JP2018153730A - Water purification sludge treatment agent, water purification sludge treatment method and water purification sludge treatment equipment - Google Patents
Water purification sludge treatment agent, water purification sludge treatment method and water purification sludge treatment equipment Download PDFInfo
- Publication number
- JP2018153730A JP2018153730A JP2017051081A JP2017051081A JP2018153730A JP 2018153730 A JP2018153730 A JP 2018153730A JP 2017051081 A JP2017051081 A JP 2017051081A JP 2017051081 A JP2017051081 A JP 2017051081A JP 2018153730 A JP2018153730 A JP 2018153730A
- Authority
- JP
- Japan
- Prior art keywords
- sludge
- water
- purified water
- filtration
- sludge treatment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W10/00—Technologies for wastewater treatment
- Y02W10/30—Wastewater or sewage treatment systems using renewable energies
- Y02W10/37—Wastewater or sewage treatment systems using renewable energies using solar energy
Landscapes
- Separation Of Suspended Particles By Flocculating Agents (AREA)
- Treatment Of Sludge (AREA)
Abstract
【課題】汚泥濃縮性、汚泥剥離性が向上し、かつ、汚泥処理で生じる離脱水を浄水処理に再利用した場合のろ過閉塞を抑制する。【解決手段】本発明の浄水汚泥処理剤はポリカルボン酸系重合体を含有し、1mol/L塩化ナトリウム溶液に溶解した場合の0.1質量%塩粘度が2〜5mPa・sであり、25g/L塩化ナトリウム溶液に溶解した場合の0.1質量%溶液粘度が6mPa・s以下であり、かつ、アニオン当量が4.5meq/g以上である。このような浄水汚泥処理剤を浄水汚泥処理に用いた場合、浄水汚泥7の濃縮性が向上する上、濃縮汚泥9の脱水性、脱水ケーキ11の剥離性も向上する。また、汚泥処理で生じた離脱水10や上澄水5、8を浄水処理工程で再処理する場合に、ろ過池25のろ過閉塞も抑制される。【選択図】図1An object of the present invention is to improve sludge concentration and sludge releasability, and to suppress clogging of filtration when separated water generated by sludge treatment is reused for water purification treatment. The water purification sludge treatment agent of the present invention contains a polycarboxylic acid-based polymer, has a 0.1% by mass salt viscosity of 2 to 5 mPa · s when dissolved in a 1 mol / L sodium chloride solution, and 25 g When dissolved in / L sodium chloride solution, the 0.1 mass% solution viscosity is 6 mPa · s or less, and the anion equivalent is 4.5 meq / g or more. When such a purified water sludge treatment agent is used for the purified water sludge treatment, the concentration of the purified water sludge 7 is improved, and the dewaterability of the concentrated sludge 9 and the peelability of the dewatered cake 11 are also improved. In addition, when the separated water 10 and the supernatant waters 5 and 8 generated by the sludge treatment are reprocessed in the water purification process, the filtration blockage of the filtration basin 25 is also suppressed. [Selection] Figure 1
Description
本発明は、浄水汚泥処理剤及びそれを用いた汚泥処理方法と汚泥処理装置に関するものであり、より詳しくは、汚泥の濃縮性や脱水効率が向上した浄水汚泥処理剤、汚泥処理方法及び汚泥処理装置に関するものである。 The present invention relates to a purified water sludge treatment agent, a sludge treatment method and a sludge treatment apparatus using the same, and more specifically, a purified water sludge treatment agent, a sludge treatment method and a sludge treatment with improved sludge concentration and dewatering efficiency. It relates to the device.
従来より、浄水処理においては、懸濁物質を含有する被処理水(以下「原水」ともいう)に硫酸バンドやポリ塩化アルミニウム(PAC)等の無機凝集剤を注入し、懸濁物質を取り込んだ凝集フロックを形成させ、この凝集フロックを沈降分離させることによって、懸濁物質を除去していた。沈降分離された懸濁物質は汚泥(浄水汚泥)として沈殿槽から引き抜かれ、通常は濃縮槽で濃縮した後、天日乾燥や機械脱水で処分していた。 Conventionally, in water purification treatment, an inorganic flocculant such as a sulfate band or polyaluminum chloride (PAC) is injected into water to be treated containing suspended solids (hereinafter also referred to as “raw water”), and suspended solids are taken in. Suspended substances were removed by forming agglomerated floc and allowing the agglomerated floc to settle and separate. The suspended and separated suspended matter was extracted from the sedimentation tank as sludge (purified water sludge), and usually concentrated in a concentration tank and then disposed of by sun drying or mechanical dehydration.
ところで、原水として湖沼水やダム水を使用している場合には、高温時にアオコなどの藻類が発生し凝集不良を引き起こすことがある。凝集不良時の凝集フロックは、沈降性も不良であり、沈殿槽で十分沈降しないので発生する汚泥も濃度が低いものとなる。そのため、濃縮槽でも満足できる濃度まで濃縮できず、低濃度のまま機械脱水しなければならない。特に、脱水機がフィルタプレスの場合には、打ち込み時間が長くなり、かつ脱水ケーキも含水率が高く、フィルタからの脱水ケーキの剥離性が悪くなるという問題があり、更には、フィルタの洗浄に時間が掛かるといった問題も生じていた。 By the way, when lake water or dam water is used as raw water, algae such as blue-green algae are generated at high temperatures, which may cause poor aggregation. The coagulation flocs at the time of coagulation failure also have poor sedimentation properties, and sludge generated is not sufficiently settled in the sedimentation tank, so that the generated sludge has a low concentration. Therefore, it cannot be concentrated to a satisfactory concentration even in a concentration tank, and it must be mechanically dehydrated with a low concentration. In particular, when the dehydrator is a filter press, there is a problem that the driving time is long, the dehydrated cake has a high moisture content, and the delamination of the dehydrated cake from the filter is deteriorated. There was also a problem that it took time.
上述した従来の浄水汚泥の処理方法では、浄水汚泥の濃縮性を改善するために、ポリアクリルアミド系のアニオン系高分子凝集剤を濃縮槽で併用することが検討されている。この方法によれば、確かに、汚泥の濃縮性は著しく改善され、高濃度の汚泥が得られる。しかし、この濃縮汚泥を構成する凝集フロックは粘性の高いものとなり、この濃縮汚泥をフィルタプレスにより脱水した場合、フィルタからの脱水ケーキの剥離性が悪くなる恐れがある。 In the above-described conventional method for treating purified water sludge, in order to improve the concentration of purified water sludge, it has been studied to use a polyacrylamide-based anionic polymer flocculant in a concentration tank. According to this method, the concentration property of the sludge is certainly improved and a high concentration sludge can be obtained. However, the coagulated floc constituting the concentrated sludge becomes highly viscous, and when this concentrated sludge is dehydrated by a filter press, the peelability of the dewatered cake from the filter may be deteriorated.
また、浄水処理では汚泥脱水工程で脱水ケーキと分離した脱離水についても全量が着水井に返送されて再利用されるため、脱離水中の残留ポリマーは系外に排出されることなく循環して再び浄水処理工程に戻ってくる。したがって、この残留ポリマーが浄水処理におけるろ過工程のろ抗(ろ過抵抗)上昇に影響を与える恐れがあった。 Also, in the water purification treatment, all the desorbed water separated from the dewatered cake in the sludge dewatering process is returned to the landing well and reused, so the residual polymer in the dewatered water is circulated without being discharged out of the system. Return to the water purification process again. Therefore, this residual polymer may affect the increase in filtration resistance (filtration resistance) of the filtration process in the water purification treatment.
特許文献1では、浄水工程から生じる濃縮された汚泥にポリアクリル酸ソーダを添加しているが、濃縮汚泥は一般に高濃度である為、凝集剤との均一な混合が困難であり、汚泥と未反応の余剰凝集剤が残留する場合がある。凝集剤は粘着性を有するため、特にフィルタプレスで脱水した場合、ろ布からの脱水ケーキの剥離性が悪くなるおそれがある。 In Patent Document 1, sodium polyacrylate is added to the concentrated sludge generated from the water purification process. However, since the concentrated sludge is generally high in concentration, it is difficult to uniformly mix with the flocculant. An excess flocculant of the reaction may remain. Since the flocculant has adhesiveness, particularly when it is dehydrated with a filter press, the peelability of the dewatered cake from the filter cloth may be deteriorated.
本発明は、上記課題を鑑み成されたものであり、その目的は、浄水処理工程、特にろ過処理工程に悪影響を与えることなく、高濃度の濃縮汚泥を脱水や乾燥した場合に脱水ケーキの剥離性を向上させ、適度な含水率の乾燥汚泥を生成する浄水汚泥の処理剤、浄水汚泥の処理方法及びその処理装置を提供することにある。 The present invention has been made in view of the above problems, and its purpose is to remove a dewatered cake when dewatering or drying concentrated sludge at a high concentration without adversely affecting the water purification process, particularly the filtration process. An object of the present invention is to provide a treatment agent for purified water sludge, a treatment method for purified water sludge, and a treatment apparatus for the same, which improve dryness and generate dry sludge having an appropriate water content.
上記課題を解決するために、本発明は以下の構成とすることができる。 In order to solve the above problems, the present invention can be configured as follows.
(1)本発明の浄水汚泥処理剤はポリカルボン酸系重合体を含有するものであれば特に限定されないが、浄水汚泥処理剤全体で次の特性(a)〜(c)を全て充足する。(a)1mol/L塩化ナトリウム溶液に溶解した場合の0.1質量%塩粘度が2mPa・s〜5mPa・s、(b)25g/L塩化ナトリウム溶液に溶解した場合の0.1質量%溶液粘度が6mPa・s以下、(c)アニオン当量が4.5meq/g以上。 (1) The water purification sludge treatment agent of the present invention is not particularly limited as long as it contains a polycarboxylic acid polymer, but the whole of the water purification sludge treatment agent satisfies the following characteristics (a) to (c). (A) 0.1 mass% salt viscosity when dissolved in a 1 mol / L sodium chloride solution is 2 mPa · s to 5 mPa · s, (b) 0.1 mass% solution when dissolved in a 25 g / L sodium chloride solution The viscosity is 6 mPa · s or less, and (c) the anion equivalent is 4.5 meq / g or more.
(2)ポリカルボン酸系重合体は特に限定されないが、ポリ(メタ)アクリル酸又はその塩を含むことが好ましく、より好ましくはポリ(メタ)アクリル酸又はその塩を主成分とし、特に好ましくはポリ(メタ)アクリル酸とポリ(メタ)アクリル酸塩のいずれか一方又は両方からなるものを用いる。 (2) The polycarboxylic acid-based polymer is not particularly limited, but preferably includes poly (meth) acrylic acid or a salt thereof, more preferably includes poly (meth) acrylic acid or a salt thereof as a main component, and particularly preferably. What consists of any one or both of poly (meth) acrylic acid and poly (meth) acrylate is used.
(3)本発明は浄水汚泥処理剤に限定されず、浄水処理工程と、濃縮工程と、脱水工程と、供給工程とを有する浄水汚泥処理方法にも関するものであって、浄水処理工程は被処理水を凝集沈殿した後、ろ過して浄水を得、濃縮工程は浄水処理工程から分離した凝集沈殿汚泥と、ろ過に用いる装置から排出されるろ過洗浄排水の少なくとも一方を含む浄水汚泥を濃縮して濃縮汚泥を得、脱水工程は濃縮汚泥を脱水し、更に、供給工程は浄水汚泥と濃縮汚泥のいずれか一方又は両方に、前述の浄水汚泥処理剤を添加する工程である。 (3) The present invention is not limited to the purified water sludge treatment agent, but also relates to a purified water sludge treatment method having a purified water treatment step, a concentration step, a dehydration step, and a supply step, After coagulating and precipitating the treated water, it is filtered to obtain purified water, and the concentration step concentrates the purified water sludge containing at least one of the coagulated sediment sludge separated from the water purification treatment step and the filtration washing wastewater discharged from the apparatus used for filtration. Thus, the concentrated sludge is obtained, the dewatering step dehydrates the concentrated sludge, and the supply step is a step of adding the above-described purified water sludge treatment agent to one or both of the purified water sludge and the concentrated sludge.
(4)上記各工程は特に限定されないが、脱水工程は、フィルタプレスを用いた機械脱水であることが好ましい。 (4) The above steps are not particularly limited, but the dehydration step is preferably mechanical dehydration using a filter press.
(5)本発明は更に浄水汚泥処理装置にも関するものであって、この浄水汚泥処理装置は浄水処理手段と、濃縮手段と、脱水手段と、供給手段とを有し、浄水処理手段は被処理水を凝集沈殿し、ろ過して浄水を得、濃縮手段は浄水処理手段で分離した凝集沈殿汚泥と、ろ過用の装置から排出されるろ過洗浄排水の少なくとも一方を含む浄水汚泥を濃縮し、脱水手段は濃縮汚泥を脱水し、供給手段は浄水汚泥および濃縮汚泥の何れか一方又は両方に前述の浄水汚泥処理剤を添加する。 (5) The present invention further relates to a purified water sludge treatment apparatus, and the purified water sludge treatment apparatus has a purified water treatment means, a concentration means, a dehydration means, and a supply means, and the purified water treatment means is covered. The treated water is coagulated and precipitated, filtered to obtain purified water, and the concentration means concentrates the purified water sludge containing at least one of the aggregated sludge separated by the purified water treatment means and the filtration washing wastewater discharged from the filtration device, The dewatering means dehydrates the concentrated sludge, and the supplying means adds the above-described purified water sludge treatment agent to one or both of the purified water sludge and the concentrated sludge.
(6)上記各手段は特に限定されないが、脱水手段にはフィルタプレス型脱水手段を用いることが好ましい。 (6) Although each said means is not specifically limited, It is preferable to use a filter press type | mold dehydrating means for a dehydrating means.
本発明によれば、浄水汚泥の濃縮性が改善され、高濃度汚泥を得ることができる。また、濃縮汚泥の剥離性が向上し、機械脱水の際に装置やフィルタの汚染が防止される上、適度な含水率の脱水ケーキを得ることができる。さらに、汚泥の濃縮や脱水で発生する離脱水を着水井に返送しても、浄水処理工程でのろ過障害が抑制される。 According to the present invention, the concentration of purified water sludge is improved, and high-concentration sludge can be obtained. In addition, the peelability of the concentrated sludge is improved, and contamination of the apparatus and the filter is prevented during mechanical dehydration, and a dehydrated cake having an appropriate water content can be obtained. Furthermore, even if the separated water generated by the concentration and dehydration of sludge is returned to the landing well, the filtration failure in the water purification process is suppressed.
