[go: up one dir, main page]

JP2018156965A - Insulating film for capacitor, and film capacitor using the same - Google Patents

Insulating film for capacitor, and film capacitor using the same Download PDF

Info

Publication number
JP2018156965A
JP2018156965A JP2017049857A JP2017049857A JP2018156965A JP 2018156965 A JP2018156965 A JP 2018156965A JP 2017049857 A JP2017049857 A JP 2017049857A JP 2017049857 A JP2017049857 A JP 2017049857A JP 2018156965 A JP2018156965 A JP 2018156965A
Authority
JP
Japan
Prior art keywords
film
capacitor
insulating film
cellulose resin
capacitors
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017049857A
Other languages
Japanese (ja)
Inventor
片木 秀行
Hideyuki Kataki
秀行 片木
遼 ▲高▼橋
遼 ▲高▼橋
Ryo Takahashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Corp
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2017049857A priority Critical patent/JP2018156965A/en
Publication of JP2018156965A publication Critical patent/JP2018156965A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Inorganic Insulating Materials (AREA)
  • Insulating Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an insulating film for a capacitor, such as a cellulose film for a film capacitor, which has a high relative dielectric constant, a high insulating property, and high intensity and causes no foaming nor whitening, which enables materialization of downsizing of the film capacitor as used in a hybrid electric vehicle, a wind power/solar photovoltaic generation, industry equipment, etc., and which can make contribution to energy saving, and environmental measures; and the film capacitor using the insulating film.SOLUTION: An insulating film for a capacitor comprises cellulose resin, of which the total light transmittance is 85% or more and a film thickness is 10 μm or less. The insulating film preferably comprises an inorganic filler. It is preferred that the cellulose resin be one having a part of a hydroxyl group subjected to modification of any of acetylation, propionylation, and butyrylation. A film capacitor is arranged by using the insulating film for a capacitor.SELECTED DRAWING: None

Description

本発明は、透明性の高いコンデンサ用絶縁フィルム及びそれを用いたフィルムコンデンサに関する。   The present invention relates to a highly transparent insulating film for a capacitor and a film capacitor using the same.

近年、省エネ化に貢献するハイブリッド・電気自動車や風力・太陽光発電、産業機器等のインバータには高耐圧、高出力化の点で有利なフィルムコンデンサが搭載されている。近年インバータの大容量化が進み、フィルムコンデンサがインバータの体積に占める占有率が高くなっており、フィルムコンデンサの小型化要求がある。   In recent years, inverters for hybrid / electric vehicles, wind / solar power generation, industrial equipment, etc. that contribute to energy saving have been equipped with film capacitors that are advantageous in terms of high voltage resistance and high output. In recent years, the capacity of inverters has been increased, and the occupation ratio of film capacitors to the volume of inverters has increased. Thus, there is a demand for miniaturization of film capacitors.

フィルムコンデンサを小型化する手段には、フィルムの薄膜化がある。現在フィルムコンデンサ用フィルムとしては、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)やその他のエンプラ材料が主流で、中でもPPは比誘電率が2.2と有機フィルム材料としては比較的高く、延伸による薄膜フィルム化の加工性にも優れ、最も多く使用されている。   One means for reducing the size of the film capacitor is to make the film thinner. Currently, polyethylene terephthalate (PET), polypropylene (PP), and other engineering plastic materials are the mainstream as film for film capacitors. Above all, PP has a relatively high dielectric constant of 2.2 and is a relatively high organic film material. It is excellent in processability for film formation and is most often used.

フィルムコンデンサに使用されるフィルムの膜厚は5〜6μmの厚さが主流で、小型化に向け、現在では厚さ3〜4μmの製品が最先端である。しかし薄膜化は背反特性として耐電圧特性が低下して、コンデンサの性能が低下するため限界がある。   The main film thickness used for film capacitors is 5 to 6 μm, and products with a thickness of 3 to 4 μm are currently at the forefront of miniaturization. However, there is a limit to the reduction in thickness because the withstand voltage characteristic is lowered as a contradiction characteristic and the performance of the capacitor is lowered.

もうひとつのフィルムコンデンサを小型化する方針として、使用するフィルムの高誘電率化がある。コンデンサ体積は使用するフィルムの誘電率に反比例することが知られており、フィルムの比誘電率を2倍にすることにより、同一の静電容量でフィルムコンデンサの体積は半分になると試算される。   Another policy for miniaturizing film capacitors is to increase the dielectric constant of the film used. It is known that the capacitor volume is inversely proportional to the dielectric constant of the film to be used, and by doubling the relative dielectric constant of the film, it is estimated that the volume of the film capacitor is halved with the same capacitance.

フィルム材料は多様にあり、その中でアクリル樹脂、メラミン樹脂、アルキド樹脂、ウレタン樹脂、エポキシ樹脂、ポリエチレン樹脂、ポリプロピレン樹脂、セルロース樹脂等の合成樹脂を加工してなるフィルム材料が主として挙げられる。   There are various film materials, and among them, film materials obtained by processing synthetic resins such as acrylic resins, melamine resins, alkyd resins, urethane resins, epoxy resins, polyethylene resins, polypropylene resins, and cellulose resins are mainly mentioned.

中でもセルロース樹脂は、樹脂骨格や変性量によって差はあるものの、比誘電率は3〜7と高く、またその他の樹脂と比較して高い強度を有するため、フィルムコンデンサ製造工程、特に捲回工程における製造裕度も高く、有用な材料である。また、セルロース樹脂は、天然素材を原料とした合成樹脂であり、近年騒がれる石油資源枯渇や環境悪化を起こさず、環境対応に貢献する材料である。   Among them, although the cellulose resin has a difference depending on the resin skeleton and the amount of modification, the relative dielectric constant is as high as 3 to 7, and since it has a high strength compared with other resins, in the film capacitor manufacturing process, particularly in the winding process. It has a high manufacturing margin and is a useful material. Cellulose resin is a synthetic resin made from a natural material, and contributes to the environment without causing the recent depletion of petroleum resources or environmental degradation.

