGF elution behavior from each substrate is shown in FIG. The amount of bFGF elution increased in the substrate for 24 hours (FIG. 4 lower) than for the substrate with an adsorption time of 30 minutes (FIG. 4 upper). It is considered that by increasing the adsorption time, a larger amount of bFGF was supported on the substrate. From the result of the adsorption time of 24 hours (FIG. 4 lower), the bFGF elution amount can be increased by using a porous substrate having a large surface roughness and a large surface area with respect to a PS flat substrate having a dense and smooth surface Was confirmed. In the PP filter, the bFGF elution amount was larger in the filter with the smaller pore size than in the large pore size. The PE non-woven fabric (thin) and the PP filter (pore) achieved a bFGF concentration of 10 ng / mL or more after 1 day, and kept 8 ng / mL after 3 days.
When bFGF (Katayama Chemical Industries) was added to the same culture solution at an initial concentration of 10 ng / mL, bFGF detected by ELISA after 1 day was 0.5 ng / mL or less. That is, bFGF in a free state changes to a state in which 95% or more can not be detected by ELISA within one day in a culture solution environment. This is because the half life of bFGF is extremely short.
The bFGF sustained-release porous substrate (bFGF adsorption type) prepared by the present adsorption method floated in the culture solution (without contacting the cells) and maintained a bFGF concentration of 8 to 10 ng / mL for 3 days. From the above, it can be said that the present base material satisfies the cell non-contactability desired for pluripotent maintenance culture of pluripotent stem cells and the bFGF long-term sustained release performance (Non-patent document 1). Moreover, this base material can be prepared without using drugs such as animal-derived heparin, synthetic polymers, organic solvents and the like used in prior products (Non-Patent Document 1), and bFGF long-term sustained release equivalent to prior products Performance has been achieved.
(実施例2)吸着法における処理条件(親水化処理条件、吸着処理時間、振盪の効果、bFGF濃度)の検討
多孔質基材に種々の条件で親水化処理を施した結果、親水化処理によって、基材へのbFGF吸着量ならびに培養液中への溶出量が増大することを確認した。種々の時間吸着処理を行った結果、時間の経過につれて基材へのbFGF吸着量が増大し、24時間程度で平衡に達した。吸着処理中、bFGF吸着用溶液を静置させた場合と振盪させた場合を比較すると、振盪させた方が効率よくbFGFを吸着できることを確認した。また、種々の濃度のbFGF吸着用溶液を用いて吸着処理を行った結果、吸着用溶液のbFGF濃度が高くなるにつれて、基材へのbFGF吸着量ならび培養液中への溶出量が増大することを確認した。
(Example 2) Examination of treatment conditions (hydrophilization treatment conditions, adsorption treatment time, effect of shaking, bFGF concentration) in the adsorption method As a result of subjecting the porous substrate to hydrophilization treatment under various conditions, hydrophilization treatment It was confirmed that the amount of bFGF adsorbed to the substrate and the amount eluted into the culture solution increased. As a result of performing adsorption treatment for various times, the amount of bFGF adsorbed to the substrate increased with the passage of time, and reached equilibrium in about 24 hours. A comparison between the case in which the bFGF adsorption solution was allowed to stand and the case in which the solution was shaken during the adsorption treatment confirmed that shaking could efficiently adsorb bFGF. In addition, as a result of performing adsorption treatment using solutions for bFGF adsorption at various concentrations, as the bFGF concentration of the solution for adsorption increases, the amount of bFGF adsorbed on the substrate and the elution amount into the culture solution increase. It was confirmed.
bFGF徐放性多孔質基材(bFGF吸着型)の作製(親水化処理条件の検討)
実施例1で良好なbFGF徐放性能の確認されたPE不織布と同等製品であって、医療機器の包装材などに使用されているPE不織布(旭・デュポンフラッシュスパンプロダクツ製タイベック1073B、厚さ 約178μm)を準備した。この基材を大きさ10mm×10mmの切片に切り出し、超純水中で30分超音波洗浄後、さらにエタノール中で30分超音波洗浄して基材とした。
各基材に対し、コンパクトエッチャー FA-1(サムコ株式会社製)を用い、種々の電力密度(0.05、0.1、0.2、0.5W/cm2)で酸素プラズマ処理(30Pa、13.56MHz、30秒間)を施した。プラズマ処理後の基材をEOGガスで滅菌し、実施例1と同様にしてbFGF(4μg/mL)含有PBS(吸着液)に25℃で24時間浸漬した後、洗浄した。ただし、本実施例では、蓋つきチューブ(5mLアシストチューブ)内に吸着液1mL(実施例1では24ウェルプレートのウェルに吸着液2mL)を密封し、密閉条件下で吸着実験を行った。
Preparation of bFGF sustained-release porous substrate (bFGF adsorption type) (examination of hydrophilization treatment conditions)
PE non-woven fabric equivalent to PE non-woven fabric confirmed to have good bFGF sustained-release performance in Example 1 and used for packaging of medical devices etc. (Asahi / Dupont flush span products Tyvek 1073 B, thickness approx. 178 μm) was prepared. The substrate was cut into pieces of 10 mm × 10 mm in size, subjected to ultrasonic cleaning in ultrapure water for 30 minutes, and then ultrasonically washed in ethanol for 30 minutes to form a substrate.
Oxygen plasma treatment (30 Pa, 13.56 MHz, 30 seconds) with various power densities (0.05, 0.1, 0.2, 0.5 W / cm 2 ) using a compact etcher FA-1 (manufactured by Samco Inc.) for each base material Applied. The substrate after plasma treatment was sterilized with EOG gas, immersed in PBS (adsorption solution) containing bFGF (4 μg / mL) at 25 ° C. for 24 hours in the same manner as Example 1, and washed. However, in this example, 1 mL of the adsorption solution (2 mL of the adsorption solution in the wells of the 24-well plate in Example 1) was sealed in a tube with a lid (5 mL assist tube), and an adsorption experiment was performed under sealed conditions.
基材の評価(親水化処理条件の検討)
本実施例で用いた医療用PE不織布の表面粗さ(Sa)および基板片面(大きさ10mm×10mm = 100mm2)あたりの表面積(A)を実施例1と同様にして調べたところ、Sa = 1.8 ± 0.2μm、A = 201 ± 9mm2であった。医療用PE不織布も、PS平板状基材に比べて大きな表面粗さ(約3倍増)、ならびに表面積(約2倍増)を有することが確認された。
図5左に、プラズマ処理前後の各基材表面のSEM像を示す。最も強い0.5W/cm2のプラズマ処理条件では、プラズマ処理前の表面微細構造よりも大きな、サブミクロンスケールの波状の凹凸構造が形成された。それ以外の基材については、プラズマ処理前に比べて顕著な構造変化は認められなかった。また、基材表面に対する超純水の接触角(図5右)が、処理前は約120度であったのに対し、プラズマ処理後の基材ではいずれも減少(約40度以下)したことから、プラズマ処理による水濡れ性の向上効果が確認された。酸素プラズマ処理によって、疎水性のPE表面に、OH、CHO、COOH基などの極性の高い官能基が導入されたためと考えられる。なお、水濡れ性の向上効果は、プラズマ処理の電力密度が0.1から0.5W/cm2に増加するのに伴い増大した。
吸着処理後、各吸着液中の残存bFGF濃度と、基材を浸漬せずに同条件で保持した吸着液(基材なし)のbFGF濃度をELISAにより測定した。図6に示すように、未処理基材(プラズマ処理なし)を浸漬した後の吸着液中の残存bFGF濃度は、基材なしで保持した吸着液中のbFGF濃度とほぼ同じであったことから、未処理の基材(PE不織布)にはほとんどbFGFが吸着しなかったといえる。一方で、プラズマ処理された基材では、吸着液中のbFGF濃度が浸漬後に大幅に減少しており、bFGFの基材への吸着が明らかであった。プラズマ処理された基材へのbFGF吸着量を、基材なしに対するbFGF濃度の減少量から見積もると、0.1〜0.3μg/cm2と算出された。プラズマ処理により基材の水濡れ性が向上した結果、吸着液が基材の全表面にまで浸透し、bFGFの基材上への吸着を促したと考えられる。また、プラズマ処理により基材表面に導入された酸性の官能基(COOH基など)が塩基性タンパク質であるbFGFとの相互作用を促進する効果も寄与していると考えられる。
Evaluation of base material (examination of hydrophilization treatment conditions)
The surface roughness (Sa) of the medical PE non-woven fabric used in this example and the surface area (A) per one side of the substrate (
The SEM image of each base-material surface before and behind plasma processing is shown in FIG. 5 left. At the strongest plasma processing conditions of 0.5 W / cm 2 , a submicron-scale wavelike concavo-convex structure was formed, which was larger than the surface microstructure before plasma processing. For the other substrates, no significant structural change was observed as compared to before the plasma treatment. In addition, the contact angle of ultrapure water to the substrate surface (Fig. 5 right) was about 120 degrees before treatment, while all of the substrates after plasma treatment were reduced (about 40 degrees or less) From the above, the effect of improving the water wettability by the plasma treatment was confirmed. It is considered that the oxygen plasma treatment introduces a highly polar functional group such as an OH, CHO or COOH group to the hydrophobic PE surface. The water wettability improvement effect increased as the power density of plasma treatment increased from 0.1 to 0.5 W / cm 2 .
After the adsorption treatment, the residual bFGF concentration in each adsorption solution and the bFGF concentration of an adsorption solution (without a substrate) held under the same conditions without immersion of the substrate were measured by ELISA. As shown in FIG. 6, the residual bFGF concentration in the adsorption solution after immersion of the untreated substrate (without plasma treatment) was approximately the same as the bFGF concentration in the adsorption solution retained without the substrate. It can be said that bFGF was hardly adsorbed to the untreated base material (PE non-woven fabric). On the other hand, in the plasma-treated substrate, the bFGF concentration in the adsorption solution was significantly reduced after immersion, and the adsorption of bFGF to the substrate was apparent. The amount of bFGF adsorbed to the plasma-treated substrate was calculated from 0.1 to 0.3 μg / cm 2 when estimated from the decrease in bFGF concentration relative to the absence of the substrate. As a result of the improvement of the water wettability of the substrate by the plasma treatment, it is considered that the adsorption solution permeates the entire surface of the substrate and promotes the adsorption of bFGF on the substrate. Further, it is considered that the effect of the acidic functional group (such as COOH group) introduced to the substrate surface by plasma treatment promoting the interaction with bFGF which is a basic protein also contributes.
bFGF溶出挙動(親水化処理条件の検討)
各基材からのbFGF溶出挙動を実施例1と同様にして調べた。図7に、各基材の培養液へのbFGF溶出挙動を示す。未処理(プラズマ処理なし)の基材はほとんどbFGFを溶出しなかったのに対し、プラズマ処理された基材はいずれも、3日に渡って3ng/mL以上のbFGFを徐放した。なお、実施例1で、PE不織布(厚)(薄)より作製されたbFGF徐放性多孔質基材(bFGF吸着型)に比べ(図4下)、本実施例で用いたPE不織布より作製された基材では、bFGF溶出量が低下した。これは、PE不織布の性状の違い、ならびに吸着条件の変更(容器、溶液量)によるものと推察される。
基材表面を親水化することによって、基材へのbFGF吸着量、ならびに培養液へのbFGF溶出量を増大できることが確認された。
bFGF elution behavior (examination of hydrophilization treatment conditions)
The bFGF elution behavior from each substrate was examined in the same manner as Example 1. The bFGF elution behavior to the culture solution of each base material is shown in FIG. The untreated (no plasma treatment) substrate barely eluted bFGF, whereas all the plasma treated substrates released 3 ng / mL or more of bFGF slowly over 3 days. In addition, compared with the bFGF sustained-release porous substrate (bFGF adsorption type) prepared from PE non-woven fabric (thick) (thin) in Example 1 (FIG. 4 lower), it was prepared from PE non-woven fabric used in this example The amount of bFGF elution decreased with the substrate obtained. This is presumed to be due to the difference in the properties of the PE non-woven fabric and the change in the adsorption conditions (container, solution amount).
