JP2018164961A - Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor - Google Patents
Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor Download PDFInfo
- Publication number
- JP2018164961A JP2018164961A JP2017062724A JP2017062724A JP2018164961A JP 2018164961 A JP2018164961 A JP 2018164961A JP 2017062724 A JP2017062724 A JP 2017062724A JP 2017062724 A JP2017062724 A JP 2017062724A JP 2018164961 A JP2018164961 A JP 2018164961A
- Authority
- JP
- Japan
- Prior art keywords
- layer
- ridge line
- hard coating
- thickness
- coating layer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000005520 cutting process Methods 0.000 title claims abstract description 45
- 239000011247 coating layer Substances 0.000 title claims abstract description 44
- 238000004519 manufacturing process Methods 0.000 title description 3
- 239000010410 layer Substances 0.000 claims abstract description 127
- 239000002131 composite material Substances 0.000 claims description 35
- 150000004767 nitrides Chemical class 0.000 claims description 27
- 229910052719 titanium Inorganic materials 0.000 claims description 15
- 239000000758 substrate Substances 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 8
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 claims description 6
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 239000011195 cermet Substances 0.000 claims description 4
- 150000001875 compounds Chemical class 0.000 claims description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 6
- 238000000576 coating method Methods 0.000 abstract description 6
- 239000011780 sodium chloride Substances 0.000 abstract description 3
- 230000007423 decrease Effects 0.000 abstract description 2
- 229910010038 TiAl Inorganic materials 0.000 abstract 1
- 239000010936 titanium Substances 0.000 description 35
- 239000000463 material Substances 0.000 description 13
- 239000013078 crystal Substances 0.000 description 11
- 230000002159 abnormal effect Effects 0.000 description 7
- 239000007789 gas Substances 0.000 description 7
- 239000000843 powder Substances 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000012360 testing method Methods 0.000 description 5
- 229910000851 Alloy steel Inorganic materials 0.000 description 4
- 238000010894 electron beam technology Methods 0.000 description 4
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 3
- 238000005422 blasting Methods 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002994 raw material Substances 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 2
- 229910000975 Carbon steel Inorganic materials 0.000 description 2
- 229910001018 Cast iron Inorganic materials 0.000 description 2
- 229910004349 Ti-Al Inorganic materials 0.000 description 2
- 229910004692 Ti—Al Inorganic materials 0.000 description 2
- 238000005452 bending Methods 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 239000010962 carbon steel Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000001004 secondary ion mass spectrometry Methods 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- 229910000967 As alloy Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 229910001315 Tool steel Inorganic materials 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000000498 ball milling Methods 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004453 electron probe microanalysis Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 238000010884 ion-beam technique Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000005121 nitriding Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 102220259718 rs34120878 Human genes 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000005245 sintering Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000002230 thermal chemical vapour deposition Methods 0.000 description 1
- UONOETXJSWQNOL-UHFFFAOYSA-N tungsten carbide Chemical compound [W+]#[C-] UONOETXJSWQNOL-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Cutting Tools, Boring Holders, And Turrets (AREA)
- Chemical Vapour Deposition (AREA)
Abstract
Description
この発明は、炭素鋼、合金鋼や鋳鉄等を、高熱発生を伴い、刃先に高負荷が作用する高速高送りで切削加工した場合に、硬質被覆層が優れた耐チッピング性を備え、長期の使用にわって優れた耐摩耗性を発揮する表面被覆切削工具(以下、被覆工具という)に関するものである。 In this invention, when carbon steel, alloy steel, cast iron, etc. are cut with high heat generation and high load acting on the cutting edge with high heat, the hard coating layer has excellent chipping resistance, The present invention relates to a surface-coated cutting tool (hereinafter referred to as a coated tool) that exhibits excellent wear resistance after use.
切削工具の切削性能の改善を目的として、従来、炭化タングステン(以下、WCで示す)基超硬合金、炭窒化チタン(以下、TiCNで示す)基サーメットあるいは立方晶窒化ホウ素(以下、cBNで示す)基超高圧焼結体で構成された基体(以下、これらを総称して基体という)の表面に、硬質被覆層として、Ti−Al系の複合窒化物層を蒸着法により被覆形成した被覆工具があり、これらは、優れた耐摩耗性を発揮することが知られている。
前記従来のTi−Al系の複合窒化物層を被覆形成した被覆工具は、比較的耐摩耗性に優れるものの、高速切削条件で用いた場合にチッピング等の異常損耗を発生しやすいことから、硬質被覆層の改善についての種々の提案がなされている。
Conventionally, for the purpose of improving the cutting performance of cutting tools, tungsten carbide (hereinafter referred to as WC) based cemented carbide, titanium carbonitride (hereinafter referred to as TiCN) based cermet or cubic boron nitride (hereinafter referred to as cBN). ) A coated tool in which a Ti-Al based composite nitride layer is formed as a hard coating layer on the surface of a substrate (hereinafter collectively referred to as a substrate) composed of a super-high pressure sintered body by vapor deposition. These are known to exhibit excellent wear resistance.
Although the conventional coated tool formed by coating the conventional Ti-Al based composite nitride layer is relatively excellent in wear resistance, it is hard to cause abnormal wear such as chipping when used under high-speed cutting conditions. Various proposals for improving the coating layer have been made.
例えば、特許文献1には、Ti1−xAlxN、Ti1−xAlxC、および/またはTi1−xAlxCN(式中、0.65≦x≦0.9)からなる外層が100〜1100MPaの範囲内の圧縮応力を有し、TiCN層またはAl2O3層がこの外層の下に配置されている被覆工具が記載されている。 For example, Patent Document 1 consists of Ti 1-x Al x N, Ti 1-xA l x C, and / or Ti 1-x Al x CN (wherein, 0.65 ≦ x ≦ 0.9) A coated tool is described in which the outer layer has a compressive stress in the range of 100-1100 MPa, and a TiCN layer or an Al 2 O 3 layer is disposed below this outer layer.