セルロースフィルムの実用化例としては、写真ネガフィルム用支持フィルム等があるが、フィルムコンデンサへの応用に関する実用化例はない。   Examples of practical use of the cellulose film include a support film for a photographic negative film, but there is no practical example of application to a film capacitor.

セルロースフィルムの加工方法は、セルロース固形樹脂を溶剤に溶解したワニスを塗工・乾燥して得るもので、一部りん系可塑剤を添加してフィルムを得ている(例えば、特許文献1参照)。溶剤にはアセトンとエーテルの混合系を使用した例があり、膜厚は数十μm〜数百μmの範囲である。   The processing method of a cellulose film is obtained by coating and drying a varnish obtained by dissolving a cellulose solid resin in a solvent, and a film is obtained by adding a part of a phosphorus plasticizer (for example, see Patent Document 1). . There is an example in which a mixed system of acetone and ether is used as the solvent, and the film thickness is in the range of several tens μm to several hundreds μm.

特開平07−032391号公報Japanese Unexamined Patent Publication No. 07-032391

フィルムコンデンサ用途におけるフィルムは、コンデンサの高容量化のために薄膜化が進み、数μmレベルの厚さのフィルムが製品として実用化されている。セルロースフィルムを上記例に示したワニスを用いて薄膜塗工した場合、加熱乾燥工程で溶剤の揮発が急激に起こるため、発泡しフィルム表面に凹凸が発生し、光散乱の影響でフィルムが白化する。表面凹凸は、コンデンサ特性において、絶縁性の低下や容量の低下を招くため、低減、好ましくは撲滅する必要がある。   Films for film capacitor applications have been made thinner to increase the capacity of capacitors, and films with a thickness of several μm have been put into practical use as products. When thin film coating is applied to the cellulose film using the varnish shown in the above example, the solvent volatilization occurs abruptly in the heat-drying process, so foaming occurs and the film surface is uneven, and the film whitens due to light scattering. . The surface irregularities cause a decrease in insulation and a decrease in capacitance in the capacitor characteristics, and therefore it is necessary to reduce, preferably eliminate.

上記実情に鑑み、本発明は、発泡白化のない高比誘電率、高絶縁性、高強度を有するフィルムコンデンサ用セルロースフィルムであり、ハイブリッド・電気自動車や風力・太陽光発電、産業機器等に使用されるフィルムコンデンサの小型化を具現化し、省エネ化、環境対応に貢献することができるコンデンサ用絶縁フィルム及びそれを用いたフィルムコンデンサを提供することを目的とする。   In view of the above circumstances, the present invention is a cellulose film for a film capacitor having a high relative dielectric constant, high insulation, and high strength without foaming whitening, and is used in hybrid / electric vehicles, wind / solar power generation, industrial equipment, etc. It is an object of the present invention to provide a capacitor insulating film and a film capacitor using the same, which can realize miniaturization of the film capacitor to be made and contribute to energy saving and environmental measures.

本背景に鑑み、鋭意検討した結果、光線透過率が高いフィルムをフィルムコンデンサに適用することが極めて有用であることを発明するに至った。光線透過率の高いフィルムは、透明性が高く、電子顕微鏡等の観察によればフィルムの塗工表面の凹凸が殆どなく、絶縁耐圧特性が高く、またフィルム強度も高くなる。更に、フィルム表面の凹凸が小さい平滑なフィルムをコンデンサに使用することにより、巻取り後のフィルムコンデンサ素子内に存在する空隙率を低減することが可能で、コンデンサの高容量化にも貢献する。   As a result of intensive studies in view of the present background, the inventors have invented that it is extremely useful to apply a film having a high light transmittance to a film capacitor. A film having a high light transmittance has high transparency, and according to observation with an electron microscope or the like, there are almost no irregularities on the coated surface of the film, the dielectric strength characteristics are high, and the film strength is also high. Furthermore, by using a smooth film with small irregularities on the film surface for the capacitor, the porosity existing in the film capacitor element after winding can be reduced, which contributes to an increase in the capacity of the capacitor.

すなわち、本発明は以下のものに関する。
(1)全光線透過率が85%以上、膜厚が10μm以下である、セルロース樹脂を含有するコンデンサ用絶縁フィルム。
(2)更に、無機フィラを含有する(1)に記載のコンデンサ用絶縁フィルム。
(3)セルロース樹脂は、水酸基の一部がアセチル化、プロピオニル化、ブチリル化のいずれかの変性がなされたものである(1)又は(2)に記載のコンデンサ用絶縁フィルム。
(4)無機フィラは、球状又は鱗片形状であり、少なくともいずれかを含む(2)又は(3)に記載のコンデンサ用絶縁フィルム。
(5)球状フィラは、酸化チタン(ルチル)又はアルミナのいずれかを含む(4)に記載のコンデンサ用絶縁フィルム。
(6)鱗片形状フィラは、マイカ又は窒化ホウ素のいずれかを含む(4)に記載の絶縁フィルム。
(7)(1)〜(6)のいずれか一項に記載のコンデンサ用絶縁フィルムを加圧・加熱処理したコンデンサ用絶縁フィルム。
(8)(1)〜(7)のいずれか一項に記載のコンデンサ用絶縁フィルムを用いたフィルムコンデンサ。
That is, the present invention relates to the following.
(1) An insulating film for a capacitor containing a cellulose resin having a total light transmittance of 85% or more and a film thickness of 10 μm or less.
(2) The insulating film for capacitors according to (1), further containing an inorganic filler.
(3) The insulating resin for a capacitor according to (1) or (2), wherein the cellulose resin is one in which a hydroxyl group is partially modified by acetylation, propionylation, or butyrylation.
(4) The insulating film for capacitors according to (2) or (3), wherein the inorganic filler has a spherical shape or a scale shape and includes at least one of them.
(5) The insulating film for capacitors according to (4), wherein the spherical filler contains either titanium oxide (rutile) or alumina.
(6) The scale-shaped filler is an insulating film according to (4), which contains either mica or boron nitride.
(7) An insulating film for a capacitor obtained by applying pressure and heat treatment to the insulating film for a capacitor according to any one of (1) to (6).
(8) A film capacitor using the capacitor insulating film according to any one of (1) to (7).