以下、本発明を具体的に説明するが、本発明は特定の具体例に限定されるものではない。 Hereinafter, the present invention will be specifically described, but the present invention is not limited to a specific example.
図1は浄水汚泥処理の一例を示すフローであり、被処理水は凝集、沈殿、ろ過などの浄水処理を経て処理水(浄水)となる。他方、浄水処理で発生する汚泥は濃縮、脱水などの汚泥処理を経て脱水ケーキとなり、固液分離した上澄水や離脱水は浄水処理で再処理する。本発明の浄水汚泥処理剤は、上記のような汚泥処理に特に適している。 FIG. 1 is a flow showing an example of the purified water sludge treatment, and the treated water becomes treated water (purified water) through purified water treatment such as aggregation, precipitation, and filtration. On the other hand, the sludge generated in the water purification process becomes a dewatered cake through sludge treatment such as concentration and dehydration, and the supernatant and separated water separated by solid and liquid are reprocessed in the water purification process. The purified water sludge treatment agent of the present invention is particularly suitable for the sludge treatment as described above.
先ず、上記浄水汚泥処理で用いる薬剤、すなわち、浄水処理の工程でフロック生成に用いる凝集剤と、汚泥処理で用いる本発明の浄水汚泥処理剤について具体例を説明する。 First, a specific example is demonstrated about the chemical | medical agent used by the said water purification sludge process, ie, the flocculant used for floc production | generation in the process of water purification treatment, and the water purification sludge treatment agent of this invention used by sludge treatment.
[フロック生成用の凝集剤]
この凝集剤はフロック生成に適したものであれば特に限定されないが、一般に無機凝集剤を使用する。
[Flocting flocculant]
The flocculant is not particularly limited as long as it is suitable for generating flocs, but an inorganic flocculant is generally used.
無機凝集剤は特に限定されず、浄水処理に通常使用される無機凝集剤を使用することができる。具体的には、鉄系凝集剤とアルミニウム系凝集剤のいずれか一方あるいは両方を使用可能であり、より具体的には、硫酸アルミニウム、ポリ塩化アルミニウム(PAC)、塩化アルミニウム、ポリ硫酸第二鉄(ポリ鉄)、塩化第二鉄及びこれらの混合物からなる群より選択されるいずれか1種以上を用いることができる。 An inorganic flocculant is not specifically limited, The inorganic flocculant normally used for a water purification process can be used. Specifically, one or both of an iron-based flocculant and an aluminum-based flocculant can be used, and more specifically, aluminum sulfate, polyaluminum chloride (PAC), aluminum chloride, polyferric sulfate. Any one or more selected from the group consisting of (polyiron), ferric chloride, and mixtures thereof can be used.
なお、フロック成長促進の目的で、凝集助剤、pH調整剤、緩衝剤、高分子凝集剤、沈降促進剤から選択される1種以上の助剤を、無機凝集剤と一緒に或いは無機凝集剤とは別に添加してもよい。フロック成長用の高分子凝集剤は、無機凝集剤を添加、急速撹拌した後の被処理水に添加することが好ましい。 For the purpose of promoting floc growth, one or more kinds of auxiliary agents selected from a coagulant aid, a pH adjuster, a buffering agent, a polymer coagulant and a sedimentation promoter are used together with the inorganic coagulant or the inorganic coagulant. It may be added separately. The polymer flocculant for floc growth is preferably added to the water to be treated after the inorganic flocculant is added and rapidly stirred.
この高分子凝集剤は特に限定されないが、ポリ(メタ)アクリル酸系、ポリ(メタ)アクリルアミド系、ポリ(メタ)アクリルアミド共重合体系、ポリ(メタ)アクリル酸エステル系、ポリ(メタ)アクリル酸エステル共重合体系など多様なものを用いることができるが、好ましくは、下記の浄水汚泥処理剤と同じものを使用する。 The polymer flocculant is not particularly limited, but poly (meth) acrylic acid, poly (meth) acrylamide, poly (meth) acrylamide copolymer, poly (meth) acrylate, poly (meth) acrylic Although various things, such as an ester copolymer system, can be used, Preferably, the same thing as the following purified water sludge processing agent is used.
[浄水汚泥処理剤]
汚泥濃縮および汚泥脱水の用途に用いる浄水汚泥処理剤は、ポリカルボン酸系重合体を含むものであって、好ましくはポリカルボン酸系重合体を主成分(50質量%)とするが、ポリカルボン酸系重合体の含有量は70質量%以上が好ましく、より好ましくは90質量%以上とすることも可能であり、実質的にポリカルボン酸系重合体からなる浄水汚泥処理剤が最も好ましい。
[Purified water sludge treatment agent]
The purified water sludge treatment agent used for sludge concentration and sludge dehydration contains a polycarboxylic acid polymer, and preferably contains a polycarboxylic acid polymer as a main component (50% by mass). The content of the acid polymer is preferably 70% by mass or more, more preferably 90% by mass or more, and a water purification sludge treatment agent substantially composed of a polycarboxylic acid polymer is most preferable.
ポリカルボン酸系重合体は、天然物、合成品のいずれも用いることができる。例えば、合成品の場合は、カルボン酸とカルボン酸塩の少なくとも一方を用いて生成した重合体の他、カルボン酸又はその塩以外の他のモノマーで重合体を生成後、その重合体の置換基の少なくとも一部を加水分解などの化学変性でカルボキシル化したものも含む。 As the polycarboxylic acid polymer, either a natural product or a synthetic product can be used. For example, in the case of a synthetic product, in addition to a polymer formed using at least one of a carboxylic acid and a carboxylic acid salt, a polymer is produced with a monomer other than carboxylic acid or a salt thereof, and then a substituent of the polymer. Also included are those obtained by carboxylation of at least a part of these by chemical modification such as hydrolysis.
すなわち、ポリカルボン酸系重合体は、カルボン酸とカルボン酸塩の少なくとも一方を構造単位として有する重合体であれば特に限定されず、ホモポリマーでもよいし、コポリマーでもよい。以下、カルボン酸又はその塩をカルボン酸(塩)と略記し、他の化合物についても塩を使用可能な場合は同様に略記する。 That is, the polycarboxylic acid polymer is not particularly limited as long as it is a polymer having at least one of carboxylic acid and carboxylate as a structural unit, and may be a homopolymer or a copolymer. Hereinafter, a carboxylic acid or a salt thereof is abbreviated as a carboxylic acid (salt), and the other compounds are also abbreviated in the same manner when a salt can be used.
ポリカルボン酸系重合体の原料となるカルボン酸(塩)は特に限定されず、不飽和カルボン酸(塩)、飽和カルボン酸(塩)の一方又は両方を用いることができるが、例えば、(メタ)アクリル酸(塩)、マレイン酸(塩)、イタコン酸(塩)、クロトン酸(塩)、ビニル安息香酸(塩)などの不飽和カルボン酸(塩)から選択される1種以上を用いることができる。 The carboxylic acid (salt) used as a raw material for the polycarboxylic acid polymer is not particularly limited, and one or both of an unsaturated carboxylic acid (salt) and a saturated carboxylic acid (salt) can be used. ) Use one or more selected from unsaturated carboxylic acids (salts) such as acrylic acid (salt), maleic acid (salt), itaconic acid (salt), crotonic acid (salt), vinylbenzoic acid (salt), etc. Can do.
最も好ましいカルボン酸(塩)は(メタ)アクリル酸(塩)、すなわち、アクリル酸とその塩、メタクリル酸とその塩から選択される。塩としてはナトリウムやカリウム等のアルカリ金属塩の他、アンモニウム塩も用いることができるが、アルカリ金属塩、特にナトリウムが好ましい。 The most preferred carboxylic acid (salt) is selected from (meth) acrylic acid (salt), ie acrylic acid and its salts, methacrylic acid and its salts. As the salt, ammonium salts can be used in addition to alkali metal salts such as sodium and potassium, but alkali metal salts, particularly sodium is preferable.
カルボン酸(塩)と、カルボン酸(塩)以外のコモノマーを共重合させてポリカルボン酸系(共)重合体を生成する場合、コモノマーの種類は特に限定されないが、例えば、ビニルスルホン酸(塩)などの1種以上のアニオン性モノマー:(メタ)アクリルアミド、(メタ)アクリレート(塩)又はこれらの誘導体から選択される1種以上のノニオン性モノマー:窒素含有(メタ)アクリレート(塩)、アミノ基含有エチレン性不飽和化合物(塩)、アミンイミド基含有化合物(塩)から選択される1種以上のカチオン性モノマーなどを用いることができる。 When a polycarboxylic acid (co) polymer is produced by copolymerizing a carboxylic acid (salt) and a comonomer other than the carboxylic acid (salt), the type of comonomer is not particularly limited. For example, vinyl sulfonic acid (salt) ) Or more anionic monomers: (meth) acrylamide, (meth) acrylate (salt) or one or more nonionic monomers selected from derivatives thereof: nitrogen-containing (meth) acrylate (salt), amino One or more kinds of cationic monomers selected from a group-containing ethylenically unsaturated compound (salt) and an amine imide group-containing compound (salt) can be used.
上記のようなコモノマーは1種以上を組み合わせて使用することが可能であり、その量も特に限定されない。しかし、後述するように処理剤全体のアニオン当量を高くするためには、カチオン性モノマーの使用量はモノマー原料全体の5mol%未満にすべきであり、好ましくはカチオン性モノマーを使用しない。また、ノニオン性モノマーを用いる場合も、アニオン当量が後述する最適値になるようその使用量を制限する。更に、アニオン性モノマーのみを用いることもできる。 The above comonomer can be used in combination of one or more, and the amount thereof is not particularly limited. However, as will be described later, in order to increase the anion equivalent of the entire treating agent, the amount of the cationic monomer used should be less than 5 mol% of the entire monomer raw material, and preferably no cationic monomer is used. Moreover, also when using a nonionic monomer, the usage-amount is restrict | limited so that an anion equivalent may become the optimal value mentioned later. Furthermore, only an anionic monomer can be used.
ノニオン性モノマーのうち、(メタ)アクリルアミドのように毒性があるものは、その使用量をモノマー原料全体の10mol%以下とすることが好ましく、より好ましくは5mol%以下とする。また、(メタ)アクリルアミドを使用せずにカルボン酸系重合体を製造しても、本発明の処理剤の汚泥濃縮能力への影響は少ない。なお、(メタ)アクリルアミドとは、アクリルアミドとメタクリアミドの両方を含む概念である。 Among nonionic monomers, those that are toxic, such as (meth) acrylamide, are preferably used in an amount of 10 mol% or less, more preferably 5 mol% or less of the entire monomer raw material. Moreover, even if a carboxylic acid polymer is produced without using (meth) acrylamide, the treatment agent of the present invention has little influence on the sludge concentration capacity. Note that (meth) acrylamide is a concept including both acrylamide and methacrylamide.
上記のようにモノマーを重合させた合成品とは別に、または合成品と共に天然物(抽出物、化学変性品を含む)を用いる場合も、その種類は特に限定されない。天然物由来のポリカルボン酸系重合体としては、例えば、アルギン酸(塩)、カルボキシメチルセルロース(塩)、ポリグルタミン酸(塩)、ペクチン(塩)などから1種以上を選択することができる。 In the case where a natural product (including an extract and a chemically modified product) is used separately from or together with the synthetic product obtained by polymerizing the monomer as described above, the kind thereof is not particularly limited. As the polycarboxylic acid polymer derived from a natural product, for example, one or more kinds can be selected from alginic acid (salt), carboxymethylcellulose (salt), polyglutamic acid (salt), pectin (salt), and the like.
このように、ポリカルボン酸系重合体としては、合成品、天然物、コポリマー、ホモポリマー、化学変性物など多様な種類を1種以上選択して使用することができるが、安全性を考慮すると、食品添加物としても使用できるポリカルボン酸系重合体、具体的には、ポリ(メタ)アクリル酸(塩)、アルギン酸(塩)、カルボキシメチルセルロース(塩)、ポリグルタミン酸(塩)からなる群より1種以上が選択される。 As described above, as the polycarboxylic acid polymer, one or more various types such as a synthetic product, a natural product, a copolymer, a homopolymer, and a chemically modified product can be selected and used. A polycarboxylic acid polymer that can also be used as a food additive, specifically, from the group consisting of poly (meth) acrylic acid (salt), alginic acid (salt), carboxymethylcellulose (salt), polyglutamic acid (salt) One or more are selected.
これらの中でも、汚泥濃縮性能の高いポリ(メタ)アクリル酸(塩)が最も好ましく、ポリ(メタ)アクリル酸(塩)と1種以上の他の好適なポリカルボン酸系重合体を組み合わせて使用することもできるが、ポリ(メタ)アクリル酸(塩)がポリカルボン酸系共重合体全体に占める割合を50質量%以上とすることが好ましく、より好ましくは75質量%以上、更に好ましくは80質量%以上、特に好ましくは90質量%以上であり、実質的にポリ(メタ)アクリル酸(塩)のみをポリカルボン酸系共重合体として使用することもできる。 Among these, poly (meth) acrylic acid (salt) having high sludge concentration performance is most preferable, and a combination of poly (meth) acrylic acid (salt) and one or more other suitable polycarboxylic acid polymers is used. However, the proportion of poly (meth) acrylic acid (salt) in the entire polycarboxylic acid copolymer is preferably 50% by mass or more, more preferably 75% by mass or more, and still more preferably 80%. It is also possible to use only poly (meth) acrylic acid (salt) as a polycarboxylic acid-based copolymer.
ポリ(メタ)アクリル酸(塩)は特に限定されず、例えば、ポリアクリル酸、ポリアクリル酸ナトリウム、ポリアクリル酸カリウム、ポリアクリル酸アンモニウム、ポリメタクリル酸、ポリメタクリル酸ナトリウム、ポリメタクリル酸カリウム、ポリメタクリル酸アンモニウムからなる群より選択されるいずれか1種以上を用いることが可能であるが、特に好ましくはポリアクリル酸ナトリウムである。 Poly (meth) acrylic acid (salt) is not particularly limited. For example, polyacrylic acid, sodium polyacrylate, potassium polyacrylate, ammonium polyacrylate, polymethacrylic acid, sodium polymethacrylate, polypotassium methacrylate, Any one or more selected from the group consisting of polyammonium methacrylate can be used, and sodium polyacrylate is particularly preferred.