近年の切削加工における省力化および省エネ化の要求は強く、これに伴い、切削加工は一段と高速高送り化、高効率化の傾向にあって加工時の負荷は高まっており、被覆工具には、より一層、耐チッピング性、耐欠損性、耐剥離性等の耐異常損傷性が求められるとともに、長期の使用にわって優れた耐摩耗性が求められている。
しかし、前記特許文献1に記載された被覆工具では、硬質被覆層の膜厚分布については考慮されておらず、より耐摩耗性が求められる加工や硬質被覆層の微小剥離に伴うチッピング等の異常損傷によって早期に工具寿命を迎えることがあった。
In recent years, there has been a strong demand for energy saving and energy saving in cutting, and along with this, cutting has become a trend toward higher speed, higher feed and higher efficiency. Further, abnormal damage resistance such as chipping resistance, chipping resistance, and peeling resistance is required, and excellent wear resistance is required for long-term use.
However, in the coated tool described in Patent Document 1, the film thickness distribution of the hard coating layer is not taken into consideration, and abnormalities such as chipping associated with processing that requires more wear resistance and micro peeling of the hard coating layer are considered. The tool life could be reached early due to damage.
そこで、本発明は、炭素鋼、鋳鉄、合金鋼等の高速高送り切削加工に供した場合であっても、優れた靭性を備え、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮する被覆工具を提供することを目的とする。 Therefore, the present invention has excellent toughness and excellent chipping resistance and wear resistance over a long period of use even when subjected to high-speed high-feed cutting such as carbon steel, cast iron, and alloy steel. An object of the present invention is to provide a coated tool.
本発明者らは、少なくともTiとAlの複合窒化物または複合炭窒化物(以下、「TiAlCN」または「(Ti1−xAlx)(CyN1−y)」で示すことがある)を含む硬質被覆層を形成した被覆工具の耐摩耗性、耐チッピング性の改善をはかるべく、鋭意研究を重ねた結果、次のような知見を得た。 The present inventors have at least a composite nitride or composite carbonitride of Ti and Al (hereinafter sometimes referred to as “TiAlCN” or “(Ti 1−x Al x ) (C y N 1−y )”). As a result of diligent research to improve the wear resistance and chipping resistance of the coated tool in which the hard coating layer containing the material is formed, the following knowledge was obtained.
すなわち、稜線部付近の局所的な硬質被覆層の膜厚の増大を抑制し、稜線部から逃げ面側およびすくい面側に向かって、それぞれ、200μmの箇所の層厚が稜線部(刃先稜線部)の膜厚に対して30〜95%、望ましくは40〜90%の範囲となるように膜厚を漸減させることにより、耐摩耗性が向上し、被覆層の微小な脱落や剥離に起因したチッピング等の異常損傷が抑制されること、その結果として、工具寿命が向上することを見出した。 That is, an increase in the thickness of the local hard coating layer in the vicinity of the ridge line portion is suppressed, and the layer thickness of the 200 μm portion is increased from the ridge line portion toward the flank side and the rake face side, respectively. ), The wear resistance is improved by gradually decreasing the film thickness so that it is in the range of 30 to 95%, preferably 40 to 90%. It has been found that abnormal damage such as chipping is suppressed, and as a result, tool life is improved.
さらに、熱CVD法による成膜後にブラスト処理などの加工を行うことにより、より確実に、硬質被覆層の膜厚の増大を抑制し、稜線部から逃げ面およびすくい面に向かって稜線部の膜厚に対して30〜95%、好ましくは40〜90%の範囲となるように膜厚を漸減させることができることも見出した。 Furthermore, by performing processing such as blasting after film formation by thermal CVD, the increase in the film thickness of the hard coating layer is more reliably suppressed, and the film of the ridge line part from the ridge line part toward the flank and rake face It has also been found that the film thickness can be gradually decreased so as to be in the range of 30 to 95%, preferably 40 to 90% with respect to the thickness.
本発明は、前記各知見に基づいてなされたものであって、
「(1)WC超硬合金、TiCN基サーメットまたはcBN基超高圧焼結体のいずれかで構成された工具基体の表面に、硬質被覆層を設けた表面被覆切削工具において、
(a)硬質被覆層は、稜線部の層厚が1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、複合窒化物または複合炭窒化物層のTiとAlの合量に占めるTiの平均含有割合x、および、CとNの合量に占めるCの平均含有割合(但し、x、yはいずれも原子数比)がそれぞれ0.60≦x≦0.95、0≦y≦0.005を満足し、
(b)前記硬質被覆層は、柱状組織を有し、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記硬質被覆層は、稜線部の層厚に対して、稜線部からすくい面側へ200μmの箇所における層厚が30%〜95%の範囲内に、稜線部から逃げ面側へ200μmの箇所における層厚が30%〜95%の範囲内に、それぞれ、なるように膜厚が漸減していることを特徴とする表面被覆切削工具。
(2)稜線部の層厚に対して、稜線部からすくい面側へ200μmの箇所における層厚が40%〜90%の範囲内にあり、稜線部から逃げ面側へ200μmの箇所における層厚が40%〜90%の範囲内にあることを特徴とする(1)に記載の表面被覆切削工具。
(3)前記複合窒化物層の前記工具基体に垂直な方向の断面において、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物が占める面積割合は70%以上であることを特徴とする(1)または(2)に記載の表面被覆切削工具。
(4)前記硬質被覆層の上部に、Alの酸化物層または窒化物層、あるいは、Tiの窒化物層、炭化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも1つ、の1層または2層以上が1〜25μmの合計層厚で形成されていることを特徴とする(1)〜(3)のいずれかに記載の表面被覆切削工具。
(5)前記工具基体と前記硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうち1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が存在することを特徴とする(1)〜(4)のいずれかに記載の表面被覆切削工具。」である。
The present invention has been made based on the above findings,
“(1) In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of either a WC cemented carbide, a TiCN-based cermet, or a cBN-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having a ridge line thickness of 1 to 20 μm, and has a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content x of Ti in the total amount of Ti and Al in the composite nitride or composite carbonitride layer, and the average content of C in the total amount of C and N ( However, x and y are both atomic ratios) satisfy 0.60 ≦ x ≦ 0.95 and 0 ≦ y ≦ 0.005, respectively.