本発明の高い光線透過率を有するコンデンサ用絶縁フィルムは、高比誘電率、高絶縁、高強度性を有するフィルムコンデンサ用セルロースフィルムであり、ハイブリッド・電気自動車や風力・太陽光発電、産業機器等に使用されるフィルムコンデンサの小型化を具現化し、省エネ化、環境対応に貢献することができる。   The insulating film for a capacitor having a high light transmittance according to the present invention is a cellulose film for a film capacitor having a high relative dielectric constant, high insulation, and high strength, such as a hybrid / electric vehicle, wind / solar power generation, industrial equipment, etc. The film capacitor used in this can be miniaturized, contributing to energy saving and environmental friendliness.

以下、本発明の実施するための形態につき説明するが、以下に示す例は一例であり、本発明はこれに限定されるものではない。   Hereinafter, although the form for implementing this invention is demonstrated, the example shown below is an example and this invention is not limited to this.

本実施形態に使用するセルロース樹脂は、一般的に有する水酸基の一部をアセチル化、プロピリル化(プロピオニル化)、ブチリル化等でエステル化したものを使用することが好ましい。水酸基をアシル化、アルキル化等の変性をしない場合、溶剤への溶解性が低い等加工性が低下し、フィルム化が困難となる傾向がある。変性量や変性する官能基は特に限定しないが、変性量は多い方が加工性は向上し、また、変性する官能基はアルキル鎖が長いほど溶剤への溶解性が向上する傾向がある。分子量も特に限定されないが、数平均分子量が10,000〜100,000の範囲が好ましく、20,000〜80,000の範囲がより好ましい。10,000以上であるとフィルム強度が充分高く、100,000以下であると溶剤への溶解性が良く、加工性が良好である。なお、数平均分子量は、ゲル浸透クロマトグラフィを用いてポリスチレンを標準試料として測定することができる。   As the cellulose resin used in the present embodiment, it is preferable to use a resin obtained by esterifying a part of the hydroxyl groups generally possessed by acetylation, propylylation (propionylation), butyrylation, or the like. When the hydroxyl group is not modified by acylation or alkylation, the processability is lowered due to low solubility in a solvent, and it tends to be difficult to form a film. The amount of modification and the functional group to be modified are not particularly limited, but the greater the modification amount, the better the processability, and the longer the alkyl chain of the modified functional group, the better the solubility in a solvent. The molecular weight is not particularly limited, but the number average molecular weight is preferably in the range of 10,000 to 100,000, more preferably in the range of 20,000 to 80,000. When it is 10,000 or more, the film strength is sufficiently high, and when it is 100,000 or less, the solubility in a solvent is good and the processability is good. The number average molecular weight can be measured using gel permeation chromatography using polystyrene as a standard sample.

本実施形態に使用するセルロース樹脂の立体構造は特に限定しない。   The three-dimensional structure of the cellulose resin used in the present embodiment is not particularly limited.

本実施形態のコンデンサ用絶縁フィルムには、無機フィラを含んでいてもよい。無機フィラを形状から分類すると、アスペクト比が1〜1.5の範囲で規定する球状フィラと、アスペクト比が2〜10の範囲で規定する扁平状の鱗片形状フィラがあり、両方又はいずれか一方を含むことができる。
アスペクト比は、電子顕微鏡観察により1次粒子の短径と長径を測定し、その割り算(長径/短径)から数値化でき、本明細書においては計30個を測定した平均値とした。
The insulating film for capacitors of this embodiment may contain an inorganic filler. When inorganic fillers are classified by shape, there are spherical fillers that define an aspect ratio in the range of 1 to 1.5, and flat scale-shaped fillers that specify an aspect ratio in the range of 2 to 10, both or one of them. Can be included.
The aspect ratio can be obtained by measuring the minor axis and major axis of the primary particles by electron microscope observation and quantifying from the division (major axis / minor axis). In the present specification, the aspect ratio is an average value obtained by measuring 30 particles.

球状フィラとしては、シリカ、アルミナ、酸化チタン(ルチル)等があるが、樹脂とのコンポジットフィルム化において、誘電率を高くする効果においては、酸化チタン(ルチル)又はアルミナが好適であり、酸化チタン(ルチル)が特に好適である。また鱗片形状フィラとしては、天然マイカ、合成マイカ、窒化ホウ素、タルク等多くがある。鱗片形状フィラをフィルム中に分散することによって、迷路効果によってフィルムの絶縁耐圧特性を向上することが理論上可能となる。また球状フィラと同様にフィルムの誘電率を高くする効果との両立においては、天然マイカが好適である。   Spherical fillers include silica, alumina, titanium oxide (rutile), etc., but titanium oxide (rutile) or alumina is suitable for the effect of increasing the dielectric constant in forming a composite film with resin. (Rutile) is particularly preferred. As scale-shaped filler, there are many natural mica, synthetic mica, boron nitride, talc and the like. By dispersing the scale-shaped filler in the film, it is theoretically possible to improve the dielectric strength characteristics of the film by the maze effect. In addition, natural mica is suitable for achieving the effect of increasing the dielectric constant of the film as well as the spherical filler.

