[go: up one dir, main page]

JP2018150463A - Biaxially oriented polyester film and magnetic recording medium - Google Patents

Biaxially oriented polyester film and magnetic recording medium Download PDF

Info

Publication number
JP2018150463A
JP2018150463A JP2017048199A JP2017048199A JP2018150463A JP 2018150463 A JP2018150463 A JP 2018150463A JP 2017048199 A JP2017048199 A JP 2017048199A JP 2017048199 A JP2017048199 A JP 2017048199A JP 2018150463 A JP2018150463 A JP 2018150463A
Authority
JP
Japan
Prior art keywords
psd
film
particles
mass
polyester film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017048199A
Other languages
Japanese (ja)
Other versions
JP6866703B2 (en
Inventor
中森 ゆか里
Yukari Nakamori
ゆか里 中森
東大路 卓司
Takuji Higashioji
卓司 東大路
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Priority to JP2017048199A priority Critical patent/JP6866703B2/en
Publication of JP2018150463A publication Critical patent/JP2018150463A/en
Application granted granted Critical
Publication of JP6866703B2 publication Critical patent/JP6866703B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Magnetic Record Carriers (AREA)

Abstract

PROBLEM TO BE SOLVED: To stably provide a biaxially oriented polyester film that is smooth and excellent in travelling property and winding property, and gives a high-density magnetic recording medium excellent in electromagnetic conversion characteristics when stored as a magnetic recording medium for a long period of time.SOLUTION: The biaxially oriented polyester film shows, in one of outermost surfaces (A surface) of the biaxially oriented polyester film, a maximum power spectral density (PSD-Xa) of 1,000 to 50,000 nmin a width direction in a region where a wavelength is less than 10 μm, and in the opposite outermost surface (B surface), a maximum power spectral density (PSD-Xb) of 150,000 to 500,000 nmin the width direction in a region where a wavelength is less than 10 μm.SELECTED DRAWING: None

Description

本発明は、平滑でかつ走行性や巻き取り性に優れ、さらには磁気記録媒体として長期保存した際の電磁変換特性に優れた二軸配向ポリエステルフィルムに関するものであり、データストレージなどの塗布型磁気記録媒体のベースフィルムはもちろんのこと、高精細な表面性が必要な光学用や各種離型フィルム、次世代熱転写リボン用フィルムにも好適に用いることができる二軸配向ポリエステルフィルムに関するものである。   The present invention relates to a biaxially oriented polyester film that is smooth and excellent in running property and winding property, and further excellent in electromagnetic conversion characteristics when stored as a magnetic recording medium for a long period of time. The present invention relates to a biaxially oriented polyester film that can be suitably used not only for a base film of a recording medium, but also for optics, various release films, and next-generation thermal transfer ribbon films that require high-definition surface properties.

二軸配向ポリエステルフィルムはその優れた熱特性、寸法安定性、機械特性および表面形態の制御のし易さから各種用途に使用されており、特に磁気記録媒体などの支持体としての有用性がよく知られている。磁気記録媒体には、常に高密度記録化が要求され、更なる高密度記録を達成するためには、磁性層の薄膜化や微粒子磁性体を使用し磁性層表面の平滑性をさらに向上させることは有効である。   Biaxially oriented polyester films are used for various applications because of their excellent thermal properties, dimensional stability, mechanical properties, and ease of control of surface morphology, and are particularly useful as supports for magnetic recording media. Are known. Magnetic recording media always require high-density recording. To achieve even higher-density recording, the magnetic layer surface should be made thinner and finer magnetic materials should be used to further improve the smoothness of the magnetic layer surface. Is valid.

そのため、近年の微細な磁性粉末の強磁性六方晶フェライト粉末を用いてなる磁気記録媒体用支持体においては、磁性層や非磁性層、バックコート層、さらには支持体自体の薄膜化に伴い平滑面のみならず走行面の粗面化が制約されている。製造過程で磁気記録媒体としてロール状態で保存する場合、走行面に形成されている突起が磁性面に転写し、平滑な磁性層表面に窪みを形成させたり、支持体の薄膜化に伴い支持体に含有している大きな粒子が平滑面に突き上げられ磁性層表面になだらかな凸状のウネリを発生させ磁性層表面の平滑性が悪化し電磁変換特性が低下するといった問題がある。磁性層表面の平滑性を高めるために支持体に含有する粒子の小径化や低濃度化を図り、超高精細な表面として平滑性を向上させると、走行性や巻き取り、さらには表面の耐久性が不十分となる。また、支持体の表面平滑性と走行性を両立させるために、支持体表面に易滑層をコーティングにより設けると易滑層自体の耐久性が不十分となり表面性が低下したり、工程内ロールの汚染や削れ物の付着による表面性の低下といった問題があり、走行性や巻き取り性等と表面の平滑性の両立に対する要求は、高密度記録化のためには常に発生する課題といえる。   For this reason, in recent magnetic recording medium supports using ferromagnetic hexagonal ferrite powder, which is a fine magnetic powder, the magnetic layer, nonmagnetic layer, backcoat layer, and even the support itself become thinner. The roughening of not only the surface but also the running surface is restricted. When storing in the roll state as a magnetic recording medium in the manufacturing process, the protrusion formed on the running surface is transferred to the magnetic surface, forming a dent on the smooth magnetic layer surface, or the support as the support becomes thinner The large particles contained in the magnetic layer are pushed up to the smooth surface, and a gentle convex undulation is generated on the surface of the magnetic layer, so that the smoothness of the surface of the magnetic layer is deteriorated and the electromagnetic conversion characteristics are deteriorated. To improve the smoothness of the surface of the magnetic layer by reducing the particle size and concentration of the particles contained in the support, and improving the smoothness as an ultra-high-definition surface, the runnability, winding, and durability of the surface are improved. The property becomes insufficient. Also, in order to achieve both surface smoothness and runnability of the support, if an easy-slip layer is provided on the support surface by coating, the durability of the easy-slip layer itself becomes insufficient, and the surface property is lowered, or the in-process roll There is a problem such as deterioration of surface properties due to contamination of the surface and adhesion of scraped material, and the demand for compatibility between running property, winding property, etc. and surface smoothness can be said to be a problem that always arises for high density recording.

上記課題を解決するために、例えば、特許文献1では、地肌指数や突起個数の制御により電磁変換特性やエラーレート特性の優れたポリエステルフィルムが提案されている。   In order to solve the above problems, for example, Patent Document 1 proposes a polyester film having excellent electromagnetic conversion characteristics and error rate characteristics by controlling the background index and the number of protrusions.

また、微細な粒子とコーティング層を設けフィルムの平滑面の空間周波数密度やウネリ指数と表面粗さを制御し、巻き取り性、と電磁変換特性の両立を試みたポリエステルフィルム(例えば特許文献2,3)も提案されている。   In addition, a polyester film that has fine particles and a coating layer, and controls the spatial frequency density and undele index and surface roughness of the smooth surface of the film, and attempts to achieve both winding properties and electromagnetic conversion characteristics (for example, Patent Document 2, 3) has also been proposed.

しかしながら、強磁性六方晶フェライト粉末を用いてなる磁気記録媒体用支持体としては、磁性層や非磁性層、バックコート層がより薄膜化するため、支持体の両表面の平滑性が特に重要となる。さらに、上記課題の転写は、長期保存後や高温保存後に顕著に発生するため、初期状態で支持体の平滑性を制御しても磁気記録媒体として保存後にバック面が磁性面に転写し表面の平滑性が低下してしまう問題が依然としてある。   However, as a support for magnetic recording media using ferromagnetic hexagonal ferrite powder, the smoothness of both surfaces of the support is particularly important because the magnetic layer, nonmagnetic layer, and back coat layer are made thinner. Become. Furthermore, since the transfer of the above problem occurs remarkably after long-term storage or storage at high temperature, the back surface is transferred to the magnetic surface after storage as a magnetic recording medium even if the smoothness of the support is controlled in the initial state. There is still a problem that the smoothness is lowered.

特開2013−200927号公報JP 2013-2000927 A 特開2001−341265号公報JP 2001-341265 A 特開2012−153099号公報JP 2012-153099 A

本発明者らは上記目的を解決するために鋭意検討を重ねた結果、支持体のバックコート層を設ける側の表面がロール状に巻き取った際に磁性層を形成する表面へ転写する現象が、波長10μm未満の領域における最大パワースペクトル密度と関係することを見出し本発明に到達した。   As a result of intensive studies in order to solve the above-mentioned object, the present inventors have found that when the surface on the side of the support on which the backcoat layer is provided is rolled up, it is transferred to the surface on which the magnetic layer is formed. The present invention has been found out to be related to the maximum power spectral density in the region of wavelength less than 10 μm.

本発明の目的は、上記の問題を解決することにある。すなわち、走行性やスリット性、寸法安定性に優れた二軸配向ポリエステルフィルムであって、磁気記録媒体とした際に平滑な磁性層を有すると共に温度や湿度の環境変化や保存による寸法変化が小さく、さらに長期保存後においてエラーレートが少ない電磁変換特性に優れた高密度磁気記録媒体となる二軸配向ポリエステルフィルムを安定に提供することにある。   An object of the present invention is to solve the above problems. In other words, it is a biaxially oriented polyester film with excellent runnability, slitting properties, and dimensional stability, and has a smooth magnetic layer when used as a magnetic recording medium. Another object of the present invention is to stably provide a biaxially oriented polyester film that becomes a high-density magnetic recording medium excellent in electromagnetic conversion characteristics with a low error rate after long-term storage.

上記課題を解決するための本発明は、次の各構成を特徴とするものである。
(1)二軸配向ポリエステルフィルムのいずれか一方の最外層表面(A面)において、波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xa)が1,000〜50,000nmであり、反対面の最外層表面(B面)の波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xb)が150,000〜500,000nmである二軸配向ポリエステルフィルム。
(2)B面の波長10μm未満の領域における最大パワースペクトル密度が下記式を満足する、(1)に記載の二軸配向ポリエステルフィルム。
The present invention for solving the above-described problems is characterized by the following configurations.
(1) In the outermost layer surface (A surface) of any one of the biaxially oriented polyester films, the maximum power spectral density (PSD-Xa) in the width direction in the region of a wavelength of less than 10 μm is 1,000 to 50,000 nm 3 A biaxially oriented polyester film having a maximum power spectral density (PSD-Xb) in the width direction of 150,000 to 500,000 nm 3 in a region of a wavelength of less than 10 μm on the outermost surface (B surface) on the opposite surface.
(2) The biaxially oriented polyester film according to (1), wherein the maximum power spectral density in the region of the B-plane with a wavelength of less than 10 μm satisfies the following formula.

0.6≦PSD−Yb/PSD−Xb≦1.2
(但し、PSD−Yb(nm):B面長手方向の最大パワースペクトル密度
PSD−Xb(nm):B面幅方向の最大パワースペクトル密度)
(3)B面の波長1μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb1)が15,000〜80,000nmの範囲である、(1)または(2)に記載の二軸配向ポリエステルフィルム。
(4)B面の波長10μm以上30μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb30)(nm)が下記式を満足する、(1)〜(3)のいずれかに記載の二軸配向ポリエステルフィルム。
0.6 ≦ PSD-Yb / PSD-Xb ≦ 1.2
(However, PSD-Yb (nm 3 ): Maximum power spectral density in the B-plane longitudinal direction.
PSD-Xb (nm 3 ): Maximum power spectral density in the B-plane width direction)
(3) The biaxial as described in (1) or (2), wherein the maximum power spectral density (PSD-Xb1) in the width direction in the region of wavelength B of 1 μm or less on the B plane is in the range of 15,000 to 80,000 nm 3 Oriented polyester film.
(4) The maximum power spectral density in the width direction (PSD-Xb30) (nm 3 ) in the region of the B plane having a wavelength of 10 μm or more and 30 μm or less satisfies the following formula: (1) to (3) Biaxially oriented polyester film.

1.0≦PSD−Xb30/PSD−Xb≦3.0
(5)塗布型デジタル記録方式の磁気記録媒体用ベースフィルムに用いられる、(1)〜(4)のいずれかに記載の二軸配向ポリエステルフィルム。
(6)(1)〜(5)のいずれかに記載の二軸配向ポリエステルフィルムを用いた磁気記録媒体。
1.0 ≦ PSD-Xb30 / PSD-Xb ≦ 3.0
(5) The biaxially oriented polyester film according to any one of (1) to (4), which is used for a base film for a magnetic recording medium of a coating type digital recording system.
(6) A magnetic recording medium using the biaxially oriented polyester film according to any one of (1) to (5).

本発明の二軸配向ポリエステルフィルムは、走行性やスリット性、寸法安定性に優れた二軸配向ポリエステルフィルムであって、磁気記録媒体とした際に平滑な磁性層を有すると共に温度や湿度の環境変化や保存による寸法変化が小さく、さらに長期保存後においてエラーレートが少なく電磁変換特性に優れた高密度磁気記録媒体となる二軸配向ポリエステルフィルムを得ることができるほか、光学用や各種離型フィルムとして好適に用いることができる。   The biaxially oriented polyester film of the present invention is a biaxially oriented polyester film excellent in running property, slit property, and dimensional stability, and has a smooth magnetic layer when used as a magnetic recording medium and has an environment of temperature and humidity. Biaxially oriented polyester film can be obtained as a high-density magnetic recording medium with small dimensional change due to change and storage, low error rate after long-term storage and excellent electromagnetic conversion characteristics, and optical and various release films Can be suitably used.

本発明において用いるポリエステルとしては、例えば、芳香族ジカルボン酸、脂環族ジカルボン酸または脂肪族ジカルボン酸などの酸成分やジオール成分を構成単位(重合単位)とするポリマーで構成されたものを用いることができる。   As the polyester used in the present invention, for example, a polyester composed of a polymer having an acid component or a diol component such as an aromatic dicarboxylic acid, an alicyclic dicarboxylic acid or an aliphatic dicarboxylic acid as a structural unit (polymerization unit) is used. Can do.

芳香族ジカルボン酸成分としては、例えば、テレフタル酸、イソフタル酸、フタル酸、1,4−ナフタレンジカルボン酸、1,5−ナフタレンジカルボン酸、2,6−ナフタレンジカルボン酸、4,4’−ジフェニルジカルボン酸、4,4’−ジフェニルエーテルジカルボン酸、4,4’−ジフェニルスルホンジカルボン酸等を用いることができ、なかでも好ましくは、テレフタル酸、フタル酸、2,6−ナフタレンジカルボン酸を用いることができる。脂環族ジカルボン酸成分としては、例えば、シクロヘキサンジカルボン酸等を用いることができる。脂肪族ジカルボン酸成分としては、例えば、アジピン酸、スベリン酸、セバシン酸、ドデカンジオン酸等を用いることができる。これらの酸成分は一種のみを用いてもよく、二種以上を併用してもよい。   Examples of the aromatic dicarboxylic acid component include terephthalic acid, isophthalic acid, phthalic acid, 1,4-naphthalenedicarboxylic acid, 1,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, and 4,4′-diphenyldicarboxylic acid. Acid, 4,4′-diphenyl ether dicarboxylic acid, 4,4′-diphenylsulfone dicarboxylic acid, and the like can be used. Among them, terephthalic acid, phthalic acid, and 2,6-naphthalenedicarboxylic acid can be preferably used. . As the alicyclic dicarboxylic acid component, for example, cyclohexane dicarboxylic acid or the like can be used. As the aliphatic dicarboxylic acid component, for example, adipic acid, suberic acid, sebacic acid, dodecanedioic acid and the like can be used. These acid components may be used alone or in combination of two or more.

ジオール成分としては、例えば、エチレングリコール、1,2−プロパンジオール、1,3−プロパンジオール、ネオペンチルグリコール、1,3−ブタンジオール、1,4−ブタンジオール、1,5−ペンタンジオール、1,6−ヘキサンジオール、1,2−シクロヘキサンジメタノール、1,3−シクロヘキサンジメタノール、1,4−シクロヘキサンジメタノール、ジエチレングリコール、トリエチレングリコール、ポリアルキレングリコール、2,2’−ビス(4’−β−ヒドロキシエトキシフェニル)プロパン等を用いることができ、なかでも、エチレングリコール、1,4−ブタンジオール、1,4−シクロヘキサンジメタノール、ジエチレングリコール等を好ましく用いることができ、特に好ましくは、エチレングリコール等を用いることができる。これらのジオール成分は一種のみを用いてもよく、二種以上を併用してもよい。   Examples of the diol component include ethylene glycol, 1,2-propanediol, 1,3-propanediol, neopentyl glycol, 1,3-butanediol, 1,4-butanediol, 1,5-pentanediol, , 6-hexanediol, 1,2-cyclohexanedimethanol, 1,3-cyclohexanedimethanol, 1,4-cyclohexanedimethanol, diethylene glycol, triethylene glycol, polyalkylene glycol, 2,2'-bis (4'- β-hydroxyethoxyphenyl) propane and the like can be used, and among them, ethylene glycol, 1,4-butanediol, 1,4-cyclohexanedimethanol, diethylene glycol and the like can be preferably used, and ethylene glycol is particularly preferable. etc It can be used. These diol components may be used alone or in combination of two or more.

ポリエステルには、ラウリルアルコール、イソシアン酸フェニル等の単官能化合物が共重合されていてもよいし、トリメリット酸、ピロメリット酸、グリセロール、ペンタエリスリトール、2,4−ジオキシ安息香酸、等の3官能化合物などが、過度に分枝や架橋をせずポリマーが実質的に線状である範囲内で共重合されていてもよい。さらに酸成分、ジオール成分以外に、p−ヒドロキシ安息香酸、m−ヒドロキシ安息香酸、2,6−ヒドロキシナフトエ酸などの芳香族ヒドロキシカルボン酸およびp−アミノフェノール、p−アミノ安息香酸などを本発明の効果が損なわれない程度の少量であればさらに共重合せしめることができる。   The polyester may be copolymerized with a monofunctional compound such as lauryl alcohol or phenyl isocyanate, or a trifunctional compound such as trimellitic acid, pyromellitic acid, glycerol, pentaerythritol, or 2,4-dioxybenzoic acid. A compound or the like may be copolymerized within a range in which the polymer is substantially linear without excessive branching or crosslinking. In addition to the acid component and diol component, the present invention includes aromatic hydroxycarboxylic acids such as p-hydroxybenzoic acid, m-hydroxybenzoic acid, and 2,6-hydroxynaphthoic acid, p-aminophenol, and p-aminobenzoic acid. As long as the effect is not impaired, the copolymerization can be further carried out.