上記のようなポリカルボン酸系重合体以外の浄水汚泥処理剤成分は特に限定されず、1種以上の他の高分子凝集剤、1種以上の添加剤を添加することも可能である。他の高分子凝集剤の具体例は、ポリ(メタ)アクリルアミド、アミン縮合系、DADMAC(ポリジアリルジメチルアンモニウムクロリド)、メラミン酸コロイド、スルホン酸系、ポリ(メタ)アクリルエステル系、ジシアンジアミド系などがある。しかし、より好ましくは、ポリカルボン酸系重合体以外の高分子凝集剤は使用しない。 The purified water sludge treatment agent component other than the polycarboxylic acid-based polymer as described above is not particularly limited, and one or more other polymer flocculants and one or more additives can be added. Specific examples of other polymer flocculants include poly (meth) acrylamide, amine condensation type, DADMAC (polydiallyldimethylammonium chloride), melamic acid colloid, sulfonic acid type, poly (meth) acrylic ester type, dicyandiamide type and the like. is there. However, more preferably, no polymer flocculant other than the polycarboxylic acid polymer is used.
このように、本発明の浄水汚泥処理剤は、ポリカルボン酸系重合体を必須として含むのであれば、1種または2種以上のポリカルボン酸系重合体のみからなる場合、ポリカルボン酸系重合体以外の物質(他の高分子凝集剤、添加剤など)をも含む場合などが考えられるが、いずれの場合も浄水汚泥処理剤全体では、0.1質量%塩粘度が2mPa・s〜5mPa・s、0.1質量%溶液粘度が6mPa・s以下、かつ、アニオン当量が4.5meq/g以上になるように、ポリカルボン酸系重合体の種類及び量、並びにポリカルボン酸系重合体以外の物質の種類及び量を調整する。 As described above, if the water purification sludge treatment agent of the present invention contains a polycarboxylic acid polymer as an essential component, when it consists of only one or two or more polycarboxylic acid polymers, Although cases including substances other than coalescence (other polymer flocculants, additives, etc.) are also conceivable, in all cases, the 0.1 wt% salt viscosity is 2 mPa · s to 5 mPa in the whole purified water sludge treatment agent. · S, 0.1% by mass Solution viscosity of 6 mPa · s or less, and anion equivalent of 4.5 meq / g or more, types and amounts of polycarboxylic acid polymers, and polycarboxylic acid polymers Adjust the type and amount of substances other than
ここで、0.1質量%塩粘度とは、塩化ナトリウム1mol(約58.44g)を、1Lの水に溶解した塩化ナトリウム水溶液(1mol/L)に、浄水汚泥処理剤をその固形分濃度が0.1質量%になるよう溶解して試料を作成し、この試料をB型粘度計にて25℃の条件で測定した値であり、単位はmPa・sである。 Here, the 0.1% by mass salt viscosity is a sodium chloride aqueous solution (1 mol / L) in which 1 mol of sodium chloride (about 58.44 g) is dissolved in 1 L of water, and the solid content concentration of the purified water sludge treatment agent. A sample was prepared by dissolving to 0.1% by mass, and this sample was measured with a B-type viscometer at 25 ° C. The unit is mPa · s.
上記の0.1質量%塩粘度は凝集フロックの凝集性の指標となるもので、0.1質量%塩粘度が2mPa・s未満では、凝集フロックがさほど大きくならず沈降性の改善が望めない。他方、0.1質量%塩粘度が5mPa・sを超えると、脱水時の剥離不良や、ケーキ含水率上昇の原因となる。 The 0.1 mass% salt viscosity is an indicator of the cohesiveness of the aggregated flocs. When the 0.1 mass% salt viscosity is less than 2 mPa · s, the aggregated flocs are not so large and improvement in sedimentation cannot be expected. . On the other hand, when the 0.1% by mass salt viscosity exceeds 5 mPa · s, it causes a peeling failure during dehydration and an increase in the moisture content of the cake.
アニオン当量は以下の測定法で求めることができる値であって、単位はmeq/gである。浄水汚泥処理剤1g(固形分)を水1Lに溶解した水溶液(1g/L)を調整し、N/200メチルグリコールキトサン溶液を5ml添加し、攪拌後、トルイジンブルー指示薬を2〜3滴添加し、PVSK溶液(N/400ポリビニル硫酸カリウム溶液)で滴定し、変色して10秒以上保持する時点を終点とする。同上の操作で試料を添加せずにブランク試験を行い、下記式によりアニオン当量Avを算出する。 The anion equivalent is a value that can be determined by the following measurement method, and the unit is meq / g. Prepare an aqueous solution (1 g / L) of 1 g (solid content) of purified water sludge treatment agent in 1 L of water, add 5 ml of N / 200 methylglycol chitosan solution, add 2 to 3 drops of toluidine blue indicator after stirring. Titration with PVSK solution (N / 400 polyvinyl potassium sulfate solution), discoloration, and the time of holding for 10 seconds or more is defined as the end point. A blank test is performed without adding a sample by the same operation, and an anion equivalent Av is calculated by the following formula.
アニオン当量(Av)[meq/g] =
(ブランクの滴定量[ml]−サンプルの滴定量[ml])×1/2×PVSK溶液の力価
Anion equivalent (Av) [meq / g] =
(Blank titration [ml]-Sample titration [ml]) x 1/2 x PVSK solution titer
なお、アニオン性の高分子重合体は負にコロイド荷電しており、コロイド当量値にマイナスの符号を付したコロイド荷電量として表記する方法も用いられてはいるが、ここでは、非負数のアニオン当量として表記する。すなわち、アニオン当量が大きいほど高(強)アニオンであり、アニオン当量が小さいほど低(弱)アニオン、すなわちノニオン性に近づくことになる(例:アニオン当量0〜0.7はノニオン性)。 The anionic polymer is negatively colloidally charged, and a method of expressing it as a colloidal charge amount with a minus sign added to the colloid equivalent value is also used. Expressed as equivalents. That is, the larger the anion equivalent, the higher the (strong) anion, and the smaller the anion equivalent, the closer to the low (weak) anion, that is, nonionicity (eg, anionic equivalent 0 to 0.7 is nonionic).
本発明の浄水汚泥処理剤はアニオン当量が4.5以上であり、好ましいアニオン当量は4.5〜11.0であり、特に好ましいアニオン当量は9.0以上である。アニオン当量が4.5より小さい値となると、強固なフロック(例えば粗大凝集汚泥フロック)が形成されず、脱水時の剥離不良やケーキ含水率上昇の原因となる。 The purified water sludge treatment agent of the present invention has an anion equivalent of 4.5 or more, a preferred anion equivalent is 4.5 to 11.0, and a particularly preferred anion equivalent is 9.0 or more. When the anion equivalent value is less than 4.5, a strong floc (for example, coarse agglomerated sludge floc) is not formed, which causes peeling failure during dehydration and an increase in the moisture content of the cake.
0.1質量%溶液粘度とは、塩化ナトリウムの量を1molから25gに変更して塩化ナトリウム水溶液(25g/L)を調整した以外は、上記0.1質量%塩粘度と同じ方法で測定した粘度であり、単位はmPa・sである。 The 0.1 mass% solution viscosity was measured by the same method as the 0.1 mass% salt viscosity except that the amount of sodium chloride was changed from 1 mol to 25 g to adjust the aqueous sodium chloride solution (25 g / L). Viscosity, unit is mPa · s.
前述の0.1質量%塩粘度やアニオン当量は、従来より高分子凝集剤の凝集性能の評価に利用される場合があったが、これらの指標は浄水処理工程におけるろ過装置(砂ろ過池)のろ過抵抗との関連で論じられることはなかった。本願発明者らが鋭意検討した結果、高分子凝集剤が使用されたときのろ過抵抗への影響度は、25g/Lの塩化ナトリウムで測定した0.1質量%溶液粘度で評価することが最適であることを見出した。 The above-mentioned 0.1 mass% salt viscosity and anion equivalent have been conventionally used for evaluating the coagulation performance of the polymer flocculant, but these indicators are filtration devices (sand filtration ponds) in the water purification process. Was not discussed in relation to the filtration resistance of As a result of intensive studies by the present inventors, the degree of influence on filtration resistance when a polymer flocculant is used is optimally evaluated by a 0.1% by mass solution viscosity measured with 25 g / L of sodium chloride. I found out.
この0.1質量%溶液粘度は、汚泥処理の離脱水や上澄水を浄水処理工程(例:着水井)に返送して再処理する場合の、砂ろ過池のろ過抵抗の指標となる。すなわち、高分子凝集剤(浄水汚泥処理剤)の0.1質量%溶液粘度が6mPa・s以下であると、高分子凝集剤を使用しない場合と同程度かそれ以下のろ抗(ろ過抵抗)上昇ですむ。これに対し、浄水汚泥処理剤の0.1質量%溶液粘度が6mPa・sを超えると、ろ抗上昇率が速くなり、ろ過障害を招く要因となる。 This 0.1% by mass solution viscosity is an index of filtration resistance of the sand filtration pond when the sludge treatment separated water or supernatant water is returned to the water purification process (eg, landing well) and reprocessed. That is, when the 0.1% by mass solution viscosity of the polymer flocculant (purified water sludge treatment agent) is 6 mPa · s or less, the filtration resistance (filtration resistance) is equal to or less than that when the polymer flocculant is not used. You can rise. On the other hand, if the 0.1 mass% solution viscosity of the purified water sludge treatment agent exceeds 6 mPa · s, the rate of increase in the filter resistance is increased, which causes a filtration failure.
このように、本発明では、浄水汚泥処理剤の0.1質量%塩粘度及びアニオン当量を好適範囲にすることで、汚泥の脱水性や濃縮性、脱水ケーキの剥離性を向上させ、かつ、浄水汚泥処理剤の0.1質量%溶液粘度を好適範囲とすることで、離脱水や上澄水によるろ過障害の抑制をも可能にする。 Thus, in the present invention, by making the 0.1 mass% salt viscosity and anion equivalent of the purified water sludge treatment agent within suitable ranges, the sludge can be dehydrated and concentrated, and the dewatered cake can be removed, and By making the 0.1 mass% solution viscosity of the purified water sludge treatment agent into a suitable range, it is also possible to suppress filtration failure due to detached water and supernatant water.
次に、浄水汚泥処理剤が用いられる浄水汚泥処理装置と、浄水汚泥処理剤を用いた浄水汚泥処理法について具体的に説明する。 Next, a purified water sludge treatment apparatus using the purified water sludge treatment agent and a purified water sludge treatment method using the purified water sludge treatment agent will be specifically described.
[浄水汚泥処理装置]
本発明が適用できる浄水汚泥処理設備(浄水汚泥処理装置)は特に限定されず、実用化されている通常の設備を全て採用することが可能であるが、具体的には浄水処理設備と汚泥処理設備を兼ね備えたものであり、例えば横流式沈殿設備を有する浄水施設、高速凝集沈殿設備を有する浄水設備が挙げられる。
[Purified water sludge treatment equipment]
The water purification sludge treatment equipment (purified water sludge treatment equipment) to which the present invention can be applied is not particularly limited, and it is possible to adopt all the normal equipment that has been put to practical use. Specifically, the water purification treatment equipment and the sludge treatment are applicable. For example, a water purification facility having a cross-flow type precipitation facility and a water purification facility having a high-speed coagulation sedimentation facility can be mentioned.
高速凝集沈殿設備としてはスラリー循環型、スラッジ・ブランケット型いずれも適用可能である。また、マイクロサンドのような、通常の凝集フロックよりも比重が大きい沈降促進剤を併用する超高速凝集沈殿設備の適用も可能である。ただし、いずれの場合も、本発明の浄水汚泥処理剤は、ろ過池などろ過装置を有する浄水汚泥処理装置に特に適している。 Either a slurry circulation type or a sludge / blanket type can be applied as the high-speed coagulating sedimentation equipment. In addition, it is possible to apply an ultra-high-speed coagulation sedimentation facility using a sedimentation accelerator having a specific gravity larger than that of a normal coagulation floc such as micro sand. However, in any case, the purified water sludge treatment agent of the present invention is particularly suitable for a purified water sludge treatment apparatus having a filtration device such as a filtration pond.
以下に、横流式沈殿設備を有する装置を例として具体的に説明する。図2は浄水汚泥処理装置の一例を示しており、この浄水汚泥処理装置15は、浄水処理を行う浄水処理手段20と、浄水汚泥を濃縮する濃縮手段30とを有し、浄水処理手段20内に、または、浄水処理手段20とは別にろ過池25等のろ過装置が設置されている。 Hereinafter, an apparatus having a cross-flow type precipitation facility will be specifically described as an example. FIG. 2 shows an example of the purified water sludge treatment apparatus. The purified water sludge treatment apparatus 15 includes a purified water treatment means 20 for performing the purified water treatment and a concentration means 30 for concentrating the purified water sludge. Alternatively, a filtration device such as a filtration basin 25 is installed separately from the water purification treatment means 20.
より具体的には、浄水処理手段20は、着水井21と、凝集混和池(凝集混和槽)22と、フロック形成池(フロック形成槽)23と、沈殿池(沈殿槽)24と、ろ過池25とを有しており、着水井21には、水源から取水された被処理水1(原水)が導入され、場合により、後段の処理で分離される上澄水5、8、離脱水10、ろ過洗浄排水4、凝集沈殿汚泥3(又は沈殿前の粗大化フロック)のいずれか1種以上も着水井21に導入され、浄水処理に再利用される。 More specifically, the water purification treatment means 20 includes a landing well 21, an agglomeration mixing pond (aggregation mixing tank) 22, a flock formation pond (floc formation tank) 23, a settling basin (precipitation tank) 24, and a filtration pond. 25, the treated water 1 (raw water) taken from the water source is introduced into the landing well 21, and in some cases, the supernatant waters 5 and 8 and the separated water 10 separated in the subsequent treatment, Any one or more of the filtration washing waste water 4 and the coagulated sediment sludge 3 (or coarse flocs before precipitation) are also introduced into the landing well 21 and reused for water purification treatment.