無機フィラを添加する場合、その添加量としては、0.1〜50体積%の範囲とすることが好ましく、10〜30体積%がより好ましい。0.1体積%以上であると耐電圧特性の向上効果が充分にあり、50体積%以下であるとフィルムの脆化による強度の低下を抑制できる。   When adding an inorganic filler, the addition amount is preferably in the range of 0.1 to 50% by volume, more preferably 10 to 30% by volume. When the content is 0.1% by volume or more, the effect of improving the withstand voltage characteristics is sufficient, and when the content is 50% by volume or less, a decrease in strength due to embrittlement of the film can be suppressed.

本実施形態のフィルムは、上記セルロース樹脂又は、セルロース樹脂及びフィラを、溶剤を用いてセルロース樹脂については溶剤に溶解、フィラについては溶剤に分散し、ワニス化し、基材上に所定の膜厚になるように塗工し、溶剤を乾燥させフィルム化する方法により作製する。ワニスを作製する設備としては従来技術を限定なく使用できる。また塗工する基材としては、特に限定しないが、一般的にはポリエチレンテレフタレート(PET)等のプラスチックフィルムや、スチールベルトや金属ドラム等の金属支持体表面に直接塗工し、独立フィルムとして得ることもできる。また、基材表面への表面処理を行うことにより、本発明のコンデンサ用絶縁フィルムとの接着性を制御することができる。   The film of the present embodiment is prepared by dissolving the cellulose resin or cellulose resin and filler in a solvent for the cellulose resin using a solvent, dispersing the filler in the solvent, varnishing, and forming a predetermined film thickness on the substrate. It is produced by a method of coating so that the solvent is dried to form a film. Conventional equipment can be used without limitation as equipment for producing the varnish. Further, the base material to be coated is not particularly limited, but in general, it is directly applied to a plastic film such as polyethylene terephthalate (PET) or a metal support surface such as a steel belt or a metal drum to obtain an independent film. You can also. Moreover, adhesiveness with the insulating film for a capacitor | condenser of this invention is controllable by performing the surface treatment to the base-material surface.

ワニス化する溶剤としては特に限定されないが、セルロース樹脂の溶解性が高く、またフィラを用いる場合、フィラの分散性が良好な溶剤を使用することが安定した塗工性とフィルム特性を得る上で好ましい。溶剤としては、アセトン、酢酸エチル、酢酸ブチル、シクロヘキサノン、乳酸エチル、N−メチルピロリドン、γ−ブチロラクトン等が挙げられる。ワニスの固形分は特に限定しないが、所定の塗工方法で塗工が可能な粘度になるように固形分の調整を行う。   The solvent for varnishing is not particularly limited, but when using a filler with high solubility of cellulose resin, it is necessary to use a solvent with good filler dispersibility in order to obtain stable coating properties and film characteristics. preferable. Examples of the solvent include acetone, ethyl acetate, butyl acetate, cyclohexanone, ethyl lactate, N-methylpyrrolidone, and γ-butyrolactone. The solid content of the varnish is not particularly limited, but the solid content is adjusted so that the viscosity can be applied by a predetermined coating method.

その他、本実施形態のコンデンサ用絶縁フィルムには、シリコン系やアクリル系に代表されるレベリング剤及び消泡剤等の表面調整剤や、シランカップリング剤、分散剤、相溶化剤、熱可塑剤等の各種添加剤を含むこともできる。   In addition, the capacitor insulating film of the present embodiment includes a surface conditioner such as a leveling agent and an antifoaming agent represented by silicon and acrylic, a silane coupling agent, a dispersant, a compatibilizing agent, and a thermoplastic agent. Various additives such as these can also be included.

上記内容にて作製した塗工後のフィルム単体でも高い透過率を有するフィルムは作製可能であるが、特に厚さ10μm以下の薄膜フィルムの作製においては、フィルム表面に凹凸を生じやすく、透過率が低下する傾向がある。さらに改善する手法として塗工後のフィルムに対して熱プレス(加圧・加熱処理)を施すことが効果を発揮することがわかった。具体的には、実験室レベルにおいてはハンドプレス方式、量産レベルではカレンダロールプレスやベルトプレス方式が有効であり、いずれも加熱を付帯する。   Although a film having a high transmittance can be produced even with a single film after coating produced with the above contents, in particular, in the production of a thin film having a thickness of 10 μm or less, irregularities are easily generated on the film surface, and the transmittance is high. There is a tendency to decrease. As a further improvement method, it has been found that applying heat press (pressurization / heat treatment) to the coated film is effective. Specifically, a hand press system is effective at the laboratory level, and a calender roll press and a belt press system are effective at the mass production level, both of which are accompanied by heating.