ポリマーの共重合割合はNMR法(核磁気共鳴法)や顕微FT−IR法(フーリエ変換顕微赤外分光法)を用いて調べることができる。   The copolymerization ratio of the polymer can be examined using NMR method (nuclear magnetic resonance method) or microscopic FT-IR method (Fourier transform microinfrared spectroscopy).

ポリエステルは、二軸延伸を施せること、および、寸法安定性などの本発明の効果を発現するために、ガラス転移温度が150℃未満のものを好適に使用できる。本発明において用いるポリエステルとしては、ポリエチレンテレフタレート、ポリエチレンナフタレート(ポリエチレン−2,6−ナフタレート)が好ましく、また、これらの共重合体や変性体でもよく、他の熱可塑性樹脂とのポリマーアロイでもよい。ここでいうポリマーアロイとは高分子多成分系のことであり、共重合によるブロックコポリマーであってもよいし、混合などによるポリマーブレンドでもよい。本発明で用いるポリエステルとしては特に、結晶子サイズや結晶配向度を高めるプロセスが適用しやすいことから主成分がポリエチレンテレフタレートであることがより好ましい。ここで、主成分とはフィルム組成中80質量%以上であることをいう。   Polyester having a glass transition temperature of less than 150 ° C. can be suitably used in order to achieve biaxial stretching and to exhibit the effects of the present invention such as dimensional stability. The polyester used in the present invention is preferably polyethylene terephthalate or polyethylene naphthalate (polyethylene-2,6-naphthalate), and may be a copolymer or a modified body thereof or a polymer alloy with another thermoplastic resin. . The polymer alloy here refers to a polymer multi-component system, which may be a block copolymer by copolymerization or a polymer blend by mixing. In particular, the polyester used in the present invention is more preferably polyethylene terephthalate as a main component because a process for increasing the crystallite size and the degree of crystal orientation is easily applied. Here, the main component means 80% by mass or more in the film composition.

本発明で用いるポリエチレンテレフタレートをポリマーアロイとする場合、他の熱可塑性樹脂は、ポリエステルと相溶するポリマーが好ましく、ポリエーテルイミド樹脂などがより好ましい。ポリエーテルイミド樹脂としては、例えば以下で示すものを用いることができる。   When the polyethylene terephthalate used in the present invention is a polymer alloy, the other thermoplastic resin is preferably a polymer compatible with polyester, more preferably a polyetherimide resin. As the polyetherimide resin, for example, those shown below can be used.

Figure 2018150463
Figure 2018150463

(ただし、上記式中Rは、6〜30個の炭素原子を有する2価の芳香族または脂肪族残基、Rは6〜30個の炭素原子を有する2価の芳香族残基、2〜20個の炭素原子を有するアルキレン基、2〜20個の炭素原子を有するシクロアルキレン基、および2〜8個の炭素原子を有するアルキレン基で連鎖停止されたポリジオルガノシロキサン基からなる群より選択された2価の有機基である。)
上記R、Rとしては、例えば、下記式群に示される芳香族残基を挙げることができる。
(Wherein R 1 is a divalent aromatic or aliphatic residue having 6 to 30 carbon atoms, R 2 is a divalent aromatic residue having 6 to 30 carbon atoms, From the group consisting of alkylene groups having 2 to 20 carbon atoms, cycloalkylene groups having 2 to 20 carbon atoms, and polydiorganosiloxane groups chain-terminated with alkylene groups having 2 to 8 carbon atoms Selected divalent organic group.)
As said R < 1 >, R < 2 >, the aromatic residue shown by the following formula group can be mentioned, for example.

Figure 2018150463
Figure 2018150463

本発明では、ポリエステルとの親和性、コスト、溶融成形性等の観点から、2,2−ビス[4−(2,3−ジカルボキシフェノキシ)フェニル]プロパン二無水物とm−フェニレンジアミン、またはp−フェニレンジアミンとの縮合物である、下記式で示される繰り返し単位を有するポリマーが好ましい。   In the present invention, 2,2-bis [4- (2,3-dicarboxyphenoxy) phenyl] propane dianhydride and m-phenylenediamine from the viewpoint of affinity with polyester, cost, melt moldability, and the like, or A polymer having a repeating unit represented by the following formula, which is a condensate with p-phenylenediamine, is preferred.

Figure 2018150463
Figure 2018150463

または Or

Figure 2018150463
Figure 2018150463

(nは2以上の整数、好ましくは20〜50の整数である。)
このポリエーテルイミドは、“ウルテム”の商品名で、SABICイノベーティブプラスチック社より入手可能であり、「Ultem(登録商標)1000」、「Ultem(登録商標)1010」、「Ultem(登録商標)1040」、「Ultem(登録商標)5000」、「Ultem(登録商標)6000」および「Ultem(登録商標)XH6050」シリーズや「Extem(登録商標) XH」および「Extem(登録商標) UH」の登録商標名等で知られているものである。
(N is an integer greater than or equal to 2, Preferably it is an integer of 20-50.)
This polyetherimide is available from SABIC Innovative Plastics under the trade name “Ultem”, “Ultem (registered trademark) 1000”, “Ultem (registered trademark) 1010”, “Ultem (registered trademark) 1040”. , "Ultem (registered trademark) 5000", "Ultem (registered trademark) 6000" and "Ultem (registered trademark) XH6050" series and "Extem (registered trademark) XH" and "Extem (registered trademark) UH" Etc. are known.

本発明の二軸配向ポリエステルフィルムは、平均粒径が0.050〜0.30μmの不活性粒子を含有する層(B層)を少なくとも1層有する2層以上の積層構成を有することが好ましい。この場合、B層は走行性を担う層として機能し、フィルムの一方の最外層として設けられる。もう一方の最外層には、平均粒径が0.01〜0.10μmの不活性粒子を含有した平滑性を担う層(A層)が設けられた少なくとも2層以上の積層構成が本発明の効果を得るためには好ましい。ここで、A層側の表面(以下、A面ということがある)に後述する磁性層を設けることが好ましく、その場合反対面(B層の表面、以下B面ということがある)は走行性を担う面となる。   The biaxially oriented polyester film of the present invention preferably has a laminated structure of two or more layers having at least one layer (B layer) containing inert particles having an average particle diameter of 0.050 to 0.30 μm. In this case, the B layer functions as a layer responsible for running properties and is provided as one outermost layer of the film. The other outermost layer has a layered structure of at least two or more layers provided with a layer (A layer) responsible for smoothness containing inert particles having an average particle diameter of 0.01 to 0.10 μm. It is preferable for obtaining the effect. Here, it is preferable to provide a magnetic layer to be described later on the surface on the A layer side (hereinafter also referred to as A surface), in which case the opposite surface (the surface of the B layer, hereinafter also referred to as B surface) is runnability. It will be the side that bears.

本発明の二軸配向ポリエステルフィルムは、いずれか一方の最外層表面(A面)において、波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xa)が1,000〜50,000nmである。好ましくは3,000〜40,000nmであり、さらに好ましくは4,000〜35,000nmの範囲である。パワースペクトル密度(Power Spectral Density 以下PSDと言う)とは、表面粗さのプロファイルデータをフーリエ変換処理し周波数分析を行い、各波長での強度を算出するものである。本発明では原子間力顕微鏡(AFM)を用いて、測定視野125μm×125μmでPSD計測を行い、波長10μm未満の領域において最大値のPSDを求める。本発明においては、上記範囲のPSD−Xaを満足する最外層表面(A面)側に磁性層を設けることによって磁性層表面の平滑性が増すため好ましく、PSD−Xaが上記範囲内であると走行性と電磁変換特性が高いレベルで両立でき好ましい。 The biaxially oriented polyester film of the present invention has a maximum power spectral density (PSD-Xa) in the width direction in a region of a wavelength of less than 10 μm on one of the outermost surface (A surface) of 1,000 to 50,000 nm 3. It is. Preferably 3,000~40,000nm 3, still more preferably from 4,000~35,000nm 3. The power spectral density (Power Spectral Density hereinafter referred to as “PSD”) is a method in which surface roughness profile data is subjected to Fourier transform, frequency analysis is performed, and the intensity at each wavelength is calculated. In the present invention, using an atomic force microscope (AFM), PSD measurement is performed with a measurement visual field of 125 μm × 125 μm, and the maximum PSD is obtained in a region of a wavelength of less than 10 μm. In the present invention, it is preferable to provide a magnetic layer on the outermost layer surface (A surface) side that satisfies PSD-Xa in the above range, so that the smoothness of the magnetic layer surface is increased, and PSD-Xa is in the above range. It is preferable because both running performance and electromagnetic conversion characteristics can be achieved at a high level.

本発明の二軸配向ポリエステルフィルムは、上記A面と反対面の最外層表面(B面)の波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xb)が150,000〜500,000nmである。好ましくは200,000〜450,000nm、さらに好ましくは230,000〜400,000nmの範囲である。PSD-Xbは小さければ小さいほど長期保存後の電磁変換特性は良好となるが、小さすぎると走行性やスリット性が低下する傾向にある。本発明においては、上記範囲のPSD-Xbを満足する最外層表面(B面)側にバックコート層を設けることによって、該バックコート層の表面平滑性と走行性、スリット性の両立が図れ、長期保存後の電磁変換特性が改善される。 The biaxially oriented polyester film of the present invention has a maximum power spectral density in the width direction (PSD-Xb) of 150,000 to 500,500 in a region of a wavelength of less than 10 μm on the outermost layer surface (B surface) opposite to the A surface. 000nm is 3. The range is preferably 200,000 to 450,000 nm 3 , more preferably 230,000 to 400,000 nm 3 . The smaller the PSD-Xb, the better the electromagnetic conversion characteristics after long-term storage. However, when the PSD-Xb is too small, the running property and the slit property tend to be lowered. In the present invention, by providing a backcoat layer on the outermost layer surface (B surface) side that satisfies PSD-Xb in the above range, it is possible to achieve both surface smoothness and running property of the backcoat layer, and slit property, The electromagnetic conversion characteristics after long-term storage are improved.

本発明の二軸配向ポリエステルフィルムは、上記B面において、波長10μm未満の領域における最大パワースペクトル密度比(PSD−Yb/PSD−Xb)が0.6≦PSD−Yb/PSD−Xb≦1.2、好ましくは0.7〜1.0、さらに好ましくは0.75〜0.95である。このPSD−Xbとは、幅方向の最大PSD(nm)であり、PSD−Ybは、長手方向の最大PSD(nm)である。本発明の波長10μm未満の領域における最大パワースペクトル密度比(PSD−Yb/PSD−Xb)を特定の範囲内に設定することにより、フィルムロールの空気層をコントロールすることが可能となる。特に、B面の波長10μm未満の領域における最大パワースペクトル密度(PSD-Xb)がフィルムの幅方向の値を規定するため(同値が上記範囲であると)、フィルムをロール状に巻き取る際に随伴気流を伴い空気を噛み込んでしまうものの、噛み込んだ空気の幅方向への流動性が高まり、フィルムの端面から空気が抜け易くなる。その結果、フィルム同士の接地(接触)がロールの端面で素早く起こり、残留した空気層がクッション層の役割を担い長期保存後のB面表面による平滑面(A面)への転写が抑制され電磁変換特性が良好となる。さらに、ロール端面でフィルム同士が接地することによって、スリット性が良好となり、さらに長期保存後の巻ズレやシワの発生を抑制することが可能となる。 The biaxially oriented polyester film of the present invention has a maximum power spectral density ratio (PSD-Yb / PSD-Xb) of 0.6 ≦ PSD-Yb / PSD-Xb ≦ 1. 2, Preferably it is 0.7-1.0, More preferably, it is 0.75-0.95. This PSD-Xb is the maximum PSD (nm 3 ) in the width direction, and PSD-Yb is the maximum PSD (nm 3 ) in the longitudinal direction. The air layer of the film roll can be controlled by setting the maximum power spectral density ratio (PSD-Yb / PSD-Xb) in the region of a wavelength of less than 10 μm of the present invention within a specific range. In particular, since the maximum power spectral density (PSD-Xb) in the region of the B surface with a wavelength of less than 10 μm defines the value in the width direction of the film (the same value is in the above range), Although the air is entrained with the accompanying airflow, the fluidity of the entrained air in the width direction is increased, and the air can easily escape from the end face of the film. As a result, the grounding (contact) between the films occurs quickly at the end face of the roll, and the remaining air layer plays the role of a cushion layer, and the transfer to the smooth surface (A surface) by the B surface after long-term storage is suppressed and electromagnetic Conversion characteristics are good. Furthermore, when the films are brought into contact with each other at the end face of the roll, the slit property is improved, and the occurrence of winding deviation and wrinkles after long-term storage can be suppressed.

本発明の二軸配向ポリエステルフィルムは、上記B面において、波長1μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb1)が15,000〜80,000nmであることが好ましく、さらに好ましくは20,000〜50,000nmである。波長1μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb1)が15,000nm未満であると走行性が悪化し、80,000nmを超えると、本発明の波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD−Xb)を本発明の範囲内に制御できなくなる場合があり、長期保存後の電磁変換特性が低下することがある。 The biaxially oriented polyester film of the present invention preferably has a maximum power spectral density (PSD-Xb1) in the width direction of 15,000 to 80,000 nm 3 in the region having a wavelength of 1 μm or less on the B surface. Is 20,000 to 50,000 nm 3 . If the maximum power spectral density in the width direction of the following areas wavelength 1μm (PSD-Xb1) is running property deteriorates to be less than 15,000 3, more than 80,000nm 3, in the region of less than the wavelength 10μm of the present invention The maximum power spectral density (PSD-Xb) in the width direction may not be controlled within the range of the present invention, and electromagnetic conversion characteristics after long-term storage may be deteriorated.

本発明の二軸配向ポリエステルフィルムは、上記B面の波長10μm以上波長30μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb30)(nm)と波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xb)の比(PSD−Xb30/PSD−Xb)が1.0〜3.0であることが好ましい。波長10μm以上波長30μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb30)は粒子の密集による粗大突起や突き上げによるブロードな突起に反応するため、本パラメータが上限値を超えると長期保存後の電磁変換特性やドロップアウトが悪化しやすい。 The biaxially oriented polyester film of the present invention has a maximum power spectral density (PSD-Xb30) (nm 3 ) in the width direction in the region of the above-mentioned B surface at a wavelength of 10 μm or more and a wavelength of 30 μm or less and The power spectral density (PSD-Xb) ratio (PSD-Xb30 / PSD-Xb) is preferably 1.0 to 3.0. The maximum power spectral density (PSD-Xb30) in the width direction in the wavelength region of 10 μm or more and 30 μm or less responds to coarse protrusions due to particle crowding or broad protrusions due to push-up. Electromagnetic conversion characteristics and dropout are likely to deteriorate.

上記したPSD-Xaの制御方法としては、例えば、A、B各層に含有する粒子の粒子径および含有量、さらにはA層の厚みによって制御することができる。A層に含有する粒子として粒子径が0.01〜0.1μmの粒子の含有量を0.02〜0.15質量%とし、かつ、A層の厚みがB層の最大粒子径の5倍以上、好ましくは7〜15倍とすることが好ましい。A層の粒子含有量が0.02質量%未満であると走行性が低下することがある。また、0.15質量%を超えると所望のPSD-Xaを得ることが困難となる傾向がある。A層の厚みについては、上記の範囲外であると、B層に含有されている粒子がA層表面にうねりを形成する場合がありA層のPSD-Xaを本願の範囲内に収めることが困難となる場合がある。   The PSD-Xa control method described above can be controlled by, for example, the particle diameter and content of particles contained in each of the A and B layers, and the thickness of the A layer. The content of particles having a particle size of 0.01 to 0.1 μm as the particles contained in the A layer is 0.02 to 0.15 mass%, and the thickness of the A layer is 5 times the maximum particle size of the B layer. As mentioned above, Preferably it is 7 to 15 times. When the particle content of the A layer is less than 0.02% by mass, the running property may be deteriorated. Moreover, when it exceeds 0.15 mass%, there exists a tendency for obtaining desired PSD-Xa to become difficult. If the thickness of the A layer is outside the above range, the particles contained in the B layer may form undulations on the surface of the A layer, and the PSD-Xa of the A layer may fall within the scope of the present application. It can be difficult.