以下、原水のみならず、再利用されるものを含めて「被処理水」として説明する。凝集混和池22は着水井21の下流側に設置されており、被処理水1は着水井21から凝集混和池22に導入される。凝集混和池22には、直接又は間接的に薬剤の供給手段が接続され、この供給手段から被処理水1に無機凝集剤12が注入される。 Hereinafter, not only raw water but also what is reused will be described as “treated water”. The agglomeration mixing basin 22 is installed on the downstream side of the landing well 21, and the treated water 1 is introduced from the landing well 21 into the agglomeration mixing basin 22. The agglomeration mixing basin 22 is directly or indirectly connected with a medicine supply means, and the inorganic flocculant 12 is injected into the water 1 to be treated from this supply means.
凝集混和池22には、攪拌羽、攪拌ポンプなどの攪拌手段が設置されている。この攪拌手段は、所定の撹拌エネルギーを付与する撹拌速度(回転数)が設定され、無機凝集剤が注入された被処理水を急速撹拌する。撹拌エネルギーの指標は特に限定されないが、その一例はG値(単位時間単位体積あたりの仕事量Pから被処理水の粘性係数μを除した値の平方根、日本水道協会水道施設設計指針2000、P188より)である。 The agglomeration mixing basin 22 is provided with stirring means such as a stirring blade and a stirring pump. The stirring means is set with a stirring speed (number of rotations) for applying predetermined stirring energy, and rapidly stirs the water to be treated into which the inorganic flocculant has been injected. The index of agitation energy is not particularly limited, but an example thereof is G value (square root of value obtained by dividing viscosity coefficient μ of water to be treated from work amount P per unit time unit volume, Japan Water Works Association Water Facility Design Guidelines 2000, P188. More).
凝集混和池22における急速撹拌の結果、被処理水中の濁質が凝集して微細フロック(マイクロフロック)として成長し、微細フロックを含む被処理水1が下流側に設置されたフロック形成池23に導入される。 As a result of the rapid stirring in the flocculation / mixing pond 22, turbidity in the water to be treated aggregates and grows as fine flocs (micro flocs), and the water to be treated 1 containing fine flocs enters the floc formation pond 23 installed downstream. be introduced.
凝集混和池22と同様、フロック形成池23には、攪拌羽、攪拌ポンプなどの攪拌手段が設置されている。この撹拌手段は、凝集混和池22の撹拌手段よりも低攪拌エネルギー(低G値)を付与するように撹拌速度が設定され、微細フロックが崩壊することなく、フロック同士が接触を繰り返して粗大フロックが形成される。 As with the agglomeration mixing basin 22, the flock formation pond 23 is provided with stirring means such as a stirring blade and a stirring pump. The stirring means is set at a stirring speed so as to give lower stirring energy (low G value) than the stirring means of the agglomeration mixing basin 22, and the flocs repeatedly contact with each other without collapsing the fine flocs. Is formed.
沈殿池24はフロック形成池23の下流側に設置されており、粗大フロックを含む被処理水は、重力沈降により凝集沈殿汚泥3と沈殿上澄水に固液分離される。沈殿池24の構造は特に限定されないが、一般的に、その内部に傾斜板又は傾斜管を設置して粗大フロックの沈殿を促進させる。通常、凝集沈殿汚泥3は集積されて沈殿池24の底部から排出され、濃縮手段30へ送られる。 The sedimentation basin 24 is installed on the downstream side of the floc-forming basin 23, and the water to be treated including coarse flocs is solid-liquid separated into agglomerated sedimentation sludge 3 and sedimentation supernatant water by gravity sedimentation. The structure of the sedimentation basin 24 is not particularly limited, but generally, an inclined plate or an inclined tube is installed in the inside thereof to promote sedimentation of coarse floc. Usually, the coagulated sediment sludge 3 is accumulated, discharged from the bottom of the sedimentation basin 24, and sent to the concentration means 30.
ろ過池25は沈殿池24の下流側に設置されており、沈殿池24で固液分離した沈殿上澄水は沈殿池24の終端部からろ過池25に送水される。ろ過池25はろ過材を有しており、例えばろ過材は粒状、繊維状、又は膜状であって、その種類や形状は特に限定されない。 The filtration basin 25 is installed on the downstream side of the sedimentation basin 24, and the supernatant liquid that has been subjected to solid-liquid separation in the sedimentation basin 24 is sent to the filtration basin 25 from the end of the sedimentation basin 24. The filter basin 25 has a filter medium. For example, the filter medium is granular, fibrous, or membrane-shaped, and the type and shape thereof are not particularly limited.
好ましいろ過材は粒状であって、例えば、ろ過砂(珪砂)(有効径0.35〜1.0mm、均等係数1.7以下、比重2.57〜2.67)、アンスラサイト(有効径0.7〜4.0mm、均等係数1.4以下、比重1.4〜1.6)、ガーネット(有効径約0.3mm、均等係数1.5以下、比重3.8〜4.1)、マンガン砂(有効径0.35〜0.60mm、均等係数1.5以下、比重2.58〜2.65)、セラミック(有効径0.3〜2.0mm、比重1.0〜1.2)のうち、1種以上を用いることができるが、上水道用途の場合は、珪砂とアンスラサイトのいずれか一方又は両方を含むものが最も好ましく、これらのろ過材に他のろ過材を更に組み合わせることも可能である。ろ過材は単層又は多層構造とし、これらろ過材とフィルターとを組み合わせることも可能である。 Preferred filter media are granular, for example, filtration sand (silica sand) (effective diameter 0.35 to 1.0 mm, uniformity coefficient 1.7 or less, specific gravity 2.57 to 2.67), anthracite (effective diameter 0). .7 to 4.0 mm, uniformity coefficient of 1.4 or less, specific gravity of 1.4 to 1.6), garnet (effective diameter of about 0.3 mm, uniformity coefficient of 1.5 or less, specific gravity of 3.8 to 4.1), Manganese sand (effective diameter 0.35 to 0.60 mm, uniformity coefficient 1.5 or less, specific gravity 2.58 to 2.65), ceramic (effective diameter 0.3 to 2.0 mm, specific gravity 1.0 to 1.2) 1) or more can be used, but in the case of water supply applications, those containing either one or both of silica sand and anthracite are most preferred, and these filter media are further combined with other filter media. Is also possible. The filter medium may be a single layer or a multilayer structure, and the filter medium and the filter may be combined.
沈殿上澄水中の残留フロックや過剰な添加剤(例:高分子凝集剤)は上記ろ過材によりろ過除去され、清浄なろ過水となる。このろ過水には、必要に応じて塩素剤13(例えば、次亜塩素酸ナトリウム、液体塩素)が供給手段を介して添加され、処理水2(浄水)が得られる。 Residual floc and excess additives (eg, polymer flocculant) in the sediment supernatant are removed by filtration with the above-mentioned filter medium, resulting in clean filtered water. If necessary, a chlorinating agent 13 (for example, sodium hypochlorite, liquid chlorine) is added to this filtered water through a supply means, and treated water 2 (purified water) is obtained.
なお、浄水処理手段20は上記構成に限定されない。例えば、塩素剤13はろ過池25の上流側や着水井21に添加してもよい。また、伏流水のような低濁度の被処理水2を処理対象とする場合には、沈殿池24を経由せず、凝集混和池22又はフロック形成池23の下流側に直接ろ過池25を配置してもよい。 In addition, the water purification process means 20 is not limited to the said structure. For example, the chlorine agent 13 may be added to the upstream side of the filtration basin 25 or the landing well 21. Further, when the low turbidity treated water 2 such as underground water is to be treated, the filtration basin 25 is not directly passed through the settling basin 24 but the downstream side of the agglomeration mixing basin 22 or the flock formation basin 23. You may arrange.
また、オゾン接触池と活性炭吸着池の組合せをろ過池25の上流側あるいは下流側のいずれか一方又は両方に設置してもよい。さらに、近年ろ過膜の発展が目覚ましいことから、固液分離手段として、ろ過池25の代わりに、または、ろ過池25と併用して、ろ過膜を使用することもできる。 Moreover, you may install the combination of an ozone contact pond and activated carbon adsorption pond in any one or both of the upstream of the filtration basin 25, a downstream. Furthermore, since the development of filtration membranes has been remarkable in recent years, filtration membranes can be used as solid-liquid separation means instead of the filtration basin 25 or in combination with the filtration basin 25.
いずれの態様の固液分離手段(ろ過池25)を使用する場合でも、使用により残留フロックや過剰な添加剤(高分子凝集剤など)が集積すると、ろ過抵抗が上昇してろ過効率が低下するため、必要に応じて洗浄が行われる。洗浄方法は特に限定されないが、ろ過池25は通常逆洗により洗浄され、洗浄後の排水はろ過洗浄排水4として濃縮手段30に送られる。また、ろ過洗浄排水4はそのまま着水井21に送られ再度浄水処理に供される場合もある。 Even when the solid-liquid separation means (filter 25) is used, if residual flocs or excessive additives (polymer flocculant, etc.) accumulate due to use, the filtration resistance increases and the filtration efficiency decreases. Therefore, cleaning is performed as necessary. Although the washing method is not particularly limited, the filtration basin 25 is usually washed by back washing, and the waste water after washing is sent to the concentration means 30 as the filtration washing waste water 4. Moreover, the filtration washing waste_water | drain 4 may be sent to the landing well 21 as it is, and may be used for a water purification process again.
次に、濃縮手段30について具体的に説明する。濃縮手段30は、排水池31と、排泥池32と、濃縮池33とを有しており、ろ過洗浄排水4は排水池31に送水され、重力沈降により排水池上澄水5と汚泥スラリー6に分離され、排水池上澄水5は浄水処理手段20(例:着水井21)に返送され、再度浄水処理に供される。排水池31は排泥池32に接続されており、排泥池32にはろ過洗浄排水4とろ過洗浄排水4由来の汚泥スラリー6のいずれか一方又は両方が送られる。 Next, the concentration means 30 will be specifically described. The concentrating means 30 has a drainage basin 31, a drainage basin 32, and a concentration basin 33, and the filtered and washed effluent 4 is sent to the drainage basin 31 and is drained into the drainage basin supernatant 5 and the sludge slurry 6 by gravity settling. After being separated, the drainage basin supernatant 5 is returned to the water purification treatment means 20 (for example, the landing well 21) and again subjected to the water purification treatment. The drainage basin 31 is connected to a mud basin 32, and either one or both of the filtration washing drainage 4 and the sludge slurry 6 derived from the filtration washing drainage 4 are sent to the mud pond 32.
排泥池32は沈殿池24にも接続されており、ろ過洗浄排水4(汚泥スラリー6)の他、沈殿池24から凝集沈殿汚泥3も排泥池32に導入することが可能である。排泥池32には撹拌手段が設置されており、排泥池32は、凝集沈殿汚泥3とろ過洗浄排水4(汚泥スラリー6)の少なくとも一方を含む浄水汚泥7を撹拌しながら貯蔵する。浄水汚泥7は所定量が、所定間隔を空けてまたは連続して排泥池32からその下流側の濃縮池33へ送られる。 The drainage basin 32 is also connected to the sedimentation basin 24, and the aggregated sedimentation sludge 3 can be introduced from the sedimentation basin 24 into the sedimentation basin 32 in addition to the filtration washing drainage 4 (sludge slurry 6). The waste mud pond 32 is provided with a stirring means, and the waste mud pond 32 stores the purified water sludge 7 containing at least one of the coagulated sediment sludge 3 and the filtered washing waste water 4 (sludge slurry 6) while stirring. A predetermined amount of the purified water sludge 7 is sent from the waste mud basin 32 to the concentration basin 33 on the downstream side thereof at predetermined intervals or continuously.
濃縮池33は浄水汚泥7を濃縮可能な装置であれば特に限定されないが、重量濃縮と機械濃縮のいずれか一方又は両方、好ましくは重量濃縮により浄水汚泥7を濃縮する。濃縮された浄水汚泥7(濃縮汚泥9)は、例えば濃縮池33の底部に沈降して固液分離し、濃縮池上澄水8は浄水処理手段20(例:着水井21)へ返送され、濃縮汚泥9は脱水手段50へ送られる。 The concentration pond 33 is not particularly limited as long as it is an apparatus capable of concentrating the purified water sludge 7, but the purified water sludge 7 is concentrated by weight concentration and / or mechanical concentration, preferably by weight concentration. The concentrated purified water sludge 7 (concentrated sludge 9) settles, for example, at the bottom of the concentration basin 33 and separates into solid and liquid, and the concentrated pond supernatant 8 is returned to the water purification treatment means 20 (for example, the landing well 21). 9 is sent to the dehydrating means 50.
脱水手段50は濃縮汚泥9から過剰水分を除去するものであれば特に限定されず、機械脱水と乾燥(天日や熱乾燥)のいずれか一方又は両方により脱水を行うことができるが、効率面からは少なくとも機械脱水を行う脱水装置51を有する。 The dehydrating means 50 is not particularly limited as long as it removes excess moisture from the concentrated sludge 9, and can be dehydrated by one or both of mechanical dehydration and drying (sunlight or heat drying). Has a dehydrating device 51 for performing at least mechanical dehydration.
この機械脱水は多様な方法を採用可能であり、例えば、ベルトプレス型、遠心脱水型、スクリュープレス型、真空脱水型などを単独で或いは2種以上を組み合わせて使用することができるが、処理能力が高く、ランニングコストも低いという点でフィルタプレス型の脱水装置51が最も好ましい。 Various mechanical dehydration methods can be used. For example, a belt press type, a centrifugal dehydration type, a screw press type, a vacuum dehydration type, etc. can be used alone or in combination of two or more. The filter press type dehydrator 51 is most preferable in that it is high and the running cost is low.
フィルタプレス型の脱水装置51は、ろ布走行式、ろ布固定式、ダイヤフラム型等特に限定されないが、いずれも、加圧により、ろ布(フィルタ)を介して汚泥固形分から水分を分離する装置である。 The filter press type dewatering device 51 is not particularly limited, such as a filter cloth traveling type, a filter cloth fixed type, a diaphragm type, etc., but any of them is a device that separates moisture from sludge solids through a filter cloth (filter) by pressurization. It is.