熱プレスにおける加熱温度は、セルロース樹脂のガラス転移点(Tg)以上とすることが好ましい。セルロース樹脂の一般的なガラス転移点は、変性の種類や分子量によっても異なるが、多くは170〜250℃の範囲である。しかし薄膜フィルムにおいてはこの限りではなく、ガラス転移点よりも低い温度での熱プレスでも効果を発揮する。具体的には80〜200℃、さらに好ましくは140〜180℃の温度で熱プレスを行う。
これにより、プレス前のフィルムで発生していたフィルム表面の凹凸が低減し、もともと透明であるフィルムにおいても光線透過率が向上し、また白濁又は半透明であるフィルムは外観的にも透明性が増加し、光線透過率が向上する。
The heating temperature in the hot press is preferably not less than the glass transition point (Tg) of the cellulose resin. The general glass transition point of the cellulose resin varies depending on the type of modification and the molecular weight, but is generally in the range of 170 to 250 ° C. However, the thin film is not limited to this, and the effect is exhibited even by hot pressing at a temperature lower than the glass transition point. Specifically, hot pressing is performed at a temperature of 80 to 200 ° C, more preferably 140 to 180 ° C.
As a result, the unevenness of the film surface that occurred in the film before pressing is reduced, the light transmittance is improved even in a film that is originally transparent, and the film that is cloudy or translucent is also transparent in appearance. The light transmittance is improved.

本フィルムを使用したフィルムコンデンサは、フィルム強度が高いため、フィルムコンデンサ製造時の巻回工程での作業性が向上し、絶縁性向上により駆動電圧が向上し、またフィルム表面凹凸が小さいため、コンデンサとしての静電容量の向上が達成できる。結果としてフィルムコンデンサの小型化が可能になり、省エネルギー化に貢献できる。   The film capacitor using this film has high film strength, so the workability in the winding process during film capacitor manufacture is improved, the drive voltage is improved due to the improved insulation, and the film surface unevenness is small. As a result, an improvement in capacitance can be achieved. As a result, it is possible to reduce the size of the film capacitor and contribute to energy saving.

本発明の実施例を以下に示す。なお、これに示す実施例はあくまで一例であり、本発明はこれらに限定するものではない。   Examples of the present invention are shown below. In addition, the Example shown here is an example to the last, and this invention is not limited to these.

フィルム強度(引張り強度)の測定方法:フィルムを幅3mm、長さ60mmのサイズに裁断装置を用いて打ち抜き、滑り止めとして試験片の両端に研磨紙を貼り付けて、マイクロフォース精密試験装置を用いて引張り強さを測定した。   Measurement method of film strength (tensile strength): The film is punched into a size of 3 mm wide and 60 mm long using a cutting device, and abrasive paper is attached to both ends of the test piece to prevent slipping, and a microforce precision test device is used. The tensile strength was measured.

フィルム光線透過率の測定:ヘーズメータ(商品名:NDH−5000、日本電色工業株式会社製)を用い、フィルムの全光線透過率を測定した。光源には白色LEDを使用し、測定光束は直径10mmで測定した。   Measurement of film light transmittance: The total light transmittance of the film was measured using a haze meter (trade name: NDH-5000, manufactured by Nippon Denshoku Industries Co., Ltd.). A white LED was used as the light source, and the measurement light flux was measured with a diameter of 10 mm.

フィルム絶縁耐圧(絶縁破壊電圧)の測定:フッ素系不活性液体中に浸したフィルムの上に真鍮電極を置き、ファンクション・ジェネレータ、交直用高圧アンプリファイアを用い、一定の昇圧速度(100VDC/sec)で、絶縁破壊が起きるまで電圧を印加した。サンプルが破壊した時の電圧を記録し、破壊電圧をサンプルの厚さで除して絶縁破壊電位傾度(V/μm、絶縁破壊電圧)を算出した。   Measurement of film withstand voltage (dielectric breakdown voltage): Place a brass electrode on a film soaked in a fluorine-based inert liquid, and use a function generator and AC / DC high-voltage amplifier to maintain a constant voltage boost rate (100 VDC / sec) Then, voltage was applied until dielectric breakdown occurred. The voltage when the sample broke down was recorded, and the breakdown voltage gradient (V / μm, dielectric breakdown voltage) was calculated by dividing the breakdown voltage by the thickness of the sample.

(比較例1)
ワニスの作製はセルロース樹脂(商品名:CAB381−20、イーストマンケミカル社製、セルロース・アセテート・ブチレート、ブチリル基37質量%、アセチル基13.5質量%、ヒドロキシル基1.8質量%、融点195〜205℃、Tg141℃(カタログ値))とマイカフィラ(商品名:AB−25S、株式会社ヤマグチマイカ製、白雲母、平均粒子径24μm、鱗片形状)を溶剤として酢酸エチルを使用して表1に記載の配合量で混合し、ワニス固形分を25体積%とした。作製したワニスを離型処理PETフィルム(商品名:A−53、帝人デュポンフィルム株式会社製)にアプリケータを用いて塗布し、120℃に設定した防爆型乾燥機に投入し、厚さ5〜6μmのフィルムを作製した。
(Comparative Example 1)
Preparation of the varnish was cellulose resin (trade name: CAB381-20, manufactured by Eastman Chemical Co., Ltd., cellulose acetate butyrate, butyryl group 37% by mass, acetyl group 13.5% by mass, hydroxyl group 1.8% by mass, melting point 195 Table 1 using ethyl acetate with ˜205 ° C., Tg 141 ° C. (catalog value)) and micafila (trade name: AB-25S, manufactured by Yamaguchi Mica, muscovite, average particle size 24 μm, scale shape) as a solvent Mixing was carried out at the indicated blending amount to make the varnish solid content 25% by volume. The produced varnish was applied to a release-treated PET film (trade name: A-53, manufactured by Teijin DuPont Films, Ltd.) using an applicator, and placed in an explosion-proof dryer set at 120 ° C. A 6 μm film was prepared.