By hydrophilizing the substrate surface, it was confirmed that the amount of bFGF adsorbed to the substrate and the amount of bFGF eluted in the culture solution can be increased.
bFGF徐放性多孔質基材(bFGF吸着型)の作製(吸着処理時間、振盪の効果の検討)
実施例2(親水化処理の検討)と同様にしてPE不織布の洗浄処理を行い、酸素プラズマ処理(0.1W/cm2)を施した後、EOGガスで滅菌した。bFGF(4μg/mL)含有PBS(吸着液)に25℃で48時間まで浸漬した。実施例2(親水化処理条件の検討)と同様、蓋つきチューブ(5mLアシストチューブ)内に吸着液1mLを密封し、密閉条件下で吸着実験を行った。その際、25℃に保ったクールインキュベーター内に蓋つきチューブを静置した場合と、25℃に保ったシェイキングインキュベーター(PIC-100S、アズワン製)内に蓋つきチューブを固定し、振盪(68rpm、振幅3cm)した場合について検討した。
Preparation of bFGF sustained-release porous substrate (bFGF adsorption type) (adsorption treatment time, examination of the effect of shaking)
The PE non-woven fabric was washed in the same manner as in Example 2 (investigation of hydrophilization treatment), subjected to oxygen plasma treatment (0.1 W / cm 2 ), and then sterilized with EOG gas. It was immersed in PBS (adsorbent) containing bFGF (4 μg / mL) at 25 ° C. for up to 48 hours. In the same manner as in Example 2 (investigation of hydrophilic treatment conditions), 1 mL of the adsorption solution was sealed in a tube with a lid (5 mL assist tube), and an adsorption experiment was performed under sealed conditions. At that time, when the tube with a lid is left standing in a cool incubator maintained at 25 ° C., and the tube with a lid is fixed in a shaking incubator (PIC-100S, manufactured by As One) kept at 25 ° C., and shaken (68 rpm, The case of 3 cm amplitude was examined.
基材の評価(吸着処理時間、振盪の効果の検討)
種々の時間(0, 1, 3, 5, 8, 24, 48時間)吸着処理後、各吸着液中の残存bFGF濃度と、基材を浸漬せずに同条件で保持した吸着液(基材なし)のbFGF濃度をELISAにより測定した。図8に示すように、基材の有無にかかわらず吸着液中の残存bFGF濃度は処理後に減少したが、基材を浸漬した場合(基材あり)の方が基材なしに比べ、減少幅が大きかった。基材がない場合には吸着液(PBS)中でbFGFの一部が分解するため、処理時間とともに(〜8時間)bFGF濃度が減少したと考えられる。一方で、基材を浸漬した場合には、分解に加えて基材へのbFGFの吸着により、吸着液中の残存bFGF濃度がさらに減少したと考えられる。基材へのbFGF吸着量を、基材なしでの残存bFGF濃度に対するbFGF濃度の減少量から見積もると、吸着処理時間とともに基材へのbFGF吸着量が増大し、24時間でほぼ平衡に達した。また、吸着処理中に吸着液を振盪させた場合(図8下)では、静置させた場合(図8上)に比べて平衡に達するのが早かった。すなわち、吸着液を振盪させた方が効率よく基材上にbFGFを吸着できるといえる。これは、振盪により吸着液が多孔質基材の内部により早く到達するとともに、基材への吸着により表面近傍で減少したbFGFが吸着液の浸透拡散により速やかに補てんされるためと考えられる。
Evaluation of base material (adsorption treatment time, examination of the effect of shaking)
After adsorption treatment for various times (0, 1, 3, 5, 8, 24, 48 hours), residual bFGF concentration in each adsorption solution and an adsorption solution (base material held under the same conditions without immersion) BFGF concentration of (none) was measured by ELISA. As shown in FIG. 8, the residual bFGF concentration in the adsorption solution decreased after treatment regardless of the presence or absence of the substrate, but the decrease width when the substrate was immersed (with the substrate) was smaller than that without the substrate. Was great. It is considered that the bFGF concentration decreases with the treatment time (̃8 hours) because a part of bFGF is degraded in the adsorption solution (PBS) when there is no substrate. On the other hand, when the substrate is immersed, it is considered that the residual bFGF concentration in the adsorption solution is further reduced by the adsorption of bFGF to the substrate in addition to the decomposition. When the amount of bFGF adsorbed to the substrate was estimated from the decrease in bFGF concentration relative to the residual bFGF concentration without the substrate, the amount of bFGF adsorbed to the substrate increased with the adsorption treatment time, and almost reached equilibrium in 24 hours . In addition, when the adsorption solution was shaken during the adsorption treatment (FIG. 8 lower), it was faster to reach equilibrium than when it was allowed to stand (upper FIG. 8). That is, it can be said that bFGF can be efficiently adsorbed onto the substrate if the adsorption solution is shaken. It is considered that this is because the adsorption solution reaches the inside of the porous substrate more quickly by shaking, and bFGF reduced near the surface by adsorption to the substrate is quickly compensated by the permeation and diffusion of the adsorption solution.
bFGF徐放性多孔質基材(bFGF吸着型)の作製(吸着液のbFGF濃度の検討)
実施例2(親水化処理処理の検討)と同様にして基材の洗浄処理を行い、酸素プラズマ処理(0.1W/cm2)を施した後、EOGガスで滅菌した。同基材を、bFGFを種々の濃度(0, 0.1, 0.2, 0.5, 1, 2, 4, 8, 12μg/mL)で添加したPBS(吸着液)に25℃で24時間浸漬した後、洗浄した。浸漬の際、実施例2(吸着処理時間、振盪の効果の検討)における振盪条件と同様に、蓋つきチューブ(5mLアシストチューブ)を25℃に保ったシェイキングインキュベーター内に固定し、振盪した。
Preparation of bFGF sustained-release porous substrate (bFGF adsorption type) (examination of bFGF concentration of adsorption solution)
The base material was washed in the same manner as in Example 2 (investigation of hydrophilization treatment), subjected to oxygen plasma treatment (0.1 W / cm 2 ), and then sterilized with EOG gas. The same substrate is immersed in PBS (adsorbent solution) to which bFGF is added at various concentrations (0, 0.1, 0.2, 0.5, 1, 2, 4, 8, 12 μg / mL) at 25 ° C. for 24 hours, and then washed. did. During immersion, a tube with a cap (5 mL assist tube) was fixed in a shaking incubator maintained at 25 ° C. and shaken as in the shaking conditions in Example 2 (adsorption treatment time, examination of the effect of shaking).
基材の評価(吸着液のbFGF濃度の検討)
吸着処理後、各吸着液中の残存bFGF濃度と、基材を浸漬せずに同条件で保持した吸着液(基材なし)のbFGF濃度をELISAにより測定した。図9に結果を示す。基材へのbFGF吸着量を、基材なしでの残存bFGF濃度に対するbFGF濃度の減少量から見積もると、吸着液の初期bFGF濃度が高くなるにつれて、基材へのbFGF吸着量が増大した。ただし、初期bFGF濃度8μg/mLと12μg/mLでは、基材へのbFGF吸着量にほとんど差が認められなかったことから、8μg/mL程度で平衡に達すると考えられる。
Evaluation of base material (examination of bFGF concentration of adsorption solution)
After the adsorption treatment, the residual bFGF concentration in each adsorption solution and the bFGF concentration of an adsorption solution (without a substrate) held under the same conditions without immersion of the substrate were measured by ELISA. The results are shown in FIG. When the amount of bFGF adsorbed to the substrate was estimated from the decrease in bFGF concentration relative to the residual bFGF concentration without the substrate, the amount of bFGF adsorbed to the substrate increased as the initial bFGF concentration in the adsorbent increased. However, when the initial bFGF concentrations were 8 μg / mL and 12 μg / mL, almost no difference was observed in the amount of bFGF adsorbed to the substrate, so it is considered that equilibrium is reached at about 8 μg / mL.
bFGF溶出挙動(吸着液のbFGF濃度の検討)
各基材からのbFGF溶出挙動を実施例2(親水化処理条件の検討)と同様にして調べた。図10に、各基材の培養液へのbFGF溶出挙動を示す。吸着液の初期bFGF濃度が高くなるにつれて、培養液中への溶出量が増大した。図9の結果とあわせると、吸着液の初期bFGF濃度が高い場合には、基材へのbFGF吸着量が多くなり、培養液中へのbFGF溶出量も多くなることが示された。吸着液の初期bFGF濃度が8μg/mLと12μg/mLの条件では、培養液中に3日に渡って10ng/mL以上、4μg/mLでは5ng/mL以上のbFGFを徐放できる。このように、吸着液のbFGF濃度を適切に設定することで様々なbFGF溶出挙動を得ることができることから、目的に合わせたbFGF徐放性多孔質基材(bFGF吸着型)の作製が可能であると言える。
bFGF elution behavior (examination of bFGF concentration in adsorbed solution)
The bFGF elution behavior from each substrate was examined in the same manner as Example 2 (examination of hydrophilization treatment conditions). FIG. 10 shows the bFGF elution behavior to the culture solution of each substrate. As the initial bFGF concentration in the adsorption solution increased, the elution amount into the culture solution increased. Together with the results in FIG. 9, it was shown that when the initial bFGF concentration in the adsorption solution is high, the amount of bFGF adsorbed to the substrate increases, and the amount of bFGF eluted in the culture solution also increases. When the initial bFGF concentration of the adsorption solution is 8 μg / mL and 12 μg / mL, bFGF of 10 ng / mL or more can be sustained-released over 3 days in the culture solution, and 5 ng / mL or more can be sustained-released at 4 μg / mL. As described above, various bFGF elution behaviors can be obtained by appropriately setting the bFGF concentration of the adsorption solution, so that it is possible to prepare a bFGF sustained-release porous base material (bFGF adsorption type) according to the purpose. It can be said that there is.