フィルタは特に限定されないが、例えば、単繊維径が0.1〜0.3mm程度の繊維を、不織布又は織布(朱子織、平織、綾織、杉綾織、フェルト、二重織等)としてシート状に成形したものであって、その材質も特に限定されず、例えば、ナイロン、ポリエステル、ポリプロピレン、レーヨン、アセテート、プロミックス、キュプラ、ビニロン、ビニリデン、ポリ塩化ビニル、アクリル、ポリエチレン、ポリウレタン、炭素繊維、フッ素繊維、ポリアミド等から選択されるいずれか1種以上の繊維を用いることができる。 Although the filter is not particularly limited, for example, a fiber having a single fiber diameter of about 0.1 to 0.3 mm is formed into a sheet shape as a nonwoven fabric or a woven fabric (eg, satin weave, plain weave, twill weave, sugi twill weave, felt, double weave). The material is not particularly limited, for example, nylon, polyester, polypropylene, rayon, acetate, promix, cupra, vinylon, vinylidene, polyvinyl chloride, acrylic, polyethylene, polyurethane, carbon fiber, Any one or more kinds of fibers selected from fluorine fibers, polyamides and the like can be used.
いずれのフィルタを使用した場合も、浄水汚泥の水分は加圧によりフィルタを通過して脱水離脱水10となるが、固形分はフィルタを通過せず、脱水ケーキ11としてとして排出される。一方、脱水離脱水10は浄水処理手段20(例:着水井21)に返送される。 Regardless of which filter is used, the water in the purified water sludge passes through the filter by pressurization and becomes dehydrated water 10, but the solid content does not pass through the filter and is discharged as dehydrated cake 11. On the other hand, the dewatering water 10 is returned to the water purification means 20 (eg, the landing well 21).
この浄水汚泥処理装置15は、更に浄水汚泥処理剤14の供給手段40を有しており、この供給手段40は、排泥池32から脱水装置51までの間のいずれか一カ所以上、例えば、排泥池32を濃縮池33に接続する配管、濃縮池33を脱水装置51へ接続する配管のいずれか一カ所以上に接続され、浄水汚泥7と濃縮汚泥9のいずれか一方又は両方に浄水汚泥処理剤14を添加する。なお、浄水汚泥処理剤14の添加位置または添加位置の下流側に混合槽を設置し、この混合槽で浄水汚泥処理剤14と、汚泥7、9を混合してもよい。 The water purification sludge treatment device 15 further has a supply means 40 for the water purification sludge treatment agent 14, and the supply means 40 is at least one place between the drainage pond 32 and the dehydration device 51, for example, Connected to one or more of the piping connecting the drainage pond 32 to the concentration basin 33 and the piping connecting the concentration basin 33 to the dewatering device 51, and the purified water sludge is connected to one or both of the purified water sludge 7 and the concentrated sludge 9. Treatment agent 14 is added. In addition, a mixing tank may be installed in the addition position of the purified water sludge treatment agent 14 or the downstream side of the addition position, and the purified water sludge treatment agent 14 and the sludges 7 and 9 may be mixed in this mixing tank.
供給手段40は特に限定されないが、好ましくは溶解槽を設置し、この溶解槽に浄水汚泥処理剤14を溶解又は分散させた水溶液を収容する。この水溶液と被処理汚泥のいずれか一方又は両方の流量を流量制御手段で調整すれば、所望量の浄水汚泥処理剤14を注入することができる。 Although the supply means 40 is not specifically limited, Preferably, a dissolution tank is installed, and an aqueous solution in which the purified water sludge treatment agent 14 is dissolved or dispersed is accommodated in the dissolution tank. A desired amount of the purified water sludge treatment agent 14 can be injected by adjusting the flow rate of one or both of the aqueous solution and the treated sludge with the flow rate control means.
次に、この浄水汚泥処理装置15を用いた浄水汚泥処理方法について説明する。 Next, the purified water sludge processing method using this purified water sludge processing apparatus 15 is demonstrated.
[浄水汚泥処理方法]
本発明で処理する被処理水1は特に限定されず、工場排水、家庭排水、海水などの処理も可能ではあるが、特に適しているのは河川水、湖沼水、貯水地水、雨水、伏流水、地下水、井水である。
[Purified water sludge treatment method]
The treated water 1 to be treated in the present invention is not particularly limited, and it is possible to treat industrial wastewater, domestic wastewater, seawater, etc., but particularly suitable are river water, lake water, reservoir water, rainwater, underground flow Water, groundwater and well water.
必要であれば被処理水1の水質をジャーテストなどで予め調べ、水質に合わせて無機凝集剤の注入量を予め設定しておき、被処理水1リットルあたり5〜200mg、好ましくは10〜100mgの添加量で無機凝集剤12を注入し、凝集混和池22で急速撹拌する。なお、上記添加量は、無機凝集剤が硫酸アルミニウムや塩化第二鉄の場合は固形分の質量であり、無機凝集剤がPAC(酸化アルミニウムAl2O3換算10質量%のポリ塩化アルミニウム溶液)の場合は、その液体質量である。 If necessary, the water quality of the water to be treated 1 is examined in advance by a jar test or the like, and the injection amount of the inorganic flocculant is set in advance according to the water quality, and is 5 to 200 mg, preferably 10 to 100 mg per liter of water to be treated. The inorganic flocculant 12 is injected in an added amount and rapidly stirred in the flocculation mixing tank 22. In addition, the said addition amount is the mass of solid content, when an inorganic flocculant is aluminum sulfate or ferric chloride, and an inorganic flocculant is PAC (a polyaluminum chloride solution of 10 mass% in terms of aluminum oxide Al 2 O 3 ). Is the mass of the liquid.
次いで、微細フロックが生成した被処理水をフロック形成池23で緩速攪拌し、フロックを粗大化させる。緩速攪拌の開始前または緩速攪拌の間、必要であれば、フロック成長用の高分子凝集剤を適量(1リットルの被処理水1当たり0.05〜20mg程度)添加してもよい。更に、無機凝集剤若しくは高分子凝集剤と一緒に又はこれら凝集剤とは別に、pH調整剤、緩衝剤、凝集助剤、殺菌剤、沈降促進剤の1種以上の添加剤を添加してもよい。 Next, the water to be treated in which the fine flocs are generated is gently stirred in the floc formation pond 23 to coarsen the flocs. If necessary, an appropriate amount of a polymer flocculant for floc growth (about 0.05 to 20 mg per 1 liter of water to be treated) may be added before the start of the slow stirring or during the slow stirring. Furthermore, together with the inorganic flocculant or the polymer flocculant or separately from these flocculants, one or more additives such as a pH adjuster, a buffer, a flocculant aid, a bactericidal agent, and a sedimentation accelerator may be added. Good.
粗大フロックが成長した被処理水1は、沈殿池24で固液分離し、分離した沈殿上澄水はろ過池25でろ過されて清澄なろ過水となり、さらに塩素消毒などを経て処理水2(浄水)となる。一方、沈殿分離された凝集沈殿汚泥3は排泥池32に送泥される。 The treated water 1 on which the coarse floc has grown is solid-liquid separated in the sedimentation basin 24, and the separated sediment supernatant is filtered through the filtration basin 25 to become a clear filtered water. ) On the other hand, the agglomerated sedimentation sludge 3 that has been separated by sedimentation is sent to the waste mud pond 32.
他方、ろ過池25は定期的に、または、検査結果によりろ抗が一定以上になったと判断される時に洗浄(逆洗)する。そのろ過洗浄排水4はろ過材から剥離された固形分(残留フロック、過剰添加剤)と共に排水池31に送られ、排水池上澄水5と汚泥スラリー6に固液分離される。排泥池32では、任意に汚泥スラリー6(ろ過洗浄排水4)と凝集沈殿汚泥3を混合して浄水汚泥7とする。 On the other hand, the filter basin 25 is washed (backwashed) periodically or when it is determined that the filter resistance has reached a certain level or more based on the inspection result. The filtered and washed waste water 4 is sent to the drainage basin 31 together with the solid content (residual floc and excess additive) peeled off from the filter medium, and is separated into solid and liquid into the drainage basin supernatant 5 and the sludge slurry 6. In the sludge pond 32, the sludge slurry 6 (filtered washing waste water 4) and the coagulated sediment sludge 3 are arbitrarily mixed to obtain the purified water sludge 7.
浄水汚泥7は排泥池32で撹拌され、固形分が均一分散した状態で濃縮池33へ送られる。この浄水汚泥7に浄水汚泥処理剤14を添加しておくと、濃縮池33での汚泥の沈降性が向上するので、重力濃縮や機械濃縮により高濃度の濃縮汚泥9が得られ、しかも濃縮池上澄水8の清澄度が改善される。汚泥濃縮時の浄水汚泥処理剤14の添加量は、例えば、浄水汚泥7の乾燥汚泥換算重量(SS)に対し0.01〜3質量%、好ましくは0.1〜1質量%程度であるが、濃縮条件により適宜変更可能である。 The purified water sludge 7 is stirred in the waste mud pond 32 and sent to the concentration basin 33 in a state where the solid content is uniformly dispersed. If the purified water sludge treatment agent 14 is added to the purified water sludge 7, the sedimentation property of the sludge in the concentration pond 33 is improved, so that the concentrated sludge 9 having a high concentration can be obtained by gravity concentration or mechanical concentration. The clarity of the clear water 8 is improved. The amount of the purified water sludge treatment agent 14 added at the time of sludge concentration is, for example, about 0.01 to 3% by mass, preferably about 0.1 to 1% by mass with respect to the dry sludge equivalent weight (SS) of the purified water sludge 7. Depending on the concentration conditions, it can be appropriately changed.
濃縮汚泥9は、加圧ろ過、加圧圧搾ろ過、真空ろ過、遠心分離、造粒脱水などの機械脱水法と、乾燥、から選択される1以上の機械脱水法と、添付や熱乾燥による乾燥法のいずれか1以上の方法で脱水されるが、好ましくは機械脱水、より好ましくは加圧ろ過又は加圧圧搾ろ過により脱水する。 Concentrated sludge 9 is one or more mechanical dehydration methods selected from pressure filtration, pressure squeezing filtration, vacuum filtration, centrifugal separation, granulation dehydration, and drying, and attachment or drying by heat drying. It is dehydrated by any one or more of the methods, preferably by mechanical dehydration, more preferably by pressure filtration or pressure squeeze filtration.
いずれの脱水法でも、濃縮汚泥が浄水汚泥処理剤14を含む場合、脱水性が向上して脱水汚泥(脱水ケーキ11)の含水率が低下する上、脱水汚泥のろ布剥離性も向上するので、脱水工程を効率良く行うことができる。 In any dewatering method, when the concentrated sludge contains the purified water sludge treatment agent 14, the dewaterability is improved, the moisture content of the dewatered sludge (dehydrated cake 11) is lowered, and the filter cloth peelability of the dewatered sludge is also improved. The dehydration process can be performed efficiently.
脱水工程に利用される浄水汚泥処理剤14は、汚泥濃縮に利用した浄水汚泥7由来の残留物であってもよいし、汚泥濃縮後の濃縮汚泥9に添加してもよい。濃縮汚泥9に添加する場合、浄水汚泥処理剤14の添加量は、例えば、濃縮汚泥9の乾燥汚泥換算重量(SS)に対し0.005〜2質量%、好ましくは0.05〜0.5質量%程度であるが、脱水条件により適宜変更可能である。 The purified water sludge treatment agent 14 used in the dehydration process may be a residue derived from the purified water sludge 7 used for sludge concentration, or may be added to the concentrated sludge 9 after sludge concentration. When added to the concentrated sludge 9, the amount of the purified water sludge treatment agent 14 added is, for example, 0.005 to 2% by mass, preferably 0.05 to 0.5%, based on the dry sludge equivalent weight (SS) of the concentrated sludge 9. Although it is about mass%, it can be appropriately changed depending on the dehydration conditions.
脱水後の濃縮汚泥9は脱水ケーキ11として排出され、路盤材、土壌改良剤、セメント原料などにリサイクル利用可能であり、廃棄物として焼却処分あるいは埋立て処分することもある。 The dewatered concentrated sludge 9 is discharged as a dehydrated cake 11 and can be recycled to roadbed materials, soil conditioners, cement materials, etc., and may be incinerated or landfilled as waste.
他方、濃縮手段30や脱水手段50で生じる上澄水や離脱水、具体的には、排水池上澄水5、濃縮池上澄水8、脱水離脱水10はいずれも浄水処理手段20(例:着水井21)に返送され、被処理水1やろ過洗浄排水4と共に、或いは、被処理水1やろ過洗浄排水4とは別に浄水処理工程に付される。 On the other hand, the supernatant water and detachment water generated by the concentration means 30 and the dewatering means 50, specifically, the drainage pond supernatant water 5, the concentration pond supernatant water 8, and the dewatering detachment water 10 are all purified water treatment means 20 (eg, landing well 21). And is subjected to a water purification treatment step together with the water 1 to be treated and the filtration washing waste water 4 or separately from the water to be treated 1 and the filtration washing waste water 4.
従って、上澄水5、8や離脱水10を、浄水汚泥処理装置15の処理系外部には流出させずに再処理可能であるため、上澄水5、8や離脱水10に浄水汚泥処理剤14やその添加剤(高分子凝集剤)が残留していても、これら残留物質の処理系外部へ流出させず、補足することができる。しかも、上澄水5、8や離脱水10残留する浄水汚泥処理剤14は、凝集フロックの粗大化にも寄与し、強固な粗大化フロックを形成させるため、水処理用(高分子)凝集剤の使用量を抑制することも可能である。 Therefore, since the supernatant waters 5 and 8 and the separated water 10 can be reprocessed without flowing out of the treatment system of the purified water sludge treatment device 15, the purified water sludge treatment agent 14 is added to the supernatant waters 5 and 8 and the separated water 10. Even if the additive or its additive (polymer flocculant) remains, it can be supplemented without causing these residual substances to flow out of the processing system. In addition, the purified water sludge treatment agent 14 remaining in the supernatant waters 5 and 8 and the detached water 10 contributes to the coarsening of the flocs flocs and forms strong coarse flocs. It is also possible to suppress the amount used.
上澄水5、8や離脱水10を再処理する場合、従来は残留物質によるろ過池25のろ抗上昇が問題になった。本発明の浄水汚泥処理剤14は上澄水5、8や離脱水10に残留しても、ろ抗上昇の影響が無機凝集剤のみで凝集、沈殿、ろ過した場合と同程度かそれ以下に抑制される。すなわち、従来の汚泥処理剤を使用した場合と比較して、本発明の浄水汚泥処理剤14を使用すれば、上澄水5、8や離脱水10の再処理によるろ過障害が起こり難い。 In the case of reprocessing the supernatant waters 5 and 8 and the detached water 10, conventionally, the increase in the filter resistance of the filter basin 25 due to residual substances has become a problem. Even if the purified water sludge treatment agent 14 of the present invention remains in the supernatant waters 5 and 8 and the separated water 10, the effect of the filter resistance is suppressed to the same level or lower than that when the inorganic flocculant only aggregates, precipitates and filters. Is done. That is, compared with the case where the conventional sludge treatment agent is used, if the purified water sludge treatment agent 14 of the present invention is used, the filtration failure due to the reprocessing of the supernatant waters 5 and 8 and the separated water 10 hardly occurs.