(実施例1)
比較例1で作製したフィルムについて、熱プレスを実施した。プレス熱板の温度を120℃に設定し、プレス圧力10MPa、プレス時間は5分で処理した。
Example 1
The film produced in Comparative Example 1 was hot pressed. The temperature of the press hot plate was set to 120 ° C., the press pressure was 10 MPa, and the press time was 5 minutes.

(実施例2)
実施例1に記載の方法で、プレス熱板の温度を160℃とした以外は実施例1と同様の手順でフィルムを作製した。
(Example 2)
A film was produced in the same manner as in Example 1 except that the temperature of the press hot plate was changed to 160 ° C. by the method described in Example 1.

(実施例3)
実施例1に記載の方法で、プレス熱板の温度を200℃とした以外は実施例1と同様の手順でフィルムを作製した。
(Example 3)
A film was produced in the same manner as in Example 1 except that the temperature of the press hot plate was 200 ° C. by the method described in Example 1.

(実施例4)
ワニスの作製はセルロース樹脂(商品名:CAP482−0.5、イーストマンケミカル社製、セルロース・アセテート・プロピオネート、アセチル基2.5質量%、プロピオニル基45質量%、ヒドロキシル基2.6質量%、融点188〜210℃、Tg142℃(カタログ値))とマイカフィラ(商品名:AB−25S、株式会社ヤマグチマイカ製)を溶剤として酢酸エチルを使用して表2に記載の配合量で混合し、ワニス固形分を25体積%とした。作製したワニスを離型処理PETフィルム(商品名:A−53、帝人デュポンフィルム株式会社製)にアプリケータを用いて塗布し、120℃に設定した防爆型乾燥機に投入し、厚さ5〜6μmのフィルムを作製した。
Example 4
Preparation of the varnish was made of cellulose resin (trade name: CAP482-0.5, manufactured by Eastman Chemical Co., Ltd., cellulose acetate propionate, acetyl group 2.5% by mass, propionyl group 45% by mass, hydroxyl group 2.6% by mass, Melting point 188-210 ° C., Tg 142 ° C. (catalog value)) and micafila (trade name: AB-25S, manufactured by Yamaguchi Mica Co., Ltd.) using ethyl acetate as a solvent and mixing in the compounding amounts shown in Table 2, varnish The solid content was 25% by volume. The produced varnish was applied to a release-treated PET film (trade name: A-53, manufactured by Teijin DuPont Films, Ltd.) using an applicator, and placed in an explosion-proof dryer set at 120 ° C. A 6 μm film was prepared.

(実施例5)
実施例4で作製したフィルムについて、熱プレスを実施した。プレス熱板の温度を120℃に設定し、プレス圧力10MPa、プレス時間は5分で処理した。
(Example 5)
The film produced in Example 4 was hot pressed. The temperature of the press hot plate was set to 120 ° C., the press pressure was 10 MPa, and the press time was 5 minutes.

(実施例6)
実施例5に記載の方法で、プレス熱板の温度を160℃とした以外は実施例5と同様の手順でフィルムを作製した。
(Example 6)
A film was produced in the same manner as in Example 5 except that the temperature of the press hot plate was changed to 160 ° C. by the method described in Example 5.

(実施例7)
実施例5に記載の方法で、プレス熱板の温度を200℃とした以外は実施例5と同様の手順でフィルムを作製した。
(Example 7)
A film was produced in the same manner as in Example 5 except that the temperature of the press hot plate was changed to 200 ° C. by the method described in Example 5.

(実施例8)
ワニスの作製はセルロース樹脂(商品名:CAB381−20、イーストマンケミカル社製)とマイカフィラ(商品名:AB−25S、株式会社ヤマグチマイカ製)を溶剤として酢酸エチルを使用して表3に記載の配合量で混合し、ワニス固形分を25体積%とした。作製したワニスを離型処理PETフィルム(商品名:A−53、帝人デュポンフィルム株式会社製)にアプリケータを用いて塗布し、120℃に設定した防爆型乾燥機に投入し、厚さ5〜6μmのフィルムを作製した。
(Example 8)
Preparation of the varnish is described in Table 3 using ethyl acetate with cellulose resin (trade name: CAB381-20, manufactured by Eastman Chemical Co.) and micafila (trade name: AB-25S, manufactured by Yamaguchi Mica Co., Ltd.) as a solvent. Mixing was carried out at a blending amount to make the varnish solid content 25% by volume. The produced varnish was applied to a release-treated PET film (trade name: A-53, manufactured by Teijin DuPont Films, Ltd.) using an applicator, and placed in an explosion-proof dryer set at 120 ° C. A 6 μm film was prepared.

(実施例9)
実施例8で作製したフィルムについて、熱プレスを実施した。プレス熱板の温度を120℃に設定し、プレス圧力10MPa、プレス時間は5分で処理した。
Example 9
The film produced in Example 8 was hot pressed. The temperature of the press hot plate was set to 120 ° C., the press pressure was 10 MPa, and the press time was 5 minutes.

(実施例10)
実施例9に記載の方法で、プレス熱板の温度を160℃とした以外は実施例9と同様の手順でフィルムを作製した。
(Example 10)
A film was produced in the same manner as in Example 9 except that the temperature of the press hot plate was changed to 160 ° C. by the method described in Example 9.

(実施例11)
実施例9に記載の方法で、プレス熱板の温度を200℃とした以外は実施例9と同様の手順でフィルムを作製した。
(Example 11)
A film was produced in the same manner as in Example 9 except that the temperature of the press hot plate was changed to 200 ° C. by the method described in Example 9.