(B) The hard coating layer includes a columnar structure and includes at least a phase of a composite nitride or composite carbonitride of Ti and Al having a NaCl-type face-centered cubic structure,
(C) The hard coating layer has a layer thickness in the range of 30% to 95% from the ridge line part to the rake face side to the rake line part from the ridge line part to the flank side and 200 μm from the ridge line part to the flank side. A surface-coated cutting tool characterized in that the film thickness is gradually reduced so that the layer thickness in each of the points is within a range of 30% to 95%.
(2) With respect to the layer thickness of the ridge line portion, the layer thickness at the location of 200 μm from the ridge line portion to the rake face side is in the range of 40% to 90%, and the layer thickness at the location of 200 μm from the ridge line portion to the flank side. Is in a range of 40% to 90%, the surface-coated cutting tool according to (1).
(3) In the cross section of the composite nitride layer in the direction perpendicular to the tool substrate, the area ratio occupied by the composite nitride or composite carbonitride of Ti and Al having a NaCl type face centered cubic structure is 70% or more. The surface-coated cutting tool according to (1) or (2), wherein
(4) At least one of an Al oxide layer or a nitride layer, or a Ti nitride layer, a carbide layer, a carbonitride layer, a carbonate layer, and a carbonitride layer on the hard coating layer. The surface-coated cutting tool according to any one of (1) to (3), wherein one layer or two or more layers are formed with a total layer thickness of 1 to 25 μm.
(5) One or more Ti compound layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the hard coating layer The surface-coated cutting tool according to any one of (1) to (4), wherein a lower layer having a total average layer thickness of 0.1 to 20 μm is present. Is.
本発明は、高速高送り加工においても、優れた耐摩耗性を有し、硬質被覆層の微小な脱落や剥離に起因したチッピング等の異常損傷が抑制され、工具寿命を延ばすことができるという顕著な効果を奏するものである。
すなわち、被削材が流れていく逃げ面側では、工具と被削材の界面に介在する生成物脱離に併せてチッピングが生じやすいが、層厚を稜線部よりも薄くすることによりチッピングが抑制でき、一方、切削によって生じた切り屑が流れていくすくい面側では、切り屑との擦過によって膜の脱離が生じやすくなるが、層厚を稜線部よりも薄くすることにより異常損傷を抑制することができる。
The present invention has outstanding wear resistance even in high-speed and high-feed machining, and is capable of prolonging the tool life by suppressing abnormal damage such as chipping caused by minute falling off or peeling of the hard coating layer. It has a great effect.
In other words, on the flank side where the work material flows, chipping is likely to occur along with the detachment of the product present at the interface between the tool and the work material, but chipping is caused by making the layer thickness thinner than the ridge line part. On the other hand, on the rake face side where chips generated by cutting flow, film detachment is likely to occur due to scraping with the chips, but abnormal damage is caused by making the layer thickness thinner than the ridgeline part. Can be suppressed.
次に、本発明の被覆工具の硬質被覆層について、より詳細に説明する。 Next, the hard coating layer of the coated tool of the present invention will be described in more detail.
TiとAlの複合炭窒化物層((Ti1−xAlx)(CyN1−y))の平均組成
前記複合炭窒化物層は、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、AlのTiとAlの合量に占める平均含有割合x、および、CのCとNの合量に占める平均含有割合y(但し、x、yはいずれも原子数比)は、それぞれ、0.60≦x≦0.95、0≦y≦0.005を満足するように組成を制御する。
その理由は、Alの平均含有割合xが0.60未満であると、(Ti1−xAlx)(CyN1−y)層は耐酸化性に劣り、合金鋼等の高速高送りに供した場合には、耐摩耗性が十分ではなく、一方、Alの平均含有割合xが0.95を超えると、硬さに劣る六方晶の析出量が増大し硬さが低下するため、耐摩耗性が低下する。したがって、Alの平均含有割合xは、0.60≦x≦0.95と定めた。
また、(Ti1−xAlx)(CyN1−y)層に含まれるC成分の平均含有割合yは、0≦y≦0.005の範囲の微量であるとき、潤滑性が向上することによって切削時の衝撃を緩和し、結果として(Ti1−xAlx)(CyN1−y)層の耐チッピング性、耐欠損性が向上する。一方、C成分の平均含有割合yが0≦y≦0.005の範囲を逸脱すると、(Ti1−xAlx)(CyN1−y)層の靭性が低下するため耐チッピング性、耐欠損性が低下し好ましくない。したがって、Cの平均含有割合yは、0≦y≦0.005と定めた。
なお、複合窒化物または複合炭窒化物層のAlの平均含有割合xについては、電子線マイクロアナライザ(Electron−Probe−Micro−Analyser:EPMA)を用い、表面を研磨した試料において、電子線を試料表面側から照射し、得られた特性X線の解析結果の10点平均から求めた。Cの平均含有割合yについては、二次イオン質量分析(Secondary−Ion−Mass−Spectroscopy:SIMS)により求めた。すなわち、イオンビームを試料表面側から70μm×70μmの範囲に照射し、スパッタリング作用によって放出された成分について深さ方向の濃度測定を行った。Cの平均含有割合yはTiとAlの複合窒化物または複合炭窒化物層についての深さ方向の平均値を示す。ただしCの含有割合には、意図的にガス原料としてCを含むガスを用いなくても含まれる不可避的なCの含有割合を除外している。具体的にはAl(CH3)3の供給量を0とした場合の複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)を不可避的なCの含有割合として求め、Al(CH3)3を意図的に供給した場合に得られる複合窒化物または複合炭窒化物層に含まれるC成分の含有割合(原子比)から前記不可避的なCの含有割合を差し引いた値をyとして求めた。
Composite carbonitride layer of Ti and Al ((Ti 1-x Al x) (C y N 1-y)) the average composition the composite carbonitride layer of the composition formula: (Ti 1-x Al x ) ( C y N 1-y ), the average content ratio x in the total amount of Ti and Al in Al and the average content ratio y in the total amount of C and N in C (where x and y are In either case, the ratio of the number of atoms) controls the composition so as to satisfy 0.60 ≦ x ≦ 0.95 and 0 ≦ y ≦ 0.005, respectively.