(実施例3)共沈法における基材の検討
共沈法を用い、種々の多孔質基材表面にbFGF−リン酸カルシウム複合層を形成させた。実施例1(吸着法)と同等以上のbFGF溶出量を確認した。
Example 3 Examination of Substrate in Coprecipitation Method The coprecipitation method was used to form a bFGF-calcium phosphate composite layer on various porous substrate surfaces. The amount of bFGF eluted equal to or higher than that of Example 1 (adsorption method) was confirmed.
bFGF徐放性多孔質基材(bFGF−リン酸カルシウム複合層形成型)の作製
実施例1で用いたPE不織布(薄)、PE不織布(厚)、PPフィルター(細孔)、PPフィルター(大孔)、PS平板状基材に加え、新たにPPネットフィルター(スクリーン)(孔径 25μm、厚さ360μm、PP2504700、メルクミリポア製)を準備した。PPネットフィルターは大きさ10mm×10mmの切片に切り出し、基材とした(洗浄工程はなし)。各基材に、実施例1と同様にして酸素プラズマ処理を施した後、EOGガスで滅菌した。PPネットフィルターへのプラズマ電力密度は0.5W/cm2とした。
bFGF(1mg/mL、片山化学工業製)を4μg/mLになるように添加したリン酸カルシウム過飽和溶液(以後、過飽和溶液)を、既報(H. Tsurushima et al. Acta Biomaterialia 6, 2751 (2010);以下、参考文献1という)に倣って調製した。過飽和溶液2mLを24ウェルプレートに分注し、同溶液中に各基材を25℃で24時間浸漬した(共沈法)。この際、プラズマ処理面が過飽和溶液に接触するように設置した(多孔質基材:処理面が下、PS平板状基材:処理面が上)。24ウェルプレートは、過飽和溶液の蒸発防止のためにチャック付きビニール袋(ユニパック)に入れて25℃に保ったクールインキュベーター内に静置した。過飽和溶液に浸漬後、基材を溶液から取り出し、2mLのPBS(bFGF無添加)に3回浸漬(1秒)して洗浄した。
Preparation of bFGF sustained-release porous substrate (bFGF-calcium phosphate composite layer type) PE non-woven fabric (thin), PE non-woven fabric (thick), PP filter (pores), PP filter (large pore) used in Example 1 In addition to the PS flat substrate, a PP net filter (screen) (pore
A calcium phosphate supersaturated solution (hereinafter referred to as a supersaturated solution) to which bFGF (1 mg / mL, manufactured by Katayama Chemical Industries, Ltd.) is added so as to be 4 μg / mL, has been reported (H. Tsurushima et al.
基材の評価
本実施例で追加したPPネットフィルターの表面粗さ(Sa)および基板片面あたりの表面積(A)を実施例1と同様にして調べたところ、Sa = 75.2 ± 9.5μm、A = 2398 ± 79mm2であった。PPネットフィルターは、PS平板状基材に比べて極めて大きな表面粗さ(約160倍増)、ならびに表面積(約24倍増)を有することが確認された。
図11に過飽和溶液処理後の各基材表面のSEM像を示す。いずれの基材についても、処理後の表面の一部に析出物が確認された。既報(参考文献1)より、同析出物は、リン酸カルシウムとbFGFの共沈析出により形成されたbFGF−リン酸カルシウム複合層であると考えられる。
Evaluation of substrate The surface roughness (Sa) of the PP net filter added in this example and the surface area per one side of the substrate (A) were examined in the same manner as in Example 1. Sa = 75.2 ± 9.5 μm, A = It was 2398 ± 79 mm 2 . The PP net filter was confirmed to have extremely large surface roughness (about 160 times) as well as surface area (about 24 times) as compared to PS flat substrate.
The SEM image of each base-material surface after a supersaturated solution process is shown in FIG. With any of the substrates, precipitates were observed on part of the surface after treatment. From the previous report (Reference 1), the precipitate is considered to be a bFGF-calcium phosphate composite layer formed by coprecipitation of calcium phosphate and bFGF.
bFGF溶出挙動
本共沈法により作製されたbFGF徐放性多孔質基材(bFGF−リン酸カルシウム複合層形成型)からのbFGF溶出挙動を実施例1と同様にして調べた。図12左に、3種のPP基材およびPS基材の培養液へのbFGF溶出挙動を示す。PPフィルター(細孔・大孔)については、実施例1において吸着法により作製されたbFGF徐放性多孔質基材(bFGF吸着型)(図4下)と同等量のbFGF徐放が確認された。bFGF溶出量はPS基材で最も低く、次いで、PPネットフィルター < PPフィルター(大孔) < PPフィルター(細孔)の順に増大した。これは、フィルター表面のマイクロスケールの凹凸構造により、基材の表面積(実施例1参照)が増大したことによると推察される(図12右)。ただし、最も表面粗さと表面積の増大効果の大きかったPPネットフィルターは、他のフィルターよりもbFGF溶出量が少なかった。このフィルターは、図12右上のSEM像に示す通り繊維径が太く(100μm以上)、また基材も厚い(0.5mm以上)。同フィルターは水に浮くため、基材全体としての表面粗さ・表面積の増大効果が大きいにも関わらず、実際に吸着液および培養液に接触できる実効表面積は少なかったと考えられる。水に浮遊する基材で、目的のbFGF徐放性能を達成するためには、マイクロスケール以下の表面凹凸構造を有することが望ましいと考えられた。
図13に、PP、PE、およびPS基材の培養液へのbFGF溶出挙動を示す。PP製基材だけでなくPE製基材でも、その微細構造によって、実施例1において吸着法により作製されたbFGF徐放性多孔質基材(bFGF吸着型)(図4下)と同等、またはそれ以上のbFGFを溶出することが確認された。
以上より、実施例1の吸着法と同様、本共沈法においても、表面粗さ・表面積の大きな多孔質基材を用いることで、ち密で平滑な表面を有するPS基材を用いた場合に比べて、bFGF溶出量を増大できることが確認された。また、適切な表面粗さ・表面積を有する基材を用いることで、多能性幹細胞の多能性維持培養に適したbFGF徐放性能を有する基材を作製できることが確認された。
bFGF elution behavior The bFGF elution behavior from the bFGF sustained-release porous substrate (bFGF-calcium phosphate composite layer-forming type) prepared by this coprecipitation method was examined in the same manner as Example 1. The left side of FIG. 12 shows bFGF elution behavior to cultures of three types of PP base and PS base. For PP filters (pores and large pores), bFGF sustained release equivalent to that of the bFGF sustained release porous substrate (bFGF adsorbed type) (FIG. 4 bottom) prepared by the adsorption method in Example 1 was confirmed. The The bFGF elution amount was lowest in the PS substrate, and then increased in the order of PP net filter <PP filter (large pore) <PP filter (pore). This is presumed to be due to the increase in the surface area (see Example 1) of the substrate due to the microscale uneven structure on the filter surface (FIG. 12 right). However, PP net filters, which had the largest effect of increasing surface roughness and surface area, had less bFGF elution than the other filters. This filter has a large fiber diameter (100 μm or more) and a thick base (0.5 mm or more) as shown in the SEM image at the upper right of FIG. Since the filter floats on water, it is considered that, although the effect of increasing the surface roughness and surface area of the whole substrate is large, the effective surface area which can actually contact the adsorption solution and the culture solution is small. In order to achieve the desired bFGF sustained release performance with a substrate suspended in water, it was considered desirable to have a surface micro-scaled surface relief structure.
FIG. 13 shows bFGF elution behavior to cultures of PP, PE, and PS substrates. Not only the PP substrate but also the PE substrate is equivalent to the bFGF sustained-release porous substrate (bFGF adsorption type) (FIG. 4 lower) prepared by the adsorption method in Example 1 depending on its fine structure, or It was confirmed that more bFGF was eluted.
From the above, similarly to the adsorption method of Example 1, also in the present coprecipitation method, when a PS base material having a dense and smooth surface is used by using a porous base material having large surface roughness and surface area. In comparison, it was confirmed that the bFGF elution amount can be increased. Moreover, it was confirmed that a base material having bFGF sustained release performance suitable for pluripotent maintenance culture of pluripotent stem cells can be produced by using a base material having an appropriate surface roughness and surface area.
(実施例4)共沈法における過飽和溶液の検討
種々の過飽和溶液を用いて基材表面にbFGF−リン酸カルシウム複合層を形成させた。本実施例では、水に沈むものの、取り扱いの容易な平板状のPS基材を用いた。過飽和溶液、および処理の条件(温度、組成、bFGF添加濃度)によって、基材からのbFGF溶出量を制御することができた。
Example 4 Investigation of Supersaturated Solution in Coprecipitation Method Various supersaturated solutions were used to form a bFGF-calcium phosphate composite layer on the substrate surface. In this example, a flat plate-like PS base material which is easy to handle although it sinks in water was used. The amount of bFGF eluted from the substrate could be controlled by the supersaturated solution and the conditions of treatment (temperature, composition, concentration of bFGF added).
bFGF徐放性基材(bFGF−リン酸カルシウム複合層形成型)の作製
実施例1と同様にしてPS平板状基材を準備し、酸素プラズマ処理を施した。続いて、4種類の既知の過飽和溶液を用い、基材表面にbFGF−リン酸カルシウム複合層を形成させた。得られた基材を次の通り命名する。
・濃-低温-F4(bFGF 4μg/mL、25℃) 参考文献1(通称RKM液)実施例3と同条件
・濃-低温-F10(bFGF 10μg/mL、25℃) 参考文献1(通称RKM液)
・濃-高温-F10(bFGF 10μg/mL、37℃) 参考文献2(通称RKM液)
・薄-低温-F10(bFGF 10μg/mL、25℃) 参考文献3、4(通称CP液)
参考文献1〜4は、以下のとおりである。
参考文献1 H. Tsurushima et al. Acta Biomaterialia 6, 2751 (2010).
参考文献2 H. Mutsuzaki et al. J Biomed Mater Res B, 86B, 365 (2008).
参考文献3 M. Uchida et al. Adv Mater 16, 1071 (2004).
参考文献4 K. Sasaki et al. Biomed Mater 5, 065008 (2010).
通称RKM液と呼ばれる参考文献1および2に記載の過飽和溶液は、高濃度のリン酸カルシウム成分イオンおよび炭酸イオンを含む。また、時間とともに溶液pHが高まる(脱炭酸による)ため、調製後24時間以内にリン酸カルシウムの均一核形成を誘起する、不安定過飽和溶液である。一方、通称CP液と呼ばれる参考文献3に記載の過飽和溶液は、RKM液に比べてリン酸カルシウム成分イオン濃度が低く、また、pH緩衝剤の作用によりpH変動が少ない。このため、調製後数週間にわたって均一核形成を誘起しない、準安定な過飽和溶液である。
濃-低温-F4、濃-低温-F10、および濃-高温-F10は、実施例3と同様に、プラズマ処理後の基材をEOGガスで滅菌し、既報(参考文献1、2)に倣って調製した過飽和溶液1mLに25℃または37℃で24時間浸漬することにより作製した。薄-低温-F10は、プラズマ処理後の基材に交互浸漬処理(参考文献4)を施してリン酸カルシウムをプレコーティングした後、既報(参考文献3、4)に倣って調製した過飽和溶液1mLに25℃で24時間浸漬することにより作製した。過飽和溶液に浸漬後、基材を溶液から取り出し、2mLのPBS(bFGF無添加)に3回浸漬(1秒)して洗浄した。
Preparation of bFGF Sustained-Release Base Material (bFGF-Calcium Phosphate Composite Layer-Forming Type) In the same manner as in Example 1, a PS plate-like base material was prepared and subjected to oxygen plasma treatment. Subsequently, a bFGF-calcium phosphate composite layer was formed on the substrate surface using four known supersaturated solutions. The resulting substrate is named as follows.