(実施例12)
ワニスの作製はセルロース樹脂(商品名:CAB381−20、イーストマンケミカル社製)と溶剤として酢酸エチルを使用して表4に記載の配合量で混合し、ワニス固形分を25体積%とした。作製したワニスを離型処理PETフィルム(商品名:A−53、帝人デュポンフィルム株式会社製)にアプリケータを用いて塗布し、120℃に設定した防爆型乾燥機に投入し、厚さ5〜6μmのフィルムを作製した。
(Example 12)
The varnish was prepared by mixing cellulose resin (trade name: CAB381-20, manufactured by Eastman Chemical Co., Ltd.) and ethyl acetate as a solvent in the blending amounts shown in Table 4 to make the varnish solid content 25% by volume. The produced varnish was applied to a release-treated PET film (trade name: A-53, manufactured by Teijin DuPont Films, Ltd.) using an applicator, and placed in an explosion-proof dryer set at 120 ° C. A 6 μm film was prepared.

(実施例13)
実施例12で作製したフィルムについて、熱プレスを実施した。プレス熱板の温度を120℃に設定し、プレス圧力10MPa、プレス時間は5分で処理した。
(Example 13)
The film produced in Example 12 was hot pressed. The temperature of the press hot plate was set to 120 ° C., the press pressure was 10 MPa, and the press time was 5 minutes.

(実施例14)
実施例13に記載の方法で、プレス熱板の温度を160℃とした以外は実施例13と同様の手順でフィルムを作製した。
(Example 14)
A film was produced in the same manner as in Example 13 except that the temperature of the press hot plate was changed to 160 ° C. by the method described in Example 13.

(実施例15)
実施例13に記載の方法で、プレス熱板の温度を200℃とした以外は実施例13と同様の手順でフィルムを作製した。
(Example 15)
A film was produced in the same manner as in Example 13 except that the temperature of the press hot plate was changed to 200 ° C. by the method described in Example 13.

Figure 2018156965
Figure 2018156965

Figure 2018156965
Figure 2018156965

Figure 2018156965
Figure 2018156965

Figure 2018156965
Figure 2018156965

表1〜4に結果を示したように、膜厚が10μm以下である、セルロース樹脂を含有するコンデンサ用絶縁フィルムであっても、実施例1〜11のフィラ添加系ではフィラ充填量の低下とともに、フィルムの光線透過率(全光線透過率)が85%以上に高くなり、それと共にフィルム強度及び絶縁破壊電位傾度(絶縁破壊電圧)が向上する。更に、比較例1及び実施例1〜15の結果から、フィルムの光線透過率(全光線透過率)は熱プレス処理によって、フィラ添加量に関わらず85%以上に向上し、同時にフィルム強度及び絶縁破壊電位傾度が向上する。熱プレス時の温度は、120℃から160℃と温度上昇とともに光線透過率(全光線透過率)が向上するが、それ以上の温度である200℃でプレスした場合、透過率の変化は殆どなく、目視によるフィルム外観として樹脂の熱分解によると示唆される黄変が確認された。
本発明により、発泡白化のない高比誘電率、高絶縁性(絶縁破壊電圧)、高強度(引張り強度)を有するコンデンサ用絶縁フィルムを得ることができ、これを用いたフィルムコンデンサは、コンデンサの小型化に貢献できる。
As shown in Tables 1 to 4, even in the case of an insulating film for a capacitor containing a cellulose resin having a film thickness of 10 μm or less, the filler addition system of Examples 1 to 11 has a decrease in filler filling amount. The light transmittance (total light transmittance) of the film is increased to 85% or more, and at the same time, the film strength and the dielectric breakdown potential gradient (dielectric breakdown voltage) are improved. Furthermore, from the results of Comparative Example 1 and Examples 1 to 15, the light transmittance (total light transmittance) of the film was improved to 85% or more regardless of the amount of filler added by the hot press treatment, and at the same time the film strength and insulation. The breakdown potential gradient is improved. The temperature at the time of hot pressing increases from 120 ° C. to 160 ° C. as the temperature increases, and the light transmittance (total light transmittance) improves, but when pressed at a temperature higher than 200 ° C., there is almost no change in transmittance. As a result of visual observation, yellowing, which was suggested to be due to thermal decomposition of the resin, was confirmed.
According to the present invention, an insulating film for a capacitor having a high relative dielectric constant without foaming whitening, a high insulating property (dielectric breakdown voltage) and a high strength (tensile strength) can be obtained. Contributes to downsizing.

Claims (8)

全光線透過率が85%以上、膜厚が10μm以下である、セルロース樹脂を含有するコンデンサ用絶縁フィルム。   An insulating film for a capacitor containing a cellulose resin having a total light transmittance of 85% or more and a film thickness of 10 μm or less. 更に、無機フィラを含有する請求項1に記載のコンデンサ用絶縁フィルム。   Furthermore, the insulating film for capacitors of Claim 1 containing an inorganic filler. セルロース樹脂は、水酸基の一部がアセチル化、プロピオニル化、ブチリル化のいずれかの変性がなされたものである請求項1又は請求項2に記載のコンデンサ用絶縁フィルム。   The insulating film for a capacitor according to claim 1 or 2, wherein the cellulose resin has a hydroxyl group partially modified by any one of acetylation, propionylation, and butyrylation. 無機フィラは、球状又は鱗片形状であり、少なくともいずれかを含む請求項2又は請求項3に記載のコンデンサ用絶縁フィルム。   The insulating film for capacitors according to claim 2 or 3, wherein the inorganic filler has a spherical shape or a scale shape, and includes at least one of them. 球状フィラは、酸化チタン(ルチル)又はアルミナのいずれかを含む請求項4に記載のコンデンサ用絶縁フィルム。   The insulating film for capacitors according to claim 4, wherein the spherical filler contains either titanium oxide (rutile) or alumina. 鱗片形状フィラは、マイカ又は窒化ホウ素のいずれかを含む請求項4に記載のコンデンサ用絶縁フィルム。   The insulating film for capacitors according to claim 4, wherein the scale-shaped filler contains either mica or boron nitride. 請求項1〜6のいずれか一項に記載のコンデンサ用絶縁フィルムを加圧・加熱処理したコンデンサ用絶縁フィルム。   An insulating film for a capacitor obtained by applying pressure and heat treatment to the insulating film for a capacitor according to claim 1. 請求項1〜7のいずれか一項に記載のコンデンサ用絶縁フィルムを用いたフィルムコンデンサ。   The film capacitor using the insulating film for capacitors as described in any one of Claims 1-7.
JP2017049857A 2017-03-15 2017-03-15 Insulating film for capacitor, and film capacitor using the same Pending JP2018156965A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017049857A JP2018156965A (en) 2017-03-15 2017-03-15 Insulating film for capacitor, and film capacitor using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017049857A JP2018156965A (en) 2017-03-15 2017-03-15 Insulating film for capacitor, and film capacitor using the same