上記した各種最大パワースペクトル密度(PSD-Xb、PSD-Xb30、PSD-Xb1)の制御方法として、例えば、B層における含有粒子の粒子径、含有量、厚み、後述の延伸条件で制御が可能であり、粒子径が大きいほど、含有量が多いほど、また、厚みは厚いほど最大パワースペクトル密度は大きくなる。B層に含有せしめる粒子の粒子径としては、0.05〜0.3μmが好ましく例示され、少なくとも2種類以上の平均粒子径の異なる粒子を併用することが本発明の電磁変換特性と走行性およびスリット性の改善のためには好ましい。この時、走行性およびスリット性のためには平均粒子径が0.25〜0.3μmの粒子Aを用いることが好ましく、この場合は、該粒子Aの含有量は0.03〜0.2質量%以下、好ましくは0.05〜0.15質量%とすることが走行性やスリット性、さらに幅方向の最大パワースペクトル密度(PSD−Xb)を所望の範囲内に制御する上で好ましい。粒子Aの平均粒子径が0.3μmを超えると所望の最大パワースペクトル密度を得ることが困難となる場合がある。粒子Aより粒子径の小さい粒子Bを併用する場合は、平均粒子径が0.15〜0.25μm未満の粒子Bを粒子Aと併用して含有せしめることが所望の最大パワースペクトル密度を得るためには好ましく、粒子Bの含有量は粒子Aの含有量よりも少なくすることが好ましく、粒子Aと粒子Bの配合質量比(粒子A/粒子B)が1を超えることが、本発明の各種最大パワースペクトル密度(PSD−Xb)を制御するうえで好ましい。粒子Aと粒子Bの配合質量比(粒子A/粒子B)が1未満では、波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xb)が小さくなりすぎる場合がある。また、粒子Bの粒子個数が多くなりすぎ、粒子Aおよび/またはBが密集する場合がある。その結果、粗大突起を形成しやすくなり、さらに突起の個数が低下する場合があるため、本発明の電磁変換特性と走行性およびスリット性が悪化する場合がある。   As a method for controlling the above various maximum power spectral densities (PSD-Xb, PSD-Xb30, PSD-Xb1), for example, it is possible to control by the particle diameter, content, thickness of the contained particles in the B layer, and stretching conditions described later. Yes, the greater the particle size, the greater the content, and the greater the thickness, the greater the maximum power spectral density. The particle diameter of the particles to be contained in the B layer is preferably 0.05 to 0.3 μm, and it is possible to use at least two kinds of particles having different average particle diameters in combination with the electromagnetic conversion characteristics and running properties of the present invention. It is preferable for improving the slit property. At this time, it is preferable to use a particle A having an average particle diameter of 0.25 to 0.3 μm for running property and slit property. In this case, the content of the particle A is 0.03 to 0.2. The mass% or less, preferably 0.05 to 0.15 mass% is preferable for controlling the running property, slit property, and maximum power spectral density (PSD-Xb) in the width direction within a desired range. If the average particle diameter of the particles A exceeds 0.3 μm, it may be difficult to obtain a desired maximum power spectral density. When particles B having a particle diameter smaller than particles A are used in combination, particles B having an average particle diameter of less than 0.15 to 0.25 μm are contained in combination with particles A in order to obtain a desired maximum power spectral density. The content of the particles B is preferably less than the content of the particles A, and the blending mass ratio of the particles A and the particles B (particle A / particle B) exceeds 1, It is preferable for controlling the maximum power spectral density (PSD-Xb). If the blending mass ratio of particles A and particles B (particle A / particle B) is less than 1, the maximum power spectral density (PSD-Xb) in the width direction in the region of wavelength less than 10 μm may be too small. In addition, the number of particles B may be too large, and particles A and / or B may be dense. As a result, it becomes easy to form coarse protrusions, and the number of protrusions may be further reduced, so that the electromagnetic conversion characteristics, running properties, and slit properties of the present invention may be deteriorated.

また、平均粒子径が0.15μm未満の粒子Cをさらに含有せしめる場合は、その含有量は特に限定されないが、0.8質量%以下、好ましくは0.1〜0.5質量%が好ましい。粒子Cの好ましい平均粒子径は0.05〜0.12μmである。上記、粒子AおよびBに加えて粒子Cを含有せしめると走行性とスリット性が向上するため好ましい。粒子Cの含有量が上限値を超えると粒子Cの凝集による粗大突起を形成する場合があるため、本発明の最大パワースペクトル密度(PSD-Xb、およびPSD−Xb1)を得られない場合があり注意が必要である。   In addition, when the particles C having an average particle diameter of less than 0.15 μm are further contained, the content is not particularly limited, but is 0.8% by mass or less, preferably 0.1 to 0.5% by mass. A preferable average particle diameter of the particles C is 0.05 to 0.12 μm. It is preferable to add particles C in addition to the particles A and B because the running property and slit property are improved. If the content of the particles C exceeds the upper limit value, coarse protrusions due to aggregation of the particles C may be formed, and thus the maximum power spectral density (PSD-Xb and PSD-Xb1) of the present invention may not be obtained. Caution must be taken.

B層の厚みは、0.1〜1μm、好ましくは0.1〜0.6μm、さらに好ましくは0.2〜0.5μmであり、B層に含有する粒子の最大粒子径(D)の2倍以下、好ましくは1〜1.7倍以下とすることが好ましい。   The thickness of the B layer is 0.1 to 1 μm, preferably 0.1 to 0.6 μm, more preferably 0.2 to 0.5 μm, and the maximum particle diameter (D) of the particles contained in the B layer is 2 It is preferable to make it not more than double, preferably 1 to 1.7 times or less.

上記した最大パワースペクトル密度比(PSD−Yb/PSD−Xb)は、B層の粒子や厚みの制御に加えて、二軸配向ポリエステルフィルムの延伸条件、熱処理温度を後述するような条件とすることが有効である。   The above-mentioned maximum power spectral density ratio (PSD-Yb / PSD-Xb) should be such that the stretching conditions and heat treatment temperature of the biaxially oriented polyester film are as described later, in addition to controlling the particles and thickness of the B layer. Is effective.

本発明の二軸配向ポリエステルフィルムのB層に好ましく含有される粒子としては特に限定されないが、無機粒子、有機粒子、いずれも用いることができる。2種類以上の粒子を併用することが好ましい。具体的な種類としては、例えば、酸化チタン、炭酸カルシウム、湿式シリカ、乾式シリカ、コロイダルシリカ、ケイ酸アルミナ、リン酸カルシウム、硫酸バリウム、アルミナ珪酸塩、カオリン、タルク、モンモリロナイト、アルミナ、ジルコニア等の無機粒子、アクリル酸類、スチレン系樹脂、シリコーン、イミド等を構成成分とする有機粒子、コアシェル型有機粒子などが例示できるが、最大パワースペクトル密度を制御するには、単一分散する球形の粒子である有機粒子やコロイダルシリカが特に好ましい。   Although it does not specifically limit as particle | grains contained preferably in B layer of the biaxially-oriented polyester film of this invention, Both inorganic particles and organic particles can be used. It is preferable to use two or more kinds of particles in combination. Specific types include inorganic particles such as titanium oxide, calcium carbonate, wet silica, dry silica, colloidal silica, alumina silicate, calcium phosphate, barium sulfate, alumina silicate, kaolin, talc, montmorillonite, alumina, zirconia, and the like. Organic particles containing acrylic acid, styrenic resin, silicone, imide, etc., core-shell type organic particles, etc. can be exemplified, but in order to control the maximum power spectral density, the organic particles are monodispersed spherical particles. Particles and colloidal silica are particularly preferred.

また、本発明の二軸配向ポリエステルフィルムのA層に好ましく含有される粒子としては、単一分散する球形の粒子が好ましいが、アルミナやジルコニアなどの凝集粒子も二次径が0.15μm以内に制御できれば使いこなすことが可能である。   In addition, the particles preferably contained in the A layer of the biaxially oriented polyester film of the present invention are preferably monodispersed spherical particles, but aggregated particles such as alumina and zirconia also have a secondary diameter within 0.15 μm. If it can be controlled, it can be used.

上記の粒子を含有するB層側表面の中心線表面粗さRaは3〜15nmであることが好ましく、より好ましくは3〜10nmである。また、B層側表面の10点平均粗さRzは60〜200nmであることが好ましく、より好ましくは80〜180nmである。中心線表面粗さRaおよび10点平均粗さRzが下限値未満であると走行性が不良となりやすく、また上限値を超えるとドロップアウトが悪化しやすくなる。   The center line surface roughness Ra of the B layer side surface containing the above-mentioned particles is preferably 3 to 15 nm, more preferably 3 to 10 nm. Further, the 10-point average roughness Rz on the surface of the B layer side is preferably 60 to 200 nm, more preferably 80 to 180 nm. When the center line surface roughness Ra and the 10-point average roughness Rz are less than the lower limit value, the runnability tends to be poor, and when the center line surface roughness Ra exceeds the upper limit value, dropout tends to deteriorate.

本発明の二軸配向ポリエステルフィルムは、幅方向の湿度膨張係数が0〜8ppm/%RHであることが好ましい。湿度膨張係数が8ppm/%RH以下であると、磁気記録媒体用に用いた場合、湿度変化による変形が大きくならず、寸法安定性が低下しにくくなる。より好ましい上限は6.5ppm/%RHであり、さらに好ましくは6ppm/%RHである。湿度膨張係数は分子鎖の緊張度合いが影響する物性であり、後述するようにTD延伸1とTD延伸2の倍率比によって制御することができ、また、TD延伸トータルの倍率やMD延伸倍率との比によっても制御が可能である。TD延伸1とTD延伸2の倍率比が(TD1/TD2)が大きいほど湿度膨張係数は小さくなる。また、TD延伸トータルの倍率が高いほど湿度膨張係数は小さくなる。   The biaxially oriented polyester film of the present invention preferably has a humidity expansion coefficient in the width direction of 0 to 8 ppm /% RH. When the humidity expansion coefficient is 8 ppm /% RH or less, when used for a magnetic recording medium, deformation due to humidity change does not increase, and dimensional stability is unlikely to decrease. A more preferred upper limit is 6.5 ppm /% RH, and even more preferred is 6 ppm /% RH. The humidity expansion coefficient is a physical property affected by the degree of tension of the molecular chain, and can be controlled by the ratio of TD stretching 1 and TD stretching 2 as described later. Control is also possible by the ratio. The greater the ratio of TD stretching 1 and TD stretching 2 (TD1 / TD2), the smaller the coefficient of humidity expansion. Further, the higher the TD stretch total magnification, the smaller the humidity expansion coefficient.

なお、本発明において、MDとは二軸配向ポリエステルフィルムの長手方向(縦方向、製膜方向)を示し、TDとは二軸配向ポリエステルフィルムの幅方向(横方向、製膜方向と直交する方向)を示す。   In the present invention, MD refers to the longitudinal direction (longitudinal direction, film forming direction) of the biaxially oriented polyester film, and TD refers to the width direction (lateral direction, film forming direction) of the biaxially oriented polyester film. ).

本発明の二軸配向ポリエステルフィルムは、幅方向のヤング率が7GPa以上であることが好ましく、7〜10GPaであることが幅方向の湿度膨張係数の制御の観点からより好ましい。幅方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の記録再生時の環境変化による寸法安定性が良好となる傾向にある。幅方向のヤング率は後述するTD延伸1、2の温度や倍率によって制御することができる。特にトータルのTD倍率が影響し、トータルのTD倍率が高いほどTDヤング率が高くなる。   The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the width direction of 7 GPa or more, and more preferably 7 to 10 GPa from the viewpoint of controlling the humidity expansion coefficient in the width direction. When the Young's modulus in the width direction is within the above range, when used for a magnetic recording medium, the dimensional stability due to environmental changes at the time of recording / reproducing of the magnetic recording medium tends to be good. The Young's modulus in the width direction can be controlled by the temperature and magnification of TD stretching 1 and 2 described later. In particular, the total TD magnification is affected, and the higher the total TD magnification, the higher the TD Young's modulus.

本発明の二軸配向ポリエステルフィルムは、長手方向のヤング率が3.5〜8GPaであることが好ましい。長手方向のヤング率が上記範囲内であると、磁気記録媒体用に用いた場合に磁気記録媒体の保管時の張力による保存安定性がより良好となる。長手方向のヤング率のさらに好ましい範囲は3.8〜7.5GPa、より好ましい範囲は4〜7GPaである。長手方向のヤング率はMD延伸倍率で制御することができる。MD倍率が高いほどMDヤング率が高くなる。   The biaxially oriented polyester film of the present invention preferably has a Young's modulus in the longitudinal direction of 3.5 to 8 GPa. When the Young's modulus in the longitudinal direction is within the above range, when used for a magnetic recording medium, the storage stability due to the tension during storage of the magnetic recording medium becomes better. A more preferable range of Young's modulus in the longitudinal direction is 3.8 to 7.5 GPa, and a more preferable range is 4 to 7 GPa. The Young's modulus in the longitudinal direction can be controlled by the MD draw ratio. The MD Young's modulus increases as the MD magnification increases.

本発明の二軸配向ポリエステルフィルムを磁気記録媒体用ベースフィルムとして用いる場合は、上記のB面側にバックコート層(以下BC層という)を設けることが高密度磁気記録媒体を得る上で好ましく、特に、磁性層に強磁性六方晶フェライト粉末を用いてなる磁気記録媒体は、磁性層および非磁性層やBC層自体の厚みも薄いために、BC層の表面に支持体(B層)の表面突起の影響が出にくくなり平滑なBC面が得られる。よって、磁性面に転写痕を形成することなく超平坦な磁性表面を得ることが可能となるため優れた電磁変換特性を発揮できる。   When the biaxially oriented polyester film of the present invention is used as a base film for a magnetic recording medium, it is preferable to provide a back coat layer (hereinafter referred to as BC layer) on the B surface side in order to obtain a high-density magnetic recording medium, In particular, in a magnetic recording medium using a ferromagnetic hexagonal ferrite powder for the magnetic layer, the thickness of the magnetic layer, the nonmagnetic layer, and the BC layer itself is thin, so that the surface of the support (B layer) is placed on the surface of the BC layer. The influence of the protrusion is less likely to occur, and a smooth BC surface is obtained. Therefore, it is possible to obtain an ultra-flat magnetic surface without forming a transfer mark on the magnetic surface, so that excellent electromagnetic conversion characteristics can be exhibited.

本発明の二軸配向ポリエステルフィルムの厚みは3.5〜4.5μmの範囲が好ましい。厚みが3.5μmより小さくなると、剛性や寸法安定性が低下しテープの腰が不十分となり磁気記録媒体としたときに電磁変換特性が低下する傾向がある。また、B層表面突起による平滑面(A面)側への突き上げを抑制しにくくなる。また、4.5μmより大きいとテープ1巻あたりのテープ長さが短くなるため、磁気テープの小型化、高容量に対応し難い。厚みの調整方法としては、二軸配向ポリエステルフィルムの製膜の際のポリマーの溶融押出時におけるスクリューの吐出量を調整し、口金から未延伸フィルムの厚みを制御することによって二軸延伸後のフィルム厚みを調節することが可能となる。   The thickness of the biaxially oriented polyester film of the present invention is preferably in the range of 3.5 to 4.5 μm. When the thickness is smaller than 3.5 μm, the rigidity and dimensional stability are lowered, the tape is not sufficiently stretched, and the electromagnetic conversion characteristics tend to be lowered when the magnetic recording medium is obtained. Moreover, it becomes difficult to suppress the push-up to the smooth surface (A surface) side by B layer surface protrusion. On the other hand, if it is larger than 4.5 μm, the tape length per one tape is shortened, so that it is difficult to reduce the size and capacity of the magnetic tape. As a method for adjusting the thickness, the biaxially oriented film is formed by adjusting the screw discharge amount at the time of melt extrusion of the polymer during the production of the biaxially oriented polyester film and controlling the thickness of the unstretched film from the die. The thickness can be adjusted.

上記したような本発明の二軸配向ポリエステルフィルムは、たとえば次のように製造される。   The biaxially oriented polyester film of the present invention as described above is produced, for example, as follows.

まず、ポリエステルのペレットを、押出機を用いて溶融し、口金から吐出した後、冷却固化してシート状に成形する。このとき、繊維焼結ステンレス金属フィルターによりポリマーを濾過することが、ポリマー中の未溶融物を除去するために好ましい。   First, polyester pellets are melted using an extruder, discharged from a die, and then cooled and solidified to form a sheet. At this time, it is preferable to filter the polymer with a fiber-sintered stainless metal filter in order to remove unmelted material in the polymer.

本発明の特徴面を阻害しない範囲内であれば、各種添加剤、例えば、相溶化剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、結晶核剤、紫外線吸収剤、難燃剤、難燃助剤、顔料、染料、などが添加されてもよい。   Various additives, for example, compatibilizers, plasticizers, weathering agents, antioxidants, thermal stabilizers, lubricants, antistatic agents, whitening agents, colorants, as long as they do not impair the characteristics of the present invention. A conductive agent, a crystal nucleating agent, an ultraviolet absorber, a flame retardant, a flame retardant aid, a pigment, a dye, and the like may be added.

続いて、上記シートを長手方向と幅方向の二軸に延伸する。このとき、上記の波長10μm未満の領域における最大パワースペクトル密度比(PSD−Yb/PSD−Xb)、および、幅方向の寸法安定性を向上させるための好ましい延伸形式としては、長手方向に延伸した後に幅方向に2段階で延伸を行うなどの逐次二軸延伸法や同時二軸延伸した後にさらに幅方向に延伸する延伸方法が例示できるが、本発明の各種最大パワースペクトル密度を所望の値に制御するうえでは同時二軸延伸方式で延伸した後にさらに幅方向に延伸することが好ましい。幅方向の寸法安定性のためには、幅方向の延伸を2段階で行ったりして、トータルの延伸倍率を長手方向の延伸倍率よりも大きくなるように設定するため、逐次二軸延伸法では幅方向の最大パワースペクトル密度(PSD-Xb,PSD−Xb30)が大きくなりすぎる傾向にある。このように得られた二軸延伸フィルムを熱処理する。   Subsequently, the sheet is stretched biaxially in the longitudinal direction and the width direction. At this time, as a preferable stretching method for improving the maximum power spectral density ratio (PSD-Yb / PSD-Xb) in the region of the wavelength of less than 10 μm and the dimensional stability in the width direction, the film was stretched in the longitudinal direction. Examples include a sequential biaxial stretching method such as stretching in two steps in the width direction later and a stretching method in which stretching is performed in the width direction after simultaneous biaxial stretching, but various maximum power spectral densities of the present invention are set to desired values. In order to control, it is preferable to stretch in the width direction after stretching by the simultaneous biaxial stretching method. For dimensional stability in the width direction, stretching in the width direction is performed in two stages, and the total stretching ratio is set to be larger than the stretching ratio in the longitudinal direction. The maximum power spectral density (PSD-Xb, PSD-Xb30) in the width direction tends to be too large. The biaxially stretched film thus obtained is heat-treated.

以下、本発明のフィルムの製造方法について、ポリエチレンテレフタレート(PET)をポリエステルとして用いた例を代表例として説明する。なお本発明はPETフィルムに限定されるものではなく、他のポリマーを用いたものものでもよい。例えば、ガラス転移温度や融点の高いポリエチレン−2,6−ナフタレンジカルボキシレートなどを用いてポリエステルフィルムを構成する場合は、以下に示す温度よりも高温で押出や延伸を行えばよい。   Hereinafter, the production method of the film of the present invention will be described as an example in which polyethylene terephthalate (PET) is used as polyester. In addition, this invention is not limited to a PET film, The thing using another polymer may be used. For example, when a polyester film is formed using polyethylene-2,6-naphthalenedicarboxylate having a high glass transition temperature or a high melting point, it may be extruded or stretched at a temperature higher than the following temperature.

まず、PETのペレットを製造する。PETは、次のいずれかのプロセスで製造される。すなわち、(1)テレフタル酸とエチレングリコールを原料とし、直接エステル化反応によって低分子量のPETまたはオリゴマーを得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセス、(2)ジメチルテレフタレートとエチレングリコールを原料とし、エステル交換反応によって低分子量体を得、さらにその後の三酸化アンチモンやチタン化合物を触媒に用いた重縮合反応によってポリマーを得るプロセスである。   First, PET pellets are manufactured. PET is manufactured by one of the following processes. That is, (1) A process of obtaining terephthalic acid and ethylene glycol as raw materials, obtaining a low molecular weight PET or oligomer by direct esterification, and then obtaining a polymer by polycondensation reaction using antimony trioxide or a titanium compound as a catalyst. (2) A process in which dimethyl terephthalate and ethylene glycol are used as raw materials to obtain a low molecular weight product by transesterification, and then a polymer is obtained by a polycondensation reaction using antimony trioxide or a titanium compound as a catalyst.

フィルムを構成するPETに粒子を含有させるには、エチレングリコールに粒子を所定割合にてスラリーの形で分散させ、このエチレングリコールを重合時に添加する方法が好ましい。粒子を添加する際には、例えば、粒子の合成時に得られる水ゾルやアルコールゾル状態の粒子を一旦乾燥させることなく添加すると粒子の分散性がよい。また、粒子の水スラリーを直接PETペレットと混合し、ベント式二軸混練押出機を用いて、PETに練り込む方法も有効である。粒子の含有量を調節する方法としては、上記方法で高濃度の粒子のマスターペレットを作っておき、それを製膜時に粒子を実質的に含有しないPETで希釈して粒子の含有量を調節する方法が有効である。この際、粒子を含有しないPETの固有粘度を粒子含有ペレットの固有粘度よりも高く調整しておくことは本発明の最大パワースペクトル密度比(PSD−Yb/PSD−Xb)や表面粗さ(Rz)を制御する上で有効である。   In order to contain particles in the PET constituting the film, a method is preferred in which particles are dispersed in a predetermined proportion in the form of slurry in ethylene glycol, and this ethylene glycol is added during polymerization. When adding particles, for example, water sol or alcohol sol particles obtained at the time of particle synthesis are added without drying once, so that the dispersibility of the particles is good. It is also effective to mix the aqueous slurry of particles directly with PET pellets and knead them into PET using a vented twin-screw kneading extruder. As a method for adjusting the content of particles, a master pellet of high-concentration particles is prepared by the above method, and this is diluted with PET that does not substantially contain particles at the time of film formation to adjust the content of particles. The method is effective. In this case, adjusting the intrinsic viscosity of the PET containing no particles higher than the intrinsic viscosity of the particle-containing pellets means that the maximum power spectral density ratio (PSD-Yb / PSD-Xb) and surface roughness (Rz) of the present invention. ) Is effective in controlling.

次に、得られたPETのペレットを、180℃で3時間以上減圧乾燥した後、固有粘度が低下しないように窒素気流下あるいは減圧下で、270〜320℃に加熱された押出機に供給し、スリット状のダイから押出し、キャスティングロール上で冷却して未延伸フィルムを得る。この際、異物や変質ポリマーを除去するために各種のフィルター、例えば、焼結金属、多孔性セラミック、サンド、金網などの素材からなるフィルターを用いることが好ましい。また、定量供給性を向上させ、所望の積層厚みを得るためにギアポンプを設けることは上記した特徴面を形成する上で極めて好ましい。フィルムを積層するには、2台以上の押出機およびマニホールドまたは合流ブロックを用いて、複数の異なるポリマーを溶融積層するとよい。   Next, the obtained PET pellets are dried under reduced pressure at 180 ° C. for 3 hours or more, and then supplied to an extruder heated to 270 to 320 ° C. under a nitrogen stream or under reduced pressure so that the intrinsic viscosity does not decrease. The film is extruded from a slit-shaped die and cooled on a casting roll to obtain an unstretched film. At this time, it is preferable to use various types of filters, for example, filters made of materials such as sintered metal, porous ceramics, sand, and wire mesh, in order to remove foreign substances and altered polymers. In addition, it is extremely preferable to provide a gear pump in order to improve the quantitative supply capability and obtain a desired laminated thickness in order to form the above-described characteristic surface. To laminate the film, a plurality of different polymers may be melt laminated using two or more extruders and manifolds or merge blocks.

上記の各種最大パワースペクトル密度を所望の値に効率よく制御するうえでは同時二軸延伸が好ましいため、以下、同時二軸延伸方式にて説明する。   Since simultaneous biaxial stretching is preferable in efficiently controlling the above various maximum power spectral densities to desired values, the simultaneous biaxial stretching method will be described below.

まず、未延伸フィルムを同時二軸テンターに導き、温度90〜140℃にて縦方向と横方向について1段目の延伸(MD延伸1およびTD延伸1)を同時方向に、それぞれ3.0〜6.0倍延伸する。続いて、温度170〜190℃の範囲内で2段目の延伸を長さ方向(MD延伸2)に1.05〜1.20倍、および幅方向(TD延伸2)に、1.3〜2.0倍に同時に再延伸する。本発明の各種最大パワースペクトル密度を所望の値に制御するには1段目のMD延伸1倍率/TD延伸1倍率の比を0.9〜1.1の範囲内とし、2段目のMD延伸2倍率/TD延伸2倍率の比を0.5〜0.85で延伸することが好ましい。   First, an unstretched film is led to a simultaneous biaxial tenter, and the first stage stretching (MD stretching 1 and TD stretching 1) in the longitudinal direction and the transverse direction at a temperature of 90 to 140 ° C. is 3.0 to Stretch 6.0 times. Subsequently, the second-stage stretching within the temperature range of 170 to 190 ° C. is 1.05 to 1.20 times in the length direction (MD stretching 2), and the width direction (TD stretching 2) is 1.3 to Re-draw at the same time 2.0 times. In order to control the various maximum power spectral densities of the present invention to desired values, the ratio of the first stage MD stretching 1 magnification / TD stretching 1 magnification is set within the range of 0.9 to 1.1, and the second stage MD. It is preferable to stretch at a ratio of 2 stretching ratio / 2 stretching ratio of TD at 0.5 to 0.85.

続いて、この延伸フィルムを緊張下または幅方向に弛緩しながら熱固定処理する。本発明の長手方向の最大パワースペクトル密度(PSD−Yb)および密度比(PSD−Yb/PSD−Xb)さらに、幅方向の湿度膨張係数を制御するための熱固定処理条件として、熱固定温度は、180〜220℃が好ましい。熱固定温度が上限値を超えると本発明の長手方向の最大パワースペクトル密度(PSD−Yb)および密度比(PSD−Yb/PSD−Xb)や湿度膨張係数を本発明の範囲内に制御できない場合がある。熱処理は2段階以上に分けて行い、まず、1段目熱処理(HS−1)は(2段目の延伸温度+5)〜(2段目の延伸温度+10)℃で行う。1段目熱処理温度が前述の上限値以上であると本発明の長手方向の最大パワースペクトル密度(PSD−Yb)および密度比(PSD−Yb/PSD−Xb)を特定の範囲内にできない場合がある。その後、2段目熱処理(HS−2)を((HS−1)+10)〜((HS−1)+15)℃の範囲、3段目熱処理(HS−3)を((HS−2)+10)〜((HS−2)+20)℃で行う。熱固定温度(HS−3)の上限は、より好ましくは215℃、さらに好ましくは210℃である。熱固定温度(HS−3)の下限は、より好ましくは185℃、さらに好ましくは190℃である。熱固定処理時間は5〜30秒の範囲、弛緩率は0.3〜2%で行うのが好ましい。熱固定処理後は把持しているクリップを開放することでフィルムにかかる張力を低減させながら室温へ急冷する。その後、フィルムエッジを除去しロールに巻き取り、本発明の二軸配向ポリエステルフィルムを得ることができる。   Subsequently, the stretched film is heat-set under tension or while relaxing in the width direction. Maximum power spectral density in the longitudinal direction (PSD-Yb) and density ratio (PSD-Yb / PSD-Xb) of the present invention Further, as a heat setting treatment condition for controlling the humidity expansion coefficient in the width direction, the heat setting temperature is 180 to 220 ° C is preferable. When the heat setting temperature exceeds the upper limit, the maximum power spectral density (PSD-Yb), density ratio (PSD-Yb / PSD-Xb) and humidity expansion coefficient in the longitudinal direction of the present invention cannot be controlled within the scope of the present invention. There is. The heat treatment is performed in two or more stages. First, the first stage heat treatment (HS-1) is performed at (second stage stretching temperature + 5) to (second stage stretching temperature + 10) ° C. When the first-stage heat treatment temperature is equal to or higher than the above upper limit, the maximum power spectral density (PSD-Yb) and density ratio (PSD-Yb / PSD-Xb) in the longitudinal direction of the present invention may not be within a specific range. is there. Thereafter, the second stage heat treatment (HS-2) is in the range of ((HS-1) +10) to ((HS-1) +15) ° C., and the third stage heat treatment (HS-3) is ((HS-2) +10. ) To ((HS-2) +20) ° C. The upper limit of the heat setting temperature (HS-3) is more preferably 215 ° C, still more preferably 210 ° C. The lower limit of the heat setting temperature (HS-3) is more preferably 185 ° C, and still more preferably 190 ° C. The heat setting treatment time is preferably in the range of 5 to 30 seconds, and the relaxation rate is preferably 0.3 to 2%. After the heat setting treatment, the gripping clip is released to rapidly cool to room temperature while reducing the tension applied to the film. Thereafter, the film edge is removed and wound on a roll to obtain the biaxially oriented polyester film of the present invention.

なお、2段目の延伸温度と熱固定温度に差があり、熱固定温度が上述の範囲よりも高いとボーイング現象による収縮とMD方向の巻張力で微延伸され、表面突起高さが高くなり、特に長手方向の最大パワースペクトル密度(PSD−Yb)が大きくなる場合がある。また、フィルムが緩和しやすくなり、上記した湿度膨張係数を得ることが困難となり寸法安定性が低下する場合がある。一方、熱固定温度が低すぎると結晶性が低くなりやすく、磁気記録媒体の製造工程においてベースフィルムのへ平面性が低下し電磁変換特性が悪化する傾向がある。   Note that there is a difference between the stretching temperature of the second stage and the heat setting temperature, and if the heat setting temperature is higher than the above range, the surface projection height increases due to shrinkage due to the bowing phenomenon and the winding tension in the MD direction. In particular, the maximum power spectral density (PSD-Yb) in the longitudinal direction may increase. In addition, the film is easy to relax, and it is difficult to obtain the above-described humidity expansion coefficient, which may reduce the dimensional stability. On the other hand, if the heat setting temperature is too low, the crystallinity tends to be low, and the flatness of the base film tends to be lowered and the electromagnetic conversion characteristics tend to be deteriorated in the manufacturing process of the magnetic recording medium.

次に、磁気記録媒体は、次のように製造される。   Next, the magnetic recording medium is manufactured as follows.

上記のようにして得られた磁気記録媒体用支持体(二軸配向ポリエステルフィルム)を、たとえば0.1〜3m幅にスリットし、速度20〜300m/min、張力50〜300N/mで搬送しながら、一方の面に非磁性塗料をエクストルージョンコーターにより厚み0.5〜1.5μm塗布し乾燥後、さらに磁性塗料を厚み0.1〜0.3μmで塗布する。その後、磁性塗料および非磁性塗料が塗布された支持体を磁気配向させ、温度80〜130℃で乾燥させる。次いで、反対側の面にバックコートを厚み0.3〜0.8μmで塗布し、カレンダー処理した後、巻き取る。なお、カレンダー処理は、小型テストカレンダー装置(金属ロール、7段)を用い、温度70〜120℃、線圧0.5〜5kN/cmで行う。その後、60〜80℃にて24〜72時間エージング処理し、12.65mm幅にスリットし、パンケーキを作製する。次いで、このパンケーキから特定の長さ分をカセットに組み込んで、カセットテープ型磁気記録媒体とする。   The magnetic recording medium support (biaxially oriented polyester film) obtained as described above is slit into, for example, a width of 0.1 to 3 m, and conveyed at a speed of 20 to 300 m / min and a tension of 50 to 300 N / m. On the other hand, a non-magnetic paint is applied on one surface by an extrusion coater to a thickness of 0.5 to 1.5 μm, dried, and then a magnetic paint is applied to a thickness of 0.1 to 0.3 μm. Thereafter, the support coated with the magnetic coating material and the nonmagnetic coating material is magnetically oriented and dried at a temperature of 80 to 130 ° C. Next, a back coat is applied to the opposite surface with a thickness of 0.3 to 0.8 μm, calendered, and then wound up. The calendar process is performed using a small test calendar device (metal roll, 7 steps) at a temperature of 70 to 120 ° C. and a linear pressure of 0.5 to 5 kN / cm. Thereafter, aging treatment is performed at 60 to 80 ° C. for 24 to 72 hours, and slitting is performed to a width of 12.65 mm to prepare a pancake. Next, a specific length from this pancake is incorporated into a cassette to obtain a cassette tape type magnetic recording medium.

ここで、磁性塗料などの組成は例えば以下のような組成が挙げられる。   Here, examples of the composition of the magnetic paint include the following compositions.

以下、単に「部」と記載されている場合は、「質量部」を意味する。   Hereinafter, when “part” is simply described, it means “part by mass”.

[磁性層形成塗液]
バリウムフェライト磁性粉末 100部
〔板径:20.5nm、板厚:7.6nm、板状比:2.7、Hc:191kA/m(≒2400Oe)飽和磁化:44Am/kg、BET比表面積:60m/g〕
ポリウレタン樹脂 12部
質量平均分子量 10,000
スルホン酸官能基 0.5meq/g
α−アルミナ HIT60(住友化学社製) 8部
カーボンブラック #55(旭カーボン社製)粒子サイズ0.015μm 0.5部
ステアリン酸 0.5部
ブチルステアレート 2部
メチルエチルケトン 180部
シクロヘキサノン 100部
[非磁性層形成用塗布液]
非磁性粉体 α酸化鉄 100部
平均長軸長0.09μm、BET法による比表面積 50m/g
pH 7
DBP吸油量 27〜38ml/100g
表面処理層Al 8質量%
カーボンブラック 25部
コンダクテックスSC−U(コロンビアンカーボン社製)
塩化ビニル共重合体 MR104(日本ゼオン社製) 13部
ポリウレタン樹脂 UR8200(東洋紡社製) 5部
フェニルホスホン酸 3.5部
ブチルステアレート 1部
磁気記録媒体は、例えば、データ記録用途、具体的にはコンピュータデータのバックアップ用途(例えばリニアテープ式の記録媒体(LTO5、LTO6、次世代LTOテープ(LTO7))や映像などのデジタル画像の記録用途などに好適に用いることができる。
[Magnetic layer forming coating solution]
Barium ferrite magnetic powder 100 parts [plate diameter: 20.5 nm, plate thickness: 7.6 nm, plate ratio: 2.7, Hc: 191 kA / m (≈2400 Oe) saturation magnetization: 44 Am 2 / kg, BET specific surface area: 60m 2 / g]
12 parts polyurethane resin Mass average molecular weight 10,000
Sulfonic acid functional group 0.5 meq / g
α-Alumina HIT60 (Sumitomo Chemical Co., Ltd.) 8 parts Carbon black # 55 (Asahi Carbon Co., Ltd.) Particle size 0.015 μm 0.5 parts Stearic acid 0.5 parts Butyl stearate 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts Magnetic layer forming coating solution]
Non-magnetic powder α iron oxide 100 parts Average major axis length 0.09μm, specific surface area by BET method 50m 2 / g
pH 7
DBP oil absorption 27-38ml / 100g
Surface treatment layer Al 2 O 3 8% by mass
Carbon black 25 parts CONDUCTEX SC-U (manufactured by Colombian Carbon)
Vinyl chloride copolymer MR104 (manufactured by Nippon Zeon Co., Ltd.) 13 parts Polyurethane resin UR8200 (manufactured by Toyobo Co., Ltd.) 5 parts Phenylphosphonic acid 3.5 parts Butyl stearate 1 part Can be suitably used for computer data backup applications (for example, linear tape recording media (LTO5, LTO6, next-generation LTO tape (LTO7)) and digital image recording applications such as video.

本発明の二軸配向ポリエステルフィルムが好適に用いられる塗布型デジタル記録方式の磁気記録媒体としては、例えば、磁性層がバリウムフェライト等の強磁性粉末をポリウレタン樹脂等のバインダーに均一に分散させて磁性塗液を作成し、その塗液を塗布して磁性層が形成された塗布型磁気記録媒体を例示することができる。   Examples of the coating type digital recording magnetic recording medium in which the biaxially oriented polyester film of the present invention is suitably used include, for example, a magnetic layer in which a ferromagnetic powder such as barium ferrite is uniformly dispersed in a binder such as a polyurethane resin and magnetic. A coating type magnetic recording medium in which a coating liquid is prepared and a magnetic layer is formed by coating the coating liquid can be exemplified.

本発明の二軸配向ポリエステルフィルムは、光学フィルム、及びそれを用いた偏光板、液晶表示装置用の光学補償フィルム等の光学用フィルムとして用いることができる。近年の薄型軽量ノートパソコンや薄型の電子モバイルの開発に伴い、液晶表示装置用光学補償フィルムの薄膜化への要求が非常に厳しくなっており、特に透明性と走行性に優れた薄膜の光学フィルムとして好適に用いることができる。   The biaxially oriented polyester film of the present invention can be used as an optical film such as an optical film, a polarizing plate using the same, and an optical compensation film for a liquid crystal display device. With the development of thin and light notebook PCs and thin electronic mobiles in recent years, the demand for thin optical compensation films for liquid crystal display devices has become very strict, especially thin optical films with excellent transparency and runnability. Can be suitably used.

本発明の二軸配向ポリエステルフィルムはまた離型用フィルムとしても使用できる。離型用フィルムは、ポリエステルフィルムを基材として、離型性のある樹脂層、例えばシリコ−ン樹脂やエポキシ樹脂などを塗布し形成される。特に、グリーンシート製造用、液晶偏光板用離型用、液晶保護フィルム用離型用、フォトレジスト用、多層基板用などの各種離型用途として使用されている。ポリエステルフィルム中には、加工適性、例えば滑り性、巻き特性などを良くするために粒子を適量配合しフィルム表面に微細な突起を形成することが一般的であるが、近年の各種用途の精密化などに伴い、使用される離型フィルムについても表面欠点の無い平滑な表面性と走行性が要求されている。本発明の二軸配向ポリエステルフィルムは高精細な表面平滑性と走行性を有するため各種用途の離型用フィルムとして好適に用いることができる。   The biaxially oriented polyester film of the present invention can also be used as a release film. The release film is formed by applying a resin layer having a releasability, such as a silicone resin or an epoxy resin, using a polyester film as a base material. In particular, it is used for various release applications such as green sheet production, liquid crystal polarizing plate release, liquid crystal protective film release, photoresist, and multilayer substrate. In polyester film, it is common to mix fine particles on the film surface to improve processability, such as slipperiness and winding properties, and to form fine protrusions on the film surface. As a result, the release film used is required to have smooth surface properties and running properties without surface defects. Since the biaxially oriented polyester film of the present invention has high-definition surface smoothness and running property, it can be suitably used as a release film for various applications.

(物性の測定方法ならびに効果の評価方法)
本発明における特性値の測定方法並びに効果の評価方法は次の通りである。
(Methods for measuring physical properties and methods for evaluating effects)
The characteristic value measurement method and effect evaluation method in the present invention are as follows.

(1)A面における幅方向の最大パワースペクトル密度(PSD-Xa)
原子力顕微鏡(AFM)を用いて、場所を変えて10視野測定を行った。サンプルセットは、カンチレバーの走査方向に対して垂直方向(つまり、Y軸方向)がサンプルフィルムの長手方向(長手方向とは、フィルムの製造工程においてフィルムが走行する方向)となるようにサンプルをピエゾにセットして測定する。得られた画像について、Off−Line機能のPower Spectral Densityにて波長10μm未満におけるX軸方向(幅方向)の最大の1D−PSD(PSD−X)を求め、10視野の平均値をPSD−Xaとした。なお、X軸は、測定視野のX軸方向(カンチレバーの走査方向)であり、Y軸は、X軸の垂直方向を指すため、PSD−Xはサンプルの幅方向、PSD−Yはサンプルの長手方向の値となる。
(1) Maximum power spectral density in the width direction on the A plane (PSD-Xa)
Using an atomic force microscope (AFM), 10 fields of view were measured at different locations. In the sample set, the sample is piezo so that the direction perpendicular to the scanning direction of the cantilever (that is, the Y-axis direction) is the longitudinal direction of the sample film (the longitudinal direction is the direction in which the film travels in the film manufacturing process). Set to Measure. With respect to the obtained image, the maximum 1D-PSD (PSD-X) in the X-axis direction (width direction) at a wavelength of less than 10 μm is determined by the power spectral density of the Off-Line function, and the average value of 10 fields of view is obtained as PSD-Xa. It was. The X-axis is the X-axis direction of the measurement visual field (scanning direction of the cantilever), and the Y-axis indicates the vertical direction of the X-axis, so PSD-X is the sample width direction, and PSD-Y is the sample length. This is the direction value.

測定装置 :NanoScope (R)IIIa version5.31R1
(Digital Instruments社製)
カンチレバー :シリコン単結晶
走査モード :タッピングモード
走査範囲 :125μm□
走査速度 :0.5Hz
Samples line :256
Flatten Auto :オーダー3
(2)B面の最大パワースペクトル密度(PSD-Xb、PSD−Yb)
上記(1)に記載の装置を用いて、同様に反対面(B面)についても測定し、波長10μm未満におけるX軸方向の最大の1D−PSD(PSD−X)、Y軸方向の最大の1D−PSD(PSD−Y)をそれぞれ求め、それぞれの平均値をPSD−Xb、PSD−Ybとした。
Measuring device: NanoScope (R) IIIa version5.31R1
(Manufactured by Digital Instruments)
Cantilever: Silicon single crystal Scanning mode: Tapping mode Scanning range: 125μm
Scanning speed: 0.5Hz
Samples line: 256
Flatten Auto: Order 3
(2) Maximum power spectral density of B-plane (PSD-Xb, PSD-Yb)
Using the apparatus described in (1) above, the opposite surface (B surface) is also measured, and the maximum 1D-PSD (PSD-X) in the X-axis direction and the maximum in the Y-axis direction at a wavelength of less than 10 μm. 1D-PSD (PSD-Y) was calculated | required, and each average value was set to PSD-Xb and PSD-Yb.

なお、波長を10μm以上30μm以下の領域においてX軸方向(幅方向)の最大の1D−PSD(PSD−X)を求め、10視野の平均値をPSD−Xb30とした。同様に、波長1μm以下の領域についても求め、平均値をPSD−Xb1とした。   Note that the maximum 1D-PSD (PSD-X) in the X-axis direction (width direction) was determined in the region where the wavelength was 10 μm or more and 30 μm or less, and the average value of 10 fields of view was defined as PSD-Xb30. Similarly, it calculated | required also about the area | region below a wavelength of 1 micrometer, and made average value PSD-Xb1.

(3)中心線表面粗さRa、10点平均粗さRz
上記(1)に記載の装置を用いて、表面粗さを場所を変えて10視野測定した。サンプルセットは、カンチレバーの走査方向に対して垂直方向(Y軸方向)がサンプルフィルムの長手方向(長手方向とは、フィルムの製造工程においてフィルムが走行する方向)となるようにサンプルをピエゾにセットして測定する。得られた画像について、Off-Line機能のRoughness Analysisにて算出し、平均値をRa、Rzとした。条件は上記(1)と同条件で実施した。
(3) Centerline surface roughness Ra, 10-point average roughness Rz
Using the apparatus described in (1) above, the surface roughness was measured for 10 fields of view at different locations. In the sample set, the sample is set in the piezo so that the direction perpendicular to the scanning direction of the cantilever (Y-axis direction) is the longitudinal direction of the sample film (the longitudinal direction is the direction in which the film travels in the film manufacturing process). And measure. About the obtained image, it calculated by Roughness Analysis of Off-Line function, and made the average value Ra and Rz. The conditions were the same as the above (1).

(4)幅方向の湿度膨張係数、
フィルムの幅方向に対して、下記条件にて測定を行い、3回の測定結果の平均値を本発明における湿度膨張係数とした。
(4) Humidity expansion coefficient in the width direction,
The measurement was performed under the following conditions with respect to the width direction of the film, and an average value of three measurement results was defined as a humidity expansion coefficient in the present invention.

測定装置:島津製作所製熱機械分析装置TMA−50(湿度発生器:アルバック理工製湿度雰囲気調節装置HC−1)
試料サイズ:フィルム長手方向10mm×フィルム幅方向12.6mm
荷重:0.5g
測定回数:3回
測定温度:30℃
測定湿度:40%RHで6時間保持し寸法を測定し時間40分で80%RHまで昇湿し、80%RHで6時間保持したあと支持体幅方向の寸法変化量ΔL(mm)を測定する。次式から湿度膨張係数(ppm/%RH)を算出した。
Measuring device: Thermomechanical analyzer TMA-50 manufactured by Shimadzu Corporation (Humidity generator: Humidity atmosphere controller HC-1 manufactured by ULVAC-RIKO)
Sample size: film longitudinal direction 10 mm × film width direction 12.6 mm
Load: 0.5g
Number of measurements: 3 times Measurement temperature: 30 ° C
Measurement humidity: Measured by holding for 6 hours at 40% RH, increasing the humidity to 80% RH in 40 minutes, holding for 6 hours at 80% RH, and measuring dimensional change ΔL (mm) in the width direction of the support To do. The humidity expansion coefficient (ppm /% RH) was calculated from the following equation.

湿度膨張係数(ppm/%RH)=106×{(ΔL/12.6)/(80−40)}
(5)A層の厚み
以下の条件にて断面観察を場所を変えて10視野行い、得られた厚み[nm]の平均値を算出しA層の厚み[nm]とした。
Humidity expansion coefficient (ppm /% RH) = 106 × {(ΔL / 12.6) / (80-40)}
(5) Thickness of the A layer The cross-sectional observation was performed under 10 conditions while changing the location under the following conditions, and the average value of the obtained thickness [nm] was calculated as the thickness of the A layer [nm].

測定装置:透過型電子顕微鏡(TEM) 日立製H−7100FA型
測定条件:加速電圧 100kV
測定倍率:1万倍
試料調整:超薄膜切片法
観察面 :TD−ZD断面(TD:幅方向、ZD:厚み方向)
測定回数:1視野につき3点、10視野を測定する。
Measuring device: Transmission electron microscope (TEM) Hitachi H-7100FA type Measurement conditions: Acceleration voltage 100 kV
Measurement magnification: 10,000 times Sample preparation: Ultrathin film section method Observation plane: TD-ZD cross section (TD: width direction, ZD: thickness direction)
Number of measurements: 3 points per field of view and 10 fields of view are measured.

(6)屈折率
JIS−K7142(2008年)に従って、下記測定器を用いて測定した。
(6) Refractive index It measured using the following measuring device according to JIS-K7142 (2008).

装置:アッベ屈折計 4T(株式会社アタゴ社製)
光源:ナトリウムD線
測定温度:25℃
測定湿度:65%RH
マウント液:ヨウ化メチレン
(但し、屈折率1.74以上の場合は硫黄ヨウ化メチレンを用いた。)
平均屈折率n_bar=((nMD+nTD+nZD)/3)
複屈折Δn=(nMD−nTD)
nMD;フィルム長手方向の屈折率
nTD;フィルム幅方向の屈折率
nZD;フィルム厚み方向の屈折率
(7)ヤング率
ASTM−D882(1997年)に準拠してフィルムのヤング率を測定した。なお、インストロンタイプの引張試験機を用い、条件は下記のとおりとした。5回の測定結果の平均値を本発明におけるヤング率とした。
Apparatus: Abbe refractometer 4T (manufactured by Atago Co., Ltd.)
Light source: Sodium D line Measurement temperature: 25 ° C
Measurement humidity: 65% RH
Mount solution: methylene iodide (However, methylene iodide was used when the refractive index was 1.74 or more.)
Average refractive index n_bar = ((nMD + nTD + nZD) / 3)
Birefringence Δn = (nMD−nTD)
nMD: Refractive index in the film longitudinal direction nTD: Refractive index in the film width direction nZD: Refractive index in the film thickness direction (7) Young's modulus The Young's modulus of the film was measured according to ASTM-D882 (1997). Instron type tensile tester was used and the conditions were as follows. The average value of five measurement results was defined as the Young's modulus in the present invention.

測定装置:インストロン社製超精密材料試験機MODEL5848
試料サイズ:
フィルム幅方向のヤング率測定の場合
フィルム長手方向2mm×フィルム幅方向12.6mm
(つかみ間隔はフィルム幅方向に8mm)
フィルム長手方向のヤング率測定の場合
フィルム幅方向2mm×フィルム長手方向12.6mm
(つかみ間隔はフィルム長手方向に8mm)
引張り速度:1mm/分
測定環境:温度23℃、湿度65%RH
測定回数:5回。
Measuring instrument: Instron ultra-precision material testing machine MODEL 5848
Sample size:
When measuring Young's modulus in the film width direction Film length direction 2 mm x film width direction 12.6 mm
(The gripping distance is 8mm in the film width direction)
When measuring Young's modulus in the longitudinal direction of the film 2 mm in the film width direction × 12.6 mm in the film longitudinal direction
(Grip interval is 8mm in the longitudinal direction of the film)
Tensile speed: 1 mm / min Measurement environment: temperature 23 ° C., humidity 65% RH
Number of measurements: 5 times.

(8)全光線透過率、ヘイズ、透明性
JIS−K 7361−1(1997年)およびJIS−K 7136(2000年)に準拠し、下記測定装置を用いて測定した。支持体中央部について長手方向に5箇所透過率を測定し測定結果の平均値を本発明における全光線透過率およびヘイズとする。
(8) Total light transmittance, haze, transparency Based on JIS-K 7361-1 (1997) and JIS-K 7136 (2000), it measured using the following measuring device. The five-point transmittance is measured in the longitudinal direction with respect to the center of the support, and the average value of the measurement results is defined as the total light transmittance and haze in the present invention.

測定装置:濁度計(NDH−5000) 日本電色工業株式会社製
光源 :白色LED(5V3W)
測定環境:温度23℃湿度65%RH
測定回数:5回。
Measuring device: Turbidimeter (NDH-5000) manufactured by Nippon Denshoku Industries Co., Ltd. Light source: White LED (5V3W)
Measurement environment: Temperature 23 ° C Humidity 65% RH
Number of measurements: 5 times.

なお、透明性については、下記の判断基準で判断し、Cを透明性不良とした。   In addition, about transparency, it judged on the following judgment criteria and set C as the transparency defect.

A:ヘイズが1%以下。   A: Haze is 1% or less.

B:ヘイズが1%を超え2%未満。   B: Haze exceeds 1% and is less than 2%.

C:ヘイズが2%以上。   C: Haze is 2% or more.

(9)最大粒子径(D)、層内に含まれる粒子の平均粒子径(d)、凝集粒子の平均1次粒子径
フィルム断面を透過型電子顕微鏡(TEM)を用い、1万倍で観察する。この時、写真上で1cm以下の粒子が確認できた場合はTEM観察倍率を5万倍に変えて観察する。TEMの切片厚さは約100nmとし、場所を変えて100視野測定し、写真に撮影された分散した粒子全てについて等価円相当径をもとめ、横軸に等価円相当径を、縦軸に粒子径毎の粒子の存在比率(球相当の体積)をプロットし、そのピーク値の等価円相当径を粒子の平均粒子径とした。ここで、1万倍で観察した写真上に凝集粒子が確認できた場合は上記プロットに含めない。フィルム中に粒子径の異なる2種類以上の粒子が存在する場合、上記等価円相当径の個数分布は2個以上のピークを有する分布となる。この場合は、それぞれのピーク値をそれぞれの粒子の平均粒径とする。最大粒子径は、1万倍で観察した100視野の写真において、最大の粒子径を持つ粒子の粒子径である。
(9) Maximum particle size (D), average particle size (d) of particles contained in the layer, average primary particle size of aggregated particles Observation of film cross section at 10,000 times using a transmission electron microscope (TEM) To do. At this time, when particles of 1 cm or less can be confirmed on the photograph, the TEM observation magnification is changed to 50,000 times for observation. TEM section thickness is about 100 nm, 100 fields of view are measured at different locations, the equivalent circle equivalent diameter is obtained for all dispersed particles photographed in the photograph, the equivalent circle equivalent diameter is plotted on the horizontal axis, and the particle diameter is plotted on the vertical axis. The abundance ratio (volume corresponding to a sphere) of each particle was plotted, and the equivalent circle equivalent diameter of the peak value was defined as the average particle diameter of the particles. Here, when aggregated particles can be confirmed on a photograph observed at 10,000 times, they are not included in the plot. When two or more types of particles having different particle diameters are present in the film, the number distribution of equivalent circle equivalent diameters is a distribution having two or more peaks. In this case, each peak value is defined as the average particle diameter of each particle. The maximum particle size is the particle size of a particle having the maximum particle size in a photograph of 100 fields observed at 10,000 times.

層内に含まれる粒子の平均粒子径は、上記で得られたそれぞれの等価円相当径とその体積分率から、次式で体積平均径を求め、この値を平均粒子径(d)とする。   The average particle diameter of the particles contained in the layer is determined from the equivalent circle diameters obtained above and the volume fraction thereof, the volume average diameter is obtained by the following formula, and this value is defined as the average particle diameter (d). .

d=Σ(di・Nvi)/100
ここで、diは等価円相当径、Nviはその体積分率である。
d = Σ (di · Nvi) / 100
Here, di is the equivalent circle equivalent diameter, and Nvi is the volume fraction thereof.

凝集粒子の平均1次粒子径は、上記の装置を用いて20万倍で観察する。凝集粒子100個について、凝集粒子を構成する個々の1次粒子の等価円相当径をもとめ、上記と同様の方法でプロットし、ピーク値の等価円相当径を凝集粒子の平均1次粒子径とする。   The average primary particle diameter of the aggregated particles is observed at 200,000 times using the above apparatus. For 100 aggregated particles, the equivalent circle equivalent diameter of each primary particle constituting the aggregated particles is obtained and plotted by the same method as described above, and the equivalent circle equivalent diameter of the peak value is determined as the average primary particle diameter of the aggregated particles. To do.