以下、実施例および比較例により、本発明を具体的に説明する。本発明の浄水汚泥処理剤として6種類のポリマI〜VIを用意し、比較対象として5種類の比較ポリマI〜Vを用意した。その組成を下記表1、2に記載する。 Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. Six types of polymers I to VI were prepared as the purified water sludge treatment agent of the present invention, and five types of comparative polymers I to V were prepared as comparison targets. The compositions are listed in Tables 1 and 2 below.
上記表1中、成分Aはポリアクリル酸Na(ホモポリマー)を示し、成分Bはポリアクリル酸Naとアルギン酸Naとの混合物であり、成分Cはポリアクリル酸NaとカルボキシメチルセルロースNaとの混合物であり、成分Dはポリアクリル酸NaとポリアクリルアミドNaの混合物であって、成分DのポリアクリルアミドNaはそのアニオン構造単位にカルボキシル基を含むアニオン系のポリカルボン酸共重合体である(アクリルアミドとアクリル酸Naの共重合体)。 In Table 1 above, component A represents polyacrylic acid Na (homopolymer), component B is a mixture of polyacrylic acid Na and sodium alginate, and component C is a mixture of polyacrylic acid Na and carboxymethylcellulose Na. The component D is a mixture of polyacrylic acid Na and polyacrylamide Na, and the polyacrylamide Na of the component D is an anionic polycarboxylic acid copolymer containing a carboxyl group in its anionic structural unit (acrylamide and acrylic). Copolymer of acid Na).
上記表2の成分Dは、表1の成分Dと同様、ポリアクリル酸Naと、アニオン系のポリカルボン酸共重合体であるポリアクリルアミドNaとの混合物である。 The component D of the said Table 2 is a mixture of polyacrylic acid Na and polyacrylamide Na which is an anionic polycarboxylic acid copolymer like the component D of Table 1.
<汚泥スラリー濃縮試験>
上記ポリマI〜VI及び比較ポリマI〜Vを用いて汚泥スラリーの濃縮試験を行った。浄水汚泥処理剤としてのポリマI〜VI、比較ポリマI、IIの種類及び注入率を、試験結果と共に下記表3に記載する。
<Sludge slurry concentration test>
A sludge slurry concentration test was conducted using the above polymers I to VI and comparative polymers I to V. The types and injection rates of Polymers I to VI and Comparative Polymers I and II as purified water sludge treatment agents are shown in Table 3 below together with the test results.
<比較例1>
和光純薬株式会社製の試薬カオリン(以下、カオリンと記す)および多木化学株式会社製のポリ塩化アルミニウムA−250(以下、PACと記す)を質量比1:2の割合で袖ヶ浦市水に添加して混合し、水酸化ナトリウムでpH7に中和して汚泥スラリー原液を調製した。この汚泥スラリー原液の固形物濃度(SS)を測定し、この値を基に袖ヶ浦市水で希釈してSS濃度1.3g/Lの汚泥スラリーを調製した。
<Comparative Example 1>
Reagents Kaolin (hereinafter referred to as “kaolin”) manufactured by Wako Pure Chemical Industries, Ltd. and polyaluminum chloride A-250 (hereinafter referred to as “PAC”) manufactured by Taki Chemical Co., Ltd. in Sodegaura city water at a mass ratio of 1: 2. The mixture was added and mixed, and neutralized to pH 7 with sodium hydroxide to prepare a sludge slurry stock solution. The solid concentration (SS) of this sludge slurry stock solution was measured and diluted with Sodegaura City water based on this value to prepare a sludge slurry with an SS concentration of 1.3 g / L.
この汚泥スラリー200mLをビーカーに採取し、ポリマI〜VI(比較ポリマI〜V)を添加せずにジャーテスターによりインペラ回転数150rpmで2分間撹拌後、共栓メスシリンダーに移して混合静置し、2分経過後の沈降スラリーの占める容積をスラリー界面から計測した。このスラリー容積%(以下、SV2と記す)を求めたところ85%であった。さらに静置を継続し、30分経過後に上澄水(以下、濃縮上澄水と記す)を100mL採取し、日本電色工業社製の濁度計WA 6000を用いて濁度を測定したところ、濁度は30度を超えていた。 Collect 200 mL of this sludge slurry in a beaker, stir the impeller at 150 rpm for 2 minutes with a jar tester without adding polymers I to VI (comparative polymers I to V), transfer to a stoppered graduated cylinder and mix and stand. The volume occupied by the precipitated slurry after 2 minutes was measured from the slurry interface. The slurry volume% was 85% was determined (hereinafter, SV 2 hereinafter). Further, the mixture was left standing, and after 30 minutes, 100 mL of supernatant water (hereinafter referred to as concentrated supernatant water) was collected and measured for turbidity using a turbidimeter WA 6000 manufactured by Nippon Denshoku Industries Co., Ltd. The degree exceeded 30 degrees.
ついで、径150mmのNo.5種A定量ろ紙を16分割ヒダ折にしたものをロートに設置し、上記の静置30分後上澄水100mLを全量一気に注ぎ入れ、30秒間にろ過される水量(mL)を計量(以下この計量値を、濃縮上澄水ろ過指数と記す)したところ65mL/30秒であった。 Next, No. 150 mm in diameter. Place 5 types A quantitative filter paper into 16-fold folds, place it in a funnel, and after 30 minutes of standing, pour 100 mL of supernatant water all at once and measure the amount of water (mL) to be filtered in 30 seconds (hereinafter referred to as this The measured value was described as a concentrated supernatant water filtration index) and found to be 65 mL / 30 seconds.
<実施例1>
浄水汚泥処理剤として、ポリマIを表3の注入率で汚泥スラリーに添加した以外は、比較例1と同じ条件で汚泥スラリー濃縮試験を行ったところ、SV2は28%、濃縮上澄水濁度は8.3度、濃縮上澄水ろ過指数は72mL/30秒であった。すなわち、実施例1は比較例1よりもSV2、濃縮上澄水濁度とも低下し、汚泥スラリーの濃縮性、上澄水の清澄度は著しく改善されており、しかも比較例1と同等以上の高いろ過指数が得られている。比較例1はポリマが添加されておらず、無機凝集剤のみを使用して浄水処理(凝集、沈殿、ろ過)を行った場合に該当すると考えられており、本発明はこのような比較例1よりもろ抗が軽減されることが確認された。
<Example 1>
As purified water sludge treatment agent, except that the polymer I is added to the sludge slurry injection rate in Table 3 was subjected to the sludge slurry concentration test in the same conditions as in Comparative Example 1, SV 2 is 28%, concentrated on supernatant water turbidity Was 8.3 degrees and the concentrated supernatant water filtration index was 72 mL / 30 seconds. That is, in Example 1, both SV 2 and concentrated supernatant water turbidity are lower than those in Comparative Example 1, the concentration of sludge slurry and the clarity of the supernatant water are remarkably improved, and higher than or equal to Comparative Example 1. Filtration index is obtained. Comparative Example 1 is considered to be applicable when water purification treatment (flocculation, precipitation, filtration) is performed using only an inorganic flocculant without addition of a polymer, and the present invention is such Comparative Example 1 It was confirmed that the resistance was reduced.
<実施例2>
浄水汚泥処理剤であるポリマIの注入率を0.3質量%(対SS)に変更した以外は実施例1と同じ条件で汚泥スラリー濃縮試験を行ったところ、SV2は27%、濃縮上澄水濁度は1.5度、濃縮上澄水ろ過指数は81mL/30秒であり、SV2、濃縮上澄水濁度および濃縮上澄水ろ過指数の何れも、比較例1や実施例1よりも改善された。
<Example 2>
Where except for changing the injection rate of the polymer I is a purified water sludge treatment agent 0.3 mass% (vs. SS) is subjected to the sludge slurry concentration test under the same conditions as in Example 1, SV 2 is 27%, the concentrated The clear water turbidity is 1.5 degrees, the concentrated supernatant water filtration index is 81 mL / 30 seconds, and all of SV 2 , concentrated supernatant water turbidity and concentrated supernatant water filtration index are improved from those of Comparative Example 1 and Example 1. It was done.
<実施例3〜実施例7>
浄水汚泥処理剤をポリマII〜VIに変えて上記表3の注入率で添加した以外は、実施例1と同じ条件で汚泥スラリー濃縮試験を行ったところ、実施例3、実施例4、実施例5、実施例6、実施例7のSV2はそれぞれ27%、27%、28%、21%、22%、濃縮上澄水濁度はそれぞれ4.5度、5.4度、5.2度、1.6度、1.8度、濃縮上澄水ろ過指数はそれぞれ78mL/30秒、70mL/30秒、66mL/30秒、75mL/30秒、66mL/30秒であり、SV2、濃縮上澄水濁度および濃縮上澄水ろ過指数の何れも比較例1より改善された。ただし、同量の注入率(0.3%)で比較すると、実施例4〜7は実施例2、3よりも濃縮上澄水のろ過指数の点で劣っており、ろ抗抑制が特に要求される場合は、ポリ(メタ)アクリル酸塩を主成分とする浄水汚泥処理剤が適していることが分かる。
<Example 3 to Example 7>
A sludge slurry concentration test was conducted under the same conditions as in Example 1 except that the purified water sludge treatment agent was changed to polymers II to VI and added at the injection rate shown in Table 3 above. Example 3, Example 4, Example 5, example 6, SV 2 respectively 27% in example 7, 27%, 28%, 21%, 22%, respectively concentrated on supernatant water turbidity 4.5 degrees, 5.4 degrees, 5.2 degrees , 1.6 degrees, 1.8 degrees, respectively concentrated on supernatant water filtration index 78 mL / 30 sec, 70 mL / 30 sec, 66 mL / 30 sec, 75 mL / 30 seconds, a 66 mL / 30 sec, SV 2, the concentrated Both the clear water turbidity and the concentrated supernatant filtration index were improved as compared with Comparative Example 1. However, when compared at the same rate of injection (0.3%), Examples 4 to 7 are inferior to Examples 2 and 3 in terms of the filtration index of the concentrated supernatant water, and filter resistance suppression is particularly required. In this case, it is understood that a purified water sludge treatment agent mainly composed of poly (meth) acrylate is suitable.
<比較例2、比較例3>
浄水汚泥処理剤として、比較ポリマIを上記表3の注入率で添加した以外は、実施例1と同じ条件で汚泥スラリー濃縮試験を行ったところ、比較例2、比較例3のSV2はそれぞれ26%、23%、濃縮上澄水濁度はそれぞれ2.0度、2.3度であり、これらの結果は比較例1よりも改善されたものの、濃縮上澄水ろ過指数はそれぞれ48mL/30秒、35mL/30秒と比較例1よりも著しく少なくなっており、ろ過障害リスクが比較例1よりも更に高いことが確認された。
<Comparative Example 2 and Comparative Example 3>
When the sludge slurry concentration test was performed under the same conditions as Example 1 except that Comparative Polymer I was added at the injection rate shown in Table 3 as a purified water sludge treatment agent, SV 2 of Comparative Example 2 and Comparative Example 3 were respectively 26%, 23%, and concentrated supernatant turbidity were 2.0 degrees and 2.3 degrees, respectively. Although these results were improved over Comparative Example 1, the concentrated supernatant filtration index was 48 mL / 30 seconds, respectively. 35 mL / 30 seconds, which is significantly lower than that of Comparative Example 1, and it was confirmed that the risk of filtration failure was higher than that of Comparative Example 1.
<比較例4、比較例5>
浄水汚泥処理剤として、比較ポリマIIを上記表3の注入率で添加した以外は、実施例1と同じ条件で汚泥スラリー濃縮試験を行ったところ、比較例4、比較例5のSV2はそれぞれ24%、23%、濃縮上澄水濁度はそれぞれ3.2度、0.3度と比較例1よりも改善されたものの、濃縮上澄水ろ過指数はそれぞれ35mL/30秒、36mL/30秒と比較例1よりも著しく少なくなっており、比較例4、5は比較例2、3と同様に、ろ過障害リスクが高いことが確認された。
<Comparative Example 4 and Comparative Example 5>
When the sludge slurry concentration test was performed under the same conditions as in Example 1 except that Comparative Polymer II was added at the injection rate shown in Table 3 as a purified water sludge treatment agent, SV 2 of Comparative Example 4 and Comparative Example 5 were respectively 24%, 23%, and concentrated supernatant turbidity were improved to 3.2 degrees and 0.3 degrees, respectively, compared to Comparative Example 1, but the concentrated supernatant filtration index was 35 mL / 30 seconds and 36 mL / 30 seconds, respectively. It was significantly less than Comparative Example 1, and it was confirmed that Comparative Examples 4 and 5 had a high filtration failure risk as in Comparative Examples 2 and 3.
次に、汚泥スラリーの濃度を高めて濃縮試験を行った。浄水汚泥処理剤としてのポリマI〜VI、比較ポリマI〜Vの種類を、試験結果と共に下記表4に記載する。 Next, the concentration test was performed by increasing the concentration of the sludge slurry. The types of polymers I to VI and comparative polymers I to V as purified water sludge treatment agents are listed in Table 4 below together with the test results.
<比較例6>
SS濃度2.0g/Lに調製した汚泥スラリーを試験に供した以外は、比較例1と同じ条件で汚泥スラリー濃縮試験を行ったところ、SV2は99%、濃縮上澄水濁度は30度を超え、濃縮上澄水ろ過指数は61mL/30秒であった。
<Comparative Example 6>
A sludge slurry concentration test was conducted under the same conditions as in Comparative Example 1 except that the sludge slurry prepared to an SS concentration of 2.0 g / L was used for the test. SV 2 was 99%, and the concentrated supernatant water turbidity was 30 degrees. The concentrated supernatant water filtration index was 61 mL / 30 seconds.