Publications (1)

Publication Number Publication Date
JP2018156965A true JP2018156965A (en) 2018-10-04

Family

ID=63717243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017049857A Pending JP2018156965A (en) 2017-03-15 2017-03-15 Insulating film for capacitor, and film capacitor using the same

Country Status (1)

Country Link
JP (1) JP2018156965A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437108A (en) * 1990-06-01 1992-02-07 Matsushita Electric Ind Co Ltd Forming method for dielectric film of laminated film capacitor
JP2000294447A (en) * 1999-04-09 2000-10-20 Unitika Ltd High-permittivity film for film capacitor and manufacture thereof
JP2007009112A (en) * 2005-07-01 2007-01-18 Teijin Dupont Films Japan Ltd Biaxially oriented film and film capacitor comprising the same
JP2008034189A (en) * 2006-07-27 2008-02-14 Daikin Ind Ltd Coating composition
JP2010087507A (en) * 2008-09-30 2010-04-15 General Electric Co <Ge> Film capacitor
WO2016153071A1 (en) * 2015-03-26 2016-09-29 日立化成株式会社 Insulating film
JP2017010978A (en) * 2015-06-17 2017-01-12 日立化成株式会社 Insulating film

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0437108A (en) * 1990-06-01 1992-02-07 Matsushita Electric Ind Co Ltd Forming method for dielectric film of laminated film capacitor
JP2000294447A (en) * 1999-04-09 2000-10-20 Unitika Ltd High-permittivity film for film capacitor and manufacture thereof
JP2007009112A (en) * 2005-07-01 2007-01-18 Teijin Dupont Films Japan Ltd Biaxially oriented film and film capacitor comprising the same
JP2008034189A (en) * 2006-07-27 2008-02-14 Daikin Ind Ltd Coating composition
JP2010087507A (en) * 2008-09-30 2010-04-15 General Electric Co <Ge> Film capacitor
WO2016153071A1 (en) * 2015-03-26 2016-09-29 日立化成株式会社 Insulating film
JP2017010978A (en) * 2015-06-17 2017-01-12 日立化成株式会社 Insulating film

Similar Documents

Publication Publication Date Title
Chen et al. Ultra‐strong and proton conductive aqua‐based adhesives from facile blending of polyvinyl alcohol and tungsten oxide clusters
Chatterjee Properties improvement of PMMA using nano TiO2
Sangermano et al. Antistatic epoxy coatings with carbon nanotubes obtained by cationic photopolymerization
CN102702693B (en) Antistatic master batch and preparation method thereof
EP2551105A1 (en) Laminated body, method for producing same, and molding container
JP6757395B2 (en) Conductive foam beads and their manufacturing method
Fahma et al. The morphology and properties of poly (methyl methacrylate)‐cellulose nanocomposites prepared by immersion precipitation method
Ko et al. Rheology and physical characteristics of synthetic biodegradable aliphatic polymer blends dispersed with MWNTs
Chen et al. Dielectric properties of poly (vinylidene fluoride) composites based on Bucky gels of carbon nanotubes with ionic liquids
KR102329706B1 (en) Conductive film and manufacturing method of conductive film
US8981007B2 (en) Non-crosslinked polyethylene composition for power cable
JP2016507400A (en) Anticorrosive for transparent conductive film
JP2023029210A (en) Antistatic coating and high viscosity, stable antistatic release film, and its manufacturing method
DE112012006554T5 (en) Highly miscible polymer blends and their use
Kluge et al. Nanocellulosic fillers for waterborne wood coatings: reinforcement effect on free-standing coating films
JP6178946B1 (en) Method for calculating dielectric constant of particle-dispersed composite material and method for evaluating dispersibility
Gill et al. A novel two-step melt blending method to prepare nano-silanized-silica reinforced crosslinked polyethylene (XLPE) nanocomposites
Jadhav et al. Study of the preparation and properties of polyvinyl chloride/nitrocellulose polymer blends
JP2015174357A (en) Multilayer polyester film
WO2014163812A1 (en) Stabilization agents for silver nanowire based transparents conductive films
Arda et al. Electrical, optical and mechanical properties of PS/GNP composite films
Taraghi et al. Thin polymer films based on poly (vinyl alcohol) containing graphene oxide and reduced graphene oxide with functional properties
Lai et al. Highly transparent thermal stable silicone/titania hybrids with high refractive index for LED encapsulation
JP2018156965A (en) Insulating film for capacitor, and film capacitor using the same
Kızılkaya et al. The effect of titania content on the physical properties of polyimide/titania nanohybrid films

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201217

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210617