(10)粒子の含有量
(10)−1 粒子の元素分析
フィルムからポリエステルをプラズマ灰化処理法で除去し粒子を露出させる。処理条件はポリマは灰化されるが粒子は極力ダメージを受けない条件を選択する。その粒子を走査型電子顕微鏡(SEM)で観察し、粒子画像をイメージアナライザーで処理する。上記(9)で求めた粒度分布に従い、SEMの倍率を30,000倍にして、観察箇所を変えて20視野観察し、観察した全粒子についてエネルギー分散型X線分光法(EDX)を用いて元素分析を実施し、粒子と元素の関係を明確にする。
(10) Content of particles (10) -1 Elemental analysis of particles Polyester is removed from the film by a plasma ashing treatment method to expose the particles. The processing conditions are selected such that the polymer is ashed but the particles are not damaged as much as possible. The particles are observed with a scanning electron microscope (SEM), and the particle images are processed with an image analyzer. According to the particle size distribution determined in (9) above, the SEM magnification was set to 30,000, the observation location was changed and 20 fields of view were observed, and all the observed particles were measured using energy dispersive X-ray spectroscopy (EDX). Conduct elemental analysis to clarify the relationship between particles and elements.

(10)−2 粒子の含有量
各積層部の表面を片刃で削り取り、削れ粉100gにo−クロロフェノールを加え、攪拌しながら100℃で1時間を要してポリマを溶解する。次いで日立製作所製分離用超遠心機40P型にローターRP30を装備し、セル1個当りに上記溶解液30ccを注入した後徐々に30,000rpmにする。30,000rpm到達60分後に粒子の分離を終了する。次いで上澄液を除去し分離粒子を採取する。採取した該粒子に常温のo−クロロフェノールを加え、均一けん濁した後、超遠心分離操作を行う。この操作は後述の分離粒子を示差走査熱量測定装置(DSC)を用いてポリマに相当する融解ピークが検出されなくなるまでくり返す。このようにして得た分離粒子を120℃で16時間真空乾燥した後、質量を測定した値を粒子の総含有量とし、これに対する比率(質量%)をもって粒子の含有量とする。
(10) -2 Content of Particles The surface of each laminated part is scraped off with a single blade, o-chlorophenol is added to 100 g of scraped powder, and the polymer is dissolved at 100 ° C. for 1 hour with stirring. Next, a rotor RP30 is mounted on a separation ultracentrifuge 40P type manufactured by Hitachi, Ltd., and 30 cc of the solution is injected per cell, and then the speed is gradually increased to 30,000 rpm. The separation of the particles is finished 60 minutes after reaching 30,000 rpm. The supernatant is then removed and the separated particles are collected. After normal temperature o-chlorophenol is added to the collected particles and suspended uniformly, ultracentrifugation is performed. This operation is repeated until the separated particles described later are detected using a differential scanning calorimeter (DSC) until no melting peak corresponding to the polymer is detected. The separated particles thus obtained are vacuum-dried at 120 ° C. for 16 hours, and the value obtained by measuring the mass is taken as the total content of particles, and the ratio (mass%) to this is taken as the content of particles.

(11)走行性
フィルムのA面側とB面側を重ね合わせた2枚のフィルムを“テフロン”(登録商標)板の上に設置し、フィルム上に200gの重り(接触面積40cm)を置く。下側のフィルムの一端(移動方向側)と“テフロン”(登録商標)板を固定し、上側のフィルムの一端(移動方向とは逆端)は検出器に固定した。“テフロン”(登録商標)板を速度2mm/secで5mm移動した時の静摩擦係数(μs)を以下の式より求め5回の平均値を静摩擦係数とした。なお、走行性の判断は、下記の通りとした。
(11) Runability Two films with the A side and B side of the film overlapped are placed on a “Teflon” (registered trademark) plate, and a 200 g weight (contact area 40 cm 2 ) is placed on the film. Put. One end (moving direction side) of the lower film and the “Teflon” (registered trademark) plate were fixed, and one end (opposite end to the moving direction) of the upper film was fixed to the detector. The static friction coefficient (μs) when the “Teflon” (registered trademark) plate was moved 5 mm at a speed of 2 mm / sec was obtained from the following formula, and the average value of 5 times was defined as the static friction coefficient. Judgment on running performance was as follows.

μs=(スタート時の最大張力)/(荷重200g)
A:μs=0.4以下
B:μs=0.4を超え、0.5以下
C:μs=0.5を超える
(12)スリット性
フィルムを幅1mにスリットする際、スリット速度を変更しフィルム端部の切れ味を目視にて以下に示す方法により評価した。なお、Cをスリット性不良と判断した。
μs = (Maximum tension at start) / (Load 200g)
A: μs = 0.4 or less B: μs = 0.4 or more, 0.5 or less C: μs = 0.5 or more (12) Slit property When slitting the film to a width of 1 m, the slit speed is changed. The sharpness of the film edge was visually evaluated by the method shown below. In addition, C was judged as a slit property defect.

AA:速度120m/分でも端部が歪になることなくスリット可能。   AA: Even at a speed of 120 m / min, the end can be slit without distortion.

A:速度100m/分以上120m/分未満で初めて端部に歪が発生する。     A: Distortion occurs at the end only when the speed is 100 m / min or more and less than 120 m / min.

B:速度80m/分以上100m/分未満で初めて端部に歪が発生する。     B: Distortion occurs at the end only when the speed is 80 m / min or more and less than 100 m / min.

C:速度80m/分未満でフィルム表面にシワが発生し端部が歪になる。     C: Wrinkles are generated on the film surface at a speed of less than 80 m / min, and the edges become distorted.

(13)電磁変換特性
1m幅にスリットしたフィルムを、張力200Nで搬送させ、支持体の一方の表面に下記に従って磁性塗料および非磁性塗料を塗布し12.65mm幅にスリットし、パンケーキを作成する。次いで、このパンケーキから長さ200m分をカセットに組み込んで、磁気テープとした。
(13) Electromagnetic conversion characteristics A film slit to a width of 1 m is conveyed with a tension of 200 N, and a magnetic paint and a non-magnetic paint are applied to one surface of a support according to the following and slit to a width of 12.65 mm to create a pancake. To do. Subsequently, a length of 200 m from this pancake was incorporated into a cassette to obtain a magnetic tape.

(以下、「部」とあるのは「質量部」を意味する。)
磁性層形成用塗布液
バリウムフェライト磁性粉末 100部
(板径:20.5nm、板厚:7.6nm、
板状比:2.7、Hc:191kA/m(≒2400Oe)
飽和磁化:44Am/kg、BET比表面積:60m/g)
ポリウレタン樹脂 12部
質量平均分子量 10,000
スルホン酸官能基 0.5meq/g
α−アルミナ HIT60(住友化学社製) 8部
カーボンブラック #55(旭カーボン社製)
粒子サイズ0.015μm 0.5部
ステアリン酸 0.5部
ブチルステアレート 2部
メチルエチルケトン 180部
シクロヘキサノン 100部
非磁性層形成用塗布液
非磁性粉体 α酸化鉄 85部
平均長軸長0.09μm、BET法による比表面積 50m/g
pH 7
DBP吸油量 27〜38ml/100g
表面処理層Al 8質量%
カーボンブラック 15部
“コンダクテックス”(登録商標)SC−U(コロンビアンカーボン社製)
ポリウレタン樹脂 UR8200(東洋紡社製) 22部
フェニルホスホン酸 3部
シクロヘキサノン 140部
メチルエチルケトン 170部
ブチルステアレート 1部
ステアリン酸 2部
メチルエチルケトン 205部
シクロヘキサノン 135部
上記の塗布液のそれぞれについて、各成分をニ−ダで混練した。1.0mmφのジルコニアビーズを分散部の容積に対し65%充填する量を入れた横型サンドミルに、塗布液をポンプで通液し、2,000rpmで120分間(実質的に分散部に滞留した時間)、分散させた。得られた分散液にポリイソシアネ−トを非磁性層の塗料には5.0部、磁性層の塗料には2.5部を加え、さらにメチルエチルケトン3部を加え、1μmの平均孔径を有するフィルターを用いて濾過し、非磁性層形成用および磁性層形成用の塗布液をそれぞれ調製した。
(Hereinafter, “parts” means “parts by mass.”)
Magnetic layer forming coating solution 100 parts of barium ferrite magnetic powder (plate diameter: 20.5 nm, plate thickness: 7.6 nm,
Plate ratio: 2.7, Hc: 191 kA / m (≈ 2400 Oe)
(Saturation magnetization: 44 Am 2 / kg, BET specific surface area: 60 m 2 / g)
12 parts polyurethane resin Mass average molecular weight 10,000
Sulfonic acid functional group 0.5 meq / g
α-alumina HIT60 (manufactured by Sumitomo Chemical Co., Ltd.) 8 parts carbon black # 55 (manufactured by Asahi Carbon Co., Ltd.)
Particle size 0.015 μm 0.5 part Stearic acid 0.5 part Butyl stearate 2 parts Methyl ethyl ketone 180 parts Cyclohexanone 100 parts Nonmagnetic powder forming coating solution Nonmagnetic powder α iron oxide 85 parts Average major axis length 0.09 μm, Specific surface area by BET method 50m 2 / g
pH 7
DBP oil absorption 27-38ml / 100g
Surface treatment layer Al 2 O 3 8% by mass
15 parts of carbon black “Conductex” (registered trademark) SC-U (manufactured by Colombian Carbon)
Polyurethane resin UR8200 (made by Toyobo Co., Ltd.) 22 parts Phenylphosphonic acid 3 parts Cyclohexanone 140 parts Methyl ethyl ketone 170 parts Butyl stearate 1 part Stearic acid 2 parts Methyl ethyl ketone 205 parts Cyclohexanone 135 parts Kneaded. The coating solution was pumped through a horizontal sand mill filled with 1.0 mmφ zirconia beads in an amount of 65% with respect to the volume of the dispersed portion, and the liquid was pumped at 2,000 rpm for 120 minutes (substantially residence time in the dispersed portion). ), Dispersed. To the obtained dispersion, polyisocyanate is added to 5.0 parts of the coating for the non-magnetic layer, 2.5 parts to the coating of the magnetic layer, and further 3 parts of methyl ethyl ketone to add a filter having an average pore size of 1 μm. Then, coating solutions for forming the nonmagnetic layer and for forming the magnetic layer were prepared.

得られた非磁性層形成用塗布液を、PETフィルム上に乾燥後の厚さが0.8μmになるように塗布乾燥させた後、磁性層形成用塗布液を乾燥後の磁性層の厚さが0.07μmになるように塗布を行い、磁性層がまだ湿潤状態にあるうちに6,000G(600mT)の磁力を持つコバルト磁石と6,000G(600mT)の磁力を持つソレノイドにより配向させ乾燥させた。その後、カレンダー後の厚みが0.5μmとなるようにバックコート層(カーボンブラック 平均粒子サイズ:17nm 100部、炭酸カルシウム平均粒子サイズ:40nm 80部、αアルミナ 平均粒子サイズ:200nm 5部をポリウレタン樹脂、ポリイソシアネートに分散)を塗布した。次いでカレンダで温度90℃、線圧300kg/cm(294kN/m)にてカレンダ処理を行った後、65℃で、48時間キュアリングし、40℃の環境下で7日間静置した後、スリット品の送り出し、巻き取り装置を持った装置に不織布とカミソリブレードが磁性面に押し当たるように取り付け、テープクリーニング装置で磁性層の表面のクリーニングを行い、磁気テープを得た。   The obtained non-magnetic layer-forming coating solution is coated and dried on a PET film so that the thickness after drying is 0.8 μm, and then the magnetic layer-forming coating solution is dried and the thickness of the magnetic layer is dried. Is applied to a thickness of 0.07 μm, and while the magnetic layer is still wet, it is oriented and dried by a cobalt magnet having a magnetic force of 6,000 G (600 mT) and a solenoid having a magnetic force of 6,000 G (600 mT). I let you. Then, a back coat layer (carbon black average particle size: 17 nm 100 parts, calcium carbonate average particle size: 40 nm 80 parts, α alumina average particle size: 200 nm 5 parts in a polyurethane resin so that the thickness after calendar is 0.5 μm. , Dispersed in polyisocyanate). Next, after calendering with a calendar at a temperature of 90 ° C. and a linear pressure of 300 kg / cm (294 kN / m), it was cured at 65 ° C. for 48 hours and left standing in an environment of 40 ° C. for 7 days. A non-woven fabric and a razor blade were attached to a device having a product delivery and take-up device so that they pressed against the magnetic surface, and the surface of the magnetic layer was cleaned with a tape cleaning device to obtain a magnetic tape.

記録ヘッド(MIG,ギャップ0.15μm、1.8T)と再生用GMRヘッドをドラムテスターに取り付けて上記により得られた磁気テープの出力を測定した。ヘッド/テープの相対速度は5.5m/secとし、トラック密度16KTPI、線記録密度400Kbpiの信号を記録した後、出力とノイズの比を電磁変換特性とした。実施例7の結果を0dBとして2.0dB以上はA、2.0未満〜0dBはB、0dB未満はCと判定した。Aが望ましいが、Bでも実用的には使用可能である。   A recording head (MIG, gap 0.15 μm, 1.8T) and a reproducing GMR head were attached to a drum tester, and the output of the magnetic tape obtained as described above was measured. The relative speed of the head / tape was set to 5.5 m / sec, a signal having a track density of 16 KTPI and a linear recording density of 400 Kbpi was recorded, and the ratio of output to noise was defined as an electromagnetic conversion characteristic. The result of Example 7 was determined as 0 dB, and 2.0 dB or more was determined as A, less than 2.0 to 0 dB as B, and less than 0 dB as C. A is desirable, but B can also be used practically.

(14)エラーレート
上記(13)と同様の記録をした磁気テープを用いて、市販のデータストレージドライブの容量が、非圧縮時で6TBのものを用いて23℃50%RHの環境で記録し、次に磁気テープを50℃80%RHの環境下で7日間保存した。その後、常温に1日おいて再生することでエラーレートの発生状況を評価した。エラーレートは、ドライブから出力されるエラー情報(エラービット数)を用いて次式にて算出し、下記基準で評価した。下記基準のうち、Cが不合格となる。
(14) Error rate Using a magnetic tape recorded in the same manner as in (13) above, a commercially available data storage drive with an uncompressed capacity of 6 TB was recorded in an environment of 23 ° C. and 50% RH. Next, the magnetic tape was stored for 7 days in an environment of 50 ° C. and 80% RH. After that, the error rate occurrence state was evaluated by playing back at room temperature for 1 day. The error rate was calculated by the following formula using error information (number of error bits) output from the drive, and evaluated according to the following criteria. Among the following criteria, C is rejected.

エラーレート=(エラービット数)/(書き込みビット数)
AA:エラーレートが1.0×10−6未満
A:エラーレートが1.0×10−6以上、1.0×10−5未満
B:エラーレートが1.0×10−5以上、1.0×10−4未満
C:エラーレートが1.0×10−4以上
Error rate = (number of error bits) / (number of write bits)
AA: Error rate is less than 1.0 × 10 −6 A: Error rate is 1.0 × 10 −6 or more, less than 1.0 × 10 −5 B: Error rate is 1.0 × 10 −5 or more, 1 Less than 0 × 10 −4 C: Error rate is 1.0 × 10 −4 or more

次の実施例に基づき、本発明の実施形態を説明する。なお、ここでポリエチレンテレフタレートをPET、ポリエチレンナフタレートをPEN、ポリエーテルイミドをPEIと表記する。   Based on the following examples, embodiments of the present invention will be described. Here, polyethylene terephthalate is expressed as PET, polyethylene naphthalate is expressed as PEN, and polyetherimide is expressed as PEI.

(1−a)PETペレットの作製:テレフタル酸ジメチル194質量部とエチレングリコール124質量部とをエステル交換反応装置に仕込み、内容物を140℃に加熱して溶解した。その後、内容物を撹拌しながら酢酸マグネシウム四水和物0.3質量部および三酸化アンチモン0.05質量部を加え、140〜230℃でメタノールを留出しつつエステル交換反応を行った。次いで、リン酸トリメチルの5質量%エチレングリコール溶液を0.5質量部(リン酸トリメチルとして0.025質量部)とリン酸二水素ナトリウム2水和物の5質量%エチレングリコール溶液を0.3質量部(リン酸二水素ナトリウム2水和物として0.015質量部)添加した。   (1-a) Preparation of PET pellets: 194 parts by mass of dimethyl terephthalate and 124 parts by mass of ethylene glycol were charged into a transesterification reaction apparatus, and the contents were heated to 140 ° C. and dissolved. Thereafter, 0.3 parts by mass of magnesium acetate tetrahydrate and 0.05 parts by mass of antimony trioxide were added while stirring the contents, and a transesterification reaction was performed while distilling methanol at 140 to 230 ° C. Next, 0.5 parts by mass of a 5% by mass ethylene glycol solution of trimethyl phosphate (0.025 parts by mass as trimethyl phosphate) and 0.3% of a 5% by mass ethylene glycol solution of sodium dihydrogen phosphate dihydrate were obtained. Mass parts (0.015 parts by mass as sodium dihydrogen phosphate dihydrate) were added.

トリメチルリン酸のエチレングリコール溶液を添加すると反応内容物の温度が低下する。そこで余剰のエチレングリコールを留出させながら反応内容物の温度が230℃に復帰するまで撹拌を継続した。このようにしてエステル交換反応装置内の反応内容物の温度が230℃に達した後、反応内容物を重合装置へ移行した。   Addition of trimethyl phosphoric acid in ethylene glycol reduces the temperature of the reaction contents. Therefore, stirring was continued until the temperature of the reaction contents returned to 230 ° C. while distilling excess ethylene glycol. In this way, after the temperature of the reaction contents in the transesterification reactor reached 230 ° C., the reaction contents were transferred to the polymerization apparatus.

移行後、反応系を230℃から275℃まで徐々に昇温するとともに、圧力を0.1kPaまで下げた。最終温度、最終圧力到達までの時間はともに60分とした。最終温度、最終圧力に到達した後、2時間(重合を始めて3時間)反応させたところ、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.55のポリエチレンテレフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.55のポリエチレンテレフタレートのPETペレットを得た(原料−1)。   After the transition, the reaction system was gradually heated from 230 ° C. to 275 ° C. and the pressure was reduced to 0.1 kPa. The time to reach the final temperature and final pressure was both 60 minutes. After reaching the final temperature and the final pressure, the reaction was carried out for 2 hours (3 hours after the start of polymerization), and the agitation torque of the polymerization apparatus was a predetermined value (specific values differ depending on the specifications of the polymerization apparatus. The value indicated by polyethylene terephthalate having an intrinsic viscosity of 0.55 was a predetermined value). Then, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in a strand form, and immediately cut to obtain polyethylene terephthalate PET pellets having an intrinsic viscosity of 0.55 (raw material-1).

回転型真空重合装置を用いて、上記のPETペレット(原料−1)を0.1kPaの減圧下230℃の温度で長時間加熱処理し、固相重合を行った(原料−1k)。加熱処理時間が長いほど固有粘度は高くなる。処理時間が1時間で固有粘度が0.60、5時間で固有粘度が0.70である。   Using the rotary vacuum polymerization apparatus, the above PET pellets (raw material-1) were heat-treated at a temperature of 230 ° C. under a reduced pressure of 0.1 kPa for a long time to carry out solid phase polymerization (raw material-1k). The longer the heat treatment time, the higher the intrinsic viscosity. The intrinsic viscosity is 0.60 at a treatment time of 1 hour, and the intrinsic viscosity is 0.70 at 5 hours.

(1-b)PENペレットの作成:2,6−ナフタレンジカルボン酸ジメチル128質量部とエチレングリコール60質量部の混合物に、酢酸マンガン・4水和物塩0.025質量部と酢酸ナトリウム・3水塩0.005質量部を添加し、150℃の温度から240℃の温度に徐々に昇温しながらエステル交換反応を行った。途中、反応温度が170℃に達した時点で三酸化アンチモン0.024質量部を添加した。また、反応温度が220℃に達した時点で3,5−ジカルボキシベンゼンスルホン酸テトラブチルホスホニウム塩0.042質量部(2mmol%に相当)を添加した。その後、引き続いてエステル交換反応を行い、トリメチルリン酸0.023質量部を添加した。次いで、反応生成物を重合装置に移し、290℃の温度まで昇温し、30Paの高減圧下にて重縮合反応を行い、重合装置の撹拌トルクが所定の値(重合装置の仕様によって具体的な値は異なるが、本重合装置にて固有粘度0.6のポリエチレン−2,6−ナフタレートが示す値を所定の値とした)を示した。そこで反応系を窒素パージし常圧に戻して重縮合反応を停止し、冷水にストランド状に吐出、直ちにカッティングして固有粘度0.6のPENペレット(原料−1b)を得た。   (1-b) Preparation of PEN pellets: To a mixture of 128 parts by mass of dimethyl 2,6-naphthalenedicarboxylate and 60 parts by mass of ethylene glycol, 0.025 parts by mass of manganese acetate tetrahydrate salt, sodium acetate and 3 water 0.005 part by mass of salt was added, and the ester exchange reaction was carried out while gradually raising the temperature from 150 ° C to 240 ° C. In the middle, when the reaction temperature reached 170 ° C., 0.024 parts by mass of antimony trioxide was added. When the reaction temperature reached 220 ° C., 0.042 parts by mass of 3,5-dicarboxybenzenesulfonic acid tetrabutylphosphonium salt (corresponding to 2 mmol%) was added. Thereafter, a transesterification reaction was carried out, and 0.023 parts by mass of trimethyl phosphoric acid was added. Next, the reaction product is transferred to a polymerization apparatus, heated to a temperature of 290 ° C., subjected to a polycondensation reaction under a high vacuum of 30 Pa, and the stirring torque of the polymerization apparatus is a predetermined value (specifically depending on the specifications of the polymerization apparatus). The value indicated by polyethylene-2,6-naphthalate having an intrinsic viscosity of 0.6 in the present polymerization apparatus was a predetermined value). Therefore, the reaction system was purged with nitrogen and returned to normal pressure to stop the polycondensation reaction, discharged into cold water in the form of strands, and immediately cut to obtain PEN pellets (raw material-1b) having an intrinsic viscosity of 0.6.

(2−a)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述の固相重合PETペレット(原料−1k:処理時間2時間)を90質量部と平均粒径0.30μmの架橋ポリスチレン粒子の10質量%水スラリーを10質量部(架橋ポリスチレン粒子として2質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2a)を得た。   (2-a) Preparation of particle-containing PET pellets: The above-mentioned solid-phase polymerization PET pellets (raw material-1k: treatment time 2 hours) were fed into a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 90 parts by mass and 10 parts by mass of a 10% by weight water slurry of crosslinked polystyrene particles having an average particle size of 0.30 μm (2 parts by mass as crosslinked polystyrene particles) are supplied, and the vent hole is maintained at a reduced pressure of 1 kPa or less to retain moisture. This was removed to obtain particle-containing pellets (raw material-2a) having an intrinsic viscosity of 0.62 and containing 1% by mass of crosslinked polystyrene particles.

(2−b)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述の固相重合PETペレット(原料−1k:処理時間2時間)を90質量部と平均粒径0.060μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2b)を得た。   (2-b) Preparation of particle-containing PET pellets: The above-mentioned solid-phase polymerization PET pellets (raw material-1k: treatment time 2 hours) were fed into a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 90 parts by mass and 10 parts by mass water slurry of colloidal silica particles having an average particle size of 0.060 μm are supplied by 10 parts by mass (1 part by mass as colloidal silica particles), and the vent hole is maintained at a reduced pressure of 1 kPa or less to keep moisture. This was removed to obtain particle-containing pellets (raw material-2b) having an intrinsic viscosity of 0.62 and containing 1% by mass of colloidal silica particles.

(2−c)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述の固相重合PETペレット(原料−1k:処理時間2時間)を90質量部と平均粒径0.10μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2c)を得た。   (2-c) Preparation of particle-containing PET pellets: The above-mentioned solid-phase polymerization PET pellets (raw material-1k: treatment time 2 hours) were fed into a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 90 parts by mass and 10 parts by mass of a 10% by mass water slurry of colloidal silica particles having an average particle size of 0.10 μm (1 part by mass as colloidal silica particles) are supplied, and the vent hole is maintained at a reduced pressure of 1 kPa or less to keep moisture. Removal was performed to obtain particle-containing pellets (raw material-2c) having an intrinsic viscosity of 0.62 and containing 1% by mass of colloidal silica particles.

(2−d)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述の固相重合PETペレット(原料−1k:処理時間2時間)を90質量部と平均粒径0.12μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2d)を得た。   (2-d) Production of particle-containing PET pellets: The above-mentioned solid-phase polymerization PET pellets (raw material-1k: treatment time 2 hours) were fed into a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 90 parts by mass and 10 parts by mass of water slurry of 10% by mass of colloidal silica particles having an average particle size of 0.12 μm (1 part by mass as colloidal silica particles) are supplied, and the vent hole is maintained at a reduced pressure of 1 kPa or less to keep moisture. This was removed to obtain particle-containing pellets (raw material-2d) having an intrinsic viscosity of 0.62 and containing 1% by mass of colloidal silica particles.

(2−e)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述の固相重合PETペレット(原料−1k:処理時間2時間)を90質量部と平均粒径0.20μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2e)を得た。   (2-e) Production of particle-containing PET pellets: The above-mentioned solid-phase polymerization PET pellets (raw material-1k: treatment time 2 hours) were fed into a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 90 parts by mass and 10 parts by mass water slurry of colloidal silica particles having an average particle size of 0.20 μm are supplied in an amount of 10 parts by mass (1 part by mass as colloidal silica particles), and the vent hole is maintained at a reduced pressure of 1 kPa or less to keep moisture. This was removed to obtain particle-containing pellets (raw material-2e) having an intrinsic viscosity of 0.62 and containing 1% by mass of colloidal silica particles.

(2−f)粒子含有PETペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述の固相重合PETペレット(原料−1k:処理時間2時間)を90質量部と2次平均粒径0.10μmのアルミナ粒子の10質量%水スラリーを10質量部(アルミナ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、アルミナ粒子を1質量%含有する固有粘度0.62の粒子含有ペレット(原料−2f)を得た。   (2-f) Preparation of particle-containing PET pellets: The above-mentioned solid-phase polymerization PET pellets (raw material-1k: treatment time 2 hours) were fed into a bent biaxial kneading extruder of the same direction rotation type heated to 280 ° C. 90 parts by mass and 10 parts by mass of a 10% by mass water slurry of alumina particles having a secondary average particle size of 0.10 μm (1 part by mass as alumina particles) are maintained, and the vent hole is maintained at a reduced pressure of 1 kPa or less to keep moisture. This was removed to obtain particle-containing pellets (raw material-2f) having an intrinsic viscosity of 0.62 and containing 1% by mass of alumina particles.

(2−g)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を90質量部と平均粒径0.30μmの架橋ポリスチレン粒子の10質量%水スラリーを10質量部(架橋ポリスチレン粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、架橋ポリスチレン粒子を1質量%含有する固有粘度0.6の粒子含有ペレット(原料−2g)を得た。   (2-g) Production of particle-containing PEN pellets: 90 parts by mass of the PEN pellets (raw material-1b) described above and an average particle size of 0 were added to a co-rotating bent type twin-screw kneading extruder heated to 280 ° C. Supply 10 parts by mass (1 part by mass as crosslinked polystyrene particles) of 10 mass% water slurry of .30 μm crosslinked polystyrene particles, keep the vent hole at a reduced pressure of 1 kPa or less, remove moisture, A particle-containing pellet (raw material -2 g) having an intrinsic viscosity of 0.6% by mass was obtained.

(2−h)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を90質量部と平均粒径0.060μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.6の粒子含有ペレット(原料−2h)を得た。   (2-h) Preparation of particle-containing PEN pellets: 90 parts by mass of the above PEN pellets (raw material-1b) and an average particle size of 0 were placed in a co-rotating vent type biaxial kneading extruder heated to 280 ° C. 10 mass parts (1 part by mass as colloidal silica particles) of 10 mass% water slurry of 0.060 μm colloidal silica particles is supplied, moisture is removed while maintaining the vent hole at a reduced pressure of 1 kPa or less, and colloidal silica particles are 1 A particle-containing pellet (raw material-2h) having an intrinsic viscosity of 0.6% by mass was obtained.

(2−i)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を90質量部と平均粒径0.20μmのコロイダルシリカ粒子の10質量%水スラリーを10質量部(コロイダルシリカ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、コロイダルシリカ粒子を1質量%含有する固有粘度0.6の粒子含有ペレット(原料−2i)を得た。   (2-i) Preparation of particle-containing PEN pellets: 90 parts by mass of the above PEN pellets (raw material-1b) and an average particle size of 0 were placed in a co-rotating bent type twin-screw kneading extruder heated to 280 ° C. 10 parts by weight (1 part by weight as colloidal silica particles) of 10% by weight water slurry of 20 μm colloidal silica particles is supplied, the vent hole is maintained at a reduced pressure of 1 kPa or less, moisture is removed, and the colloidal silica particles 1 Particle-containing pellets (raw material-2i) having an intrinsic viscosity of 0.6% by mass were obtained.

(2−j)粒子含有PENペレットの作製:280℃に加熱された同方向回転タイプのベント式2軸混練押出機に、上述のPENペレット(原料−1b)を90質量部と2次平均粒径0.10μmのアルミナ粒子の10質量%水スラリーを10質量部(アルミナ粒子として1質量部)を供給し、ベント孔を1kPa以下の減圧度に保持し水分を除去し、アルミナ粒子を2質量%含有する固有粘度0.6の粒子含有ペレット(原料−2j)を得た。   (2-j) Preparation of particle-containing PEN pellets: 90 parts by mass of PEN pellets (raw material-1b) and secondary average particles were added to a co-rotating bent type twin-screw kneading extruder heated to 280 ° C. Supply 10 parts by mass (1 part by mass as alumina particles) of 10% by mass water slurry of alumina particles having a diameter of 0.10 μm, hold the vent hole at a reduced pressure of 1 kPa or less, remove water, and add 2 parts by mass of alumina particles. % -Containing particle-containing pellets (raw material-2j) having an intrinsic viscosity of 0.6 were obtained.

(3)2成分組成物(PET/PEI)ペレットの作製:温度280℃に加熱されたニーディングパドル混練部を3箇所設けた同方向回転タイプのベント式2軸混練押出機(日本製鋼所製、スクリュー直径30mm、スクリュー長さ/スクリュー直径=45.5)に、上記方法で得られた固相重合PETペレット(原料−1k:処理時間2時間)とSABICイノベーティブプラスチック社製のPEI“Ultem”(登録商標)1010のペレットを供給して、剪断速度100sec−1、滞留時間1分にて溶融押出し、PEIを50質量%含有した2成分組成物ペレットを得た。なお、作製した2成分組成物ペレットのガラス転移温度は150℃であった(原料−3)。 (3) Preparation of two-component composition (PET / PEI) pellets: Bent twin-screw kneading extruder of the same direction rotation type provided with three kneading paddle kneading sections heated to a temperature of 280 ° C. (manufactured by Nippon Steel Works) , Screw diameter 30 mm, screw length / screw diameter = 45.5), solid phase polymerization PET pellets obtained by the above method (raw material-1k: treatment time 2 hours) and PEI “Ultem” manufactured by SABIC Innovative Plastics, Inc. (Registered trademark) 1010 pellets were supplied, melt extruded at a shear rate of 100 sec −1 and a residence time of 1 minute, and two-component composition pellets containing 50% by mass of PEI were obtained. In addition, the glass transition temperature of the produced two-component composition pellet was 150 ° C. (raw material-3).

(実施例1)
押出機E1、E2の2台を用い、280℃に加熱された押出機E1には、A層原料として、固相重合を4時間実施したPETペレット(原料−1k)を96質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2b)4質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、A層で用いたPETペレット(原料−1k)を61質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2b)20質量部、平均粒径0.20μmのコロイダルシリカ粒子含有ペレット(原料−2e)8質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2a)11質量部を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=8|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
Example 1
In the extruder E1 heated to 280 ° C. using two extruders E1 and E2, 96 parts by mass of PET pellets (raw material-1k) subjected to solid phase polymerization for 4 hours as an A layer raw material, average particle size 4 parts by mass of colloidal silica particle-containing pellets (raw material-2b) having a diameter of 0.06 μm were supplied after drying under reduced pressure at 180 ° C. for 3 hours. Similarly, in the extruder E2 heated to 280 ° C., 61 parts by mass of PET pellets (raw material-1k) used in the A layer as the B layer raw material and colloidal silica particle-containing pellets (raw material— 2b) 20 parts by mass, 8 parts by mass of colloidal silica particle-containing pellets (raw material-2e) having an average particle size of 0.20 μm, and 11 parts by mass of crosslinked polystyrene particle-containing pellets (raw material-2a) having an average particle size of 0.30 μm , And dried under reduced pressure at 180 ° C. for 3 hours. In order to laminate these two layers, the lamination thickness ratio (A layer | B layer) = 8 | 1 was set in the T die and merged so that the B layer side would be the cast drum surface side. While applying an electric charge, the film was closely cooled and solidified to produce a laminated unstretched film.

この積層未延伸フィルムを同時二軸延伸機にて、延伸温度90℃で、それぞれ同時に長手方向に3.15倍(MD延伸1)、幅方向に3.1倍(TD延伸1)延伸した。さらに続いて温度170℃で長手方向および幅方向について同時に、それぞれ、1.1倍(MD延伸2)、1.6倍延伸した(TD延伸2)。引き続いて、テンター内の熱処理ゾーンで180℃、195℃、210℃の温度で熱処理を5秒間施し、さらに150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表に示すように、磁気テープとして使用した際に優れた特性を有していた。   The laminated unstretched film was stretched simultaneously at a stretching temperature of 90 ° C. by 3.15 times in the longitudinal direction (MD stretching 1) and 3.1 times in the width direction (TD stretching 1) by a simultaneous biaxial stretching machine. Subsequently, the film was stretched 1.1 times (MD stretching 2) and 1.6 times (TD stretching 2) in the longitudinal direction and the width direction simultaneously at a temperature of 170 ° C. Subsequently, heat treatment was performed at temperatures of 180 ° C., 195 ° C., and 210 ° C. for 5 seconds in the heat treatment zone in the tenter, and further, relaxation treatment was performed in the 0.5% width direction at a temperature of 150 ° C. Subsequently, after uniformly cooling to 25 ° C., the film edge was removed, and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 4.5 μm. Film formation stability of the obtained biaxially oriented polyester film was good, and physical properties were evaluated. As shown in the table, the film had excellent characteristics when used as a magnetic tape.

以下、表に各実施例、比較例の二軸配向ポリエステルフィルムのフィルム構成および各層の組成、物性、磁気テープの特性等を示す。   The table below shows the film configuration of the biaxially oriented polyester film of each example and comparative example, the composition of each layer, the physical properties, the characteristics of the magnetic tape, and the like.

(実施例2)
表に示すようにAおよびB層の積層厚みを変更した以外は全て実施例1と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Example 2)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 1 except that the laminated thicknesses of the A and B layers were changed.

(実施例3)
押出機E1、E2の2台を用い、280℃に加熱された押出機E1には、A層原料として、固相重合を4時間実施したPETペレット(原料−1k)を92質量部、2成分組成物ペレット(原料−3)4質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2d)4質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、A層で用いたPETペレット(原料−1k)を52質量部、2成分組成物ペレット(原料−3)4質量部、平均粒径0.1μmのアルミナ粒子含有ペレット(原料−2f)30質量部、平均粒径0.20μmのコロイダルシリカ粒子含有ペレット(原料−2e)6質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2a)8質量部を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=10|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 3)
Two extruders E1 and E2 were used, and the extruder E1 heated to 280 ° C. had 92 parts by mass of PET pellets (raw material-1k) subjected to solid phase polymerization for 4 hours as the A layer raw material, two components 4 parts by mass of composition pellets (raw material-3) and 4 parts by mass of colloidal silica particle-containing pellets (raw material-2d) having an average particle size of 0.06 μm were dried at 180 ° C. for 3 hours under reduced pressure, and then supplied. Similarly, in the extruder E2 heated to 280 ° C., 52 parts by mass of the PET pellet (raw material-1k) used in the A layer as the B layer raw material, 4 parts by mass of the two-component composition pellet (raw material-3), average 30 parts by mass of alumina particle-containing pellets (raw material-2f) having a particle size of 0.1 μm, 6 parts by mass of colloidal silica particle-containing pellets (raw material-2e) having an average particle size of 0.20 μm, and crosslinked polystyrene particles having an average particle size of 0.30 μm 8 mass parts of containing pellets (raw material-2a) were mix | blended, and it supplied, after drying under reduced pressure at 180 degreeC for 3 hours. In order to laminate these two layers, the lamination thickness ratio (A layer | B layer) = 10 | 1 is combined in the T die, and the B layer side is merged so as to be the cast drum surface side. While applying an electric charge, the film was closely cooled and solidified to produce a laminated unstretched film.

この積層未延伸フィルムを同時二軸延伸機にて延伸温度92℃で、それぞれ同時に長手方向に3.15倍延伸(MD延伸1)、幅方向に3.1倍延伸し(TD延伸1)、さらに続いて温度180℃で長手方向および幅方向にそれぞれ同時に1.1倍(MD延伸2)、1.6倍(TD延伸2)延伸した。引き続いて、テンター内の熱処理ゾーンで190℃、200℃、213℃の温度で熱処理を5秒間施し、その後150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.4μmの二軸延伸ポリエステルフィルムを得た。得られた二軸配向ポリエステルフィルムの製膜安定性は良好であり、物性評価したところ、表に示すように、磁気テープとして使用した際に優れた特性を有していた。   This laminated unstretched film was stretched at a stretching temperature of 92 ° C. by a simultaneous biaxial stretching machine, and simultaneously stretched 3.15 times in the longitudinal direction (MD stretching 1) and 3.1 times in the width direction (TD stretching 1), Subsequently, the film was simultaneously stretched 1.1 times (MD stretch 2) and 1.6 times (TD stretch 2) in the longitudinal direction and the width direction at a temperature of 180 ° C., respectively. Subsequently, heat treatment was performed at 190 ° C., 200 ° C., and 213 ° C. for 5 seconds in a heat treatment zone in the tenter, and then relaxation treatment was performed in the 0.5% width direction at a temperature of 150 ° C. Subsequently, after uniformly cooling to 25 ° C., the film edge was removed, and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 4.4 μm. Film formation stability of the obtained biaxially oriented polyester film was good, and physical properties were evaluated. As shown in the table, the film had excellent characteristics when used as a magnetic tape.

(実施例4)
1段目の長手方向の延伸倍率を3.3倍(MD延伸1)に変更した。さらに、表に示すように各種粒子原料を所定の濃度になるよう配合量とB層積層厚みを変更した以外は全て実施例3と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Example 4)
The stretching ratio in the longitudinal direction of the first stage was changed to 3.3 times (MD stretching 1). Further, as shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 3 except that the blending amount and the B layer lamination thickness were changed so that the various particle raw materials had a predetermined concentration. It was.

(実施例5)
熱処理温度を195℃、205℃、218℃の温度に変更した以外は全て実施例4と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Example 5)
A biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 4 except that the heat treatment temperature was changed to 195 ° C., 205 ° C., and 218 ° C.

(実施例6)
A層原料として、PENペレット(原料−1b)96質量部、平均粒径0.06μmのコロイダルシリカ粒子含有ペレット(原料−2h)4質量部を180℃で3時間減圧乾燥した後に供給した。同じく280℃に加熱された押出機E2には、B層原料として、A層で用いたPENペレット(原料−1b)を50質量部、平均粒径0.1μmのアルミナ粒子含有ペレット(原料−2j)30質量部、平均粒径0.2μmのコロイダルシリカ粒子含有ペレット(原料−2i)8質量部、平均粒径0.30μmの架橋ポリスチレン粒子含有ペレット(原料−2g)12質量部、を配合し、180℃で3時間減圧乾燥した後に供給した。これらを2層積層するべくTダイ中で積層厚み比(A層|B層)=10|1とし、B層側がキャストドラム面側になるように合流させ、表面温度25℃のキャストドラムに静電荷を印加させながら密着冷却固化し、積層未延伸フィルムを作製した。
(Example 6)
96 parts by mass of PEN pellets (raw material-1b) and 4 parts by mass of colloidal silica particle-containing pellets (raw material-2h) having an average particle size of 0.06 μm were supplied as the A layer raw material after drying under reduced pressure at 180 ° C. for 3 hours. Similarly, the extruder E2 heated to 280 ° C. contained 50 parts by mass of PEN pellets (raw material-1b) used in the A layer as raw materials for the B layer, and alumina particle-containing pellets (raw material-2j) having an average particle size of 0.1 μm. ) 30 parts by mass, 8 parts by mass of colloidal silica particle-containing pellets (raw material-2i) having an average particle size of 0.2 μm, and 12 parts by mass of crosslinked polystyrene particle-containing pellets (raw material-2 g) having an average particle size of 0.30 μm. , And dried under reduced pressure at 180 ° C. for 3 hours. In order to laminate these two layers, the lamination thickness ratio (A layer | B layer) = 10 | 1 is combined in the T die, and the B layer side is merged so as to be the cast drum surface side. While applying an electric charge, the film was closely cooled and solidified to produce a laminated unstretched film.

この積層未延伸フィルムを同時二軸延伸機にて温度140℃にてそれぞれ同時に長手方向に4.5倍(MD延伸1)、幅方向に4.2倍延伸し(TD延伸1)、さらに続いて温度195℃にて、それぞれ同時に長手方向に1.1倍(MD延伸1)、幅方向に1.4倍(TD延伸2)延伸した。引き続いて、テンター内の熱処理ゾーンで200℃、210℃、215℃の温度で熱処理を5秒間施した後、150℃の温度で0.5%幅方向に弛緩処理を行った。次いで、25℃に均一に冷却後、フィルムエッジを除去し、コア上に巻き取って厚さ4.4μmの二軸延伸ポリエステルフィルムを得た。   This laminated unstretched film was simultaneously stretched 4.5 times in the longitudinal direction (MD stretching 1) and 4.2 times in the width direction (TD stretching 1) at a temperature of 140 ° C. with a simultaneous biaxial stretching machine. At a temperature of 195 ° C., the film was simultaneously stretched 1.1 times in the longitudinal direction (MD stretching 1) and 1.4 times in the width direction (TD stretching 2). Subsequently, heat treatment was performed at temperatures of 200 ° C., 210 ° C., and 215 ° C. for 5 seconds in the heat treatment zone in the tenter, and then relaxation treatment was performed in the 0.5% width direction at a temperature of 150 ° C. Subsequently, after uniformly cooling to 25 ° C., the film edge was removed, and the film was wound on a core to obtain a biaxially stretched polyester film having a thickness of 4.4 μm.

(実施例7)
幅方向の延伸倍率を5.0倍(TD延伸1)、続いて2段目を1.2倍(TD延伸2)に変更し、表に示すように各種粒子原料を所定の濃度になるよう配合量と積層厚み比を変更した以外は全て実施例6と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Example 7)
The stretching ratio in the width direction is changed to 5.0 times (TD stretching 1), and then the second stage is changed to 1.2 times (TD stretching 2), so that various particle raw materials have predetermined concentrations as shown in the table. A biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 6 except that the blending amount and the lamination thickness ratio were changed.

(比較例1)
1段目の延伸温度を80℃に変更した以外は全て実施例4と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 1)
A biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as Example 4 except that the first stage stretching temperature was changed to 80 ° C.

(比較例2)
1段目の長手方向の延伸倍率(MD延伸1)を4倍、幅方向の延伸倍率(TD延伸1)を3.1倍として同時に延伸し、さらに続いて2段目の延伸を180℃の温度にて長手方向に1.1倍(MD延伸2)、幅方向に1.4倍(TD延伸2)同時に延伸した。また、表に示すように各種粒子原料を所定の濃度になるよう配合量を変更した以外は全て実施例4と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 2)
Stretching at the same time with the stretching ratio in the longitudinal direction of the first stage (MD stretching 1) being 4 times and the stretching ratio in the width direction (TD stretching 1) being 3.1 times, followed by stretching the second stage at 180 ° C. At the same time, the film was stretched 1.1 times in the longitudinal direction (MD stretching 2) and 1.4 times in the width direction (TD stretching 2) at the same time. Further, as shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 4 except that the blending amount of various particle raw materials was changed to a predetermined concentration.

(比較例3)
表に示すように各種粒子原料を所定の濃度になるよう配合量を変更した以外は全て実施例3と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 3)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 3 except that the blending amount of various particle raw materials was changed to a predetermined concentration.

(比較例4)
表に示すように各種粒子原料を所定の濃度になるよう配合量と積層厚み比を変更した以外は全て実施例3と同様にして厚さ4.5μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 4)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.5 μm was obtained in the same manner as in Example 3 except that the blending amount and the lamination thickness ratio were changed so that the various particle raw materials had a predetermined concentration.

(比較例5)
熱処理温度を多段階に分けずに230℃で10秒間実施し、各種粒子原料を所定の濃度になるよう配合量を変更した以外は全て実施例3と同様にして厚さ4.4μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 5)
Biaxially with a thickness of 4.4 μm in the same manner as in Example 3 except that the heat treatment temperature was not divided into multiple stages and was carried out at 230 ° C. for 10 seconds and the amount of each particle raw material was changed to a predetermined concentration. A stretched polyester film was obtained.

(比較例6)
A層、B層の各種粒子原料を所定の濃度になるよう配合量を変更した以外は全て実施例3と同様にして厚さ4.4μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 6)
A biaxially stretched polyester film having a thickness of 4.4 μm was obtained in the same manner as in Example 3 except that the blending amounts of the various particle raw materials of the A layer and the B layer were changed to a predetermined concentration.

(比較例7)
表に示すようにA層の粒子濃度と積層厚み比を変更した以外は全て実施例1と同様にして厚さ4.3μmの二軸延伸ポリエステルフィルムを得た。
(Comparative Example 7)
As shown in the table, a biaxially stretched polyester film having a thickness of 4.3 μm was obtained in the same manner as in Example 1 except that the particle concentration of the A layer and the lamination thickness ratio were changed.

Figure 2018150463
Figure 2018150463

Figure 2018150463
Figure 2018150463

Figure 2018150463
Figure 2018150463

Claims (6)

二軸配向ポリエステルフィルムのいずれか一方の最外層表面(A面)において、波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xa)が1,000〜50,000nmであり、反対面の最外層表面(B面)の波長10μm未満の領域における幅方向の最大パワースペクトル密度(PSD-Xb)が150,000〜500,000nmである二軸配向ポリエステルフィルム。 In the outermost surface (A surface) of any one of the biaxially oriented polyester films, the maximum power spectral density (PSD-Xa) in the width direction in the region of a wavelength of less than 10 μm is 1,000 to 50,000 nm 3 , and the opposite A biaxially oriented polyester film having a maximum power spectral density (PSD-Xb) in the width direction of 150,000 to 500,000 nm 3 in a region of the surface of the outermost layer (B surface) having a wavelength of less than 10 μm. B面の波長10μm未満の領域における最大パワースペクトル密度が下記式を満足する、請求項1に記載の二軸配向ポリエステルフィルム。
0.6≦PSD−Yb/PSD−Xb≦1.2
(但し、PSD−Yb(nm):B面長手方向の最大パワースペクトル密度
PSD−Xb(nm):B面幅方向の最大パワースペクトル密度)
The biaxially oriented polyester film according to claim 1, wherein the maximum power spectral density in a region of the B surface with a wavelength of less than 10 μm satisfies the following formula.
0.6 ≦ PSD-Yb / PSD-Xb ≦ 1.2
(However, PSD-Yb (nm 3 ): Maximum power spectral density in the B-plane longitudinal direction.
PSD-Xb (nm 3 ): Maximum power spectral density in the B-plane width direction)
B面の波長1μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb1)が15,000〜80,000nmの範囲である、請求項1または2に記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to claim 1 or 2, wherein the maximum power spectral density (PSD-Xb1) in the width direction in the region of wavelength B of 1 µm or less on the B surface is in the range of 15,000 to 80,000 nm 3 . B面の波長10μm以上波長30μm以下の領域における幅方向の最大パワースペクトル密度(PSD-Xb30)(nm)が下記式を満足する、請求項1〜3のいずれかに記載の二軸配向ポリエステルフィルム。
1.0≦PSD−Xb30/PSD−Xb≦3.0
The biaxially oriented polyester according to any one of claims 1 to 3, wherein a maximum power spectral density (PSD-Xb30) (nm 3 ) in the width direction in the region of the B-plane having a wavelength of 10 µm to 30 µm satisfies the following formula. the film.
1.0 ≦ PSD-Xb30 / PSD-Xb ≦ 3.0
塗布型デジタル記録方式の磁気記録媒体用ベースフィルムに用いられる、請求項1〜4のいずれかに記載の二軸配向ポリエステルフィルム。 The biaxially oriented polyester film according to any one of claims 1 to 4, which is used for a base film for a magnetic recording medium of a coating type digital recording system. 請求項1〜5のいずれかに記載の二軸配向ポリエステルフィルムを用いた磁気記録媒体。 A magnetic recording medium using the biaxially oriented polyester film according to claim 1.
JP2017048199A 2017-03-14 2017-03-14 Biaxially oriented polyester film and magnetic recording medium Active JP6866703B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017048199A JP6866703B2 (en) 2017-03-14 2017-03-14 Biaxially oriented polyester film and magnetic recording medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017048199A JP6866703B2 (en) 2017-03-14 2017-03-14 Biaxially oriented polyester film and magnetic recording medium

Publications (2)

Publication Number Publication Date
JP2018150463A true JP2018150463A (en) 2018-09-27
JP6866703B2 JP6866703B2 (en) 2021-04-28

Family

ID=63680191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017048199A Active JP6866703B2 (en) 2017-03-14 2017-03-14 Biaxially oriented polyester film and magnetic recording medium

Country Status (1)

Country Link
JP (1) JP6866703B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164807A (en) * 2019-03-28 2020-10-08 東レ株式会社 Biaxially oriented polyester film

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341265A (en) * 2000-06-06 2001-12-11 Teijin Ltd Laminated biaxially oriented polyester film
JP2002251713A (en) * 2001-02-22 2002-09-06 Fuji Photo Film Co Ltd Magnetic recording medium
JP2004103137A (en) * 2002-09-11 2004-04-02 Sony Corp Magnetic recording medium and manufacturing method for magnetic recording medium
WO2007114395A1 (en) * 2006-03-31 2007-10-11 Fujifilm Corporation Magnetic recording medium, magnetic signal regenerating system and method of regenerating magnetic signal
JP2007294087A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Magnetic recording medium, magnetic signal reproduction system, and magnetic signal reproduction method
CN104766613A (en) * 2014-01-07 2015-07-08 索尼公司 Magnetic recording medium
JP2016192248A (en) * 2015-03-30 2016-11-10 東レ株式会社 Biaxially oriented laminated polyester film and data storage
JP2017002303A (en) * 2015-06-15 2017-01-05 東レ株式会社 Biaxially oriented polyester film and magnetic recording media

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001341265A (en) * 2000-06-06 2001-12-11 Teijin Ltd Laminated biaxially oriented polyester film
JP2002251713A (en) * 2001-02-22 2002-09-06 Fuji Photo Film Co Ltd Magnetic recording medium
JP2004103137A (en) * 2002-09-11 2004-04-02 Sony Corp Magnetic recording medium and manufacturing method for magnetic recording medium
WO2007114395A1 (en) * 2006-03-31 2007-10-11 Fujifilm Corporation Magnetic recording medium, magnetic signal regenerating system and method of regenerating magnetic signal
JP2007294087A (en) * 2006-03-31 2007-11-08 Fujifilm Corp Magnetic recording medium, magnetic signal reproduction system, and magnetic signal reproduction method
CN104766613A (en) * 2014-01-07 2015-07-08 索尼公司 Magnetic recording medium
JP2016192248A (en) * 2015-03-30 2016-11-10 東レ株式会社 Biaxially oriented laminated polyester film and data storage
JP2017002303A (en) * 2015-06-15 2017-01-05 東レ株式会社 Biaxially oriented polyester film and magnetic recording media

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
パワースペクトル密度(PSD) [ONLINE], JPN7021000693, 25 February 2021 (2021-02-25), US, ISSN: 0004459134 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020164807A (en) * 2019-03-28 2020-10-08 東レ株式会社 Biaxially oriented polyester film

Also Published As

Publication number Publication date
JP6866703B2 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
JP5712614B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6926616B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP6926617B2 (en) Biaxially oriented laminated polyester film and magnetic recording medium
JP7581733B2 (en) Biaxially oriented polyester film
JP6260199B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6819082B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP6701666B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP5915102B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP4893190B2 (en) Biaxially oriented polyester film
JP2020164807A (en) Biaxially oriented polyester film
JP6707861B2 (en) Biaxially oriented polyester film
JP6866703B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2011183714A (en) Biaxially oriented polyester film
JP7456203B2 (en) Biaxially oriented polyester film
JP6759642B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2019116093A (en) Biaxially oriented polyester film
JP6879419B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2019155592A (en) Biaxially oriented polyester film and application type magnetic recording tape
JP2011184605A (en) Biaxially oriented film
JP5521627B2 (en) Biaxially oriented polyester film and magnetic recording medium
JP2023127054A (en) Biaxially oriented polyester film
JP2022053506A (en) Biaxially oriented polyester film
JP2024047655A (en) Biaxially aligned polyester film and film roll using the same
JP2022013792A (en) Biaxially oriented polyester film and magnetic recording tape
JP2025018529A (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200213

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20210226

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210309

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210322

R151 Written notification of patent or utility model registration

Ref document number: 6866703

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151