The reason is that if the average content ratio x of Al is less than 0.60, the (Ti 1-x Al x ) (C y N 1-y ) layer is inferior in oxidation resistance, and high-speed, high-feed such as alloy steel If the average content ratio x of Al exceeds 0.95, the amount of hexagonal crystals inferior in hardness increases and the hardness decreases. Wear resistance is reduced. Therefore, the average content ratio x of Al was determined to be 0.60 ≦ x ≦ 0.95.
Further, when the average content y of the C component contained in the (Ti 1-x Al x ) (C y N 1-y ) layer is a small amount in the range of 0 ≦ y ≦ 0.005, the lubricity is improved. alleviate the impact during cutting by chipping resistance of the resulting (Ti 1-x Al x) (C y N 1-y) layer, chipping resistance is improved. On the other hand, if the average content ratio y of the C component departs from the range of 0 ≦ y ≦ 0.005, the toughness of the (Ti 1-x Al x ) (C y N 1-y ) layer is reduced, so chipping resistance, It is not preferable because the fracture resistance is lowered. Therefore, the average content ratio y of C was determined as 0 ≦ y ≦ 0.005.
Note that the average Al content x of the composite nitride or composite carbonitride layer was measured using an electron beam microanalyzer (Electron-Probe-Micro-Analyzer: EPMA) and the surface was polished. Irradiated from the surface side, it was determined from the average of 10 points of the analysis results of the characteristic X-rays obtained. About the average content rate y of C, it calculated | required by secondary ion mass spectrometry (Secondary-Ion-Mass-Spectroscopy: SIMS). That is, the ion beam was irradiated in a range of 70 μm × 70 μm from the sample surface side, and the concentration in the depth direction was measured for the component emitted by the sputtering action. The average content ratio y of C shows the average value of the depth direction about the composite nitride or composite carbonitride layer of Ti and Al. However, the content ratio of C excludes the inevitable content ratio of C that is included without intentionally using a gas containing C as a gas raw material. Specifically, the content ratio (atomic ratio) of the C component contained in the composite nitride or composite carbonitride layer when the supply amount of Al (CH 3 ) 3 is 0 is determined as the inevitable C content ratio. , The inevitable C content is subtracted from the C component content (atomic ratio) contained in the composite nitride or composite carbonitride layer obtained when Al (CH 3 ) 3 is intentionally supplied. The value was determined as y.
TiとAlの複合炭窒化物層((Ti1−xAlx)(CyN1−y))の結晶構造
本発明のTiAlCN層は、NaCl型の面心立方構造を有するTiAlCN結晶粒を含むように構成する。前記(Ti1−xAlX)(CyN1−y)層の工具基体に垂直な方向の断面において、NaCl型の面心立方構造が占める面積割合は70%以上であることが好ましい。その理由は、その面積割合が70%を超えることにより、特に優れた耐チッピング性、耐摩耗性を発揮するためである。
なお、(Ti1−xAlx)(CyN1−y)層に占めるNaCl型の面心立方構造物の面積割合は、電子線後方散乱回折装置を用いて、TiとAlの複合窒化物層からなる硬質被覆層の工具基体に垂直な方向の断面を研磨面とした状態で、電界放出型走査電子顕微鏡の鏡筒内にセットし、前記研磨面に70度の入射角度で15kVの加速電圧の電子線を1nAの照射電流で、前記断面研磨面の測定範囲内に存在する結晶粒個々に照射し、工具基体と水平方向に長さ50μm、法線方向に該複合窒化物層の膜厚未満にわたり硬質被覆層について0.01μm/stepの間隔で、電子線後方散乱回折像を測定し、個々の結晶粒の結晶構造を解析することで、NaCl型の面心立方構造を有する結晶粒からなる組織と、それ以外の微粒結晶粒の結晶構造を同定し、これらの結晶構造の全ピクセル数に占める立方晶構造に該当するするピクセル数の割合を求めることで、その立方晶構造の占める面積割合を求めた。
Ti composite carbonitride layer of Al ((Ti 1-x Al x) (C y N 1-y)) TiAlCN layer crystal structure present invention is a TiAlCN crystal grains having a face-centered cubic structure of NaCl type Configure to include. In the cross section in the direction perpendicular to the tool base of the (Ti 1-x Al X ) (C y N 1-y ) layer, the area ratio occupied by the NaCl-type face-centered cubic structure is preferably 70% or more. The reason is that when the area ratio exceeds 70%, particularly excellent chipping resistance and wear resistance are exhibited.
The area ratio of the NaCl-type face-centered cubic structure in the (Ti 1-x Al x ) (C y N 1-y ) layer is determined by the composite nitriding of Ti and Al using an electron beam backscattering diffractometer. A hard coating layer made of a material layer is set in a lens barrel of a field emission scanning electron microscope in a state in which a cross section in a direction perpendicular to the tool base is a polished surface, and is 15 kV at an incident angle of 70 degrees on the polished surface. An electron beam with an acceleration voltage is irradiated with an irradiation current of 1 nA to each crystal grain existing within the measurement range of the cross-sectional polished surface, and the length of the composite nitride layer is 50 μm in length in the horizontal direction and normal to the tool base. A crystal having a NaCl-type face-centered cubic structure by measuring an electron beam backscatter diffraction image at an interval of 0.01 μm / step with respect to the hard coating layer below the film thickness and analyzing the crystal structure of each crystal grain. Grain structure and other fine crystals And the identification of the crystal structure, by obtaining the ratio of the number of pixels corresponding to a cubic structure occupying the total number of pixels of these crystal structures were determined area ratio of the cubic crystal structure.
稜線部からすくい面側へ200μmの箇所における硬質被覆層の層厚が30%〜95%の範囲内に、稜線部から逃げ面側へ200μmの箇所における硬質被覆層の層厚が30〜95%の範囲内にあるように膜厚が漸減していること
硬質被覆層の層厚を、稜線部の層厚に対して、稜線部からすくい面側へ200μmの箇所において30%〜95%の範囲内に、稜線部から逃げ面側へ200μmの箇所において30〜95%の範囲内にあるように漸減させることにより、被削材が流れていく逃げ面側では、工具と被削材の界面に介在する生成物脱離の際にチッピングが併せて生じやすいが、層厚を稜線部よりも薄くすることによりチッピングが抑制でき、また、切削によって生じた切り屑が流れていくすくい面側では、切り屑との擦過によって膜の脱離が生じやすくなるが、層厚を稜線部よりも薄くすることにより異常損傷を抑制することができる。
また、上記チッビングの抑制、以上損傷の抑制は、硬質被覆層の層厚を、稜線部の層厚に対して、稜線部からすくい面側へ200μmの箇所において40%〜90%の範囲内に、稜線部から逃げ面側へ200μmの箇所において40〜90%の範囲内にあるように漸減させることにより、より確実になる。
なお、本発明でいう稜線部とは、図1に示すように、すくい面と逃げ面とをそれぞれ直線で近似したときに、当該直線が屈曲する点を結んだ領域(すなわち、硬質被覆層表面におけるすくい面の屈曲点から逃げ面の屈曲点までの領域)の中で、前記近似直線の交点から最も近い硬質被覆層表面の点(点線の矢印が示す箇所)であり、稜線部からすくい面側および逃げ面側への距離とは前記交点からの距離である。
The layer thickness of the hard coating layer at the location of 200 μm from the ridge line portion to the rake face side is within a range of 30% to 95%, and the layer thickness of the hard coating layer at the location of 200 μm from the ridge line portion to the clearance surface side is 30 to 95%. The thickness of the hard coating layer is 30% to 95% at a location of 200 μm from the ridge line portion to the rake face side with respect to the layer thickness of the ridge line portion. On the flank side where the work material flows, by gradually reducing the distance from the ridge line part to the flank side so as to be within the range of 30 to 95% at the 200 μm portion, the interface between the tool and the work material Chipping tends to occur at the time of detachment of the intervening product, but chipping can be suppressed by making the layer thickness thinner than the ridge line part, and on the rake face side where chips generated by cutting flow, By rubbing with chips, Away it is likely to occur, but it is possible to suppress abnormal damage by thinner than the ridge line part of thickness.
Moreover, the suppression of the above-mentioned chipping and the above-described suppression of the damage are within the range of 40% to 90% of the layer thickness of the hard coating layer with respect to the layer thickness of the ridge line portion from the ridge line portion to the rake face side at 200 μm. Further, it is more certain by gradually reducing the ridgeline portion from the ridgeline portion to the flank side so that it is within a range of 40 to 90% at a location of 200 μm.
In addition, as shown in FIG. 1, the ridge line part as used in this invention is the area | region (namely, hard coating layer surface) which connected the point which the said straight line bends, when a rake face and a flank face are each approximated by a straight line. In the region from the rake face bending point to the flank bending point), the point on the surface of the hard coating layer that is closest to the intersection of the approximate lines (the point indicated by the dotted line arrow), and the rake line to the rake face The distance to the side and the flank side is the distance from the intersection.
また、耐摩耗性の向上のために、硬質被覆層の上部に、Alの酸化物層または窒化物層、あるいは、Tiの窒化物層、炭化物層、炭窒化物層、炭酸化物層および炭窒酸化物層の少なくとも1つ、の1層または2層以上が1〜25μmの合計層厚で形成されていてもよい。 In order to improve wear resistance, an Al oxide layer or nitride layer, or a Ti nitride layer, carbide layer, carbonitride layer, carbonate layer and carbonitride layer may be formed on the hard coating layer. One or two or more of the oxide layers may be formed with a total layer thickness of 1 to 25 μm.
さらには、結合層として、工具基体と硬質被覆層との間にTiの炭化物層、窒化物層、炭窒化物層、炭酸化物層および炭窒酸化物層のうち1層または2層以上のTi化合物層からなり、0.1〜20μmの合計平均層厚を有する下部層が形成されていてもよい。 Furthermore, as the bonding layer, one or more Ti layers of Ti carbide layer, nitride layer, carbonitride layer, carbonate layer and carbonitride oxide layer between the tool base and the hard coating layer are used. A lower layer made of a compound layer and having a total average layer thickness of 0.1 to 20 μm may be formed.
本発明の製造方法は、概略次のとおりである。
1.通常の製法により超硬合金基体を製造する。
2.次に、この超硬合金基体上に、必要に応じて結合相を成膜する。
3.続いて、通常のCVD装置によって成膜を行い、硬質被覆層を形成する。
例えば、反応ガス組成(容量%)
ガス群A:NH3:0.8〜1.6%、H2:45〜55%
ガス群B:AlCl3:0.5〜0.7%、TiCl4:0.1〜0.3%、
N2:0.0〜10.0%、C2H4:0.0〜0.2%、H2:残り
供給周期: 1〜5秒、
1周期当たりのガス供給時間: 0.15〜0.25秒、
ガス供給Aとガス供給Bの位相差: 0.10〜0.20秒
反応雰囲気温度: 700〜900 ℃、
反応雰囲気圧力: 4〜5 kPa、
という条件下で蒸着することによって、0.70≦x≦0.95、0≦y≦0.005(但し、x、yは何いずれも原子比)を満足する硬質被覆層を形成することができる。
4.硬質被覆層の層厚の調整
硬質被覆層の層厚を稜線部からすくい面側へ200μmおよび逃げ面側に200μmのところで稜線部の層厚の30〜95%とする調整には、種々の方法があるが、例えば、Al2O3を用いたウエットブラストによる方法が望ましい。
The production method of the present invention is roughly as follows.
1. A cemented carbide substrate is manufactured by a normal manufacturing method.
2. Next, a binder phase is formed on the cemented carbide substrate as necessary.
3. Subsequently, film formation is performed by a normal CVD apparatus to form a hard coating layer.
For example, reaction gas composition (volume%)
Gas group A: NH 3 : 0.8 to 1.6%, H 2 : 45 to 55%
Gas group B: AlCl 3 : 0.5 to 0.7%, TiCl 4 : 0.1 to 0.3%,
N 2: 0.0~10.0%, C 2 H 4: 0.0~0.2%, H 2: remainder feed period: 1-5 seconds,
Gas supply time per cycle: 0.15 to 0.25 seconds,
Phase difference between gas supply A and gas supply B: 0.10 to 0.20 seconds Reaction atmosphere temperature: 700 to 900 ° C.
Reaction atmosphere pressure: 4-5 kPa,
By depositing under the above conditions, a hard coating layer satisfying 0.70 ≦ x ≦ 0.95 and 0 ≦ y ≦ 0.005 (where x and y are atomic ratios) can be formed. it can.
4). Adjustment of the layer thickness of the hard coating layer Various methods can be used to adjust the layer thickness of the hard coating layer to 200-μm from the ridge line part to the rake face side and 200 μm from the flank side to 30-95% of the layer thickness of the ridge line part. For example, a method by wet blasting using Al 2 O 3 is desirable.
次に、本発明の被覆工具を実施例により具体的に説明する。なお、実施例としては、WC基超硬合金を工具基体とする被覆工具について述べるが、工具基体としてTiCN基サーメットやcBN基超高圧焼結体を用いた場合も同様である。 Next, the coated tool of the present invention will be specifically described with reference to examples. In addition, as an Example, although the coated tool which uses a WC base cemented carbide as a tool base | substrate is described, it is the same also when using a TiCN base cermet and a cBN base super high pressure sintered compact as a tool base | substrate.
原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TaC粉末、Cr3C2粉末およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、98MPaの圧力で所定形状の圧粉体にプレス成形し、この圧粉体を5Paの真空中、1370〜1470℃の範囲内の所定の温度に1時間保持の条件で真空焼結し、焼結後、ISO規格SEEN1203AFSNのインサート形状をもったWC基超硬合金製の工具基体αをそれぞれ製造した。 As raw material powders, WC powder, TaC powder, Cr 3 C 2 powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared, and these raw material powders are blended into the blending composition shown in Table 1, After adding wax and ball-milling in acetone for 24 hours, drying under reduced pressure, it was press-molded into a green compact of a predetermined shape at a pressure of 98 MPa, and this green compact was within a range of 1370 to 1470 ° C. in a vacuum of 5 Pa. The tool substrate α made of WC-base cemented carbide having an insert shape of ISO standard SEEN1203AFSN was manufactured after sintering under vacuum at a predetermined temperature of 1 hour under the condition of holding for 1 hour.
次に、これらの工具基体αの表面に、通常のCVD装置を用い、まず、表2、3に示される条件で、所定の組成を有する(Ti1−xAlx)(CyN1−y)層を目標層厚になるまで蒸着形成し、その後、Al2O3を用いたウエットブラスト法により、稜線部からすくい面側および逃げ面側の(Ti1−xAlx)(CyN1−y)層の層厚を調整し、表5に示される本発明被覆工具1〜12を製造した。なお、本発明被覆工具10〜12については、表4に記載された条件で、下部層および/または上部層を設けている。 Next, a normal CVD apparatus is used on the surfaces of these tool bases α. First, (Ti 1-x Al x ) (C y N 1-1 ) having a predetermined composition under the conditions shown in Tables 2 and 3. y ) A layer is formed by vapor deposition until the target layer thickness is reached, and then (Ti 1-x Al x ) (C y on the rake face side and flank face side from the ridge line portion by wet blasting using Al 2 O 3. The layer thickness of the N 1-y ) layer was adjusted, and the present coated tools 1 to 12 shown in Table 5 were produced. In addition, about this invention coated tools 10-12, on the conditions described in Table 4, the lower layer and / or the upper layer are provided.
また、比較の目的で、同じく工具基体αの表面に、通常のCVD装置を用い、表2、3に示される条件で、比較例の(Ti1−xAlx)(CyN1−y)層を目標層厚で蒸着形成することにより、表6に示される比較例被覆工具1〜12を製造した。なお、比較被覆工具10〜12については、表4に記載された条件で、下部層および/または上部層を設けている。 Further, for the purpose of comparison, a conventional CVD apparatus was similarly used on the surface of the tool base α, and under the conditions shown in Tables 2 and 3, (Ti 1-x Al x ) (C y N 1-y of the comparative example). The comparative coating tools 1-12 shown in Table 6 were manufactured by vapor-depositing layers with the target layer thickness. In addition, about the comparison coating tools 10-12, on the conditions described in Table 4, the lower layer and / or the upper layer are provided.
また、本発明被覆工具1〜12、比較例被覆工具1〜12の被覆層の断面を、走査電子顕微鏡を用いて測定し、稜線部並びに稜線部からすくい面側および逃げ面側へ200μmの箇所の層厚を測定し、表5、6に記載した。また、本発明被覆工具1〜12については、稜線部からすくい面側および逃げ面側へ200μmの箇所までの層厚が漸減していることを確認した。 Moreover, the cross section of the coating layer of this invention coating tool 1-12 and comparative example coating tool 1-12 is measured using a scanning electron microscope, and the location of 200 μm from the ridge line part and the ridge line part to the rake face side and the flank face side The layer thicknesses were measured and listed in Tables 5 and 6. Moreover, about this invention coated tool 1-12, it confirmed that the layer thickness from the ridgeline part to the rake face side and the flank face side to the 200 micrometers location was decreasing gradually.
また、硬質被覆層の平均Al含有割合x、平均C含有割合yの結果を表5および6に示す。 Tables 5 and 6 show the results of the average Al content ratio x and the average C content ratio y of the hard coating layer.
次に、前記の各種の被覆工具をいずれもカッタ径125mmの工具鋼製カッタ先端部に固定治具にてクランプした状態で、本発明被覆工具1〜12、比較例被覆工具1〜12について、以下に示す、合金鋼の高速高送り切削の一種である乾式高速正面フライス、センターカット切削加工試験の3種類を実施し、切刃の逃げ面摩耗幅を測定した。
<切削試験1>
被削材: JIS・SCM440幅100mm、長さ400mmのブロック材
回転速度: 892 min−1、
切削速度: 350 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.2 mm/刃、
切削時間: 8分
<切削試験2>
被削材: JIS・S55C幅100mm、長さ400mmのブロック材
回転速度: 968 min−1、
切削速度: 380 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.2 mm/刃、
切削時間: 8分
<切削試験3>
被削材: JIS・FCD700幅100mm、長さ400mmのブロック材
回転速度: 892 min−1、
切削速度: 350 m/min、
切り込み: 2.0 mm、
一刃送り量: 0.2 mm/刃、
切削時間: 8分
表7に、前記各切削試験の結果を示す。
Next, in the state where each of the above various coated tools is clamped to a tool steel cutter tip portion with a cutter diameter of 125 mm by a fixing jig, the present invention coated tools 1 to 12 and comparative example coated tools 1 to 12, The following three types of dry high-speed face milling, which is a kind of high-speed high-feed cutting of alloy steel, and a center-cut cutting test were performed, and the flank wear width of the cutting edge was measured.
<Cutting test 1>
Work material: Block material of JIS / SCM440 width 100mm, length 400mm
Rotational speed: 892 min −1
Cutting speed: 350 m / min,
Cutting depth: 2.0 mm,
Single blade feed rate: 0.2 mm / tooth,
Cutting time: 8 minutes <Cutting test 2>
Work material: Block material of JIS / S55C width 100mm, length 400mm
Rotational speed: 968 min −1
Cutting speed: 380 m / min,
Cutting depth: 2.0 mm,
Single blade feed rate: 0.2 mm / tooth,
Cutting time: 8 minutes <Cutting test 3>
Work material: Block material of JIS / FCD700 width 100mm, length 400mm
Rotational speed: 892 min −1
Cutting speed: 350 m / min,
Cutting depth: 2.0 mm,
Single blade feed rate: 0.2 mm / tooth,
Cutting time: 8 minutes Table 7 shows the results of the cutting tests.
表5〜7に示される結果から、本発明被覆工具1〜12は、稜線部における前記硬質被覆層の層厚に対して、稜線部からすくい面側へ200μmにおける前記硬質被覆層の層厚が30%〜95%の範囲内に、稜線部から逃げ面側へ200μmにおける前記硬質被覆層の層厚が30〜95%の範囲内にあるように順次層厚が変化しているから、高速高送り加工において優れた耐チッピング性、耐摩耗性を発揮する。
これに対して、本発明の発明特定事項を満足しない比較例被覆工具1〜12については、いずれも、硬質被覆層にチッピング、欠損、剥離等の異常損傷が発生するばかりか、比較的短時間で使用寿命に至ることが明らかである。
From the results shown in Tables 5 to 7, the coated tools 1 to 12 of the present invention have a layer thickness of the hard coating layer at 200 μm from the ridge line portion to the rake face side with respect to the layer thickness of the hard coating layer in the ridge line portion. Since the thickness of the hard coating layer in the range of 30 to 95% is in the range of 30 to 95% from the ridgeline portion to the flank side within the range of 30% to 95%, the layer thickness is sequentially changed. Excellent chipping resistance and wear resistance in feed processing.
On the other hand, for the comparative coated tools 1 to 12 that do not satisfy the invention-specific matters of the present invention, not only abnormal damage such as chipping, chipping or peeling occurs in the hard coating layer, but also for a relatively short time. It is clear that the service life is reached.
上述のように、この発明の被覆工具は、合金鋼の高速高送り切削加工ばかりでなく、各種の被削材の被覆工具として用いることができ、しかも、長期の使用にわたって優れた耐チッピング性、耐摩耗性を発揮するものであるから、切削装置の高性能化並びに切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。
As described above, the coated tool of the present invention can be used as a coated tool for various work materials as well as high-speed high-feed cutting of alloy steel, and has excellent chipping resistance over a long period of use. Since it exhibits wear resistance, it can satisfactorily meet the demands for higher performance of cutting devices, labor saving and energy saving of cutting, and cost reduction.
