[go: up one dir, main page]

JP2018162385A - Friction material composition, and friction material and friction member using the friction material composition - Google Patents

Friction material composition, and friction material and friction member using the friction material composition Download PDF

Info

Publication number
JP2018162385A
JP2018162385A JP2017060358A JP2017060358A JP2018162385A JP 2018162385 A JP2018162385 A JP 2018162385A JP 2017060358 A JP2017060358 A JP 2017060358A JP 2017060358 A JP2017060358 A JP 2017060358A JP 2018162385 A JP2018162385 A JP 2018162385A
Authority
JP
Japan
Prior art keywords
friction material
friction
average particle
particle diameter
material composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017060358A
Other languages
Japanese (ja)
Inventor
大樹 成沢
Daiki Narisawa
大樹 成沢
暁仁 真柄
Akihito MAGARA
暁仁 真柄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017060358A priority Critical patent/JP2018162385A/en
Publication of JP2018162385A publication Critical patent/JP2018162385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Braking Arrangements (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a friction material composition which has such a composition as to contain no copper as an element or have a copper content of 0.5 mass% or less, in other words, as to have low environmental harmful property and human harmful property, appropriately forms TF even by braking at high temperature (300°C to 400°C) and braking at from a comparatively low speed to a low speed, and provides a friction material exhibiting a stable friction coefficient, and to provide a friction material and a friction member using the friction material composition.SOLUTION: A friction material composition contains a friction material which contains a fiber base material, an inorganic filler, an organic filler and a binder and has a copper amount of 0.5 mass% or less, an abrasive having an average particle diameter of 3-5 μm and a grinding material having an average particle diameter of 9-13 μm as the inorganic fillers, and titanate having an average particle diameter of 1.5-4.5 μm and titanate having an average particle diameter of 15-45 μm as the inorganic fillers.SELECTED DRAWING: None

Description

本発明は、自動車等の制動に用いられるディスクブレーキパッド、ブレーキライニング等の摩擦材に適した摩擦材組成物、該摩擦材組成物を用いた摩擦材および摩擦部材に関するものであり、特にアスベストを含有しない摩擦材組成物、いわゆるノンアスベスト摩擦材に関するものである。   The present invention relates to a friction material composition suitable for friction materials such as disc brake pads and brake linings used for braking of automobiles, etc., a friction material using the friction material composition, and a friction member. The present invention relates to a friction material composition containing no so-called non-asbestos friction material.

自動車等には、制動のためにディスクブレーキパッド、ブレーキライニング等の摩擦材が使用されている。ディスクブレーキパッド、ブレーキライニング等の摩擦材は、相手材となるディスクロータ、ブレーキドラム等と摩擦することによって制動の役割を果たす。そのため摩擦材には使用条件に応じた適切な摩擦係数(効き特性)が求められるだけでなく、ブレーキ鳴きが発生しにくいこと(鳴き特性)、摩擦材の寿命が長いこと(耐摩耗性)等が要求される。   In automobiles and the like, friction materials such as disc brake pads and brake linings are used for braking. Friction materials such as disc brake pads and brake linings play a role of braking by friction with disc rotors, brake drums and the like as counterpart materials. For this reason, friction materials are not only required to have an appropriate coefficient of friction (effect characteristics) according to the conditions of use, but they are also less likely to generate brake squeal (squeal characteristics), and the friction material has a long life (wear resistance). Is required.

摩擦材は繊維基材としてスチール繊維を30〜60質量%含有するセミメタリック材と、スチール繊維を30質量%未満含有するロースチール材と、スチール繊維を含有しないNAО(Non-Asbestos Organic)材に大別される。ただし、スチール繊維を微量に含有する摩擦材もNAО材に分類されることもある。   The friction material is a semi-metallic material containing 30 to 60% by mass of steel fibers as a fiber base material, a raw steel material containing less than 30% by mass of steel fibers, and a NAO (Non-Asbestos Organic) material that does not contain steel fibers. Broadly divided. However, a friction material containing a small amount of steel fiber may be classified as a NAO material.

NAО材は繊維基材、有機充填材、無機充填材を結合材で結合したものであり、スチール繊維を含有しない、あるいはスチール繊維の含有率が極めて低いため、セミメタリック材およびロースチール材と比較して、相手材であるディスクロータへの攻撃性が低いという特徴がある。このような利点から、現在、日本および米国では効き、鳴き、耐摩耗性のバランスに優れるNAО材が主流となっている。また、欧州では高速制動時の摩擦係数保持の観点でロースチール材が用いられることが多かったが、近年は市場の高級志向化に応えるべく、タイヤのホイール汚れおよびブレーキ鳴きが発生しにくいNAО材が用いられることも増えてきている。   NAOO material is a fiber base material, organic filler, and inorganic filler combined with a binder, which does not contain steel fibers or has a very low content of steel fibers, so it is compared with semi-metallic and low steel materials. Thus, there is a feature that the aggressiveness to the disk rotor as a counterpart material is low. Because of these advantages, NAO materials that have a good balance of effectiveness, squealing, and wear resistance are now mainstream in Japan and the United States. In Europe, low steel materials were often used from the viewpoint of maintaining the friction coefficient during high-speed braking, but in recent years, in order to respond to the trend toward high-end markets, NAO materials are less prone to tire wheel dirt and brake noise. Is increasingly being used.

このようなNAO材は、粉末および繊維の状態の銅を含有するものが一般的となっている。しかし、銅および銅合金を含有する摩擦材は、制動時に生成する摩耗粉中に銅を含むため、河川および湖を汚染するという可能性が示唆されており、米国のカリフォルニア州、ワシントン州では2021年以降は銅を5質量%以上、2023年以降は銅を0.5質量%以上含有する摩擦材の販売および新車への組み付けを禁止する法案が可決されており、これに対応するため銅を含有しない、あるいは銅の含有量が少ないNAO材の開発が急務となっている。   Such NAO materials generally contain copper in a powder and fiber state. However, it has been suggested that friction materials containing copper and copper alloys contain copper in the abrasion powder generated during braking, and thus may contaminate rivers and lakes. Since then, a bill has been passed to prohibit the sale of friction materials containing more than 5% by weight of copper, and after 2023 more than 0.5% by weight of copper, and to assemble them into new cars. There is an urgent need to develop NAO materials that do not contain or have a low copper content.

このような動きの中、銅を含有しない、あるいは銅の含有量が少ない摩擦材に関していくつかの特許(特許文献1,2等)が提案されている。   In such a movement, several patents (Patent Documents 1, 2, etc.) have been proposed regarding friction materials that do not contain copper or have a low copper content.

特開2015−205959号公報JP2015-205959A 特開2015−059125号公報Japanese Patent Laying-Open No. 2015-059125

前述のとおり銅および銅合金を含有する摩擦材は河川および湖を汚染する可能性が示唆されているため、仕様を制限する動きが高まっている。これまでに開発された銅および銅合金が0.5質量%以下の摩擦材において高温(300〜400℃時)での制動および比較的低速からの低減速度での制動において摩擦係数の安定を成立させることは困難であった。   As described above, friction materials containing copper and copper alloys have been suggested to possibly contaminate rivers and lakes, and there is an increasing movement to limit specifications. Friction materials with copper and copper alloys developed so far have stable friction coefficient in braking at high temperature (at 300-400 ° C) and braking at a reduced speed from a relatively low speed in friction materials of 0.5 mass% or less It was difficult to do.

上記現象の要因の一つとしてNAO材は、ディスクロータ表面に摩擦材組成物が移着したトランスファーフィルム(TF)を形成する。このTFは摩擦係数の安定化および摩耗の抑制に寄与する。このため、制動に発生するTF形成量をコントロールすることは極めて重要である。   As one of the factors of the above phenomenon, the NAO material forms a transfer film (TF) in which the friction material composition is transferred to the disk rotor surface. This TF contributes to stabilization of the friction coefficient and suppression of wear. For this reason, it is extremely important to control the amount of TF formation that occurs during braking.

TFを構成する摩擦材中の重要な成分として、銅が挙げられる。銅は粉末または繊維の状態で摩擦材に用いられるが、延性、展性が高く、制動によって摩擦材表面およびディスクロータ表面に伸びてTFを形成する。また、新品時のブレーキロータ表面に残る製造時の研磨溝を潰す、あるいは埋めることで、上記の有機分解物およびチタン酸塩等がTFとして定着しやすい面を形成する効果もある。しかしながら、銅を含有しない、あるいは銅の含有量が少ない摩擦材については、このような作用を有さず、TFが形成され難いものとなる。   Copper is mentioned as an important component in the friction material which comprises TF. Copper is used as a friction material in a powder or fiber state, but has high ductility and malleability, and extends to the friction material surface and the disk rotor surface by braking to form TF. Further, by crushing or filling in the polishing grooves remaining on the brake rotor surface at the time of a new article, there is an effect of forming a surface on which the above-mentioned organic decomposition products, titanate, etc. are easily fixed as TF. However, a friction material that does not contain copper or has a low copper content does not have such an action and TF is difficult to be formed.

そのため銅および銅合金を含有しない摩擦材の場合、TF形成がアンバランスになり高温(300〜400℃)時の制動および比較的低速からの低減速度での制動において摩擦係数が安定しないことになる。   Therefore, in the case of a friction material that does not contain copper and copper alloy, TF formation becomes unbalanced, and the friction coefficient is not stable in braking at a high temperature (300 to 400 ° C.) and braking at a reduced speed from a relatively low speed. .

そこで、本発明は、元素としての銅を含まない、あるいは含有率が0.5質量%を超えない組成、すなわち環境有害性、および人体有害性が低い組成とした上で、高温(300℃〜400℃)時の制動および比較的低速からの低減速度での制動でも適切にTFを形成し、安定した摩擦係数を発現する摩擦材を与える摩擦材組成物を提供することを目的とする。また、該摩擦材組成物を用いた摩擦材および摩擦部材を提供することを目的とする。   Therefore, the present invention does not contain copper as an element, or the composition does not exceed 0.5% by mass, that is, a composition having low environmental hazards and low human hazards, and a high temperature (300 ° C. to It is an object of the present invention to provide a friction material composition that forms a TF appropriately even when braking at 400 ° C.) and braking at a reduced speed from a relatively low speed and gives a friction material that exhibits a stable friction coefficient. It is another object of the present invention to provide a friction material and a friction member using the friction material composition.

本発明者等は、銅および銅合金の含有量が0.5質量%以下の摩擦材の摩擦係数の安定性を確保するにあたり、無機充填材とチタン酸塩に着目し、無機充填材の粒子径と量およびチタン酸塩の粒子径と量を適正な範囲とすることで、適正量のTFを形成し、高温時の制動および比較的低速からの低減速度の制動において摩擦係数の安定させることを見出した。   In order to ensure the stability of the friction coefficient of a friction material having a copper and copper alloy content of 0.5% by mass or less, the present inventors focused on inorganic fillers and titanates, and particles of inorganic fillers By making the diameter and amount and the particle size and amount of titanate within an appropriate range, an appropriate amount of TF is formed, and the friction coefficient is stabilized in braking at a high temperature and braking at a reduced speed from a relatively low speed. I found.

本発明の摩擦材組成物は、これらの知見からなされたものであり、具体的に、繊維基材、無機充填材、有機充填材および結合材を含有し、銅量が0.5質量%以下の摩擦材であって、前記無機充填材として、平均粒子径が3〜5μmの研削材と、平均粒子径が9〜13μmの研削材を含むとともに、前記無機充填材として、平均粒子径が1.5〜4.5μmのチタン酸塩と、平均粒子径が15〜45μmのチタン酸塩を含むものである。   The friction material composition of the present invention has been made based on these findings. Specifically, the friction material composition contains a fiber base material, an inorganic filler, an organic filler, and a binder, and the amount of copper is 0.5% by mass or less. In addition, the inorganic filler includes an abrasive having an average particle diameter of 3 to 5 μm and an abrasive having an average particle diameter of 9 to 13 μm, and the inorganic filler has an average particle diameter of 1 .5 to 4.5 μm titanate and titanate having an average particle diameter of 15 to 45 μm.

本発明の摩擦材組成物は、前記平均粒子径が3〜5μmの研削材および前記平均粒子径が9〜13μmの研削材が酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウムのうちの1種以上であることが好ましく、前記平均粒子径が3〜5μmの研削材および前記平均粒子径が9〜13μmの研削材が同じ材質であることが好ましい。また、摩擦材組成物全体に対し、前記平均粒子径が3〜5μmの研削材を1〜6質量%含有するとともに、前記平均粒子径が9〜13μmの研削材を8〜15質量%含有することが好ましく、摩擦材組成物全体に対し、前記平均粒子径が1.5〜4.5μmのチタン酸塩を5〜15質量%含有するとともに、前記平均粒子径が15〜45μmのチタン酸塩を5〜15質量%含有することが好ましい。   In the friction material composition of the present invention, the abrasive having an average particle diameter of 3 to 5 μm and the abrasive having an average particle diameter of 9 to 13 μm are at least one of zirconium oxide, zirconium silicate, and magnesium oxide. It is preferable that the abrasive having the average particle diameter of 3 to 5 μm and the abrasive having the average particle diameter of 9 to 13 μm are the same material. Moreover, while containing 1-6 mass% of abrasives with the said average particle diameter of 3-5 micrometers with respect to the whole friction material composition, 8-15 mass% of abrasives with the said average particle diameter of 9-13 micrometers are contained. Preferably, the titanate containing 5 to 15% by mass of the titanate having an average particle diameter of 1.5 to 4.5 μm and the average particle diameter of 15 to 45 μm with respect to the entire friction material composition. It is preferable to contain 5-15 mass%.

本発明によれば、自動車用ディスクブレーキパッド、ブレーキライニング等の摩擦材に用いた際に、環境有害性、および人体有害性が低い組成としつつ、安定した摩擦係数を発現する摩擦材を与える摩擦材組成物を提供することができる。また、本発明によれば、上記特性を有する摩擦材および摩擦部材を提供することができる。   According to the present invention, when used in a friction material such as an automobile disc brake pad and brake lining, the friction that gives a friction material that exhibits a stable coefficient of friction while having a composition that is low in environmental harm and human harm. A material composition can be provided. Moreover, according to this invention, the friction material and friction member which have the said characteristic can be provided.

以下、本発明の摩擦材組成物、これを用いた摩擦材および摩擦部材について詳述する。なお、本発明の摩擦材組成物は、アスベストを含有しない摩擦材組成物、いわゆるノンアスベスト摩擦材組成物である。   Hereinafter, the friction material composition of the present invention, the friction material using the same, and the friction member will be described in detail. The friction material composition of the present invention is a friction material composition containing no asbestos, a so-called non-asbestos friction material composition.

[摩擦材組成物]
本実施形態の摩擦材組成物は、結合材、有機充填材、無機充填材、および繊維基材を含有する摩擦材組成物であり、銅を含まないことが好ましく、または銅を含む場合であっても摩擦材組成物全体に対する銅の含有率が0.5質量%以下と極微量である。このため、本発明の摩擦材組成物による摩擦材および摩擦部材は、環境有害性および人体有害性が低いものとなる。
[Friction material composition]
The friction material composition of the present embodiment is a friction material composition containing a binder, an organic filler, an inorganic filler, and a fiber base material, and preferably contains no copper, or contains copper. However, the content of copper with respect to the entire friction material composition is a very small amount of 0.5 mass% or less. For this reason, the friction material and friction member by the friction material composition of this invention become a thing with a low environmental hazard and a human body hazard.

[研削材(無機充填材)]
研削材は相手材となるディスクロータに食い込み、引っ掻き抵抗によって摩擦係数を高める目的で摩擦材組成物に用いられるが、研削材の粒子径が大きければ、常用および高負荷制動時、相手材となるディスクロータへの食い込み量が大きく、引っ掻き抵抗を大きくして摩擦係数を高くすることができるが、軽負荷制動でのディスクロータへの食い込みが僅かとなり、摩擦係数が安定しない。その一方、研削材の粒子径が小さければ軽負荷制動時の摩擦係数を安定させることが出来るが、ディスクロータへの食い込み量が小さくなるため、摩擦係数が低くなる虞ある。これらのことから、本発明の摩擦材組成物においては、平均粒子径の大きい研削材と平均粒子径の小さい研削材を併用することで、軽負荷制動時から高負荷制動時までの幅広い制動条件において、高くかつ安定した摩擦係数を確保したものである。この観点から、平均粒子径の大きい研削材として平均粒子径が9〜13μmの研削材、平均粒子径の小さい研削材として平均粒子径が3〜5μmの研削材を用いる。
[Grinding material (inorganic filler)]
Abrasive material bites into the disk rotor that is the counterpart material, and is used in the friction material composition for the purpose of increasing the coefficient of friction by scratch resistance. However, if the abrasive particle size is large, it becomes the counterpart material for regular and high-load braking The amount of biting into the disk rotor is large, and the scratch resistance can be increased to increase the friction coefficient, but the biting into the disk rotor during light load braking becomes slight, and the friction coefficient is not stable. On the other hand, if the particle size of the abrasive is small, the friction coefficient during light load braking can be stabilized, but the amount of biting into the disk rotor is small, so the friction coefficient may be low. From these facts, in the friction material composition of the present invention, a wide range of braking conditions from light load braking to high load braking can be obtained by using a grinding material having a large average particle size and a grinding material having a small average particle size. In this case, a high and stable friction coefficient is ensured. From this viewpoint, an abrasive having an average particle diameter of 9 to 13 μm is used as an abrasive having a large average particle diameter, and an abrasive having an average particle diameter of 3 to 5 μm is used as an abrasive having a small average particle diameter.

上記の平均粒子径が9〜13μmの研削材の含有量を摩擦材組成物に対し1質量%以上、かつ上記の平均粒子径が3〜5μmの研削材の含有量を摩擦材組成物に対し8質量%以上とすることで、相手材であるディスクロータへの攻撃性が適切に付与され、新品時のブレーキロータ表面に残る製造時の研磨溝が研磨され、TFが定着し易い面を形成することができ、優れた摩擦係数、耐クラック性および耐摩耗性が発現することができる。一方、研削材の含有量が過多となると、相手材であるディスクロータへの攻撃性が過大となりディスクロータの摩耗を引き起こすとともに、摩擦材の強度の低下が著しくなるほか、摩擦時に脱落した研削材が研磨粉として作用して摩擦材の摩耗量が増大することとなることから、上記の平均粒子径が9〜13μmの研削材の含有量を摩擦材組成物に対し6質量%以下、かつ上記の平均粒子径が3〜5μmの研削材の含有量を摩擦材組成物に対し15質量%とすることで、上記の不具合を回避するとともに摩擦係数の安定化を図ることができる。この観点から、平均粒子径が9〜13μmの研削材の含有量を摩擦材組成物に対し1〜6質量%、平均粒子径が3〜5μmの研削材の含有量を摩擦材組成物に対し6〜15質量%とすることが好ましい。なお、平均粒子径が9〜13μmの研削材の含有量を摩擦材組成物に対し2〜5質量%、平均粒子径が3〜5μmの研削材の含有量を摩擦材組成物に対し10〜13質量%とすることがより好ましく、平均粒子径が9〜13μmの研削材の含有量を摩擦材組成物に対し3〜4質量%、平均粒子径が3〜5μmの研削材の含有量を摩擦材組成物に対し11〜12質量%とすることがさらに好ましい。   The content of the abrasive having an average particle diameter of 9 to 13 μm is 1% by mass or more based on the friction material composition, and the content of the abrasive having an average particle diameter of 3 to 5 μm is based on the friction material composition. By setting it to 8% by mass or more, aggressiveness to the disk rotor that is the counterpart material is appropriately imparted, and the polishing grooves on the surface of the brake rotor at the time of a new article are polished, thereby forming a surface on which TF is easily fixed. And excellent friction coefficient, crack resistance and wear resistance can be exhibited. On the other hand, if the abrasive content is excessive, the aggressiveness to the disk rotor, which is the counterpart material, becomes excessive, causing wear of the disk rotor, and the strength of the friction material decreases significantly. Acts as an abrasive powder and increases the wear amount of the friction material. Therefore, the content of the abrasive having the average particle diameter of 9 to 13 μm is 6% by mass or less based on the friction material composition, and By setting the content of the abrasive having an average particle size of 3 to 5 μm to 15% by mass with respect to the friction material composition, the above-mentioned problems can be avoided and the friction coefficient can be stabilized. From this viewpoint, the content of the abrasive having an average particle diameter of 9 to 13 μm is 1 to 6% by mass relative to the friction material composition, and the content of the abrasive having an average particle diameter of 3 to 5 μm is based on the friction material composition. It is preferable to set it as 6-15 mass%. The content of the abrasive having an average particle size of 9 to 13 μm is 2 to 5% by mass with respect to the friction material composition, and the content of the abrasive having an average particle size of 3 to 5 μm is 10 to 10% with respect to the friction material composition. More preferably, the content of the abrasive with an average particle diameter of 9 to 13 μm is 3 to 4 mass% with respect to the friction material composition, and the content of the abrasive with an average particle diameter of 3 to 5 μm. It is more preferable to set it as 11-12 mass% with respect to a friction material composition.

なお、上記の研削材の平均粒子径は、レーザー回折粒度分布測定などの方法を用いて測定することができる。例えば、レーザー回折/散乱式粒子径分布測定装置、商品名:LA・920(株式会社堀場製作所製)で測定することができる。   In addition, the average particle diameter of said abrasive can be measured using methods, such as a laser diffraction particle size distribution measurement. For example, it can be measured with a laser diffraction / scattering particle size distribution measuring device, trade name: LA.920 (manufactured by Horiba, Ltd.).

上記の平均粒子径が9〜13μmの研削材および平均粒子径が3〜5μmの研削材として、アルミナ等のあまりに硬い研削材を用いると、相手材であるディスクロータへの攻撃性が過大となる虞がある。このため上記の平均粒子径が9〜13μmの研削材および平均粒子径が3〜5μmの研削材としては、アルミナ等に比して硬さの小さい珪酸ジルコニウム、酸化ジルコニウム、および酸化マグネシウムのうちの1種以上を用いることが好ましい。また、平均粒子径が9〜13μmの研削材および平均粒子径が3〜5μmの研削材は、同じ材質であることが好ましい。すなわち、平均粒子径が9〜13μmの研削材として酸化ジルコニウムを用いる場合、平均粒子径が3〜5μmの研削材も酸化ジルコニウムを用いることが好ましい。なお、平均粒子径が9〜13μmの研削材として酸化ジルコニウムと酸化マグネシウムを併用して用いる場合、平均粒子径が3〜5μmの研削材も酸化ジルコニウムと酸化マグネシウムを併用して用いることができる。   When an abrasive material having an average particle diameter of 9 to 13 μm and an abrasive material having an average particle diameter of 3 to 5 μm are used, an extremely hard abrasive material such as alumina becomes excessively aggressive to the disk rotor as the counterpart material. There is a fear. For this reason, the above-mentioned abrasives having an average particle diameter of 9 to 13 μm and abrasives having an average particle diameter of 3 to 5 μm include zirconium silicate, zirconium oxide, and magnesium oxide, which are less hard than alumina. It is preferable to use one or more. Moreover, it is preferable that the abrasive with an average particle diameter of 9-13 micrometers and the abrasive with an average particle diameter of 3-5 micrometers are the same materials. That is, when zirconium oxide is used as an abrasive having an average particle diameter of 9 to 13 μm, it is preferable to use zirconium oxide for an abrasive having an average particle diameter of 3 to 5 μm. In addition, when using together a zirconium oxide and magnesium oxide as an abrasive with an average particle diameter of 9-13 micrometers, the abrasive with an average particle diameter of 3-5 micrometers can also be used together with a zirconium oxide and magnesium oxide.

[チタン酸塩(無機充填材)]
チタン酸塩は、制動によって摩擦界面に延び、TFの成分となる作用を有する。このようなチタン酸塩は、チタン酸塩の粒子径が大きいと、積極的にディスクロータ表面にTFを移着させ、高温時の摩擦係数を安定化および高温域での耐摩耗性を向上させるが、チタン酸塩の粒子径が過大となるとディスクロータ表面のTFの移着被膜が厚くなりすぎて摩擦係数が低くなる虞がある。また、チタン酸塩の粒子径が小さいと、ディスクロータ表面に移着するTFが緻密になり、低減速度の摩擦係数を安定化させるが、チタン酸塩の粒子径が微小となるとディスクロータ表面のTFの移着被膜が薄くなり、耐摩耗特性の悪化および摩擦係数の安定性の悪化が生じる虞がある。これらのことから、本発明の摩擦材組成物においては、平均粒子径の大きいチタン酸塩と平均粒子径の小さいチタン酸塩を併用することで、適度な厚さかつ緻密なTFを形成し、高くかつ安定した摩擦係数を確保したものである。この観点から、平均粒子径の大きいチタン酸塩として平均粒子径が15〜45μmのチタン酸塩、平均粒子径の小さいチタン酸塩として平均粒子径が1.5〜4.5μmのチタン酸塩を用いる。
[Titanate (inorganic filler)]
Titanate extends to the friction interface by braking and has the effect of becoming a component of TF. When the titanate has a large particle size, such titanate actively transfers TF to the surface of the disk rotor, stabilizes the friction coefficient at high temperatures, and improves the wear resistance at high temperatures. However, if the titanate particle size is excessive, the transfer film of TF on the surface of the disk rotor becomes too thick, and the friction coefficient may be lowered. Also, if the titanate particle size is small, the TF transferred to the disk rotor surface becomes dense and stabilizes the coefficient of friction of the reduction speed. However, if the titanate particle size becomes small, There is a possibility that the transfer film of TF becomes thin, resulting in deterioration of wear resistance and stability of friction coefficient. From these things, in the friction material composition of the present invention, by using a titanate having a large average particle diameter and a titanate having a small average particle diameter, an appropriate thickness and dense TF are formed, A high and stable coefficient of friction is ensured. From this viewpoint, a titanate having an average particle diameter of 15 to 45 μm as a titanate having a large average particle diameter, and a titanate having an average particle diameter of 1.5 to 4.5 μm as a titanate having a small average particle diameter. Use.

上記の平均粒子径が15〜45μmのチタン酸塩の含有量を摩擦材組成物に対し5質量%以上、かつ上記の平均粒子径が1.5〜4.5μmのチタン酸塩の含有量を摩擦材組成物に対し5質量%以上とすることで優れた摩擦係数の安定性および耐摩耗性を発現することができる。その一方で、チタン酸塩の含有量が過多となると、摩擦係数の安定性、耐クラック性が低下するとともに成形性の悪化が生じる虞があることから、上記の平均粒子径が15〜45μmのチタン酸塩の含有量を摩擦材組成物に対し15質量%以下、かつ上記の平均粒子径が1.5〜4.5μmのチタン酸塩の含有量を摩擦材組成物に対し15質量%以下とすることができる。この観点から、平均粒子径が15〜45μmのチタン酸塩の含有量を摩擦材組成物に対し5〜15質量%、平均粒子径が1.5〜4.5μmのチタン酸塩の含有量を摩擦材組成物に対し5〜15質量%とすることが好ましい。なお、平均粒子径が15〜45μmのチタン酸塩の含有量を摩擦材組成物に対し7〜13質量%、平均粒子径が1.5〜4.5μmのチタン酸塩の含有量を摩擦材組成物に対し7〜13質量%とすることがより好ましく、平均粒子径が15〜45μmのチタン酸塩の含有量を摩擦材組成物に対し9〜11質量%、平均粒子径が1.5〜4.5μmのチタン酸塩の含有量を摩擦材組成物に対し9〜11質量%とすることがさらに好ましい。   The content of titanate having an average particle size of 15 to 45 μm is 5% by mass or more based on the friction material composition, and the content of titanate having an average particle size of 1.5 to 4.5 μm By setting the content to 5% by mass or more based on the friction material composition, excellent stability of friction coefficient and wear resistance can be exhibited. On the other hand, if the content of the titanate is excessive, the stability of the friction coefficient and crack resistance are lowered and the moldability may be deteriorated. Therefore, the average particle diameter is 15 to 45 μm. The content of titanate is 15% by mass or less with respect to the friction material composition, and the content of titanate with the average particle size of 1.5 to 4.5 μm is 15% by mass or less with respect to the friction material composition. It can be. From this viewpoint, the content of titanate having an average particle size of 15 to 45 μm is 5 to 15% by mass based on the friction material composition, and the content of titanate having an average particle size of 1.5 to 4.5 μm. It is preferable to set it as 5-15 mass% with respect to a friction material composition. The content of titanate having an average particle size of 15 to 45 μm is 7 to 13% by mass with respect to the friction material composition, and the content of titanate having an average particle size of 1.5 to 4.5 μm is the friction material. It is more preferable to set it as 7-13 mass% with respect to a composition, 9-11 mass% with respect to a friction material composition, and an average particle diameter are 1.5-11 micrometer in content of an average particle diameter of 15-45 micrometers. It is more preferable that the content of titanate of ˜4.5 μm is 9 to 11% by mass with respect to the friction material composition.

上記のチタン酸塩としては、8チタン酸カリウム、6チタン酸カリウム、チタン酸リチウムカリウム、チタン酸マグネシウムカリウム等を用いることができる。ただし、チタン酸カリウムのみ含有する場合、耐摩耗性の悪化が問題となることがあり、逆にチタン酸リチウムカリウム、あるいはチタン酸マグネシウムカリウムのみ含有する場合は摩擦係数が極端に低下してしまうことが問題となることがあるため2種以上のチタン酸塩を用いることが好ましい。なお、チタン酸塩は、粒度、形状として、針状、板状、粒状、アメーバ状等のチタン酸塩を用いることができる。   As said titanate, potassium 8 titanate, potassium 6 titanate, lithium potassium titanate, magnesium potassium titanate, etc. can be used. However, when only potassium titanate is contained, deterioration of wear resistance may be a problem, and conversely, when only lithium potassium titanate or magnesium potassium titanate is contained, the friction coefficient is extremely lowered. It is preferable to use two or more kinds of titanates. The titanate may be acicular, plate-like, granular, amoeba-like titanate as the particle size and shape.

[その他の無機充填材]
前記の研削材、チタン酸塩以外の無機充填材としては、例えば、硫化錫、二硫化モリブデン、硫化鉄、硫化ビスマス、硫化亜鉛、水酸化カルシウム、酸化カルシウム、炭酸ナトリウム、炭酸カルシウム、炭酸マグネシウム、硫酸バリウム、ドロマイト、コークス、黒鉛、マイカ、酸化鉄、バーミキュライト、硫酸カルシウム、タルク、クレー、ゼオライト、ムライト、クロマイト、酸化チタン、シリカ、γ−アルミナ等の活性アルミナを用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。
[Other inorganic fillers]
Examples of the inorganic filler other than the abrasive and titanate include tin sulfide, molybdenum disulfide, iron sulfide, bismuth sulfide, zinc sulfide, calcium hydroxide, calcium oxide, sodium carbonate, calcium carbonate, magnesium carbonate, Activated alumina such as barium sulfate, dolomite, coke, graphite, mica, iron oxide, vermiculite, calcium sulfate, talc, clay, zeolite, mullite, chromite, titanium oxide, silica, γ-alumina can be used alone. Or two or more types can be used in combination.

無機充填材の総含有量は、研削材およびチタン酸塩を含め、摩擦材用組成物に対し20〜80質量%であることが好ましく、30〜80質量%であることがより好ましく40〜80質量%であることがさらに好ましい。無機充填材の含有量を20〜80質量%とすると、耐熱性の悪化を避けることができる。   The total content of the inorganic filler is preferably 20 to 80% by mass, more preferably 30 to 80% by mass, more preferably 40 to 80% by mass with respect to the friction material composition, including the abrasive and titanate. More preferably, it is mass%. When content of an inorganic filler shall be 20-80 mass%, a heat resistant deterioration can be avoided.

[有機充填材]
本発明の摩擦材組成物においては有機充填材としてゴム成分を用いてもよい。ゴム成分としては、例えば、アクリルゴム、イソプレンゴム、NBR(ニトリルブタジエンゴム)、SBR(スチレンブタジエンゴム)等が挙げられ、これらを単独でまたは2種類以上を組み合わせて使用することができる。また、カシューダストとゴム成分とを併用する場合には、カシューダストをゴム成分で被覆したものを用いてもよいが、別個に用いてもよい。また、古タイヤを破砕したタイヤゴムを単独または上記のゴムと組み合わせて使用してもよい。
[Organic filler]
In the friction material composition of the present invention, a rubber component may be used as the organic filler. Examples of the rubber component include acrylic rubber, isoprene rubber, NBR (nitrile butadiene rubber), SBR (styrene butadiene rubber) and the like, and these can be used alone or in combination of two or more. In addition, when cashew dust and a rubber component are used in combination, the cashew dust coated with the rubber component may be used, or may be used separately. Further, tire rubber obtained by crushing old tires may be used alone or in combination with the above rubber.

本発明の摩擦材組成物中における、有機充填材の含有量は、1〜20質量%であることが好ましく、1〜15質量%であることがより好ましく、2〜10質量%であることがさらに好ましい。有機充填材の含有量を1〜20質量%の範囲とすることで、摩擦材の弾性率が高くなることによる鳴き等の音振性能の悪化を避けることができ、また耐熱性の悪化、熱履歴による強度低下を避けることができる。   The content of the organic filler in the friction material composition of the present invention is preferably 1 to 20% by mass, more preferably 1 to 15% by mass, and 2 to 10% by mass. Further preferred. By setting the content of the organic filler in the range of 1 to 20% by mass, it is possible to avoid deterioration of sound vibration performance such as squeal due to an increase in the elastic modulus of the friction material, deterioration of heat resistance, heat It is possible to avoid a decrease in strength due to history.

[結合材]
本発明の摩擦材組成物は、結合材を含有する。結合材は、摩擦材組成物に含まれる有機充填材および繊維基材等を一体化して、強度を与えるものである。本実施形態の摩擦材組成物に含まれる結合材としては、摩擦材に用いられる熱硬化性樹脂を用いることができる。熱硬化性樹脂としては、例えば、フェノール樹脂、アクリルゴム変性フェノール樹脂、シリコーンゴム変性フェノール樹脂、カシュー変性フェノール樹脂、エポキシ変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂等の各種変性フェノール樹脂が挙げられ、これらを単独でまたは2種類以上を組み合わせて使用することができる。良好な耐熱性、成形性および摩擦係数を与えることから、フェノール樹脂、アクリルゴム変性フェノール樹脂、シリコーンゴム変性フェノール樹脂、アルキルベンゼン変性フェノール樹脂を用いることが好ましい。
[Binder]
The friction material composition of the present invention contains a binder. The binding material provides strength by integrating the organic filler and the fiber base material included in the friction material composition. As the binder contained in the friction material composition of the present embodiment, a thermosetting resin used for the friction material can be used. Examples of the thermosetting resin include various modified phenol resins such as phenol resin, acrylic rubber-modified phenol resin, silicone rubber-modified phenol resin, cashew-modified phenol resin, epoxy-modified phenol resin, and alkylbenzene-modified phenol resin. It can be used alone or in combination of two or more. In order to provide good heat resistance, moldability and friction coefficient, it is preferable to use a phenol resin, an acrylic rubber-modified phenol resin, a silicone rubber-modified phenol resin, or an alkylbenzene-modified phenol resin.

本発明の摩擦材組成物における、結合材の含有量は、5〜20質量%であることが好ましく、5〜15質量%であることがより好ましく、5〜10質量%であることがさらに好ましい。結合材の含有量を5〜20質量%の範囲とすることで、摩擦材の強度低下をより抑制でき、また、摩擦材の気孔率が減少し、弾性率が高くなることによる鳴き等の音振性能悪化を抑制できる。   The content of the binder in the friction material composition of the present invention is preferably 5 to 20% by mass, more preferably 5 to 15% by mass, and further preferably 5 to 10% by mass. . By setting the content of the binder in the range of 5 to 20% by mass, it is possible to further suppress the strength reduction of the friction material, reduce the porosity of the friction material, and increase the elastic modulus. Vibration performance deterioration can be suppressed.

[繊維基材]
本発明の摩擦材組成物は繊維基材を含有する。繊維基材は摩擦材において補強作用を示すものである。繊維基材としては、有機繊維、無機繊維、金属繊維等が挙げられる。
[Fiber base]
The friction material composition of the present invention contains a fiber base material. The fiber base material exhibits a reinforcing action in the friction material. Examples of the fiber base material include organic fibers, inorganic fibers, and metal fibers.

本発明の摩擦材組成物は有機繊維としてアラミド繊維、アクリル繊維、セルロース繊維、フェノール樹脂繊維等を用いることができ、これらを単独でまたは2種類以上を組み合わせて使用することができる。この中でも、耐熱性、補強効果の観点から、アラミド繊維を用いることが好ましい。   In the friction material composition of the present invention, an aramid fiber, an acrylic fiber, a cellulose fiber, a phenol resin fiber, or the like can be used as an organic fiber, and these can be used alone or in combination of two or more. Among these, it is preferable to use an aramid fiber from the viewpoint of heat resistance and a reinforcing effect.

無機繊維としては、ウォラストナイト、セラミック繊維、生分解性セラミック繊維、鉱物繊維、炭素繊維、ガラス繊維、チタン酸カリウム繊維、アルミノシリケート繊維等を用いることができ、1種または2種類以上を組み合わせて用いることができるが、人体への有害性の観点から、吸引性のチタン酸カリウム繊維等を含有しないことが好ましい。   As the inorganic fiber, wollastonite, ceramic fiber, biodegradable ceramic fiber, mineral fiber, carbon fiber, glass fiber, potassium titanate fiber, aluminosilicate fiber, etc. can be used, one or a combination of two or more types However, from the viewpoint of harm to the human body, it is preferable not to contain attractive potassium titanate fibers or the like.

なお、ここでいう鉱物繊維とは、スラグウール等の高炉スラグ、バサルトファイバー等の玄武岩、その他の天然岩石等を主成分として溶融紡糸した人造無機繊維であり、Al元素を含む天然鉱物であることがより好ましい。具体的には、SiO2、Al2O3、CaO、MgO、FeO、Na2O等が含まれるもの、またはこれら化合物が1種または2種以上含有されるものを鉱物繊維として用いることができ、これらのうちAl元素を含むものがより好ましい。摩擦材組成物中に含まれる鉱物繊維全体の平均繊維長が大きくなるほど摩擦組成物中の各成分との接着強度が低下する傾向があるため、鉱物繊維全体の平均繊維長は500μm以下が好ましく、より好ましくは100〜400μmである。ここで、平均繊維長とは、該当する全ての繊維の長さの平均値を示した数平均繊維長のことをいう。例えば200μmの平均繊維長とは、摩擦材組成物原料として用いる鉱物繊維を無作為に50個選択し、光学顕微鏡で繊維長を測定し、その平均値が200μmであることを示す。 The mineral fiber referred to here is a man-made inorganic fiber melt-spun mainly composed of blast furnace slag such as slag wool, basalt such as basalt fiber, and other natural rocks, and is a natural mineral containing Al element. Is more preferable. Specifically, those containing SiO 2 , Al 2 O 3, CaO, MgO, FeO, Na 2 O, etc., or those containing one or more of these compounds can be used as the mineral fiber, Among these, those containing Al element are more preferable. Since the adhesive strength with each component in the friction composition tends to decrease as the average fiber length of the entire mineral fiber contained in the friction material composition increases, the average fiber length of the entire mineral fiber is preferably 500 μm or less, More preferably, it is 100-400 micrometers. Here, the average fiber length refers to the number average fiber length indicating the average value of the lengths of all corresponding fibers. For example, the average fiber length of 200 μm indicates that 50 mineral fibers used as a friction material composition raw material are randomly selected, the fiber length is measured with an optical microscope, and the average value is 200 μm.

本発明で用いられる鉱物繊維は、人体有害性の観点で生体溶解性であることが好ましい。ここでいう生体溶解性の鉱物繊維とは、人体内に取り込まれた場合でも短時間で一部分解され体外に排出される特徴を有する鉱物繊維である。具体的には、化学組成がアルカリ酸化物、アルカリ土類酸化物総量(ナトリウム、カリウム、カルシウム、マグネシウム、バリウムの酸化物の総量)が18質量%以上で、かつ呼吸による短期バイオ永続試験で、20μm以上の繊維の質量半減期が40日以内または腹膜内試験で過度の発癌性の証拠がないかまたは長期呼吸試験で関連の病原性および腫瘍発生がないことを満たす繊維を示す(EU指令97/69/ECのNota Q(発癌性適用除外))。このような生体分解性鉱物繊維としては、SiO2−Al23−CaO−MgO−FeO−Na2O系繊維等が挙げられ、SiO2、Al23、CaO、MgO、FeO、Na2O等を任意の組み合わせで含有した繊維が挙げられる。市販品としてはLAPINUS FIBERS B.V.製のRoxulシリーズ(「Roxul」は、登録商標。)等が挙げられる。「Roxul」には、SiO2、Al23、CaO、MgO、FeO、Na2O等が含まれる。 The mineral fiber used in the present invention is preferably biosoluble from the viewpoint of human harm. The term “biosoluble mineral fiber” as used herein refers to a mineral fiber having a characteristic that even if it is taken into the human body, it is partially decomposed and discharged outside the body in a short time. Specifically, the chemical composition is alkali oxide, alkaline earth oxide total amount (total amount of oxides of sodium, potassium, calcium, magnesium, barium) is 18% by mass or more, and in a short-term biopermanent test by respiration, A fiber with a mass half-life of 20 μm or more shows a fiber satisfying the absence of excessive carcinogenicity in an intraperitoneal test within 40 days or the absence of associated pathogenicity and tumor development in a long-term respiratory test (EU Directive 97 / 69 / EC Nota Q (carcinogenic exclusion)). Examples of such biodegradable mineral fibers include SiO 2 —Al 2 O 3 —CaO—MgO—FeO—Na 2 O fibers and the like, and include SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na. Examples thereof include fibers containing 2 O or the like in any combination. Examples of commercially available products include Roxul series (“Roxul” is a registered trademark) manufactured by LAPINUS FIBERS BV. “Roxul” includes SiO 2 , Al 2 O 3 , CaO, MgO, FeO, Na 2 O and the like.

金属繊維としては鉄系繊維、チタン繊維、亜鉛繊維、アルミ繊維等を用いることができ、1種または2種類以上を組み合わせて用いることができる。   As the metal fiber, iron-based fiber, titanium fiber, zinc fiber, aluminum fiber or the like can be used, and one kind or a combination of two or more kinds can be used.

繊維基材は、摩擦材組成物中に5〜40質量%含有することが好ましく、5〜35質量%含有することがより好ましく、6〜30質量%含有することがさらに好ましい。繊維基材の含有量を5〜40質量%とすると、効き特性の著しい低下等の弊害を与えることなく、適度な補強効果を摩擦材に付与する効果がある。   The fiber base material is preferably contained in the friction material composition in an amount of 5 to 40% by mass, more preferably 5 to 35% by mass, and further preferably 6 to 30% by mass. When the content of the fiber base is 5 to 40% by mass, there is an effect of imparting an appropriate reinforcing effect to the friction material without causing adverse effects such as a significant decrease in effectiveness characteristics.

[金属粉]
また、本発明の摩擦材組成物には、金属粉を配合することができる。金属粉としては、例えば、鉄粉、錫粉、亜鉛粉、アルミニウム粉等、およびそれらの合金粉等が挙げられ、これらを単独でまたは2種類以上を組み合わせて使用できる。金属粉の含有量は合計で0.5〜5質量%であることが好ましく、0.5〜4質量%であることがより好ましく、1〜4質量%であることがさらに好ましい。金属粉の含有量を合計で0.5質量%以上とすることで、金属粉がディスクロータ表面にTFを形成するとともに、新品時ディスクロータの研磨溝を研磨する、あるいは埋めることで、有機充填材およびチタン酸塩等、および金属粉によるTFが定着し易いディスクロータ面を生成し、軽負荷制動時の摩擦係数が安定する。また、金属粉の合計量を5質量%以下とすることで、過剰な金属間凝着等を抑制し、摩擦材、およびディスクロータの極端な摩耗悪化を避けることができる。
[Metal powder]
Moreover, metal powder can be mix | blended with the friction material composition of this invention. Examples of the metal powder include iron powder, tin powder, zinc powder, aluminum powder, and alloy powder thereof, and these can be used alone or in combination of two or more. The total content of the metal powder is preferably 0.5 to 5% by mass, more preferably 0.5 to 4% by mass, and further preferably 1 to 4% by mass. By making the content of metal powder 0.5% by mass or more in total, the metal powder forms TF on the surface of the disk rotor, and polishes or fills the polishing grooves of the disk rotor when new, thereby filling organically. A disk rotor surface on which TF due to a material, titanate, etc. and metal powder is easily fixed is generated, and the friction coefficient during light load braking is stabilized. Moreover, by making the total amount of metal powder 5 mass% or less, excessive adhesion between metals etc. can be suppressed and extreme wear deterioration of a friction material and a disk rotor can be avoided.

また、本発明の摩擦材組成物に用いることができる金属粉は、極端な特性の悪化を招かない限りであれば、粒度、形状等の制約を受けるものではない。例えば、形状としては一般的なアトマイズ法等で製造された球状であっても、一般的な切削法等で製造された柱状等であっても問題ない。また、金属としての純度は90%以上であることが好ましいが、金属粉、および摩擦材組成物の長期保管等により金属粉表面が金属酸化物等に変化しても問題ない。   Further, the metal powder that can be used in the friction material composition of the present invention is not subject to restrictions such as particle size and shape as long as it does not cause extreme deterioration of properties. For example, the shape may be a spherical shape manufactured by a general atomizing method or the like, or a columnar shape manufactured by a general cutting method or the like. Moreover, although the purity as a metal is preferably 90% or more, there is no problem even if the surface of the metal powder is changed to a metal oxide or the like by long-term storage of the metal powder and the friction material composition.

[その他の成分]
また、本発明の摩擦材組成物は、前記の材料以外に、必要に応じてその他の材料を配合することができる。
[Other ingredients]
Moreover, the friction material composition of this invention can mix | blend other materials as needed other than the said material.

[摩擦材および摩擦部材]
本発明の摩擦材組成物は、自動車等のディスクブレーキパッド、ブレーキライニング等の摩擦材としてまたは本実施形態の摩擦材組成物を目的形状に成形、加工、貼り付け等の工程を施すことによりクラッチフェーシング、電磁ブレーキ、保持ブレーキ等の摩擦材としても使用することができる。
[Friction material and friction member]
The friction material composition of the present invention can be used as a friction material for disc brake pads, brake linings, etc. of automobiles, or by subjecting the friction material composition of the present embodiment to a desired shape by performing steps such as molding, processing, and pasting. It can also be used as a friction material for facings, electromagnetic brakes and holding brakes.

本発明の摩擦材組成物は、摩擦面となる摩擦部材そのものとして用いて摩擦材を得ることができる。それを用いた摩擦材としては、例えば、下記の構成などが挙げられる。
(1)摩擦部材のみの構成
(2)裏金と、該裏金の上に形成させ、摩擦面となる本発明の摩擦材組成物からなる摩擦部材とを有する構成
(3)上記(2)の構成において、裏金と摩擦部材との間に、裏金の接着効果を高めるための表面改質を目的としたプライマー層、裏金と摩擦部材の接着を目的とした接着層をさらに介在させた構成、等が挙げられる。
The friction material composition of the present invention can be used as a friction member itself that becomes a friction surface to obtain a friction material. Examples of the friction material using the same include the following configurations.
(1) Configuration of only friction member (2) Configuration having a back metal and a friction member formed on the back metal and made of the friction material composition of the present invention to be a friction surface (3) Configuration of (2) above In the structure, a primer layer for the purpose of surface modification for enhancing the adhesion effect of the back metal between the back metal and the friction member, a configuration in which an adhesive layer for the purpose of bonding the back metal and the friction member is further interposed, etc. Can be mentioned.

上記裏金は、摩擦部材の機械的強度の向上のために、通常、摩擦部材として用いるものであり、材質としては、金属または繊維強化プラスチック等を用いることができ、例えば、鉄、ステンレス、無機繊維強化プラスチック、炭素繊維強化プラスチックが挙げられる。プライマー層および接着層としては、通常、ブレーキシュー等の摩擦部材に用いられるものであればよい。   The backing metal is usually used as a friction member in order to improve the mechanical strength of the friction member. As the material, metal or fiber reinforced plastic can be used. For example, iron, stainless steel, inorganic fiber Examples include reinforced plastic and carbon fiber reinforced plastic. As the primer layer and the adhesive layer, those usually used for friction members such as brake shoes may be used.

本発明の摩擦材組成物は、一般に使用されている方法を用いて摩擦材を製造することができ、本発明の摩擦材組成物を加熱加圧成形して製造することができる。詳細には、例えば、本実施形態の摩擦材組成物をレーディゲミキサー(「レーディゲ」は、登録商標。)、加圧ニーダー、アイリッヒミキサー(「アイリッヒ」は、登録商標。)等の混合機を用いて均一に混合し、この混合物を成形金型にて予備成形し、得られた予備成形物を成形温度130〜160℃、成形圧力20〜50MPa、成形時間2〜10分間の条件で成形し、得られた成形物を150〜250℃で2〜10時間熱処理することにより本実施形態の摩擦材を得ることができる。なお、必要に応じて塗装、スコーチ処理、研磨処理等を行ってもよい。   The friction material composition of the present invention can be produced by using a generally used method, and can be produced by heating and pressing the friction material composition of the present invention. In detail, for example, the friction material composition of the present embodiment is mixed with a Laedige mixer (“Laedige” is a registered trademark), a pressure kneader, an Eirich mixer (“Eirich” is a registered trademark), or the like. The mixture is uniformly mixed using a machine, this mixture is preformed in a molding die, and the resulting preform is molded under conditions of a molding temperature of 130 to 160 ° C., a molding pressure of 20 to 50 MPa, and a molding time of 2 to 10 minutes. The friction material of this embodiment can be obtained by molding and heat-treating the resulting molded product at 150 to 250 ° C. for 2 to 10 hours. In addition, you may perform a coating, a scorch process, a grinding | polishing process, etc. as needed.

本発明の摩擦材組成物は、摩擦係数の安定性および高温での耐摩耗性等に優れるため、ディスクブレーキパッド、ブレーキライニング等の摩擦部材の「上張り材」として有用であり、さらに摩擦部材の「下張り材」として成形して用いることもできる。なお、「上張り材」とは、摩擦部材の摩擦面となる摩擦材であり、「下張り材」とは、摩擦部材の摩擦面となる摩擦材と裏金との間に介在する、摩擦材と裏金との接着部付近の剪断強度、耐クラック性向上を目的とした層のことである。   Since the friction material composition of the present invention is excellent in stability of the friction coefficient and wear resistance at high temperatures, it is useful as a “upper material” of friction members such as disc brake pads and brake linings. It can also be molded and used as an “underlaying material”. The “upper material” is a friction material that becomes the friction surface of the friction member, and the “underlay material” is a friction material that is interposed between the friction material that becomes the friction surface of the friction member and the back metal. It is a layer for the purpose of improving the shear strength and crack resistance in the vicinity of the adhesion part with the back metal.

以下、実施例により本発明をさらに詳細に説明する。本発明は何らこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. The present invention is not limited to these.

[ディスクブレーキパッドの作製]
表1および表2に示す配合比率にしたがって材料を配合し、実施例および比較例の摩擦材組成物を得た。また研削材Aは平均粒子径4mmの研削材、研削材Bは平均粒子径11mmの研削材であり、チタン酸塩Aは平均粒子径3mmのチタン酸塩、チタン酸塩Bは平均粒子径30mmのチタン酸塩である。
[Production of disc brake pads]
The materials were blended according to the blending ratios shown in Table 1 and Table 2, and the friction material compositions of Examples and Comparative Examples were obtained. The abrasive A is an abrasive with an average particle diameter of 4 mm, the abrasive B is an abrasive with an average particle diameter of 11 mm, the titanate A is a titanate with an average particle diameter of 3 mm, and the titanate B is an average particle diameter of 30 mm. The titanate.

この摩擦材組成物をレーディゲミキサー(株式会社マツボー製、商品名:レーディゲミキサーM20)で混合し、この混合物を成形プレス(王子機械工業株式会社製)で予備成形し、得られた予備成形物を成形温度145℃、成形圧力35MPa、成形時間5分間の条件で成形プレス(三起精工株式会社製)を用いて、須川株式会社製の裏金(鉄製)とともに加熱加圧成形し、得られた成形品を200〜250℃で4〜6時間熱処理し、ロータリー研磨機を用いて研磨し、必要に応じて500℃のスコーチ処理を行って、ディスクブレーキパッド(摩擦材の厚さ9.5mm、摩擦材投影面積30cm2)を得た。 This friction material composition was mixed with a Laedige mixer (manufactured by Matsubo Co., Ltd., trade name: Ladige mixer M20), and this mixture was preformed with a molding press (manufactured by Oji Machinery Co., Ltd.), and obtained. Using a molding press (manufactured by Sanki Seiko Co., Ltd.) under the conditions of a molding temperature of 145 ° C., a molding pressure of 35 MPa, and a molding time of 5 minutes, the preform is heated and pressure-molded together with a backing metal (made of iron) manufactured by Sugawa Co., Ltd. The obtained molded product was heat-treated at 200 to 250 ° C. for 4 to 6 hours, polished using a rotary polishing machine, and subjected to a scorch treatment at 500 ° C. as necessary to obtain a disc brake pad (thickness of friction material 9). 0.5 mm, friction material projected area 30 cm 2 ).

[摩擦係数の評価]
前記の方法で作製した実施例および比較例のディスクブレーキパッドを、ブレーキダイナモ試験機(新日本特機株式会社製)を用いて摩擦係数の評価を行った。摩擦係数の評価にあたっては、一般的なハンマーヘッド型キャリパーおよび株式会社キリウ製ベンチレーテッドディスクロータ(FC250(ねずみ鋳鉄))を用い、表3に示す車速(20km/h,50km/h)および減速度(2.0m/s2,6.0m/s2)、ブレーキ開始時のパッド温度(IBT(Initial Brake Temperature):80℃,300℃,400℃)にて摩擦係数を測定し、摩擦係数が0.375以上かつ0.435未満のものを優秀として「◎」、0.435以上かつ0.465未満を良好として「○」、0.375未満または0.475以上を不適として「×」として評価結果を表1および表2に併せて記載した。
[Evaluation of friction coefficient]
The friction coefficient of the disc brake pads of Examples and Comparative Examples produced by the above methods was evaluated using a brake dynamo tester (manufactured by Shin Nippon Toki Co., Ltd.). In evaluating the friction coefficient, a general hammerhead caliper and a ventilated disc rotor (FC250 (gray cast iron)) manufactured by Kiriu Co., Ltd. were used, and the vehicle speeds (20 km / h, 50 km / h) and reduction shown in Table 3 were used. Measure the friction coefficient at the speed (2.0 m / s 2 , 6.0 m / s 2 ) and the pad temperature (IBT (Initial Brake Temperature): 80 ° C, 300 ° C, 400 ° C) at the start of braking. Is 0.375 or more and less than 0.435 as "Excellent", 0.435 or more and less than 0.465 as "Good", less than 0.375 or 0.475 or more as inappropriate The evaluation results are also shown in Table 1 and Table 2.

Figure 2018162385
Figure 2018162385

Figure 2018162385
Figure 2018162385

Figure 2018162385
Figure 2018162385

表1および表2より、平均粒子径の大きい研削材と平均粒子径の小さい研削材を併せて含有するとともに、平均粒子径の大きいチタン酸塩と平均粒子径の小さいチタン酸塩を併せて含有する実施例1〜6の摩擦材はいずれも良好な摩擦係数を示すことがわかる。一方、平均粒子径の大きい研削材と平均粒子径の小さい研削材のいずれか一方、または平均粒子径の大きいチタン酸塩と平均粒子径の小さいチタン酸塩のいずれか一方しか含有しない比較例1〜4の摩擦材は300℃時摩擦係数、400℃時摩擦係数および低速・低減速時摩擦係数のいずれかの摩擦係数が悪いことがわかる。以上より、平均粒子径の大きい研削材と平均粒子径の小さい研削材を併せて含有するとともに、平均粒子径の大きいチタン酸塩と平均粒子径の小さいチタン酸塩を併せて含有することの効果が確認された。   From Tables 1 and 2, it contains both a large average particle size abrasive and a small average particle size abrasive, and a large average particle size titanate and a small average particle size titanate. It can be seen that all of the friction materials of Examples 1 to 6 exhibit a good coefficient of friction. On the other hand, Comparative Example 1 containing only one of an abrasive having a large average particle diameter and an abrasive having a small average particle diameter, or a titanate having a large average particle diameter and a titanate having a small average particle diameter. It can be seen that the friction materials of ˜4 have a poor friction coefficient at 300 ° C., a friction coefficient at 400 ° C., and a low / low speed friction coefficient. As mentioned above, while containing a grinding material with a large average particle diameter and a grinding material with a small average particle diameter together, the effect of containing a titanate with a large average particle diameter and a titanate with a small average particle diameter together Was confirmed.

本発明の摩擦材組成物および該摩擦材組成物により得られる摩擦材は、環境有害性、および人体有害性が低い組成としつつ、安定した摩擦係数を発現するものであり、自動車等の制動に用いられるディスクブレーキパッド、ブレーキライニング等の摩擦材に好適なものである。   The friction material composition of the present invention and the friction material obtained from the friction material composition exhibit a stable coefficient of friction while having a low environmental hazard and a low human hazard composition. It is suitable for friction materials such as disc brake pads and brake linings used.

Claims (5)

繊維基材、無機充填材、有機充填材および結合材を含有し、
銅量が0.5質量%以下の摩擦材であって、
前記無機充填材として、平均粒子径が3〜5μmの研削材と、平均粒子径が9〜13μmの研削材を含むとともに、
前記無機充填材として、平均粒子径が1.5〜4.5μmのチタン酸塩と、平均粒子径が15〜45μmのチタン酸塩を含む摩擦材組成物。
Contains fiber substrate, inorganic filler, organic filler and binder,
A friction material having a copper content of 0.5% by mass or less,
As the inorganic filler, including an abrasive having an average particle diameter of 3 to 5 μm and an abrasive having an average particle diameter of 9 to 13 μm,
A friction material composition comprising a titanate having an average particle diameter of 1.5 to 4.5 μm and a titanate having an average particle diameter of 15 to 45 μm as the inorganic filler.
前記平均粒子径が3〜5μmの研削材および前記平均粒子径が9〜13μmの研削材が酸化ジルコニウム、珪酸ジルコニウム、酸化マグネシウムのうちの1種以上である請求項1に記載の摩擦材組成物。   The friction material composition according to claim 1, wherein the abrasive having an average particle diameter of 3 to 5 µm and the abrasive having an average particle diameter of 9 to 13 µm are at least one of zirconium oxide, zirconium silicate, and magnesium oxide. . 前記平均粒子径が3〜5μmの研削材および前記平均粒子径が9〜13μmの研削材が同じ材質である請求項1または2に記載の摩擦材組成物。   The friction material composition according to claim 1 or 2, wherein the abrasive having an average particle diameter of 3 to 5 µm and the abrasive having an average particle diameter of 9 to 13 µm are the same material. 摩擦材組成物全体に対し、前記平均粒子径が3〜5μmの研削材を1〜6質量%含有するとともに、前記平均粒子径が9〜13μmの研削材を8〜15質量%含有する請求項1〜3のいずれかに記載の摩擦材組成物。   The abrasive material containing 1 to 6% by mass of an abrasive having an average particle diameter of 3 to 5 μm and 8 to 15% by mass of an abrasive having an average particle diameter of 9 to 13 μm with respect to the entire friction material composition. The friction material composition in any one of 1-3. 摩擦材組成物全体に対し、前記平均粒子径が1.5〜4.5μmのチタン酸塩を5〜15質量%含有するとともに、前記平均粒子径が15〜45μmのチタン酸塩を5〜15質量%含有する請求項1〜4のいずれかに記載の摩擦材組成物。   While containing 5-15 mass% of the titanate having an average particle diameter of 1.5 to 4.5 μm with respect to the entire friction material composition, the titanate having an average particle diameter of 15 to 45 μm is contained in 5 to 15%. The friction material composition according to any one of claims 1 to 4, which is contained by mass%.
JP2017060358A 2017-03-27 2017-03-27 Friction material composition, and friction material and friction member using the friction material composition Pending JP2018162385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017060358A JP2018162385A (en) 2017-03-27 2017-03-27 Friction material composition, and friction material and friction member using the friction material composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017060358A JP2018162385A (en) 2017-03-27 2017-03-27 Friction material composition, and friction material and friction member using the friction material composition

Publications (1)

Publication Number Publication Date
JP2018162385A true JP2018162385A (en) 2018-10-18

Family

ID=63859146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017060358A Pending JP2018162385A (en) 2017-03-27 2017-03-27 Friction material composition, and friction material and friction member using the friction material composition

Country Status (1)

Country Link
JP (1) JP2018162385A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121504A1 (en) * 2018-12-14 2020-06-18 日立化成株式会社 Frictional member, frictional material composition for underlay material and underlay material
WO2021256338A1 (en) 2020-06-16 2021-12-23 日清紡ブレーキ株式会社 Friction pair
WO2021256337A1 (en) 2020-06-16 2021-12-23 日清紡ブレーキ株式会社 Friction pair
WO2021256336A1 (en) 2020-06-16 2021-12-23 日清紡ブレーキ株式会社 Friction pair

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017488A1 (en) * 2014-08-01 2016-02-04 日清紡ブレーキ株式会社 Friction material
JP2017002186A (en) * 2015-06-10 2017-01-05 日立化成株式会社 Friction material composition, friction material and friction member using friction material composition

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016017488A1 (en) * 2014-08-01 2016-02-04 日清紡ブレーキ株式会社 Friction material
JP2017002186A (en) * 2015-06-10 2017-01-05 日立化成株式会社 Friction material composition, friction material and friction member using friction material composition

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020121504A1 (en) * 2018-12-14 2020-06-18 日立化成株式会社 Frictional member, frictional material composition for underlay material and underlay material
JPWO2020121504A1 (en) * 2018-12-14 2021-09-30 昭和電工マテリアルズ株式会社 Friction member, friction material composition for underlaying material and underlaying material
JP7184094B2 (en) 2018-12-14 2022-12-06 昭和電工マテリアルズ株式会社 Friction member, friction material composition for underlay material, and underlay material
WO2021256338A1 (en) 2020-06-16 2021-12-23 日清紡ブレーキ株式会社 Friction pair
WO2021256337A1 (en) 2020-06-16 2021-12-23 日清紡ブレーキ株式会社 Friction pair
WO2021256336A1 (en) 2020-06-16 2021-12-23 日清紡ブレーキ株式会社 Friction pair

Similar Documents

Publication Publication Date Title
JP6558465B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5051330B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5979003B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP6226042B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP5358949B2 (en) Friction material composition and friction material using the same
JP6610014B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP5790175B2 (en) Non-asbestos friction material composition
JP6592976B2 (en) Friction material composition, friction material using friction material composition, and friction member
WO2012066966A1 (en) Non-asbestos friction material composition, friction material using same, and friction member
JPWO2012066965A1 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP7169981B2 (en) Friction material composition, friction material and friction member using friction material composition
JP7240424B2 (en) Friction material composition, friction material and friction member
JP5263454B2 (en) Non-asbestos friction material composition, friction material and friction member using the same
JP2018162385A (en) Friction material composition, and friction material and friction member using the friction material composition
JP2018172496A (en) Friction material composition
JP6440947B2 (en) Friction material composition, friction material using friction material composition, and friction member
JP6490936B2 (en) Friction material composition, friction material and friction member using the friction material composition
JP2018131479A (en) Friction material composition, friction material using friction material composition, and friction member
WO2020089979A1 (en) Friction member, composition for friction material, friction material, and vehicle
WO2019151390A1 (en) Friction material, friction material composition, friction member, and vehicle
JP6828791B2 (en) Friction material composition, friction material and friction member using friction material composition
JP2019059941A (en) Friction material composition, friction material using friction material composition and friction member
JP7642995B2 (en) Friction member, friction material composition, friction material and vehicle
JP7464039B2 (en) Friction member, friction material composition, friction material and vehicle
JP2020094220A (en) Friction material composition, friction material using friction material composition, and friction member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20210204

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210608