<実施例8〜13>
浄水汚泥処理剤として、それぞれポリマI〜ポリマVIを汚泥スラリーに0.3質量%対SSの注入率で添加した以外は、比較例6と同じ条件で汚泥スラリー濃縮試験を行ったところ、実施例8、実施例9、実施例10、実施例11、実施例12、実施例13のSV2はそれぞれ39%、37%、35%、35%、55%、50%、濃縮上澄水濁度はそれぞれ1.7度、1.0度、8.2度、7.2度、0.4度、0.4度、濃縮上澄水ろ過指数はそれぞれ86mL/30秒、82mL/30秒、67mL/30秒、62mL/30秒、68mL/30秒、68mL/30秒であり、これら実施例8〜13は比較例6よりも汚泥スラリーの濃縮性、上澄水の清澄度は著しく改善された上に、比較例6よりもろ過指数が高く、ろ抗が軽減されることが確認された。
<Examples 8 to 13>
As a purified water sludge treatment agent, a sludge slurry concentration test was conducted under the same conditions as in Comparative Example 6 except that Polymer I to Polymer VI were respectively added to the sludge slurry at an injection rate of 0.3 mass% to SS. 8, example 9, example 10, example 11, example 12, SV 2, respectively 39% in example 13, 37%, 35%, 35%, 55%, 50%, concentrated on supernatant water turbidity 1.7 degree, 1.0 degree, 8.2 degree, 7.2 degree, 0.4 degree, 0.4 degree respectively, and concentrated supernatant water filtration index is 86 mL / 30 seconds, 82 mL / 30 seconds, 67 mL / 30 seconds, 62 mL / 30 seconds, 68 mL / 30 seconds, and 68 mL / 30 seconds. In these Examples 8 to 13, the concentration of sludge slurry and the clarity of the supernatant water were remarkably improved as compared with Comparative Example 6. The filtration index is higher than Comparative Example 6, and the filter resistance is reduced. It was confirmed.
また、SS濃度が高い場合においても、ポリアクリル酸Naを単独で用いた実施例8、9は他のポリマーとの混合物を用いた実施例10〜13よりもろ過指数の点で各段に優れており、ろ抗の抑制が特に要求される場合は、ポリ(メタ)アクリル酸塩を主体とする浄水汚泥処理剤が特に適していることが分かる。 Moreover, even when SS concentration is high, Examples 8 and 9 using polyacrylic acid Na alone are superior in each stage in terms of filtration index than Examples 10 to 13 using mixtures with other polymers. In the case where suppression of filter resistance is particularly required, it is understood that a purified water sludge treatment agent mainly composed of poly (meth) acrylate is particularly suitable.
<比較例7〜比較例11>
浄水汚泥処理剤として、それぞれ比較ポリマI〜比較ポリマVを汚泥スラリーに0.3質量%対SSの注入率で添加した以外は、比較例6と同じ条件で汚泥スラリー濃縮試験を行ったところ、比較例7、比較例8、比較例9、比較例10、比較例11のSV2はそれぞれ31%、33%、24%、25%、57%、濃縮上澄水濁度はそれぞれ0.4度、1.7度、2.1度、2.4度、0.5度、濃縮上澄水ろ過指数はそれぞれ49mL/30秒、48mL/30秒、45mL/30秒、43mL/30秒、48mL/30秒であり、SV2および濃縮上澄水濁度が比較例6よりも改善されたものの、濃縮上澄水ろ過指数は比較例6よりも低く、ろ過障害のリスクが高いことが確認された。
<Comparative Example 7 to Comparative Example 11>
As the purified water sludge treatment agent, a comparative sludge slurry concentration test was performed under the same conditions as in Comparative Example 6 except that Comparative Polymer I to Comparative Polymer V were respectively added to the sludge slurry at an injection rate of 0.3% by mass to SS. Comparative example 7, Comparative example 8, Comparative example 9, Comparative example 10, SV 2, respectively 31% Comparative example 11, 33%, 24%, 25%, 57%, concentrated on supernatant water turbidity respectively 0.4 ° 1.7 degree, 2.1 degree, 2.4 degree, 0.5 degree, concentrated supernatant water filtration index is 49 mL / 30 seconds, 48 mL / 30 seconds, 45 mL / 30 seconds, 43 mL / 30 seconds, 48 mL / Although it was 30 seconds and SV 2 and concentrated supernatant turbidity were improved as compared with Comparative Example 6, the concentrated supernatant filtration index was lower than that of Comparative Example 6 and it was confirmed that the risk of filtration failure was high.
<脱水試験>
次に、浄水汚泥処理剤の濃縮汚泥の脱水性について検討した。脱水条件、脱水試験結果を下記表5に記載する。
<Dehydration test>
Next, the dewaterability of the concentrated sludge of the water purification sludge treatment agent was examined. Dehydration conditions and dehydration test results are shown in Table 5 below.
<比較例12>
カオリンおよびPACを重量比1:2の割合で袖ヶ浦市水に添加して混合し、水酸化ナトリウムでpH7に中和して汚泥スラリー原液を調製した。この汚泥スラリー原液の固形物濃度(SS)を測定し、その測定値を基に袖ヶ浦市水で希釈してSS濃度20g/Lの濃縮汚泥を調製し、濃縮汚泥脱水試験に供した。
<Comparative Example 12>
Kaolin and PAC were added to Sodegaura city water at a weight ratio of 1: 2, mixed and neutralized to pH 7 with sodium hydroxide to prepare a sludge slurry stock solution. The solid concentration (SS) of this sludge slurry stock solution was measured, and based on the measured value, diluted with Sodegaura City water to prepare concentrated sludge having an SS concentration of 20 g / L, and subjected to a concentrated sludge dehydration test.
上記濃縮汚泥200mLを容器に採取し、別容器との間で移し替えを5回行って混合(後述の「移し替え5回凝集法」凝集操作に相当)後、トミー工業株式会社製の高速遠心機MX−307を用い、回転数5000rpm×2分の条件で固液分離を行い、上澄液と沈殿汚泥を採取した。 Collect 200 mL of the above concentrated sludge in a container, transfer to another container 5 times and mix (corresponds to the “transfer 5 times agglomeration method” agglomeration operation described later), then high-speed centrifugation manufactured by Tommy Industries Using the machine MX-307, solid-liquid separation was performed under the condition of a rotational speed of 5000 rpm × 2 minutes, and a supernatant and precipitated sludge were collected.
上澄液については、径150mmのNo.5種A定量ろ紙を16分割ヒダ折にしたものをロートに設置し、前記上澄液100mLを全量一気に注ぎ入れて濃縮汚泥遠心分離液ろ過指数(30秒間にろ過される水量(mL))を計量したところ、58mL/30秒であった。 For the supernatant, No. 150 mm in diameter. Place the 5 types A quantitative filter paper into 16-fold folds and place in a funnel. When weighed, it was 58 mL / 30 seconds.
沈殿汚泥については、40メッシュ篩網付き円錐形ろ過器(自社製)に入れて重力ろ過による水切を行い、水切後の汚泥をポリエステルろ布に挿み入れ、ピストン型加圧脱水機(自社製:面圧0.04MPa)で2分間脱水後、ろ布をから剥離させた脱水ケーキについてろ布からの汚泥剥離性評価と含水率を測定したところ、汚泥剥離性は「不良」、含水率は83.5質量%であった。 For precipitated sludge, put it into a conical filter with a 40 mesh screen (made in-house), drain the water by gravity filtration, insert the sludge after draining into a polyester filter cloth, and then pressurize the piston type pressure dehydrator (made in-house). : The surface pressure was 0.04 MPa), and after dewatering for 2 minutes, the dewatered cake peeled from the filter cloth was evaluated for sludge peelability from the filter cloth and the moisture content. It was 83.5 mass%.
<実施例14、15>
浄水汚泥処理剤として、表1に記載の本発明のポリマIを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加してから「移し替え5回凝集法」による凝集操作を実施した以外は、比較例12と同じ条件で濃縮汚泥脱水試験を行ったところ、実施例14、実施例15の濃縮汚泥遠心分離液ろ過指数はそれぞれ60mL/30秒、77mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ76.5質量%、73.2質量%であった。すなわち、比較例12と比較して、実施例14、15は、汚泥脱水性、汚泥剥離性が改善された上、脱水離脱水(遠心分離上澄液)を浄水処理系に返送した場合のろ過池閉塞リスクも、無機凝集剤のみを使用して凝集沈殿ろ過を行う場合(比較例12)よりむしろ軽減されることが確認された。
<Examples 14 and 15>
As the purified water sludge treatment agent, the polymer I of the present invention described in Table 1 was added to the concentrated sludge at an injection rate of 0.15 mass% to SS and 0.20 mass% to SS, respectively. The concentrated sludge dewatering test was conducted under the same conditions as in Comparative Example 12 except that the flocculation operation by the “method” was carried out. / 30 seconds, the sludge peelability of the dewatered sludge cake was “good”, and the moisture content was 76.5% by mass and 73.2% by mass, respectively. That is, compared with Comparative Example 12, Examples 14 and 15 were improved when the sludge dewatering property and sludge removability were improved, and filtration was performed when dehydrated and separated water (centrifugal supernatant) was returned to the water purification system. It was confirmed that the pond blockage risk was also reduced rather than the case of performing coagulation sedimentation filtration using only the inorganic coagulant (Comparative Example 12).
<実施例16、実施例17>
浄水汚泥処理剤として、表1に記載の本発明のポリマIIを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は、上記実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、実施例16、実施例17の濃縮汚泥遠心分離液ろ過指数はそれぞれ66mL/30秒、76mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ73.1質量%、72.5質量%であり、いずれの指標も比較例12より改善された。
<Example 16, Example 17>
As the purified water sludge treatment agent, the above Example 14, except that the polymer II of the present invention described in Table 1 was added to the concentrated sludge at an injection rate of 0.15 mass% to SS and 0.20 mass% to SS, respectively. When the concentrated sludge dewatering test was performed under the same conditions as in No. 15, the concentrated sludge centrifugal liquid filtration indexes of Example 16 and Example 17 were 66 mL / 30 seconds and 76 mL / 30 seconds, respectively, and the sludge stripping property of the dewatered sludge cake was “Good” and moisture content were 73.1% by mass and 72.5% by mass, respectively, and both indicators were improved from Comparative Example 12.
<実施例18、実施例19>
浄水汚泥処理剤として、表1に記載の本発明のポリマIII、IVを濃縮汚泥にそれぞれ0.20質量%対SSの注入率で添加した以外は、上記実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、実施例18、実施例19の濃縮汚泥遠心分離液ろ過指数はそれぞれ76mL/30秒、68mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ78.0質量%、78.5質量%であり、いずれの指標も比較例12より改善された。
<Example 18 and Example 19>
Concentrated under the same conditions as in Examples 14 and 15 above, except that the polymers III and IV of the present invention listed in Table 1 were added to the concentrated sludge at an injection rate of 0.20% by mass to SS, respectively, as a purified water sludge treatment agent. When the sludge dewatering test was performed, the filtration indexes of the concentrated sludge centrifuges of Example 18 and Example 19 were 76 mL / 30 seconds and 68 mL / 30 seconds, respectively, and the sludge release property of the dewatered sludge cake was “good”. The rates were 78.0% by mass and 78.5% by mass, respectively, and both indicators were improved from Comparative Example 12.
<実施例20、実施例21>
浄水汚泥処理剤として、表1に記載の本発明のポリマVを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は、上記実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、実施例20、実施例21の濃縮汚泥遠心分離液ろ過指数はそれぞれ70mL/30秒、62mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ72.0質量%、71.5質量%であり、いずれの指標も比較例12より改善された。
<Example 20 and Example 21>
As the purified water sludge treatment agent, Example 14 except that the polymer V of the present invention described in Table 1 was added to the concentrated sludge at an injection rate of 0.15 mass% to SS and 0.20 mass% to SS, respectively. When the concentrated sludge dewatering test was conducted under the same conditions as in No. 15, the concentrated sludge centrifugal filtration index of Example 20 and Example 21 was 70 mL / 30 seconds and 62 mL / 30 seconds, respectively, and the sludge stripping property of the dewatered sludge cake was “Good”, the moisture content was 72.0% by mass and 71.5% by mass, respectively, and both indicators were improved from Comparative Example 12.
<実施例22、実施例23>
浄水汚泥処理剤として、表1に記載の本発明のポリマVIを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は、上記実施例14、15同じ条件で濃縮汚泥脱水試験を行ったところ、実施例22、実施例23の濃縮汚泥遠心分離液ろ過指数はそれぞれ66mL/30秒、65mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ72.2質量%、76.5質量%であり、いずれの指標も比較例12より改善された。
<Example 22 and Example 23>
Example 14 except that the polymer VI of the present invention described in Table 1 was added to the concentrated sludge at an injection rate of 0.15 mass% to SS and 0.20 mass% to SS, respectively, as a purified water sludge treatment agent. 15 Concentrated sludge dewatering tests were performed under the same conditions. As a result, the concentrated sludge centrifugal liquid filtration indexes of Example 22 and Example 23 were 66 mL / 30 seconds and 65 mL / 30 seconds, respectively. “Good” and water content were 72.2% by mass and 76.5% by mass, respectively, and both indicators were improved from Comparative Example 12.
<比較例13、比較例14>
浄水汚泥処理剤として、比較ポリマIを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は、実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、比較例13、比較例14の濃縮汚泥遠心分離液ろ過指数はそれぞれ39mL/30秒、30mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ76.5質量%、73.5質量%であり、汚泥剥離性および含水率は比較例12より改善されたものの、濃縮汚泥遠心分離液ろ過指数は比較例12よりも低く、脱水離脱水(遠心分離上澄液)を浄水処理系に返送した場合のろ過池に与えるろ過閉塞リスクは比較例12よりも高くなった。
<Comparative Example 13 and Comparative Example 14>
Concentrated sludge dewatering under the same conditions as in Examples 14 and 15, except that Comparative Polymer I was added to the concentrated sludge at a rate of 0.15% by mass to SS and 0.20% by mass to SS as the purified water sludge treatment agent, respectively. When the tests were conducted, the concentrated sludge centrifugal liquid filtration indexes of Comparative Example 13 and Comparative Example 14 were 39 mL / 30 seconds and 30 mL / 30 seconds, respectively, the sludge peelability of the dewatered sludge cake was “good”, and the water content was Although they were 76.5% by mass and 73.5% by mass, respectively, the sludge removability and water content were improved as compared with Comparative Example 12, but the concentrated sludge centrifugal liquid filtration index was lower than that of Comparative Example 12, and the dehydrated and separated water ( The filtration clogging risk given to the filtration pond when the centrifuged supernatant was returned to the water purification system was higher than that of Comparative Example 12.