Claims (5)
(a)硬質被覆層は、稜線部の層厚が1〜20μmのTiとAlの複合窒化物または複合炭窒化物層を少なくとも含み、組成式:(Ti1−xAlx)(CyN1−y)で表した場合、複合窒化物または複合炭窒化物層のTiとAlの合量に占めるTiの平均含有割合x、および、CとNの合量に占めるCの平均含有割合(但し、x、yはいずれも原子数比)がそれぞれ0.60≦x≦0.95、0≦y≦0.005を満足し、
(b)前記硬質被覆層は、柱状組織を有し、NaCl型の面心立方構造を有するTiとAlの複合窒化物または複合炭窒化物の相を少なくとも含み、
(c)前記硬質被覆層は、稜線部の層厚に対して、稜線部からすくい面側へ200μmの箇所における層厚が30%〜95%の範囲内に、稜線部から逃げ面側へ200μmの箇所における層厚が30%〜95%の範囲内に、それぞれ、なるように膜厚が漸減していることを特徴とする表面被覆切削工具。 In a surface-coated cutting tool in which a hard coating layer is provided on the surface of a tool base composed of either a WC cemented carbide, a TiCN-based cermet, or a cBN-based ultrahigh-pressure sintered body,
(A) The hard coating layer includes at least a composite nitride or composite carbonitride layer of Ti and Al having a ridge line thickness of 1 to 20 μm, and has a composition formula: (Ti 1-x Al x ) (C y N 1-y ), the average content x of Ti in the total amount of Ti and Al in the composite nitride or composite carbonitride layer, and the average content of C in the total amount of C and N ( However, x and y are both atomic ratios) satisfy 0.60 ≦ x ≦ 0.95 and 0 ≦ y ≦ 0.005, respectively.
(B) The hard coating layer includes a columnar structure and includes at least a phase of a composite nitride or composite carbonitride of Ti and Al having a NaCl-type face-centered cubic structure,
(C) The hard coating layer has a layer thickness in the range of 30% to 95% from the ridge line part to the rake face side to the rake line part from the ridge line part to the flank side and 200 μm from the ridge line part to the flank side. A surface-coated cutting tool characterized in that the film thickness is gradually reduced so that the layer thickness in each of the points is within a range of 30% to 95%.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017062724A JP2018164961A (en) | 2017-03-28 | 2017-03-28 | Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017062724A JP2018164961A (en) | 2017-03-28 | 2017-03-28 | Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018164961A true JP2018164961A (en) | 2018-10-25 |
Family
ID=63921880
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017062724A Pending JP2018164961A (en) | 2017-03-28 | 2017-03-28 | Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018164961A (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166683A1 (en) * | 2019-02-14 | 2020-08-20 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
WO2020262435A1 (en) * | 2019-06-28 | 2020-12-30 | 株式会社ダイヤメット | Cutting tool and material used to form surface protective coating of same |
JP7453613B2 (en) | 2019-02-14 | 2024-03-21 | 三菱マテリアル株式会社 | surface coated cutting tools |
JP7492678B2 (en) | 2020-08-07 | 2024-05-30 | 三菱マテリアル株式会社 | Surface-coated cutting tools |
-
2017
- 2017-03-28 JP JP2017062724A patent/JP2018164961A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020166683A1 (en) * | 2019-02-14 | 2020-08-20 | 三菱マテリアル株式会社 | Surface-coated cutting tool |
JP7453613B2 (en) | 2019-02-14 | 2024-03-21 | 三菱マテリアル株式会社 | surface coated cutting tools |
WO2020262435A1 (en) * | 2019-06-28 | 2020-12-30 | 株式会社ダイヤメット | Cutting tool and material used to form surface protective coating of same |
JP2021006356A (en) * | 2019-06-28 | 2021-01-21 | 株式会社ダイヤメット | Cutting tool and material for use in formation of surface protection coating thereof |
JP7227089B2 (en) | 2019-06-28 | 2023-02-21 | 株式会社ダイヤメット | Materials used for forming cutting tools and their surface protective coatings |
JP7492678B2 (en) | 2020-08-07 | 2024-05-30 | 三菱マテリアル株式会社 | Surface-coated cutting tools |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6620482B2 (en) | Surface coated cutting tool with excellent chipping resistance | |
JP6478100B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6268530B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6548071B2 (en) | Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer | |
JP6590255B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6548073B2 (en) | Surface coated cutting tool exhibiting excellent chipping resistance with hard coating layer | |
WO2014034730A1 (en) | Surface-coated cutting tool | |
JP6296294B2 (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP6578935B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer | |
JP2018118346A (en) | Surface coated cutting tool with hard coating layer having excellent chipping resistance and peel resistance | |
WO2016052479A1 (en) | Surface-coated cutting tool having excellent chip resistance | |
JP2018164961A (en) | Surface coat cutting tool by which hard coating layer exhibits excellent wear resistance and chipping resistance and manufacturing method therefor | |
JP2019005867A (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP2018144138A (en) | Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance | |
JP2016221672A (en) | Surface coated cutting tool with excellent chipping resistance due to hard coating layer | |
JP4518259B2 (en) | A surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed intermittent cutting | |
JP2019010705A (en) | Surface coated cutting tool with hard coating layer that exhibits excellent chipping resistance, thermal crack resistance, and oxidation resistance | |
JP2018144139A (en) | Surface-coated cutting tool having hard coating layer excellent in wear resistance and chipping resistance | |
JP4716250B2 (en) | Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed heavy cutting | |
JP2006116621A (en) | Surface-coated cermet cutting tool with hard coating layer exerting excellent chipping resistance in high-speed intermittent cutting | |
JP2016124098A (en) | Surface coated cutting tool excellent in chipping resistance and wear resistance | |
JP2009166193A (en) | Surface coated cutting tool having hard coating layer exhibiting excellent chipping resistance in high-speed intermittent cutting | |
JP6573171B2 (en) | Surface coated cutting tool with excellent chipping and wear resistance with excellent hard coating layer | |
JP4811787B2 (en) | Surface-coated cermet cutting tool with excellent grain interface strength in modified κ-type aluminum oxide layer of hard coating layer | |
WO2017038840A1 (en) | Surface-coated cutting tool having rigid coating layer exhibiting excellent chipping resistance |