・ Concentrated-low temperature-F4 (
・ Concentrated-high temperature-F10 (
・ Thin-low temperature-F10 (
The supersaturated solutions described in
The concentrated-low temperature-F4, concentrated-low temperature-F10, and concentrated-high temperature-F10 were prepared by sterilizing the substrate after plasma treatment with EOG gas as in Example 3 and following the previous report (
基材の評価
図14に、種々の過飽和溶液処理後の基材のSEM像を示す。処理後の基材表面にはいずれも、析出物が確認された。既報(参考文献1〜4)より、同析出物は、リン酸カルシウムとbFGFの共沈析出により形成されたbFGF−リン酸カルシウム複合層であると考えられる。
Substrate Evaluation FIG. 14 shows SEM images of the substrates after various supersaturated solution treatments. A deposit was confirmed on the surface of the substrate after treatment. From the previous report (
bFGF溶出挙動
種々の過飽和溶液を用いて作製されたbFGF徐放性PS基材(bFGF−リン酸カルシウム複合層形成型)からのbFGF溶出挙動を実施例1と同様にして調べた。ただし、培養液2mLは、24ウェルプレートではなく、ネジ蓋つきチューブ(5mLアシストチューブ)内に入れ、密閉条件下で溶出実験を行った。溶出液のbFGF濃度測定の際の検量線は、ELISAキットに添付のスタンダードbFGFを用いて作成した。
図15に示す通り、bFGF溶出量は過飽和溶液の条件によって異なった。同じ過飽和溶液(参考文献1のRKM液)を用いた場合には、過飽和溶液へのbFGF添加濃度の高い基材(濃-低温-F10)の方が、低い基材(濃-低温-F4)よりも多量のbFGFを溶出した。本実施例で用いた4種の過飽和溶液の中では、参考文献3、4のCP液を用いて作製された基材(薄-低温-F10)からのbFGF溶出量が最も少なかった。これは、塩基性タンパク質であるbFGFの担持効率がCP液中においては低く(A. Oyane et al. Acta Biomaterialia 7, 2969 (2011);以下、参考文献5という)、少量のbFGFしか基材表面に担持されなかったためと考えられる。
共沈法においては、種々の過飽和溶液条件(温度、組成、bFGF添加濃度)を用いることができ、この条件を選択することによって、基材からのbFGF溶出量を制御できることを確認した。
bFGF elution behavior The bFGF elution behavior from the bFGF sustained-release PS base material (bFGF-calcium phosphate composite layer-formed type) prepared using various supersaturated solutions was examined in the same manner as Example 1. However, 2 mL of culture solution was placed in a screw-cap tube (5 mL assist tube) instead of the 24-well plate, and the elution experiment was performed under closed conditions. A calibration curve for measuring the bFGF concentration of the eluate was prepared using the standard bFGF attached to the ELISA kit.
As shown in FIG. 15, the bFGF elution amount was different depending on the conditions of the supersaturated solution. When the same supersaturated solution (the RKM solution in reference 1) is used, the substrate with higher concentration of bFGF added to the supersaturated solution (thick-low temperature-F10) has lower substrate (high-low temperature-F4) More bFGF was eluted. Among the four supersaturated solutions used in this example, the amount of bFGF eluted from the substrate (thin-low temperature-F10) produced using the CP solution of
In the coprecipitation method, various supersaturated solution conditions (temperature, composition, bFGF added concentration) can be used, and it was confirmed that the amount of bFGF eluted from the substrate can be controlled by selecting these conditions.
(実施例5)共沈法における基材および親水化処理の検討
共沈法を用い、メッシュ基材および多孔質基材の表面にbFGF−リン酸カルシウム複合層を形成させた。隙間の大きいメッシュ構造よりも、表面積の大きな多孔質構造の基材の方が多量のbFGFを溶出できること、ならびに基材への親水化前処理(プラズマ処理)によりbFGF溶出量を増大できることを確認した。
Example 5 Examination of Substrate and Hydrophilization Treatment in Coprecipitation Method The bFGF-calcium phosphate composite layer was formed on the surface of the mesh substrate and the porous substrate using the coprecipitation method. It was confirmed that a large surface area porous substrate can elute more bFGF than a large gap mesh structure, and that the amount of bFGF eluted can be increased by hydrophilization pretreatment (plasma treatment) to the substrate .
bFGF徐放性基材(bFGF−リン酸カルシウム複合層形成型)の作製
以下のPE製のメッシュおよび多孔質シートを大きさ10mm×10mmの切片に切り出し、基材とした(洗浄工程はなし)(図16)。比較用のPS平板状基材は実施例1と同様にして準備した。
・PEメッシュ:PE200(NBCメッシュテック製)オープニング112μm
・PE多孔質シート:サンマップLC-T(日東電工製)
各基材に、実施例1と同様にして酸素プラズマ処理(0.5W/cm2、30Pa、13.56MHz、30秒間)を施した。未処理(プラズマ処理なし)およびプラズマ処理後の基材をEOGガスで滅菌し、実施例3と同様にしてbFGF(4μg/mL)含有過飽和溶液2mLに25℃で24時間浸漬した後、洗浄した。この際、bFGF−リン酸カルシウム複合層を形成させた面(プラズマ処理面)が過飽和溶液に接触するように設置した(PE基材:処理面が下、PS基材:処理面が上)。
Preparation of bFGF sustained-release base material (bFGF-calcium phosphate composite layer-forming type) The following PE mesh and porous sheet were cut into 10 mm × 10 mm pieces and used as a base material (no washing step) (FIG. 16) ). A PS flat substrate for comparison was prepared in the same manner as in Example 1.
・ PE mesh: PE 200 (made by NBC Meshtec) opening 112 μm
・ PE porous sheet: Sun map LC-T (made by Nitto Denko)
Each substrate was subjected to oxygen plasma treatment (0.5 W / cm 2 , 30 Pa, 13.56 MHz, 30 seconds) in the same manner as in Example 1. The untreated (without plasma treatment) and plasma-treated substrates were sterilized with EOG gas and immersed in 2 mL of a supersaturated solution containing bFGF (4 μg / mL) at 25 ° C. for 24 hours as in Example 3 and washed. . At this time, the surface on which the bFGF-calcium phosphate composite layer was formed (plasma-treated surface) was placed in contact with the supersaturated solution (PE base: treated side is lower, PS base: treated side is upper).
基材の評価
各基材の表面粗さ(Sa)、および基板片面(大きさ10mm×10mm = 100 mm2)あたりの表面積(A)を実施例1と同様にして調べた。結果を以下に示す(数値は、3カ所の測定値の平均値 ± 標準偏差)。
PS平板状基材 Sa = 0.5 ± 0.0μm、A = 109.3 ± 1.1mm2
PEメッシュシート Sa = 87.3 ± 10.1μm、A = 2339 ± 312mm2
PE多孔質シート Sa = 11.7 ± 0.8μm、 A = 595 ± 36mm2
プラズマ処理前後の基材表面に超純水を滴下したところ、いずれの基材についても、プラズマ処理により基材表面の水濡れ性が向上することが確認された。
図17に、過飽和溶液処理後の基材(プラズマ処理なし)の表面のSEM像を示す。処理後の基材表面にはいずれも、析出物が確認された。既報(参考文献1)より、同析出物は、リン酸カルシウムとbFGFの共沈析出により形成されたbFGF−リン酸カルシウム複合層であると考えられる。
Evaluation of Substrates The surface roughness (Sa) of each substrate and the surface area (A) per surface of the substrate (
PS flat substrate Sa = 0.5 ± 0.0 μm, A = 109.3 ± 1.1 mm 2
PE mesh sheet Sa = 87.3 ± 10.1 μm, A = 2339 ± 312 mm 2
PE porous sheet Sa = 11.7 ± 0.8 μm, A = 595 ± 36 mm 2
When ultrapure water was dropped on the substrate surface before and after the plasma treatment, it was confirmed that the water wettability of the substrate surface is improved by the plasma treatment for any substrate.
FIG. 17 shows an SEM image of the surface of the substrate (without plasma treatment) after the supersaturated solution treatment. A deposit was confirmed on the surface of the substrate after treatment. From the previous report (Reference 1), the precipitate is considered to be a bFGF-calcium phosphate composite layer formed by coprecipitation of calcium phosphate and bFGF.
bFGF溶出挙動
作製されたbFGF徐放性基材(bFGF−リン酸カルシウム複合層形成型)からのbFGF溶出挙動を実施例1と同様にして調べた(PE基材:処理面が下、PS基材:処理面が上)。ただし、溶出液のbFGF濃度測定の際の検量線は、ELISAキットに添付のスタンダードbFGFを用いて作成した。
図18に示す通り、プラズマ処理を施していない基材(上)に比べ、プラズマ処理を施した基材(下)の方が、bFGF溶出量が多かった。これは、プラズマ処理によって基材表面へのbFGF担持量が増大するためと考えられる。吸着法(実施例2)だけでなく共沈法においても、プラズマ処理による基材表面の親水化が、bFGF溶出量の向上に有効であることが分かった。また、プラズマ処理された基材(図18下)で比較すると、メッシュ基材では、平滑な表面を有するPS平板状基材に対してほとんどbFGF溶出量を増大できなかったのに対し、多孔質基材ではbFGF溶出量を増大できた。本実施例で用いたメッシュ基材は、繊維径が太く(100μm程度)、基材が厚い上に、オープニング(繊維と繊維の隙間)が大きい(図16左上)。このため、基材全体としての表面粗さ・表面積の増大効果は大きくなるが、本PE基材は水に浮くため、実際に吸着液および培養液に接触できる実効表面積は少なかったと考えられる。以上は、実施例3で認められた傾向とも一致する。
bFGF elution behavior The bFGF elution behavior from the prepared bFGF sustained-release base material (bFGF-calcium phosphate composite layer formed type) was examined in the same manner as in Example 1 (PE base material: treated side down, PS base material: Processing side is top). However, a standard curve for measuring the bFGF concentration of the eluate was prepared using the standard bFGF attached to the ELISA kit.
As shown in FIG. 18, the amount of bFGF elution was larger in the substrate (lower) subjected to plasma treatment than in the substrate (upper) not subjected to plasma treatment. It is considered that this is because the amount of bFGF loaded on the substrate surface is increased by plasma treatment. It was found that in the coprecipitation method as well as the adsorption method (Example 2), the hydrophilization of the substrate surface by plasma treatment was effective in improving the bFGF elution amount. Further, when compared with the plasma-treated substrate (FIG. 18 lower), in the mesh substrate, the bFGF elution amount can hardly be increased relative to the PS flat substrate having a smooth surface, while the porous substrate is porous. In the substrate, the bFGF elution amount could be increased. The mesh base used in this example has a large fiber diameter (about 100 μm), a thick base, and a large opening (a gap between fibers) (FIG. 16 upper left). Therefore, although the effect of increasing the surface roughness and surface area of the whole substrate is increased, the PE substrate floats on water, so it is considered that the effective surface area which can actually contact the adsorption liquid and the culture solution is small. The above also corresponds to the tendency observed in Example 3.
(実施例6)吸着法におけるbFGF濃度およびヘパリン添加の検討
種々の濃度でbFGFおよびヘパリンを添加した吸着液を用い、親水性のメンブレンフィルターにbFGFを吸着させた。bFGFおよびヘパリン添加濃度に応じて、培養液中へのbFGF溶出量が増大することを確認した。
Example 6 Examination of bFGF Concentration and Heparin Addition in Adsorption Method Using an adsorption solution to which bFGF and heparin were added at various concentrations, bFGF was adsorbed to a hydrophilic membrane filter. It was confirmed that the elution amount of bFGF into the culture solution increased according to the bFGF and heparin addition concentration.
bFGF徐放性基材(bFGF吸着型)の作製
以下の通り、親水化ポリフッ化ビニリデン(PVDF)製およびセルロース混合エステル製の濾過用メンブレンフィルターを大きさ10mm×10mmの切片に切り出し、基材とした(図19)。いずれの基材も水に沈むが、bFGF濃度およびヘパリン添加効果の検討のために本実施例で用いた。
・PVDF:デュラポアDVPP04700(メルクミリポア製)、孔径0.65μm、厚さ125μm
・エステル:MF-ミリポアGSWP04700(メルクミリポア製)、孔径0.22μm、厚さ150μm
PBSに、bFGFを最終濃度0.1、1.0μg/mLとなるよう、また、ヘパリンナトリウム製剤(ヘパリンNaロック用100単位/mLシリンジ「オーツカ」5mL、大塚製薬製)を最終濃度0、0.1、1、10unit/mLとなるよう添加することにより、吸着液を調製した。実施例2と同様にして、各基材をEOGガスで滅菌後、各吸着液1mLに25℃で6時間浸漬した後、洗浄した。
Preparation of bFGF sustained release substrate (bFGF adsorption type) As described below, membrane filters for filtration made of hydrophilized polyvinylidene fluoride (PVDF) and cellulose mixed ester are cut into 10 mm × 10 mm sections, and (Figure 19). Although any base material sinks in water, it was used in this example for examination of bFGF concentration and heparin addition effect.
-PVDF: Durapore DVPP 04700 (manufactured by Merck Millipore), pore diameter 0.65 μm, thickness 125 μm
Ester: MF-Millipore GSWP 04700 (Merck Millipore), pore diameter 0.22 μm, thickness 150 μm
The final concentration of bFGF is 0.1, 1.0 μg / mL in PBS, heparin sodium preparation (100 units / mL syringe for heparin Na lock “Otsuka” 5 mL, Otsuka Pharmaceutical),
基材の評価
各基材の表面粗さ(Sa)、および基板片面(大きさ10mm×10mm = 100mm2)あたりの表面積(A)を実施例1と同様にして調べた。結果を以下に示す(数値は、3カ所の測定値の平均値 ± 標準偏差)。
PVDF Sa = 0.68 ± 0.01μm、A = 229.6 ± 1.8mm2
エステル Sa = 0.16 ± 0.01μm、A = 150.9 ± 1.8mm2
Evaluation of Substrates The surface roughness (Sa) of each substrate and the surface area (A) per surface of the substrate (
PVDF Sa = 0.68 ± 0.01 μm, A = 229.6 ± 1.8 mm 2
Ester Sa = 0.16 ± 0.01 μm, A = 150.9 ± 1.8 mm 2
bFGF溶出挙動
作製されたbFGF徐放性基材(bFGF吸着型)からのbFGF溶出挙動を実施例1と同様にして調べた。ただし、24ウェルプレートのウェル内への培養液の分注量は1mLとした。また、溶出液の採取量は100μLとし、溶出液のbFGF濃度測定の際の検量線は、ELISAキットに添付のスタンダードbFGFを用いて作成した。
PVDF基材のbFGF溶出挙動を図20に、エステル基材のbFGF溶出挙動を図21に示す。いずれの基材、いずれのbFGF濃度においても、吸着液中のヘパリン濃度の増加に伴い、bFGF溶出量が増大した。これは、ヘパリン結合性タンパク質であるbFGFが、吸着液(および培養液)中のヘパリンと結合し安定化したためと考えられる。
また、いずれの基材についても、吸着液中のbFGF濃度が高い場合(図20、21下:1.0μg/mL)の方が、低い場合(図20、21上:0.1μg/mL)に比べてbFGF溶出量が10倍程度多くなった。これは、基材へのbFGF吸着量が、吸着液中のbFGF濃度に応じて増大するためと考えられる。
吸着液中のbFGFおよびヘパリン添加濃度を調節することによって、基材のbFGF溶出量を制御できることが確認された。
bFGF elution behavior The bFGF elution behavior from the prepared bFGF sustained release substrate (bFGF adsorption type) was examined in the same manner as Example 1. However, the amount of culture solution dispensed into the wells of the 24-well plate was 1 mL. In addition, the collection amount of the eluate was 100 μL, and a calibration curve for measuring the bFGF concentration of the eluate was prepared using the standard bFGF attached to the ELISA kit.
The bFGF elution behavior of the PVDF substrate is shown in FIG. 20, and the bFGF elution behavior of the ester substrate is shown in FIG. The elution amount of bFGF increased with the increase of the heparin concentration in the adsorption solution for any base material and any bFGF concentration. It is considered that this is because the heparin binding protein bFGF binds to and stabilizes heparin in the adsorption solution (and the culture solution).
In addition, for any of the substrates, when the bFGF concentration in the adsorption solution is high (FIG. 20, bottom: 1.0 μg / mL), it is lower than when it is low (FIG. 20, top: 0.1 μg / mL) The amount of bFGF elution increased about 10 times. This is considered to be because the bFGF adsorption amount to the base material increases in accordance with the bFGF concentration in the adsorption solution.
It was confirmed that the amount of bFGF eluted in the substrate can be controlled by adjusting the concentration of bFGF and heparin added in the adsorption solution.
(実施例7)共沈法におけるヘパリン添加の検討
種々の濃度でヘパリンを添加した過飽和溶液を用い、PS基材の表面にbFGF−リン酸カルシウム複合層を形成させた。ヘパリン添加濃度に応じて、培養液中へのbFGF溶出量が増大することを確認した。
Example 7 Examination of Heparin Addition in Coprecipitation Method A bFGF-calcium phosphate composite layer was formed on the surface of a PS substrate using a supersaturated solution to which heparin was added at various concentrations. It was confirmed that the amount of bFGF eluted into the culture solution increased according to the heparin addition concentration.
bFGF徐放性基材(bFGF−リン酸カルシウム複合層形成型)の作製
実施例3で用いたbFGF(4μg/mL)含有過飽和溶液に、ヘパリンナトリウム製剤(ヘパリンNaロック用100単位/mLシリンジ「オーツカ」5mL、大塚製薬製)を最終濃度0、0.1、3.6unit/mLとなるよう添加することにより、3種の過飽和溶液を調製した。実施例3と同様にして、PS平板状基材をEOGガスで滅菌後、各過飽和溶液2mLに25℃で24時間浸漬した後、洗浄した。
Preparation of bFGF sustained-release base material (bFGF-calcium phosphate composite layer-forming type) Heparin sodium preparation (100 units / mL syringe for heparin Na lock "Otsuka" in bFGF (4 μg / mL) containing supersaturated solution used in Example 3 Three supersaturated solutions were prepared by adding 5 mL (manufactured by Otsuka Pharmaceutical Co., Ltd.) to a final concentration of 0, 0.1, 3.6 unit / mL. In the same manner as in Example 3, the PS plate-like substrate was sterilized with EOG gas, immersed in 2 mL of each supersaturated solution at 25 ° C. for 24 hours, and washed.
bFGF溶出挙動
作製されたbFGF徐放性基材(bFGF−リン酸カルシウム複合層形成型)からのbFGF溶出挙動を実施例5と同様にして調べた。ただし、溶出液としては、ダルベッコ改変イーグル培地(DMEM、シグマ アルドリッチ製)を使用した。図22に示す通り、基材からのbFGF溶出量は、過飽和溶液中のヘパリン濃度の増加に伴い増大した。実施例6(吸着法)の結果と同様、共沈法においても、処理液へのヘパリン添加が、bFGF溶出量の向上に有効であることが確認された。
bFGF Elution Behavior The bFGF elution behavior from the prepared bFGF sustained-release base material (bFGF-calcium phosphate composite layer formed type) was examined in the same manner as Example 5. However, Dulbecco's modified Eagle's medium (DMEM, manufactured by Sigma Aldrich) was used as an eluate. As shown in FIG. 22, the amount of bFGF eluted from the substrate increased as the heparin concentration in the supersaturated solution increased. Similar to the results of Example 6 (adsorption method), also in the coprecipitation method, it was confirmed that addition of heparin to the treatment solution was effective in improving the bFGF elution amount.
(実施例8)共沈法における基材形態(ビーズ状基材)の検討
ビーズ状のPS基材の表面にリン酸カルシウム層を形成させた。
Example 8 Examination of Substrate Form (Bead-Like Substrate) in Coprecipitation Method A calcium phosphate layer was formed on the surface of a bead-like PS substrate.
基材(リン酸カルシウム層形成型)の作製
基材として、粒径17.08 ± 6.55μmのビーズ状のPS粒子(SBX-17、積水化成品工業製)を準備した。基材表面の親水化のため、以下の2条件で化学処理を実施した。条件1では0.101gのPS粒子を、条件2では0.0195gのPS粒子を、下記の各処理液10mLに浸漬した。同処理液を、蓋つきのPPチューブ内に密封し、150rpmの回転速度で振とう下(シェイキングバスBW101 ヤマト製)、40℃で規定の時間処理した。
・条件1:1.0 M-HClの水溶液、10分間
・条件2:1.0 M-HClの50vol%エタノール水溶液、60分間
続いて、交互浸漬処理(参考文献4)を施して基材表面にリン酸カルシウムをプレコーティングした。ただし本実施例では、水に浮かぶ多量のビーズ状PS基材を処理するため、吸引ろ過システムを利用して処理液(100mM-CaCl2 50% エタノール水溶液→50% エタノール水溶液(洗浄液)→100mM-K2HPO4 50% エタノール水溶液→50% エタノール水溶液(洗浄液)、以上のサイクルを3回繰り返す。)を規定の順に基材に接触させた。
交互浸漬処理後、基材を一晩風乾し、条件1では約15mLの、条件2では7mLの過飽和溶液(通称CP液(参考文献3、4))中に懸濁することで、ビーズ状PS基材の懸濁液を得た。この懸濁液を1、3、または10倍希釈して5mLの過飽和溶液とした。同過飽和溶液を蓋つきのPPチューブ内に密封し、温度25℃、振とう下、以下の条件で処理した。条件1では、回転スピード3(小型振盪恒温器PIC-100S、アズワン製)で48時間、条件2では、回転速度200 rpm(バイオシェーカーBR-42FM、タイテック製)で23時間処理した。
As a production base of a base material (calcium phosphate layer formation type), bead-like PS particles (SBX-17, manufactured by Sekisui Plastics Co., Ltd.) having a particle size of 17.08 ± 6.55 μm were prepared. Chemical treatment was carried out under the following two conditions in order to hydrophilize the substrate surface. Under the
Condition 1: 1.0 M HCl aqueous solution, 10 minutes Condition 2: 1.0 M HCl 50 vol% aqueous ethanol solution, 60 minutes
Subsequently, alternate immersion treatment (Reference 4) was applied to pre-coat calcium phosphate on the substrate surface. However, in this example, in order to treat a large amount of bead-like PS base material floating in water, the treatment liquid (100 mM-CaCl 2 50% ethanol aqueous solution → 50% ethanol aqueous solution (washing liquid) → 100 mM-) using a suction filtration system. K 2 HPO 4 50% ethanol aqueous solution → 50% ethanol aqueous solution (washing solution), the above cycle is repeated 3 times) in contact with the substrate in the specified order.
After alternate immersion treatment, the substrate is air-dried overnight, and suspended in approximately 15 mL of
基材の評価
図23に、過飽和溶液処理後の基材の表面のSEM像を示す。処理後の基材表面にはいずれも、析出物が確認された。既報(参考文献1)より、同析出物は、リン酸カルシウム層であると考えられる。リン酸カルシウム層の被覆率は、過飽和溶液への希釈倍率の増加に伴い向上し、10倍希釈条件では基材の全表面がリン酸カルシウム層で被覆されていた。希釈倍率を高めることで、固相に対する液相の量が増大し、基材と過飽和溶液との接触ならびに原料(カルシウムイオン、リン酸イオン、それらのクラスターなど)の供給を容易にすると考えられた。
本手法を用いることで、先の実施例で用いた平板状のシートやフィルム、基材だけでなく、ビーズ状の基材の表面にもリン酸カルシウム層を形成できることが確認された。実施例3〜6で示した通り、過飽和溶液の種類、bFGF添加濃度、ヘパリン添加濃度などを調節することで、本ビーズ状の基材の表面にもbFGF−リン酸カルシウム複合層を形成でき、それによって同基材にbFGF徐放能を付与できると考えられる。
Evaluation of Substrate A SEM image of the surface of the substrate after supersaturated solution treatment is shown in FIG. A deposit was confirmed on the surface of the substrate after treatment. From the previous report (Reference 1), the precipitate is considered to be a calcium phosphate layer. The coverage of the calcium phosphate layer improved with the increase in dilution ratio to the supersaturated solution, and the entire surface of the substrate was coated with the calcium phosphate layer under the 10-fold dilution condition. By increasing the dilution ratio, it was thought that the amount of liquid phase relative to the solid phase was increased, facilitating the contact of the substrate with the supersaturated solution and the supply of raw materials (such as calcium ions, phosphate ions and their clusters). .
By using this method, it was confirmed that a calcium phosphate layer can be formed not only on the flat sheet, film, and substrate used in the previous example but also on the surface of a bead-like substrate. As shown in Examples 3 to 6, the bFGF-calcium phosphate composite layer can be formed on the surface of the bead-like substrate by adjusting the kind of supersaturated solution, bFGF added concentration, heparin added concentration, etc. It is considered that the same base material can be provided with bFGF sustained release ability.
(実施例9)bFGF徐放性多孔質基材(bFGF吸着型)の機能実証
bFGF徐放性多孔質基材(bFGF吸着型)を設置した(培養液中に浮かべた)培養液中で、ヒトiPS細胞を未分化維持培養できることを確認した。
(Example 9) Functional demonstration of bFGF sustained-release porous substrate (bFGF adsorption type)
It was confirmed that human iPS cells can be cultured for undifferentiated maintenance in a culture solution in which bFGF sustained-release porous base material (bFGF adsorption type) is placed (floating in the culture solution).
bFGF徐放性多孔質基材(bFGF吸着型)の作製
実施例2(親水化処理条件の検討)と同様にして基材の洗浄処理を行い、酸素プラズマ処理(0.1W/cm2)を施した後、EOGガスで滅菌した。同基材を、実施例2(吸着液のbFGF濃度の検討)と同様にしてbFGF(12μg/mL)を添加したPBS(吸着液)に25℃で24時間浸漬した後、PBS(bFGF無添加)で洗浄した。浸漬の際、実施例2(吸着処理時間、振盪の効果の検討)における振盪条件と同様に、蓋つきチューブ(5mLアシストチューブ)を25℃に保ったシェイキングインキュベーター内に固定し、振盪した。
Preparation of bFGF sustained-release porous base material (bFGF adsorption type) The base material was washed and treated with oxygen plasma (0.1 W / cm 2 ) in the same manner as in Example 2 (examination of hydrophilization treatment conditions). Then, it was sterilized with EOG gas. The same base material is immersed in PBS (adsorption solution) to which bFGF (12 μg / mL) is added in the same manner as in Example 2 (examination of bFGF concentration of the adsorption solution) at 25 ° C. for 24 hours. Washed with). During immersion, a tube with a cap (5 mL assist tube) was fixed in a shaking incubator maintained at 25 ° C. and shaken as in the shaking conditions in Example 2 (adsorption treatment time, examination of the effect of shaking).
iPS細胞培養
ヒトiPS細胞(201B7株)は理化学研究所バイオリソースセンターから分譲を受けた。bFGFを添加した通常の培養液(Essential 6 Medium (Thermo Fisher Scientific製)、2ng/mL TGF-β 1 (R&D Systems製)、10ng/mL bFGF (片山化学工業製))中での培養条件をポジティブコントロール(条件(2))、条件(2)の培養液よりbFGFを除いた培養条件をネガティブコントロール(条件(3))とし、bFGFの代わりに前記bFGF徐放性多孔質基材(bFGF吸着型)を設置した培養液中での培養条件(条件(1))との比較を行った。培養は6ウェルの培養皿を用い、各ウェルをマトリゲル 基底膜マトリックス グロースファクター リデュースト(Corning製)でコートし、培養液の量は2mLとした。
まず、培養皿にヒトiPS細胞を播種し(この時点を以後、培養0日目とする)、通常の培養条件下(条件(2)と同じ)で1日間、前培養を行った。培養4日目に継代を行った直後も、通常の培養条件下(条件(2)と同じ)で1日間、前培養を行った。条件(1)では、培養1日目および5日目にbFGF徐放性多孔質基材(bFGF吸着型)を設置し、培養液交換を行わずにそれぞれ3日間(4日目までと8日目まで)培養を行った。条件(2)、(3)においては、培養1〜3日目および5〜7日目に培養液((2):bFGF入り、(3):bFGFなし)を毎日交換し、培養を行った。
iPS cell culture human iPS cells (strain 201B7) were distributed from RIKEN BioResource Center. Positive culture conditions in a normal culture solution (Essential 6 Medium (Thermo Fisher Scientific), 2 ng / mL TGF-β 1 (R & D Systems), 10 ng / mL bFGF (Katayama Chemical)) to which bFGF was added The control condition (2), the culture condition obtained by removing the bFGF from the culture solution of the condition (2) was taken as a negative control (condition (3)), and the bFGF sustained-release porous substrate (bFGF adsorption type) was used instead of bFGF. The comparison with the culture conditions (condition (1)) in the culture solution in which was placed was carried out. For culture, 6 wells of culture dishes were used, and each well was coated with Matrigel basement membrane matrix growth factor reduce (manufactured by Corning), and the volume of the culture solution was 2 mL.
First, human iPS cells were seeded on a culture dish (this time is hereinafter referred to as culture day 0), and preculture was performed for 1 day under normal culture conditions (same as condition (2)). Immediately after passage on the 4th day of culture, preculture was performed for 1 day under normal culture conditions (same as the condition (2)). In condition (1), bFGF sustained-release porous substrate (bFGF adsorption type) was placed on the 1st and 5th day of the culture, and 3 days (up to the 4th day and 8 days) without culture fluid exchange. Cultured to the eye). In the conditions (2) and (3), the culture solution ((2): containing bFGF, (3): no bFGF) was exchanged daily on the first to third days of culture and on the fifth to seventh days of culture. .
ヒトiPS細胞培養下での培養液中のbFGF濃度測定
各条件((1)、(2)、(3))における培養4日目と8日目の培養液中のbFGF濃度をELISAにより測定した。比較のため、細胞を含まず、bFGF徐放性多孔質基材(bFGF吸着型)を設置したbFGF無添加の培養液(条件(4):条件(1)から細胞を除いた系)についても、ELISA測定を行った。bFGF濃度測定の際の検量線は、bFGF(片山化学工業製)を用いて作成した。
図24に、各条件における培養4日目と8日目の培養液中のbFGF濃度を示す。細胞を含まない条件(4)の培養液中のbFGF濃度は15〜17ng/mL程度であり、同様の実験系(実施例2の図10、本実施例とはウェルの大きさと表面処理条件が異なる)で測定されたbFGF濃度(3日後で約12ng/mL)と同程度のbFGF濃度が確認された。一方、ネガティブコントロールである条件(3)(bFGFなし培養液、培養液毎日交換)の培養液中にbFGFはほとんど検出されず、通常の培養条件(2)(bFGF入り培養液、培養液毎日交換)の培養液中のbFGF濃度は2ng/mL程度であった。通常の培養条件(2)では、10ng/mLのbFGF入り培養液を毎日交換するが、交換1日後にELISAで検出される培養液中のbFGF濃度は、初期添加濃度の約5分の1しかないことが確認された。これに対し、条件(1)(bFGF徐放性多孔質基材(bFGF吸着型)を設置した培養液、培養液交換なし)では、3日後においても、20ng/mL以上の高いbFGF濃度が維持されていた。条件(1)では、細胞を含まない条件(4)の培養液よりもbFGF濃度が高くなっており、細胞から分泌されたbFGFが上乗せされているものと推定された。
Measurement of bFGF concentration in culture solution under human iPS cell culture The bFGF concentration in culture solution on the 4th and 8th day of culture under each condition ((1), (2), (3)) was measured by ELISA . For comparison, a bFGF-free culture solution (condition (4): a system obtained by removing cells from condition (1)) in which bFGF sustained-release porous substrate (bFGF-adsorbed type) is placed without cells is also included. , ELISA measurements were performed. A calibration curve for measuring bFGF concentration was prepared using bFGF (manufactured by Katayama Chemical Industry Co., Ltd.).
FIG. 24 shows bFGF concentrations in the culture solution on the 4th and 8th day of culture under each condition. The bFGF concentration in the culture solution under cell-free conditions (4) is about 15 to 17 ng / mL, and the same experimental system (FIG. 10 of Example 2, the size and surface treatment conditions of the wells The same bFGF concentration was confirmed as the bFGF concentration (about 12 ng / mL after 3 days) measured in different). On the other hand, bFGF is hardly detected in the culture solution under the condition (3) (bFGF without culture solution, culture solution exchanged every day) which is a negative control, and normal culture conditions (2) The bFGF concentration in the culture solution of 2) was about 2 ng / mL. Under normal culture conditions (2), the culture solution containing 10 ng / mL bFGF is exchanged daily, but the bFGF concentration in the culture solution detected by ELISA one day after the exchange is only about one fifth of the initial addition concentration It was confirmed that there was not. On the other hand, under the condition (1) (culture solution provided with bFGF sustained release porous base material (bFGF adsorption type), without culture solution exchange), a high bFGF concentration of 20 ng / mL or more is maintained even after 3 days It had been. Under the condition (1), the bFGF concentration was higher than the culture solution of the condition (4) containing no cells, and it was presumed that bFGF secreted from the cells was added.
ヒトiPS細胞の未分化性の評価1(形態観察)
各条件において培養されたヒトiPS細胞の形態を位相差顕微鏡により観察した。図25に、培養1日目、4日目、5日目、および8日目におけるヒトiPS細胞の位相差顕微鏡像を示す。ネガティブコントロールである条件(3)(bFGFなし培養液、培養液毎日交換)で培養されたヒトiPS細胞は、培養4日目および8日目(継代後4日目)において、細胞間隙の開いた、いびつな形状のコロニーしか形成せず、また半分程度の細胞がコロニーから逸脱した(図25(3))。これに対し、ポジティブコントロールである通常の培養条件(2)(bFGF入り培養液、培養液毎日交換)で培養されたヒトiPS細胞は、培養4日目および8日目(継代後4日目)において正常な形態のコロニーを形成した(図25(2))。条件(1)(bFGF徐放性多孔質基材(bFGF吸着型)を設置した培養液、培養液交換なし)で培養されたiPS細胞も、同様の正常な形態のコロニー形成が認められた(図25(1))。このことから、条件(1)でも、通常の培養条件(2)と同様に、ヒトiPS細胞を培養できることが実証された。
Evaluation of undifferentiated nature of human iPS cells 1 (morphological observation)
The morphology of human iPS cells cultured in each condition was observed by phase contrast microscopy. FIG. 25 shows phase contrast microscopic images of human iPS cells on
ヒトiPS細胞の未分化性の評価2(細胞染色)
培養7日目に細胞を4%パラホルムアルデヒドで固定し、PBSで洗浄した後、ヒトiPS細胞の一般的な診断法であるrBC2LCNレクチン染色および蛍光標識抗体(Nanog、Oct3/4)染色により未分化性の評価を行った。rBC2LCN染色では、FITCで直接標識したrBC2LCN(和光純薬工業製)を細胞に反応させ、蛍光顕微鏡により染色像を得た。蛍光抗体染色では、抗Nanog抗体(Cell Signaling製)、あるいは抗Oct3/4抗体(Santa Cruz製)を反応させた後、二次抗体であるanti-mouse IgM-Alexa488(Thermo Fisher Scientific製)またはanti-mouse IgG-Alexa488(Thermo Fisher Scientific製)をさらに反応させ、蛍光顕微鏡により染色像を得た。
図26に、各手法で染色されたヒトiPS細胞の蛍光顕微鏡像を示す。rBC2LCN染色および抗体染色のいずれの染色法でも、通常の培養条件(2)(bFGF入り培養液、培養液毎日交換)で培養されたヒトiPS細胞の染色が確認された(図26(2))。条件(1)(bFGF徐放性多孔質基材(bFGF吸着型)を設置した培養液、培養液交換なし)で培養されたヒトiPS細胞でも、同様の染色が確認された(図26(1))。このことから、条件(1)でも、通常の培養条件(2)と同様に、ヒトiPS細胞の未分化性マーカーの発現を維持できることが実証された。
Evaluation of undifferentiated property of human iPS cells 2 (cell staining)
The cells are fixed with 4% paraformaldehyde on the 7th day of culture, washed with PBS, and then undifferentiated by rBC2LCN lectin staining and fluorescence labeled antibody (Nanog, Oct3 / 4) staining, which is a general diagnostic method for human iPS cells. The sex was evaluated. In rBC2LCN staining, rBC2LCN (manufactured by Wako Pure Chemical Industries, Ltd.) directly labeled with FITC was reacted with the cells, and a stained image was obtained by a fluorescence microscope. In fluorescent antibody staining, after reacting with an anti-Nanog antibody (manufactured by Cell Signaling) or an anti-Oct3 / 4 antibody (manufactured by Santa Cruz), a secondary antibody anti-mouse IgM-Alexa 488 (manufactured by Thermo Fisher Scientific) or an anti -Mouse IgG-Alexa 488 (manufactured by Thermo Fisher Scientific) was further reacted, and a stained image was obtained by a fluorescence microscope.
FIG. 26 shows fluorescence microscopic images of human iPS cells stained by each method. Staining of human iPS cells cultured under normal culture conditions (2) (culture medium with bFGF, culture medium replaced daily) was confirmed by any staining method of rBC2LCN staining and antibody staining (FIG. 26 (2)) . Similar staining was also confirmed in human iPS cells cultured under the condition (1) (a culture solution provided with bFGF sustained-release porous base material (bFGF adsorption type), without culture solution exchange) (FIG. 26 (1 )). From this, it was demonstrated that even under the condition (1), the expression of the undifferentiated marker of human iPS cells can be maintained as in the normal culture condition (2).
以上の結果から、bFGFを培養液に添加する替わりにbFGF徐放性多孔質基材(bFGF吸着型)を培養液に設置することで、培養液へのbFGFの添加や毎日の培養液交換を行わなくても、ヒトiPS細胞の未分化維持培養を行えることが確認された。 From the above results, instead of adding bFGF to the culture solution, bFGF sustained-release porous base material (bFGF adsorption type) is placed in the culture solution to add bFGF to the culture solution or change the culture solution daily It has been confirmed that undifferentiated maintenance culture of human iPS cells can be performed even if not performed.
(実施例10)吸着法における液性因子の検討
吸着法はbFGF以外の液性因子にも有効であり、種々の液性因子徐放性多孔質基材(液性因子吸着型)を作製できることを確認した。
(Example 10) Examination of liquid factor in adsorption method The adsorption method is also effective for liquid factors other than bFGF, and it is possible to produce various liquid factor sustained-release porous substrates (liquid factor adsorption type) It was confirmed.
液性因子の選定
培地に溶解し、細胞の増殖や分化などに影響する液性因子として、実施例2で用いたbFGF(片山化学工業製、Recombinant Human bFGF、分子量=16kDa)と同程度の分子量を持つ以下の2種類のタンパク質を選択した。
・マクロファージコロニー刺激因子(M-CSF)
・腫瘍壊死因子α(TNFα)
本実施例で用いたORF Genetics製(ISOkineTM)のRecombinant Human M-CSFおよびRecombinant Human TNFαにはいずれもHistidine-based tagが付いており、分子量は、それぞれ20.7kDaおよび19.6kDaである。
Selected as a humoral factor that dissolves in a medium for selection of humoral factors and affects cell growth, differentiation, etc., has a molecular weight similar to that of bFGF (Recombinant Human bFGF, molecular weight = 16 kDa, manufactured by Katayama Chemical Industry Co., Ltd.). The following two types of proteins were selected.
・ Macrophage colony stimulating factor (M-CSF)
・ Tumor necrosis factor α (TNF α)
Both the Recombinant Human M-CSF and Recombinant Human TNF [alpha] made ORF Genetics used in this example (ISOkine TM) is equipped with Histidine-based tag, a molecular weight, respectively 20.7kDa and 19.6KDa.
液性因子徐放性多孔質基材(液性因子吸着型)の作製
実施例2(親水化処理条件の検討)と同様にして基材(PE不織布)の洗浄処理を行い、酸素プラズマ処理(0.1W/cm2)を施した後、EOGガスで滅菌した。同基材を、実施例2(吸着液のbFGF濃度の検討)と同様にしてM-CSFまたはTNFα(4μg/mL)を添加したPBS(吸着液)に25℃で24時間浸漬した後、PBS(bFGF無添加)で洗浄した。浸漬の際、実施例2(吸着処理時間、振盪の効果の検討)における振盪条件と同様に、蓋つきチューブ(5mLアシストチューブ)を25℃に保ったシェイキングインキュベーター内に固定し、振盪した。
Preparation of liquid factor sustained-release porous base material (liquid factor adsorption type) The base material (PE non-woven fabric) was washed and oxygen plasma treated in the same manner as in Example 2 (investigation of the hydrophilization treatment conditions) After applying 0.1 W / cm 2 ), it was sterilized with EOG gas. The same substrate is immersed in PBS (adsorbent solution) to which M-CSF or TNFα (4 μg / mL) has been added in the same manner as in Example 2 (examination of bFGF concentration in the adsorbate) for 24 hours at 25 ° C. Washed with (no bFGF added). During immersion, a tube with a cap (5 mL assist tube) was fixed in a shaking incubator maintained at 25 ° C. and shaken as in the shaking conditions in Example 2 (adsorption treatment time, examination of the effect of shaking).
液性因子溶出挙動
各基材からのM-CSFおよびTNFαの溶出挙動を実施例1と同様にして調べた。ただし、溶出液中のM-CSFおよびTNFαの濃度は、R&D製ELISAキット(Quatikine ELISA Human M-CSF ImmunoassayおよびQuatikine ELISA Human TNFα Immunoassay)を用いて測定した。また、検量線は、各ELISAキットに添付のスタンダードM-CSFおよびTNFαを用いて作成した。
各基材の培養液へのM-CSFおよびTNFα溶出挙動を、それぞれ図27および図28に示す。いずれの液性因子を吸着させた基材も、bFGF徐放性多孔質基材(bFGF吸着型)(図10)と同様に、1日後に最大濃度を示した後、時間と共に濃度を低下させていったが、7日後においても最大濃度の半分程度の濃度を維持していた。培養液中に徐放された液性因子の濃度は、因子の種類によって異なり、TNFαに比べM-CSFの方が7日後までの全評価期間に渡って7〜8倍高濃度であった。また、同じ濃度(4μg/mL)の吸着液を用いて作製されたbFGF徐放性多孔質基材(bFGF吸着型)(図10)も含めて比較すると、培養液中に徐放された液性因子の濃度は、TNFα<bFGF<M-CSFの順に増大した。この徐放濃度の違いは、液性因子の分子構造(立体構造、組成、親水・疎水性、等電点など)の違いに起因すると考えられる。
Solution factor elution behavior The elution behavior of M-CSF and TNFα from each substrate was examined in the same manner as in Example 1. However, the concentrations of M-CSF and TNFα in the eluate were measured using R & D ELISA kit (Quatikine ELISA Human M-CSF Immunoassay and Quatikine ELISA Human TNFα Immunoassay). In addition, standard curves were prepared using the standard M-CSF and TNFα attached to each ELISA kit.
The elution behavior of M-CSF and TNFα into the culture solution of each substrate is shown in FIGS. 27 and 28, respectively. As with the bFGF sustained-release porous substrate (bFGF-adsorbed type) (Fig. 10), the substrate to which any liquid factor is adsorbed shows the maximum concentration after one day, and then the concentration decreases with time. However, even after 7 days, the concentration was maintained at about half of the maximum concentration. The concentration of sustained-release humoral factor in the culture solution was different depending on the type of factor, and M-CSF was 7 to 8 times higher concentration than TNFα over the whole evaluation period up to 7 days later. In addition, when compared also including bFGF sustained release porous base material (bFGF adsorption type) (FIG. 10) prepared using the same concentration (4 μg / mL) of adsorption solution, the fluid which was released in the culture solution was compared The concentration of sexual factor increased in the order of TNFα <bFGF <M-CSF. The difference in sustained release concentration is considered to be due to the difference in the molecular structure (steric structure, composition, hydrophilicity / hydrophobicity, isoelectric point, etc.) of the liquid factor.
以上、bFGFの替わりに他の液性因子(TNFα、M-CSF)を吸着溶液に添加することで、培養液中に浮遊し、かつ同液性因子を培養液中に徐放する基材を作製できることを確認した。このような基材は、未分化細胞の未分化維持培養だけでなく、細胞の増殖や分化を制御するための培養液添加剤としても有効と考えられる。 As mentioned above, by adding other humoral factors (TNFα, M-CSF) to the adsorption solution instead of bFGF, the substrate which floats in the culture solution and which releases the same humoral factor into the culture solution is used. It confirmed that it could produce. Such a substrate is considered to be effective not only as an undifferentiated maintenance culture of undifferentiated cells but also as a culture solution additive for controlling cell proliferation and differentiation.
本発明によれば、哺乳動物細胞の未分化維持ないし分化・増殖に影響を与える各種の液性因子を細胞培養培地に徐放させることができ、これにより、長期間に亘ってこれらの因子の培地中の濃度を必要な範囲に保持することができるので、再生医療や創薬などの医療の分野において、胚性幹細胞やiPS細胞などの哺乳動物の未分化細胞を未分化のまま維持し、必要な時点で目的とする分化細胞ないし組織に分化・増殖させる際などに利用し得る。 According to the present invention, various humoral factors that affect the undifferentiated maintenance or differentiation / proliferation of mammalian cells can be slowly released into the cell culture medium, and as a result, these factors can be released over a long period of time. As the concentration in the culture medium can be maintained in the necessary range, in the field of medicine such as regenerative medicine and drug discovery, mammalian undifferentiated cells such as embryonic stem cells and iPS cells are maintained undifferentiated, It can be used when differentiating / proliferating to a target differentiated cell or tissue at a required time.
Claims (24)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017078081 | 2017-04-11 | ||
JP2017078081 | 2017-04-11 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018174929A true JP2018174929A (en) | 2018-11-15 |
Family
ID=64279674
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2018074793A Pending JP2018174929A (en) | 2017-04-11 | 2018-04-09 | Culture fluid additives for mammalian cell culture |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018174929A (en) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747311A (en) * | 1995-08-22 | 1998-05-05 | Microgen Corporation | Process for chemical modification of reactants by microbes |
JP2001512033A (en) * | 1997-07-29 | 2001-08-21 | サーノフ コーポレイション | Carrier with attachment molecule |
JP2003055061A (en) * | 2001-08-15 | 2003-02-26 | Olympus Optical Co Ltd | Calcium phosphate ceramic porous body |
JP2003170184A (en) * | 2001-12-05 | 2003-06-17 | Takeda Chem Ind Ltd | Carrier for water treatment, method for manufacturing the same and apparatus for water treatment |
US20040209361A1 (en) * | 2003-04-18 | 2004-10-21 | Hemperly John J. | UV-cross-linked PVA-based polymer particles for cell culture |
US20090227024A1 (en) * | 2008-03-07 | 2009-09-10 | Baker Wendy A | Modified polysaccharide for cell culture and release |
JP2010228986A (en) * | 2009-03-27 | 2010-10-14 | National Institute Of Advanced Industrial Science & Technology | Rod-shaped porous silica particles |
JP2012211043A (en) * | 2011-03-31 | 2012-11-01 | Sony Corp | Porous carbon material, adsorbent, orally administrable adsorbent, adsorbent for medical use, filler for blood purification column, adsorbent for water purification, cleansing agent, carrier, agent for extended release of drugs, cell culture scaffold, mask, carbon/polymer composite, adsorbing sheet, and functional food |
JP2013059312A (en) * | 2011-09-14 | 2013-04-04 | Cellseed Inc | Bead for culturing temperature responsive cell, and method of manufacturing the same |
JP2013529932A (en) * | 2010-07-01 | 2013-07-25 | リジェネレイティブ リサーチ ファウンデーション | Method for culturing undifferentiated cells using sustained release composition |
JP2013223446A (en) * | 2012-04-20 | 2013-10-31 | Somar Corp | Cell culture substrate, method for cell culture using the same, and method for differential induction of multipotent stem cell |
-
2018
- 2018-04-09 JP JP2018074793A patent/JP2018174929A/en active Pending
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5747311A (en) * | 1995-08-22 | 1998-05-05 | Microgen Corporation | Process for chemical modification of reactants by microbes |
JP2001512033A (en) * | 1997-07-29 | 2001-08-21 | サーノフ コーポレイション | Carrier with attachment molecule |
JP2003055061A (en) * | 2001-08-15 | 2003-02-26 | Olympus Optical Co Ltd | Calcium phosphate ceramic porous body |
JP2003170184A (en) * | 2001-12-05 | 2003-06-17 | Takeda Chem Ind Ltd | Carrier for water treatment, method for manufacturing the same and apparatus for water treatment |
US20040209361A1 (en) * | 2003-04-18 | 2004-10-21 | Hemperly John J. | UV-cross-linked PVA-based polymer particles for cell culture |
US20090227024A1 (en) * | 2008-03-07 | 2009-09-10 | Baker Wendy A | Modified polysaccharide for cell culture and release |
JP2010228986A (en) * | 2009-03-27 | 2010-10-14 | National Institute Of Advanced Industrial Science & Technology | Rod-shaped porous silica particles |
JP2013529932A (en) * | 2010-07-01 | 2013-07-25 | リジェネレイティブ リサーチ ファウンデーション | Method for culturing undifferentiated cells using sustained release composition |
JP2012211043A (en) * | 2011-03-31 | 2012-11-01 | Sony Corp | Porous carbon material, adsorbent, orally administrable adsorbent, adsorbent for medical use, filler for blood purification column, adsorbent for water purification, cleansing agent, carrier, agent for extended release of drugs, cell culture scaffold, mask, carbon/polymer composite, adsorbing sheet, and functional food |
JP2013059312A (en) * | 2011-09-14 | 2013-04-04 | Cellseed Inc | Bead for culturing temperature responsive cell, and method of manufacturing the same |
JP2013223446A (en) * | 2012-04-20 | 2013-10-31 | Somar Corp | Cell culture substrate, method for cell culture using the same, and method for differential induction of multipotent stem cell |
Non-Patent Citations (1)
Title |
---|
BIOMED. MATER., 2016, VOL.11, NO.025015, JPN6021046039, ISSN: 0004803062 * |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yamaguchi et al. | Surface modification of poly (L-lactic acid) affects initial cell attachment, cell morphology, and cell growth | |
Jimi et al. | Sequential delivery of cryogel released growth factors and cytokines accelerates wound healing and improves tissue regeneration | |
Beachley et al. | Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions | |
Mayer et al. | Matrices for tissue engineering-scaffold structure for a bioartificial liver support system | |
Haddad et al. | Fabrication and surface modification of poly lactic acid (PLA) scaffolds with epidermal growth factor for neural tissue engineering | |
Jing et al. | Electrospun aligned poly (propylene carbonate) microfibers with chitosan nanofibers as tissue engineering scaffolds | |
US20070082393A1 (en) | Polymer coated nanofibrillar structures and methods for cell maintenance and differentiation | |
US20070207540A1 (en) | Method of producing three-dimensional tissue and method of producing extracellular matrix used in the same | |
KR102486926B1 (en) | Cell cultivation substrate and method for manufacturing thereof | |
US20040063206A1 (en) | Programmable scaffold and method for making and using the same | |
Tang et al. | Layer‐by‐layer assembly of silica nanoparticles on 3D fibrous scaffolds: Enhancement of osteoblast cell adhesion, proliferation, and differentiation | |
Cheng et al. | Exploring cellular adhesion and differentiation in a micro‐/nano‐hybrid polymer scaffold | |
Huang et al. | Solid freeform-fabricated scaffolds designed to carry multicellular mesenchymal stem cell spheroids for cartilage regeneration | |
Williams et al. | Polyurethanes as potential substrates for sub-retinal retinal pigment epithelial cell transplantation | |
CN114616317A (en) | Substrate for cell culture and substrate for cell culture with cells | |
Kong et al. | Nerve decellularized matrix composite scaffold with high antibacterial activity for nerve regeneration | |
Zang et al. | Multiwalled carbon nanotube-coated polyethylene terephthalate fibrous matrices for enhanced neuronal differentiation of mouse embryonic stem cells | |
Huang et al. | Bone marrow stromal cells cultured on poly (lactide‐co‐glycolide)/nano‐hydroxyapatite composites with chemical immobilization of Arg‐Gly‐Asp peptide and preliminary bone regeneration of mandibular defect thereof | |
Santos et al. | Surface-modified 3D starch-based scaffold for improved endothelialization for bone tissue engineering | |
Deng et al. | A chitosan-coated PCL/nano-hydroxyapatite aerogel integrated with a nanofiber membrane for providing antibacterial activity and guiding bone regeneration | |
KR102486925B1 (en) | Cell cultivation substrate and method for manufacturing thereof | |
US7534610B1 (en) | 3D tissue constructs on the basis of colloidal crystals surface modified by sequential layering | |
JP2018174929A (en) | Culture fluid additives for mammalian cell culture | |
KR102308484B1 (en) | Porous polymer scaffold using 3D printing and method for preparing thereof | |
Young et al. | Human monocyte adhesion and activation on crystalline polymers with different morphology and wettability in vitro |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20201126 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20211124 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20220119 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20220322 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220621 |