<比較例15、比較例16>
浄水汚泥処理剤として、比較ポリマIIを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は、実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、比較例15、比較例16の濃縮汚泥遠心分離液ろ過指数はそれぞれ45mL/30秒、40mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ76.5質量%、72.5質量%であり、汚泥剥離性および含水率は比較例12より改善されたものの、脱水離脱水(遠心分離上澄液)を浄水処理系に返送した場合のろ過池に与えるろ過閉塞リスクは比較例12よりも高くなった。
<Comparative Example 15 and Comparative Example 16>
Concentrated sludge dewatering under the same conditions as in Examples 14 and 15 except that Comparative Polymer II was added to the concentrated sludge at a filling rate of 0.15% by mass to SS and 0.20% by mass to SS, respectively, as a purified water sludge treatment agent. When the tests were performed, the concentrated sludge centrifugal liquid filtration indexes of Comparative Example 15 and Comparative Example 16 were 45 mL / 30 seconds and 40 mL / 30 seconds, respectively, the sludge peelability of the dewatered sludge cake was “good”, and the water content was Although 76.5% by mass and 72.5% by mass, respectively, the sludge removability and the water content were improved from Comparative Example 12, but the dehydrated and separated water (centrifugal supernatant) was returned to the water purification system. The filtration blockage risk given to the filtration pond was higher than that of Comparative Example 12.
<比較例17、比較例18>
浄水汚泥処理剤として、比較ポリマIIIを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、比較例17、比較例18の濃縮汚泥遠心分離液ろ過指数はそれぞれ45mL/30秒、34mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ80.0質量%、80.2質量%であり、汚泥剥離性および含水率は比較例12より改善されたものの、脱水離脱水(遠心分離上澄液)を浄水処理系に返送した場合のろ過池に与えるろ過閉塞リスクは比較例12よりも高くなった。
<Comparative Example 17 and Comparative Example 18>
Concentrated sludge dewatering test under the same conditions as in Examples 14 and 15 except that Comparative Polymer III was added to the concentrated sludge at a rate of injection of 0.15 mass% to SS and 0.20 mass% to SS, respectively, as a water purification sludge treatment agent. As a result, the filtration indexes of the concentrated sludge centrifuges of Comparative Example 17 and Comparative Example 18 were 45 mL / 30 seconds and 34 mL / 30 seconds, respectively, the sludge removability of the dewatered sludge cake was “good”, and the water content was respectively Although it is 80.0 mass% and 80.2 mass%, sludge peelability and water content were improved from Comparative Example 12, dehydration separation water (centrifugation supernatant) was returned to the water purification system. The filtration blockage risk given to the pond was higher than in Comparative Example 12.
<比較例19、比較例20>
浄水汚泥処理剤として、比較ポリマIVを濃縮汚泥にそれぞれ0.15質量%対SS、0.20質量%対SSの注入率で添加した以外は実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、比較例19、比較例20の濃縮汚泥遠心分離液ろ過指数はそれぞれ44mL/30秒、28mL/30秒、脱水汚泥ケーキの汚泥剥離性はいずれも「良」、含水率はそれぞれ74.5質量%、72.5質量%であり、汚泥剥離性および含水率は比較例12より改善されたものの、脱水離脱水(遠心分離上澄液)を浄水処理系に返送した場合のろ過池に与えるろ過閉塞リスクは比較例12よりも高くなった。
<Comparative Example 19 and Comparative Example 20>
Concentrated sludge dewatering test under the same conditions as in Examples 14 and 15 except that Comparative Polymer IV was added to the concentrated sludge at a rate of 0.15% by mass to SS and 0.20% by mass to SS, respectively, as a purified water sludge treatment agent. As a result, the filtration indexes of the concentrated sludge centrifugal liquids of Comparative Example 19 and Comparative Example 20 were 44 mL / 30 seconds and 28 mL / 30 seconds, respectively, the sludge removability of the dehydrated sludge cake was “good”, and the water content was respectively Although it is 74.5 mass% and 72.5 mass%, sludge removability and water content were improved from Comparative Example 12, dehydration separation water (centrifugation supernatant) was returned to the purified water treatment system. The filtration blockage risk given to the pond was higher than in Comparative Example 12.
<比較例21>
浄水汚泥処理剤として、比較ポリマVを濃縮汚泥に0.20質量%対SSの注入率で添加して以外は実施例14、15と同じ条件で濃縮汚泥脱水試験を行ったところ、比較例21の濃縮汚泥遠心分離液ろ過指数はそれぞれ45mL/30秒、脱水汚泥ケーキの汚泥剥離性は「良」、含水率は72.3質量%であり、汚泥剥離性および含水率は比較例12より改善されたものの、脱水離脱水(遠心分離上澄液)を浄水処理系に返送した場合のろ過池に与えるろ過閉塞リスクは比較例12よりも高くなった。
<Comparative Example 21>
As a purified water sludge treatment agent, a concentrated sludge dehydration test was conducted under the same conditions as in Examples 14 and 15 except that Comparative Polymer V was added to the concentrated sludge at an injection rate of 0.20% by mass to SS. Comparative Example 21 Concentrated sludge centrifuge filtration index was 45 mL / 30 seconds each, dewatered sludge cake sludge releasability was “good”, moisture content was 72.3 mass%, and sludge releasability and moisture content were improved over Comparative Example 12. However, the filtration clogging risk given to the filtration pond when the dewatered water (centrifugal supernatant) was returned to the water purification system was higher than that of Comparative Example 12.
上述のとおり、本発明の浄水汚泥処理剤を使用すれば、汚泥スラリーの濃縮性および濃縮汚泥の脱水性を改善できるだけでなく、従来のアクリルアミド系高分子凝集剤併用時の問題点であった濃縮池上澄水や脱水離脱水が浄水処理系に返送された場合のろ過池でろ過障害を引き起こすリスクを画期的に軽減することができる。 As described above, if the water purification sludge treatment agent of the present invention is used, not only can the concentration of the sludge slurry and the dewaterability of the concentrated sludge be improved, but also the concentration that has been a problem when using conventional acrylamide polymer flocculants The risk of causing filtration failure in the filtration pond when the pond water or dewatered water is returned to the water purification system can be dramatically reduced.
1 被処理水(原水)
2 処理水(浄水)
3 凝集沈殿汚泥
4 ろ過洗浄排水
5 排水池上澄水
6 汚泥スラリー
7 浄水汚泥
8 濃縮池上澄水
9 濃縮汚泥
10 脱水離脱水
11 脱水ケーキ
12 無機凝集剤
13 塩素剤
14 浄水汚泥処理剤
15 浄水汚泥処理装置
20 浄水処理手段
21 着水井
22 凝集混和池
23 フロック形成池
24 沈澱池
25 ろ過池
30 濃縮手段
31 排水池
32 排泥池
33 濃縮池
40 供給手段
50 脱水手段
51 脱水装置
1 treated water (raw water)
2 treated water (purified water)
DESCRIPTION OF SYMBOLS 3 Coagulation sedimentation sludge 4 Filtrate washing drainage 5 Drainage pond supernatant water 6 Sludge slurry 7 Purified sludge 8 Concentration pond supernatant water 9 Concentrated sludge 10 Dehydrated removal water 11 Dehydrated cake 12 Inorganic flocculant 13 Chlorine agent 14 Purified sludge treatment agent 15 Purified sludge treatment equipment 20 Water treatment means 21 Landing well 22 Coagulation and mixing pond 23 Flock formation pond 24 Precipitation pond 25 Filtration basin 30 Concentration means 31 Drainage pond 32 Mud basin 33 Concentration basin 40 Supply means 50 Dehydration means 51 Dehydration device
Claims (6)
1mol/L塩化ナトリウム溶液に溶解した場合の0.1質量%塩粘度が2〜5mPa・sであり、25g/L塩化ナトリウム溶液に溶解した場合の0.1質量%溶液粘度が6mPa・s以下であり、かつ、アニオン当量が4.5meq/g以上であることを特徴とする浄水汚泥処理剤。 Containing a polycarboxylic acid polymer,
0.1 mass% salt viscosity when dissolved in 1 mol / L sodium chloride solution is 2 to 5 mPa · s, and 0.1 mass% solution viscosity when dissolved in 25 g / L sodium chloride solution is 6 mPa · s or less. And a purified water sludge treatment agent, wherein the anion equivalent is 4.5 meq / g or more.
前記浄水処理工程から分離された凝集沈殿汚泥と、前記ろ過に用いる装置から排出されるろ過洗浄排水の少なくとも一方を含む浄水汚泥を、濃縮して濃縮汚泥を得る濃縮工程と、
前記濃縮汚泥を脱水する脱水工程と、を有し、
前記浄水汚泥と前記濃縮汚泥のいずれか一方又は両方に、請求項1又は請求項2に記載の浄水汚泥処理剤を添加する浄水汚泥処理剤の供給工程を更に有することを特徴とする浄水汚泥処理方法。 After coagulating and precipitating the water to be treated, it is filtered to obtain purified water by filtration,
A concentration step for concentrating purified water sludge separated from the water purification treatment step and purified water sludge containing at least one of filtration washing wastewater discharged from the apparatus used for the filtration to obtain a concentrated sludge;
A dehydration step of dehydrating the concentrated sludge,
A purified water sludge treatment further comprising a supply step of a purified water sludge treatment agent to which the purified water sludge treatment agent according to claim 1 or 2 is added to one or both of the purified water sludge and the concentrated sludge. Method.
前記浄水処理手段で分離された凝集沈殿汚泥と、前記ろ過に用いる装置から排出されるろ過洗浄排水の少なくとも一方を含む浄水汚泥を濃縮し、濃縮汚泥を得る濃縮手段と、
前記濃縮汚泥を脱水する脱水手段と、
前記浄水汚泥および前記濃縮汚泥の何れか一方又は両方に、請求項1又は請求項2に記載の浄水汚泥処理剤を添加する供給手段と、
を有することを特徴とする浄水汚泥処理装置。 Water purification treatment means for coagulating and precipitating the treated water and filtering to obtain purified water;
Concentrating means for concentrating purified water sludge separated by the water purification treatment means and at least one of filtration washing wastewater discharged from the apparatus used for the filtration to obtain concentrated sludge;
Dehydrating means for dewatering the concentrated sludge;
Supply means for adding the purified water sludge treatment agent according to claim 1 or 2 to any one or both of the purified water sludge and the concentrated sludge,
A purified water sludge treatment apparatus characterized by comprising:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051081A JP7075718B2 (en) | 2017-03-16 | 2017-03-16 | Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017051081A JP7075718B2 (en) | 2017-03-16 | 2017-03-16 | Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018153730A true JP2018153730A (en) | 2018-10-04 |
JP7075718B2 JP7075718B2 (en) | 2022-05-26 |
Family
ID=63717112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017051081A Active JP7075718B2 (en) | 2017-03-16 | 2017-03-16 | Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7075718B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7562499B2 (en) | 2021-11-25 | 2024-10-07 | 水ing株式会社 | Method for treating wastewater generated during water purification and device for treating wastewater generated during water purification |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005193125A (en) | 2004-01-06 | 2005-07-21 | Zeolite Co Ltd | Waste sludge treatment method of water purification plant |
JP6152108B2 (en) | 2012-08-22 | 2017-06-21 | Mtアクアポリマー株式会社 | Polymer flocculant, method for producing the same, and sludge dewatering method using the same |
-
2017
- 2017-03-16 JP JP2017051081A patent/JP7075718B2/en active Active
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7562499B2 (en) | 2021-11-25 | 2024-10-07 | 水ing株式会社 | Method for treating wastewater generated during water purification and device for treating wastewater generated during water purification |
Also Published As
Publication number | Publication date |
---|---|
JP7075718B2 (en) | 2022-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6688187B2 (en) | Low acrylamide flocculant composition, method of using low acrylamide flocculant composition | |
WO2013060700A1 (en) | Concentration of suspensions | |
US20100140181A1 (en) | Regeneration of used cleaning solution | |
US20130048570A1 (en) | Concentration of suspensions | |
JP7068773B2 (en) | Water treatment agent, water treatment method and water treatment equipment | |
AU2013298635B2 (en) | Concentration of suspensions | |
JP5770830B2 (en) | Water treatment by ballast flocculation using natural flocculants | |
JP7075718B2 (en) | Purified water sludge treatment agent, purified water sludge treatment method and purified water sludge treatment equipment | |
JP6197021B2 (en) | Water purification method and water purification facility | |
JP5974570B2 (en) | Dewatering method and apparatus for pressurized floating sludge | |
JP2011167656A (en) | Treatment method of inorganic material-suspended waste water | |
GB2450797A (en) | Dewatering solids | |
JP5949206B2 (en) | Cooling water blow water treatment method and treatment apparatus | |
JP4672531B2 (en) | Green liquid processing method | |
KR20140081552A (en) | Submerged membrane apparatus and method for purifying water | |
JP7083274B2 (en) | Water treatment method and water treatment equipment | |
JP3401881B2 (en) | Method for washing and concentration of digested sludge and washing concentrate | |
JP2020081930A (en) | Composition for sludge conditioning | |
JP3496773B2 (en) | Advanced treatment method and apparatus for organic wastewater | |
JP7142540B2 (en) | Water purification method and water purification device | |
JP3714283B2 (en) | Sludge dewatering method | |
JP7630391B2 (en) | Method for treating picoplankton-containing water to be treated and treatment device for picoplankton-containing water to be treated | |
JP2005007246A (en) | Treatment method for organic waste water | |
JP7117101B2 (en) | Water treatment method and device | |
JP2004121997A (en) | Sludge dewatering agent and sludge dewatering method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190314 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191219 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200107 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20200304 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200331 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200804 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201023 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20201023 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20201030 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20201110 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20201225 |
|
C211 | Notice of termination of reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C211 Effective date: 20210105 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20211026 |
|
C22 | Notice of designation (change) of administrative judge |
Free format text: JAPANESE INTERMEDIATE CODE: C22 Effective date: 20220208 |
|
C23 | Notice of termination of proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C23 Effective date: 20220315 |
|
C03 | Trial/appeal decision taken |
Free format text: JAPANESE INTERMEDIATE CODE: C03 Effective date: 20220419 |
|
C30A | Notification sent |
Free format text: JAPANESE INTERMEDIATE CODE: C3012 Effective date: 20220419 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20220516 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7075718 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |