[go: up one dir, main page]

JP2018145345A - Method for increasing amount of secondary metabolite contained in flowers - Google Patents

Method for increasing amount of secondary metabolite contained in flowers Download PDF

Info

Publication number
JP2018145345A
JP2018145345A JP2017043865A JP2017043865A JP2018145345A JP 2018145345 A JP2018145345 A JP 2018145345A JP 2017043865 A JP2017043865 A JP 2017043865A JP 2017043865 A JP2017043865 A JP 2017043865A JP 2018145345 A JP2018145345 A JP 2018145345A
Authority
JP
Japan
Prior art keywords
amount
light
flowers
dicotyledonous
secondary metabolites
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017043865A
Other languages
Japanese (ja)
Other versions
JP6823504B2 (en
Inventor
剛 鳥谷部
Takeshi Toyabe
剛 鳥谷部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2017043865A priority Critical patent/JP6823504B2/en
Publication of JP2018145345A publication Critical patent/JP2018145345A/en
Application granted granted Critical
Publication of JP6823504B2 publication Critical patent/JP6823504B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Fats And Perfumes (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

【課題】双子葉植物の花に含まれる二次代謝物質を増量する方法の提供。
【解決手段】双子葉植物を、花、葉及び茎を有する状態で収穫し、400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光を照射しながら乾燥を行う工程を含む、収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。
【選択図】なし
A method for increasing the amount of secondary metabolites contained in a flower of a dicotyledonous plant is provided.
A dicotyledonous plant is harvested with flowers, leaves and stems, and has blue light having a peak wavelength in a wavelength region of 400 to 500 nm and red light having a peak wavelength in a wavelength region of 600 to 700 nm. A method for increasing the amount of a secondary metabolite contained in a flower of a dicotyledon after harvesting, comprising a step of drying while irradiating any one or more lights.
[Selection figure] None

Description

本発明は、花、詳細には収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法に関する。   The present invention relates to a method for increasing the amount of secondary metabolites contained in a flower, in particular a flower of a dicotyledon after harvesting.

植物が産生する二次代謝物質は、一次代謝物質から派生してできたものであり、食料品や医薬品、香料(精油)等として広く利用されている。特に、双子葉植物の花は香気成分を蓄積する主要な器官であり、多くの香料(精油)が双子葉植物の花から抽出されている。精油に含まれる二次代謝物質は、花が形成される生殖成長期において、葉身等の他の器官で産生した物質が葉茎や茎を通じて花に移動し、且つ幾つかの酵素による化学変換を経て蓄積される。花から精油を抽出するにあたっては、葉や茎等に由来する夾雑物が抽出の妨げとなり、また、精油の品質を低下させることから、植物体から花のみを採取(収穫)して注意深く分別する。また、抽出の前処理として予め花を乾燥する場合もある。   Secondary metabolites produced by plants are derived from primary metabolites and are widely used as foodstuffs, pharmaceuticals, fragrances (essential oils) and the like. In particular, dicotyledonous flowers are the main organs that accumulate aroma components, and many perfumes (essential oils) are extracted from dicotyledonous flowers. Secondary metabolites contained in essential oils are substances that have been produced in other organs such as leaf blades during reproductive growth, when flowers are formed. It accumulates via. When extracting essential oil from flowers, contaminants derived from leaves, stems, etc. interfere with extraction, and the quality of the essential oil is reduced, so only flowers are collected (harvested) from the plant body and carefully separated. . In some cases, the flowers are dried in advance as a pretreatment for extraction.

植物における二次代謝物質の組成や産生量は、植物の栽培条件等に大きく影響されることが知られており、従来、所望の二次代謝物質を安定的に取得するための技術開発が行われている。例えば、特許文献1には、カンゾウ属植物の養液栽培において、収穫前に低温栽培を行い、収穫後にはカンゾウ属植物の根部を採取して特定条件で貯蔵、乾燥処理を行うことにより、カンゾウ属植物の根部における薬用成分濃度向上方法が報告されている。
また、植物の栽培中や収穫後に特定波長領域の光を照射する技術として、特許文献2及び3には、白菜(チンゲン菜)や緑色ブロッコリ等のクロロフィルを含有する植物細胞や植物組織、或いはクロロフィルを含む採取された植物細胞や植物組織に、赤色光等の所望の波長の光を照射することによって、前記植物細胞内または植物組織内のアスコルビン酸、グルタチオン等の濃度を上昇する方法が報告されている。さらに、特許文献4には、カモミールに、波長域400〜515nm及び570〜730nmの光合成光量子束密度(PPFD)比が1:4〜1:2の光を照射して栽培し、収穫後約60℃で温風乾燥、抽出したカモミール抽出物の抗酸化効果等の効果を高める方法が報告されている。
It is known that the composition and production amount of secondary metabolites in plants are greatly influenced by plant cultivation conditions, etc., and technology development for obtaining a desired secondary metabolite stably has been conducted. It has been broken. For example, Patent Document 1 discloses that, in hydroponic cultivation of licorice plants, low temperature cultivation is performed before harvesting, and after harvesting, root parts of the licorice plants are collected, stored under specific conditions, and dried. A method for improving the concentration of medicinal components in the root of a genus plant has been reported.
In addition, as techniques for irradiating light in a specific wavelength region during plant cultivation or after harvesting, Patent Documents 2 and 3 include plant cells and plant tissues containing chlorophyll such as Chinese cabbage (green beans) and green broccoli, or chlorophyll. A method for increasing the concentration of ascorbic acid, glutathione, etc. in the plant cell or tissue by irradiating the collected plant cell or plant tissue containing light with a desired wavelength such as red light has been reported. ing. Furthermore, Patent Document 4 cultivates chamomile by irradiating it with light having a photosynthetic photon flux density (PPFD) ratio in the wavelength range of 400 to 515 nm and 570 to 730 nm of 1: 4 to 1: 2, and about 60 after harvesting. A method for enhancing the anti-oxidation effect and the like of a chamomile extract that has been dried by hot air at ℃ has been reported.

特開2014−233202号公報JP 2014-233202 A 特表2007−511202号公報Special table 2007-511202 gazette 特表2009−524423号公報Special table 2009-524423 特開2015−212232号公報JP2015-212232A

しかしながら、これまで、収穫した双子葉植物の花における二次代謝物質の蓄積を増大させる方法は報告されていない。双子葉植物の花に含まれる二次代謝物質量を高められれば、その抽出量も増え、香料(精油)の安定的な供給を図れると期待される。
本発明は、斯かる実情に鑑み、双子葉植物の花に含まれる二次代謝物質を増量する方法を提供しようとするものである。
However, so far, no method has been reported to increase the accumulation of secondary metabolites in harvested dicotyledonous flowers. If the amount of secondary metabolites contained in the flowers of dicotyledonous plants can be increased, the amount of extraction will also increase, and a stable supply of fragrance (essential oil) is expected.
In view of such circumstances, the present invention intends to provide a method for increasing the amount of secondary metabolites contained in dicotyledonous flowers.

本発明者は、上記課題に鑑み、双子葉植物の花の処理に着目して鋭意検討したところ、精油を抽出する際に、従来のように花のみを収穫し、乾燥するのではなく、花及び葉がそれぞれ切断されることなく茎に接続している状態で収穫し、所定の光を照射しながら乾燥を行うことにより、花に含まれる二次代謝物質量が増加することを見出した。   In view of the above-mentioned problems, the present inventor has intensively studied focusing on the treatment of dicotyledonous flowers, and when extracting essential oil, only the flowers are not harvested and dried as in the prior art. In addition, it was found that the amount of secondary metabolites contained in the flower increased by harvesting the leaves while being connected to the stem without being cut, and performing drying while irradiating with predetermined light.

すなわち、本発明は、双子葉植物を、花、葉及び茎を有する状態で収穫し、400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光を照射しながら乾燥を行う工程を含む、収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法を提供するものである。   That is, the present invention harvests dicotyledonous plants in a state having flowers, leaves and stems, blue light having a peak wavelength in a wavelength region of 400 to 500 nm, and red having a peak wavelength in a wavelength region of 600 to 700 nm. The present invention provides a method for increasing the amount of secondary metabolites contained in a flower of a dicotyledon after harvesting, which comprises a step of drying while irradiating at least one light of light.

本発明によれば、収穫後の双子葉植物の花に含まれる二次代謝物質を増量することができる。従って、双子葉植物の花から香料(精油)等として有用な二次代謝物質を安定的に取得することが可能となる。   ADVANTAGE OF THE INVENTION According to this invention, the amount of secondary metabolites contained in the dicotyledonous flower after harvest can be increased. Therefore, secondary metabolites useful as perfumes (essential oils) and the like can be stably obtained from dicotyledonous flowers.

本発明の、収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法は、双子葉植物を、花、葉及び茎を有する状態で収穫し、400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光を照射しながら乾燥を行う工程を含む、方法である。   The method of increasing the amount of secondary metabolites contained in dicotyledonous flowers after harvesting according to the present invention is to harvest dicotyledonous plants with flowers, leaves and stems, and peak in the wavelength region of 400 to 500 nm. It is a method including a step of performing drying while irradiating at least one of blue light having a wavelength and red light having a peak wavelength in a wavelength region of 600 to 700 nm.

(双子葉植物)
双子葉植物は、被子植物の分類群の一つで、双子葉類とも称される。
双子葉植物としては、APG(Angiosperm Phyrogeny Group 被子植物系統研究グループ)に基づく植物の分類体系におけるキク類キキョウ群の植物が好ましい。キキョウ群は、例えば、モチノキ目(モチノキ科等)、エスカロニア目(エスカロニア科)、キク目(キク科、ミツガシワ科等)、セリ目(セリ科、ウコギ科)等を含む。なかでも、キク目(Asterales)の植物が好ましく、キク科(Asteraceae)の植物がより好ましい。
キク科の植物としては、例えば、シカギク属(ジャーマンカモミール等)、カモマイル属(ローマンカモミール等)、ガーベラ属(ガーベラ等)、キク属(キク等)、ヒマワリ属(ヒマワリ等)等が挙げられ、好ましくはシカギク属(Matricaria)であり、より好ましくはジャーマンカモミール(Matricaria recutita L.)である。
(Dicotyledonous plant)
Dicotyledonous plants are one of the taxonomic groups of angiosperms and are also called dicotyledons.
The dicotyledonous plants are preferably those of the Asteraceae group in the plant classification system based on APG (Angiosperm Phylogeny Group Angiosperm Lineage Research Group). The Oleaceae group includes, for example, Ilex (Alexaceae, etc.), Escalonia (Aesconiaceae), Asteraceae (Asteraceae, Aedesaceae, etc.), Ceramidae (Aceraceae, Argiaceae) and the like. Among them, plants of the order of Asterales are preferable, and plants of the family Asteraceae are more preferable.
Examples of the Asteraceae plants include, but are not limited to, Sikagiku (german chamomile, etc.), Camomile (roman chamomile, etc.), Gerbera (gerbera, etc.), Chrysanthemum (chrysanthemum), sunflower (sunflower, etc.), Preferred is Matricaria, and more preferred is German chamomile (Matricaria recutita L.).

双子葉植物の栽培は、特に制限されず、土耕栽培、水耕栽培で行うことができる。微生物による汚染リスクが低い点から、好ましくは水耕栽培である。
栽培は、温度や相対湿度、光、明暗周期、二酸化炭素濃度等が制御された条件下で行うことが好ましい。栽培条件は、双子葉植物の種類によって適宜設定することができる。
The cultivation of dicotyledonous plants is not particularly limited, and can be performed by soil cultivation or hydroponics. Hydroponics is preferable because the risk of contamination by microorganisms is low.
Cultivation is preferably performed under conditions where temperature, relative humidity, light, light / dark cycle, carbon dioxide concentration, and the like are controlled. The cultivation conditions can be appropriately set depending on the type of dicotyledonous plant.

栽培後は、花、葉及び茎を有する状態で収穫する。ここで、収穫は、植物の生長環境から切り離すことを意味する。花、葉及び茎を有する双子葉植物は、花及び葉がそれぞれ切断されることなく茎に接続している状態であればよい。
花、葉及び茎を有する状態の双子葉植物は、生長時の双子葉植物から根を有する茎部分を切断した植物部位であることが好ましい。花、葉及び茎から切り離された根を有する植物本体は、連続的に再生栽培に利用することができる。
双子葉植物の収穫は、開花後、適当な時期に行えばよい。例えば、カモミールの場合、1本の茎につく蕾のほとんどが、花弁が水平になる程度に開花していることが好ましい。
After cultivation, harvest with flowers, leaves and stems. Here, harvesting means separation from the plant growth environment. The dicotyledonous plant having flowers, leaves and stems may be in a state where the flowers and leaves are connected to the stems without being cut.
The dicotyledonous plants having flowers, leaves and stems are preferably plant parts obtained by cutting stem portions having roots from dicotyledonous plants at the time of growth. Plant bodies having roots separated from flowers, leaves and stems can be continuously used for regeneration cultivation.
Dicotyledonous plants may be harvested at an appropriate time after flowering. For example, in the case of chamomile, it is preferable that most of the buds attached to one stem are flowered so that the petals are horizontal.

(乾燥工程)
本発明では、収穫後の花、葉及び茎を有する双子葉植物に、400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光を照射しながら乾燥を行う。一般的に、双子葉植物の花から香料(精油)を取得するにあたっては、花のみを植物体から収穫して乾燥が行われるところ、花及び葉がそれぞれ切断されることなく茎に接続している状態で収穫して乾燥することで、乾燥後の花に含まれる二次代謝物質を増量することができる。二次代謝物質量が増加する理由は明らかではないが、収穫後の光照射により、花以外の器官における二次代謝物質の産生、葉茎や茎を通じた移動が促され、結果として花に蓄積される二次代謝物質量が増加するものと考えられる。
乾燥工程は、双子葉植物を、花、葉及び茎を有する状態で収穫した後速やかに行うことが好ましい。
(Drying process)
In the present invention, dicotyledonous plants having flowers, leaves and stems after harvesting are either blue light having a peak wavelength in the wavelength region of 400 to 500 nm and red light having a peak wavelength in the wavelength region of 600 to 700 nm. Drying is performed while irradiating one or more lights. In general, when obtaining perfume (essential oil) from dicotyledonous flowers, only the flowers are harvested from the plant and dried, and the flowers and leaves are connected to the stem without being cut. By harvesting and drying in this state, the amount of secondary metabolites contained in the dried flowers can be increased. The reason for the increase in the amount of secondary metabolites is not clear, but post-harvest light irradiation promotes the production of secondary metabolites in organs other than flowers and their movement through leaves and stems, resulting in accumulation in flowers. It is thought that the amount of secondary metabolites produced increases.
The drying step is preferably performed immediately after harvesting the dicotyledonous plants with flowers, leaves and stems.

(光照射)
収穫後の花、葉及び茎を有する双子葉植物に照射する光は、400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光である。
光源は、例えば、レーザー、発光ダイオード(LED)等が挙げられ、好ましくは発光ダイオード(LED)である。光源は、花、葉及び茎を有する双子葉植物全体に光照射されるように、植物の上方向、斜上方向、側方向に設置するのが好ましい。
(Light irradiation)
The light irradiated to the dicotyledonous plants having flowers, leaves and stems after harvesting is either blue light having a peak wavelength in the wavelength region of 400 to 500 nm or red light having a peak wavelength in the wavelength region of 600 to 700 nm. One or more lights.
Examples of the light source include a laser and a light emitting diode (LED), and a light emitting diode (LED) is preferable. The light source is preferably installed in the upward, obliquely upward, and lateral directions of the plant so that the entire dicotyledonous plant having flowers, leaves, and stems is irradiated with light.

光量は、光合成有効光量子束密度(PPFD:photosynthetic photon flux density)として表される。照射する光の光合成有効光量子束密度は、植物体内の代謝を促す点から、好ましくは50〜250μmol m-2-1であり、より好ましくは100〜200μmol m-2-1である。なお、青色光と赤色光を組み合わせて照射する場合は、その合計の光量を意味する。 The amount of light is expressed as a photosynthetic effective photon flux density (PPFD). Photosynthetic photon flux density of the irradiation light from the point to promote the metabolism of plants, preferably 50~250μmol m -2 s -1, more preferably 100~200μmol m -2 s -1. In addition, when irradiating combining blue light and red light, the total light quantity is meant.

青色光と赤色光を組み合わせて照射する場合、青色:赤色の光量比(PPFDの比)は、好ましくは1:4〜4:1、より好ましくは1:3〜2:1である。   When irradiating in combination with blue light and red light, the blue: red light amount ratio (PPFD ratio) is preferably 1: 4 to 4: 1, more preferably 1: 3 to 2: 1.

また、照射時間は、1日24時間を周期として、連続24時間照射(24時間日長)を行ってもよいが、明暗周期を設定することもできる。暗周期を設定する場合は、4〜8時間が好ましく、6〜8時間がより好ましい。二次代謝物質の産生の点から、光の照射時間は、好ましくは連続して16〜20時間であり、より好ましくは16〜18時間である。光照射は乾燥工程中にわたって行うのが好ましく、連続して1日以上、更に2日以上行うのがより好ましい。   The irradiation time may be 24 hours a day (24 hours day length) with a period of 24 hours per day, but a light / dark cycle can also be set. When setting a dark period, 4-8 hours are preferable and 6-8 hours are more preferable. From the viewpoint of production of secondary metabolites, the light irradiation time is preferably 16 to 20 hours, more preferably 16 to 18 hours continuously. The light irradiation is preferably performed during the drying step, more preferably continuously for 1 day or more, and more preferably for 2 days or more.

(乾燥方法)
乾燥方法は、例えば、静置乾燥、温風乾燥等が挙げられる。温風乾燥を行う場合は、双子葉植物から抽出する精油量の低下および品質の低下を抑制する点から、40℃以下で行うのが好ましい。乾燥方法は、好ましくは静置乾燥である。ここで、静置乾燥は、収穫後の花、葉及び茎を有する双子葉植物を静置状態で自然乾燥する方法で、例えば棚型乾燥機等で行うことができる。
乾燥条件としては、好ましくは乾燥温度4〜35℃、より好ましくは15〜25℃であり、好ましくは相対湿度20〜80%、より好ましくは45〜60%、乾燥日数1〜20日の範囲であることが好ましく、乾燥終了後の植物体の重量が収穫直後に比べ、1/5以下になっていることが望ましい。さらに、二次代謝物質量の増加の点から、乾燥室内の二酸化炭素濃度が200〜2000ppmであることが好ましい。
(Drying method)
Examples of the drying method include stationary drying and warm air drying. When performing warm air drying, it is preferable to carry out at 40 degrees C or less from the point which suppresses the fall of the essential oil amount extracted from a dicotyledonous plant, and the fall of quality. The drying method is preferably stationary drying. Here, stationary drying is a method of naturally drying dicotyledonous plants having flowers, leaves, and stems after harvesting, and can be performed by, for example, a shelf dryer.
The drying conditions are preferably a drying temperature of 4 to 35 ° C., more preferably 15 to 25 ° C., preferably a relative humidity of 20 to 80%, more preferably 45 to 60%, and a drying period of 1 to 20 days. It is preferable that the weight of the plant body after drying is 1/5 or less as compared with that immediately after harvesting. Furthermore, from the viewpoint of increasing the amount of secondary metabolites, the carbon dioxide concentration in the drying chamber is preferably 200 to 2000 ppm.

(紫外線照射処理)
本発明では、収穫後の花、葉及び茎を有する双子葉植物に上記所定の光を照射するに先立って、紫外線照射処理を施してもよい。予め紫外線照射処理を行うことで、乾燥後の花に含まれる二次代謝物質をより一層増量することができる。
紫外線は波長により、A領域(UV−A;波長315〜400nm)、B領域(UV−B;波長280〜315nm)、C領域(UV−C;波長100〜280nm)に分けられる。本発明で用いられる紫外線は、A領域(UV−A;波長315〜400nm)が好ましい。
紫外線の照射には、キセノンランプ、キセノン−水銀ランプ、メタルハライドランプ、高圧水銀ランプ、低圧水銀ランプ、LED等の公知の光源を用いることができる。
紫外線の光照度は、好ましくは1〜5W m-2である。また、照射時間は、二次代謝物質の蓄積増加の点から、好ましくは5分以上16時間以内である。
(UV irradiation treatment)
In the present invention, ultraviolet irradiation may be performed prior to irradiating the dicotyledonous plants having flowers, leaves and stems after harvesting with the predetermined light. By performing the ultraviolet irradiation treatment in advance, the amount of secondary metabolites contained in the dried flowers can be further increased.
Ultraviolet rays are classified into A region (UV-A; wavelength 315 to 400 nm), B region (UV-B; wavelength 280 to 315 nm), and C region (UV-C; wavelength 100 to 280 nm) depending on the wavelength. The ultraviolet rays used in the present invention are preferably in the A region (UV-A; wavelength 315 to 400 nm).
For irradiation with ultraviolet rays, a known light source such as a xenon lamp, a xenon-mercury lamp, a metal halide lamp, a high-pressure mercury lamp, a low-pressure mercury lamp, or an LED can be used.
The illuminance of ultraviolet light is preferably 1 to 5 W m −2 . The irradiation time is preferably 5 minutes or more and 16 hours or less from the viewpoint of increasing accumulation of secondary metabolites.

本発明においては、光の積算エネルギー量が、0.5〜55MJm−2の範囲となるよう光照射を行うのが好ましく、1.6〜50MJm−2の範囲がより好ましい。ここで、光の積算エネルギー量は、紫外線照射処理を行う場合は、紫外線と、上記青色光及び赤色光のいずれか一以上の光を合わせた量であり、紫外線照射処理を行わない場合は、前記青色光及び赤色光のいずれか一以上の光の積算エネルギー量である。 In the present invention, the light irradiation is preferably performed such that the integrated energy amount of light is in the range of 0.5 to 55 MJm −2 , and more preferably in the range of 1.6 to 50 MJm −2 . Here, the cumulative energy amount of light is the amount of the ultraviolet light combined with one or more of the blue light and red light when the ultraviolet irradiation treatment is performed, and when the ultraviolet irradiation treatment is not performed, This is an accumulated energy amount of at least one of the blue light and the red light.

かくして、収穫後の双子葉植物の花に含まれる二次代謝物質を増量することができる。
本発明方法により得られる双子葉植物の花に含まれる二次代謝物質量は、光を照射しない暗条件で乾燥して得られる花に比較して、好ましくは10%以上、更に20%以上増加する。
二次代謝物質としては、双子葉植物の種類によって相違するが、香気成分が挙げられる。香気成分としては、例えば、炭化水素類、アルコール類、フェノール類、アルデヒド類、アセタール類、ケトン類、エーテル類、エステル類、ラクトン類、酸類、フラン類、ピラン類、含窒素化合物、含硫化合物、複素環化合物が挙げられる。なかでも、好ましくは炭化水素類であり、より好ましくはモノテルペン類、セスキテルペン類である。
カモミールを例にとると、二次代謝物質としては、(−)−α−ビサボロール、及びその酸化物であるビサボロールオキサイド(「カモミール事典―ハーブとしての効能・研究開発から産業への応用」フレグランスジャーナル社、2007年、p.80)等の単環系セスキテルぺノイド、マトリシン、その分解物であるカマズレン等のセスキテルぺノイド誘導体等がある。
Thus, the amount of secondary metabolites contained in the dicotyledonous flowers after harvest can be increased.
The amount of secondary metabolite contained in the dicotyledonous flower obtained by the method of the present invention is preferably 10% or more, and further increased by 20% or more, compared to the flower obtained by drying under dark conditions without light irradiation. To do.
The secondary metabolite includes an aroma component, although it varies depending on the type of dicotyledonous plant. Examples of aroma components include hydrocarbons, alcohols, phenols, aldehydes, acetals, ketones, ethers, esters, lactones, acids, furans, pyrans, nitrogen-containing compounds, sulfur-containing compounds And heterocyclic compounds. Of these, hydrocarbons are preferable, and monoterpenes and sesquiterpenes are more preferable.
Taking chamomile as an example, the secondary metabolites are (-)-α-bisabolol and its oxide, bisabolol oxide (“Camomile Encyclopedia-Efficacy as Herb, Research and Development to Industry Application” There are monocyclic sesquiterpenoids such as Fragrance Journal, 2007, p.80), matricin, and sesquiterpenoid derivatives such as camazulene, which are decomposition products thereof.

乾燥後の双子葉植物の花からの二次代謝物質の抽出は、葉及び茎から花を分別した後、水蒸気蒸留や溶剤抽出等の公知の抽出方法によって行うことができる。   Extraction of secondary metabolites from dicotyledonous flowers after drying can be performed by a known extraction method such as steam distillation or solvent extraction after fractionating the flowers from the leaves and stems.

試験例 カモミールの栽培試験
[試験方法]
試験区1〜4
水を含ませたティッシュを敷いたプラスチックトレーを準備し、ジャーマンカモミール(Matricaria recutita L.)の乾燥種子をティッシュ上に播種した。水分が蒸発しないようにプラスチックフィルムを用いてトレーにラップをし、温度23±2℃の栽培室内に1週間保管した。播いてから3日経過頃から発芽し、1週間保管して根の長さが揃った幼苗を、1株ずつ、水耕栽培用ウレタン培地(大きさ:3cm×3cm×3cmの立方体形状)に移植して、下記の環境条件下に移植後、栽培室内で3週間程度育苗を行った。
<育苗環境条件>
光源:昼白色蛍光灯(Day light white fluorescent lamp:Panasonic FHF32EX−N−H)
光量(光合成光量子束密度PPFD):100±10μmolm-2-1
明暗周期:16時間/8時間
栽培溶液:OATハウスA処方(OATハウス1号と2号を3:2で混合させたもの)
水耕液の電気伝導度(EC):1.0±0.5 dS m-1
水耕液のpH:6.0±0.5
Test example Chamomile cultivation test [test method]
Test area 1-4
A plastic tray with a tissue soaked in water was prepared, and dried seeds of German chamomile (Matricaria recutita L.) were sown on the tissue. The tray was wrapped with a plastic film so that the water did not evaporate, and stored in a cultivation room at a temperature of 23 ± 2 ° C. for 1 week. Seedlings that germinate from about 3 days after seeding and have been stored for one week and have the same root length are placed one by one in a urethane medium for hydroponics (size: 3 cm x 3 cm x 3 cm cube shape). After transplanting and transplanting under the following environmental conditions, seedlings were raised in a cultivation room for about 3 weeks.
<Seedling environmental conditions>
Light source: Daylight white fluorescent lamp (Panasonic FHF32EX-N-H)
Light quantity (photosynthetic photon flux density PPFD): 100 ± 10 μmolm −2 s −1
Light / dark cycle: 16 hours / 8 hours Cultivation solution: OAT house A prescription (OAT house 1 and 2 mixed in 3: 2)
Electrical conductivity (EC) of hydroponic liquid: 1.0 ± 0.5 dS m −1
PH of hydroponic solution: 6.0 ± 0.5

前記育苗した苗から、生育状態が揃ったもの(草丈0.5〜2cm程度)を選抜して、さらに、LED照明付薄膜式水耕栽培装置に移植し、下記の栽培環境条件で12〜15週間栽培を行った。
<栽培環境条件>
光源:温白色蛍光灯(Warm white fluorescent lamp:HITACHI FHF32EX−WW−J)
光量(光合成光量子束密度:PPFD):150±10μmol m-2-1
明暗周期:16時間/8時間
栽培室内温度:23±2℃
栽培室内相対湿度:65±10%
栽培室内炭酸ガス濃度:下限値1000ppm
栽培溶液:OATハウスA処方(OATハウス1号と2号を3:2で混合させたもの)
水耕液の電気伝導度(EC):1.5±0.5 dS m-1
水耕液のpH:6.0±0.5
From the seedlings that have been nurtured, those having a uniform growth state (plant height of about 0.5 to 2 cm) are selected and further transplanted to a thin-film hydroponic cultivation apparatus with LED illumination, and the following cultivation environment conditions are set to 12 to 15 Growing weekly.
<Cultivation environmental conditions>
Light source: Warm white fluorescent lamp (HITACHI FHF32EX-WW-J)
Light quantity (photosynthetic photon flux density: PPFD): 150 ± 10 μmol m −2 s −1
Light / dark cycle: 16 hours / 8 hours Cultivation room temperature: 23 ± 2 ° C
Cultivation room relative humidity: 65 ± 10%
Cultivation chamber carbon dioxide concentration: lower limit 1000ppm
Cultivation solution: OAT House A prescription (OAT House No. 1 and No. 2 mixed at 3: 2)
Electrical conductivity (EC) of hydroponic liquid: 1.5 ± 0.5 dS m −1
PH of hydroponic solution: 6.0 ± 0.5

高さがほぼ同じ程度で、開花後7〜14日経過し、花弁が水平となりほぼ満開状態にあるジャーマンカモミールの苗を、茎に花と葉とが付いた状態で、茎を定植面(地上面)から30cmの高さで切断して採取した。採取後直ぐに、花、葉及び茎を有するジャーマンカモミールに対して、暗条件で14日間静置乾燥した試験区1に対し、試験区2〜4に下記条件の光照射を連続して14日間行いながら、栽培室内で静置乾燥を行った。青色光と赤色光の光源にはLED(昭和電工アルミ販売(株))を使用した。
<光照射処理条件>
栽培室内温度:23±2℃
栽培室内相対湿度:65±10%
栽培室内炭酸ガス濃度:下限値1000ppm
光量(光合成光量子束密度PPFD):150±10μmol m-2-1
光源及び照射時間:下記表1
German chamomile seedlings that are approximately the same height, 7 to 14 days after flowering, and have petals leveled and almost in full bloom, with stems and flowers and leaves attached to the stems The sample was cut at a height of 30 cm from the upper surface. Immediately after collection, German Chamomile with flowers, leaves and stems is subjected to light irradiation under the following conditions in Test Zones 2 to 4 for 14 days continuously against Test Zone 1 which was allowed to stand and dry for 14 days under dark conditions. While standing, drying was carried out in the cultivation room. LEDs (Showa Denko Aluminum Sales Co., Ltd.) were used as blue and red light sources.
<Light irradiation treatment conditions>
Cultivation room temperature: 23 ± 2 ° C
Cultivation room relative humidity: 65 ± 10%
Cultivation chamber carbon dioxide concentration: lower limit 1000ppm
Light quantity (photosynthetic photon flux density PPFD): 150 ± 10 μmol m −2 s −1
Light source and irradiation time: Table 1 below

Figure 2018145345
Figure 2018145345

試験区5〜9
上記試験区1〜4と同様にジャーマンカモミール(Matricaria recutita L.)の栽培を行った。
試験区1〜4と同様の生育・開花状態で採取した直後の花、葉及び茎を有するジャーマンカモミールについて、下記条件の光照射を連続して14日間行いながら、栽培室内で静置乾燥を行った。試験区5を基準として、試験区6と7では、前処理としてUV−Aを5分間又は30分間照射し、次いで試験区5と同様に赤色光の照射を行った。紫外線光の照度は3W/m2とした。
Test area 5-9
German chamomile (Matricaria recutita L.) was cultivated in the same manner as in the above test groups 1 to 4.
For German chamomile with flowers, leaves, and stems just collected in the same growth and flowering state as in Test Zones 1 to 4, static drying was performed in the cultivation room while performing light irradiation under the following conditions for 14 days continuously. It was. With test group 5 as a reference, test groups 6 and 7 were irradiated with UV-A for 5 minutes or 30 minutes as a pretreatment, and then irradiated with red light in the same manner as test group 5. The illuminance of ultraviolet light was 3 W / m 2 .

また、試験区8、9として、試験区1〜7と同様の生育・開花状態のジャーマンカモミールについて、高さがほぼ同じ苗から、花の部分のみを切断して採取し、暗条件下で14日間静置乾燥(試験区8)、或いは収穫後直ぐに下記条件の青色光照射を連続して14日間行いながら乾燥を行った(試験区9)。
<光照射処理条件>
栽培室内温度:23±2℃
栽培室内相対湿度:65±10%
栽培室内炭酸ガス濃度:下限値1000ppm
光量(光合成光量子束密度PPFD):150±10μmol m-2-1
光源及び照射時間:下記表2又は3
In addition, as test plots 8 and 9, German chamomile in the same growth and flowering state as in test plots 1 to 7 was collected by cutting only flower parts from seedlings having almost the same height, and 14 under dark conditions. Drying was carried out by standing still for days (test group 8), or by performing blue light irradiation under the following conditions for 14 days immediately after harvesting (test group 9).
<Light irradiation treatment conditions>
Cultivation room temperature: 23 ± 2 ° C
Cultivation room relative humidity: 65 ± 10%
Cultivation chamber carbon dioxide concentration: lower limit 1000ppm
Light quantity (photosynthetic photon flux density PPFD): 150 ± 10 μmol m −2 s −1
Light source and irradiation time: Table 2 or 3 below

Figure 2018145345
Figure 2018145345

Figure 2018145345
Figure 2018145345

乾燥後のジャーマンカモミールの葉茎は、暗条件下で保管した試験区1では緑色を維持していたのに対し、青色光を照射したものは白化し、赤色光を照射したものは小麦色に変色していた。   The dried stems of German chamomile were green in Test Zone 1 stored under dark conditions, whereas those irradiated with blue light turned white and those irradiated with red light became wheat-colored. It was discolored.

[二次代謝物質の抽出]
試験区1〜9の花を分別し、花から溶剤抽出を行った。抽出溶媒はn−ヘキサンを15[mL/g−花の乾燥質量]用い、常温で3日間浸漬抽出した。
抽出後、メンブランフィルタ(Millex(登録商標)−GV 0.22μm;Millipore社製)でろ過し、得られた抽出物に含まれる成分を次の条件でガスクロマトグラフ質量分析した。
<ガスクロマトグラフ分析条件>
GCシステム:Agilent 6890N (Agilent Technologies社)
分析カラム:DB−1;60.0m×250μm id×0.25μm
キャリアガス:ヘリウム カラムヘッド圧:116.5kPa,線速度:1.1mL/min
分析カラム昇温プログラム:Initial:40℃(2min hold)→6℃/min→60℃→2℃/min→300℃(30min hold)
分析サンプル注入量:2μL(スプリットレス)
質量分析計:Agilent 5975B GC/MSD(Agilent Technologies社)
[Extraction of secondary metabolites]
The flowers in test groups 1 to 9 were separated and solvent extraction was performed from the flowers. As an extraction solvent, 15 [mL / g-flower dry mass] of n-hexane was used, and immersion extraction was performed at room temperature for 3 days.
After extraction, it was filtered with a membrane filter (Millex (registered trademark) -GV 0.22 μm; manufactured by Millipore), and components contained in the obtained extract were subjected to gas chromatograph mass spectrometry under the following conditions.
<Gas chromatographic analysis conditions>
GC system: Agilent 6890N (Agilent Technologies)
Analysis column: DB-1; 60.0 m × 250 μm id × 0.25 μm
Carrier gas: helium Column head pressure: 116.5 kPa, linear velocity: 1.1 mL / min
Analysis column heating program: Initial: 40 ° C. (2 min hold) → 6 ° C./min→60° C. → 2 ° C./min→300° C. (30 min hold)
Analytical sample injection volume: 2 μL (splitless)
Mass spectrometer: Agilent 5975B GC / MSD (Agilent Technologies)

GC分析による二次代謝物質量(平均値±標準誤差)と二次代謝物質量の増加率(試験区1、5又は8を基準とした場合)を表4〜表6に示す。   Tables 4 to 6 show the amount of secondary metabolite (average value ± standard error) and the rate of increase of the amount of secondary metabolite (when test zone 1, 5 or 8 is used as a reference) by GC analysis.

Figure 2018145345
Figure 2018145345

Figure 2018145345
Figure 2018145345

Figure 2018145345
Figure 2018145345

表4から明らかなように、暗条件で乾燥した試験区1と比較して、青色光、赤色光又はこれらの混合光を照射しながら乾燥した試験区2〜4の花にはいずれも二次代謝物質の蓄積量が増加していた。また、表5より、赤色光を照射する前に、UV−Aの前処理を5分間又は30分間照射した試験区6と7では、赤色光のみを照射した試験区5に比べて二次代謝物質の蓄積量が増加していた。
一方、表6から明らかなように、花の部分のみ収穫し、青色光を照射しながら乾燥した試験区9は、暗条件で乾燥した試験区8とα-ビサボロール量が同じ水準であり、二次代謝物質の蓄積量の増加は認められなかった。
これらの結果から、茎に花と葉とを有する状態で光照射しながら乾燥すると、花に含まれる二次代謝物質が増加するが、花のみを切断して花に光照射しただけでは二次代謝物質は増加しないことが確認された。
As is clear from Table 4, the flowers in the test groups 2 to 4 which were dried while being irradiated with blue light, red light or a mixed light thereof were secondary compared to the test group 1 dried in the dark condition. The amount of accumulated metabolite was increasing. Moreover, from Table 5, in the test groups 6 and 7 in which UV-A pretreatment was irradiated for 5 minutes or 30 minutes before irradiation with red light, secondary metabolism was compared with test group 5 in which only red light was irradiated. The amount of accumulated substances was increasing.
On the other hand, as apparent from Table 6, the test group 9 in which only the flower part was harvested and dried while irradiating with blue light had the same amount of α-bisabolol as the test group 8 dried in the dark condition. There was no increase in the accumulation of secondary metabolites.
From these results, the secondary metabolite contained in the flower increases when it is dried while irradiating it with flowers and leaves on the stem, but it is secondary only by cutting the flower and irradiating it with light. Metabolites were confirmed not to increase.

Claims (8)

双子葉植物を、花、葉及び茎を有する状態で収穫し、400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光を照射しながら乾燥を行う工程を含む、収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。   Dicotyledonous plants are harvested in a state having flowers, leaves and stems, and any one or more of blue light having a peak wavelength in the wavelength region of 400 to 500 nm and red light having a peak wavelength in the wavelength region of 600 to 700 nm A method for increasing the amount of secondary metabolites contained in the flowers of dicotyledonous plants after harvesting, comprising a step of drying while irradiating the light. 照射する光の光合成有効光量子束密度が50〜250μmol m-2-1である請求項1記載の収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。 The method for increasing the amount of secondary metabolites contained in a dicotyledonous flower after harvesting according to claim 1 , wherein the photosynthesis effective photon flux density of the irradiated light is 50 to 250 μmol m −2 s −1 . 光を照射する時間が1日24時間として16〜20時間であり、連続して2日以上照射を行う請求項1又は2記載の収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。   The secondary metabolite contained in the flower of the dicotyledon after harvesting according to claim 1 or 2, wherein the light irradiation time is 16 to 20 hours as 24 hours a day, and irradiation is continuously performed for 2 days or more. How to increase the amount. 400〜500nmの波長領域にピーク波長を有する青色光、及び600〜700nmの波長領域にピーク波長を有する赤色光のいずれか一以上の光を照射する前に、紫外線照射処理を行う工程を含む、請求項1〜3のいずれか1項記載の収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。   Including a step of performing ultraviolet irradiation treatment before irradiating at least one of blue light having a peak wavelength in a wavelength region of 400 to 500 nm and red light having a peak wavelength in a wavelength region of 600 to 700 nm. The method of increasing the amount of secondary metabolites contained in the flower of the dicotyledon after harvesting of any one of Claims 1-3. 紫外線がUV−Aであり、UV−Aを照射する時間が5分以上16時間以内である請求項4記載の収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。   The method for increasing the amount of secondary metabolites contained in the dicotyledonous flowers after harvesting according to claim 4, wherein the ultraviolet rays are UV-A, and the irradiation time of UV-A is 5 minutes or more and 16 hours or less. 照射する光の積算エネルギー量が0.5〜55MJ m-2である請求項1〜5のいずれか1項記載の収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。 6. The method for increasing the amount of secondary metabolites contained in a flower of a dicotyledon after harvesting according to any one of claims 1 to 5, wherein the integrated energy amount of the irradiated light is 0.5 to 55 MJm- 2 . 双子葉植物がキク目キク科の植物である請求項1〜6のいずれか1項記載の収穫後の双子葉植物の花に含まれる二次代謝物質を増量する方法。   The method for increasing the amount of secondary metabolites contained in a flower of a dicotyledon after harvesting according to any one of claims 1 to 6, wherein the dicotyledonous plant is a member of the family Asteraceae. 双子葉植物がカモミールである請求項1〜6のいずれか1項記載の双子葉植物の花に含まれる二次代謝物質を増量する方法。   The method for increasing the amount of secondary metabolites contained in a dicotyledonous flower according to any one of claims 1 to 6, wherein the dicotyledonous plant is chamomile.
JP2017043865A 2017-03-08 2017-03-08 How to increase the amount of secondary metabolites contained in flowers Active JP6823504B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017043865A JP6823504B2 (en) 2017-03-08 2017-03-08 How to increase the amount of secondary metabolites contained in flowers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017043865A JP6823504B2 (en) 2017-03-08 2017-03-08 How to increase the amount of secondary metabolites contained in flowers

Publications (2)

Publication Number Publication Date
JP2018145345A true JP2018145345A (en) 2018-09-20
JP6823504B2 JP6823504B2 (en) 2021-02-03

Family

ID=63590720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017043865A Active JP6823504B2 (en) 2017-03-08 2017-03-08 How to increase the amount of secondary metabolites contained in flowers

Country Status (1)

Country Link
JP (1) JP6823504B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113692870A (en) * 2021-08-03 2021-11-26 仲恺农业工程学院 LED optical prescription for increasing chrysanthemum diameter and improving design and color and application thereof
US12133875B2 (en) 2021-03-25 2024-11-05 Nichia Corporation Method and apparatus for treating post-harvest plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112459A (en) * 1991-09-24 1993-05-07 Sogo Insatsu Kogei Kk Extraction of chamomile component
JP2006199891A (en) * 2005-01-24 2006-08-03 T Hasegawa Co Ltd Method for producing chamomile extract
JP2007511202A (en) * 2003-05-23 2007-05-10 スタニスラウ・カルピンスキ Method and apparatus for changing the concentration of phytochemicals in plant cells by applying a wavelength of light from 400 NM to 700 NM
JP2009524423A (en) * 2006-01-26 2009-07-02 リオネル・スコット Plant treatment method and means therefor
WO2014085626A1 (en) * 2012-11-27 2014-06-05 University Of Florida Research Foundation, Inc. Light modulation of plants and plant parts
JP2017506082A (en) * 2014-02-10 2017-03-02 バイオルミック リミテッド Improvement of characteristics of photosynthetic organisms and control related thereto

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05112459A (en) * 1991-09-24 1993-05-07 Sogo Insatsu Kogei Kk Extraction of chamomile component
JP2007511202A (en) * 2003-05-23 2007-05-10 スタニスラウ・カルピンスキ Method and apparatus for changing the concentration of phytochemicals in plant cells by applying a wavelength of light from 400 NM to 700 NM
JP2006199891A (en) * 2005-01-24 2006-08-03 T Hasegawa Co Ltd Method for producing chamomile extract
JP2009524423A (en) * 2006-01-26 2009-07-02 リオネル・スコット Plant treatment method and means therefor
WO2014085626A1 (en) * 2012-11-27 2014-06-05 University Of Florida Research Foundation, Inc. Light modulation of plants and plant parts
JP2017506082A (en) * 2014-02-10 2017-03-02 バイオルミック リミテッド Improvement of characteristics of photosynthetic organisms and control related thereto

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12133875B2 (en) 2021-03-25 2024-11-05 Nichia Corporation Method and apparatus for treating post-harvest plant
CN113692870A (en) * 2021-08-03 2021-11-26 仲恺农业工程学院 LED optical prescription for increasing chrysanthemum diameter and improving design and color and application thereof

Also Published As

Publication number Publication date
JP6823504B2 (en) 2021-02-03

Similar Documents

Publication Publication Date Title
Jin et al. Cannabis indoor growing conditions, management practices, and post-harvest treatment: a review
Johkan et al. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce
Letchamo et al. Variations in photosynthesis and essential oil in thyme
Hosseini et al. Alteration of bioactive compounds in two varieties of basil (Ocimum basilicum) grown under different light spectra
Ronga et al. Testing the influence of digestate from biogas on growth and volatile compounds of basil (Ocimum basilicum L.) and peppermint (Mentha x piperita L.) in hydroponics
Kissmann et al. Morphological effects of flooding on Styrax pohlii and the dynamics of physiological responses during flooding and post-flooding conditions
Pellegrini et al. Ozone stress in Melissa officinalis plants assessed by photosynthetic function
Slama et al. Water deficit stress applied only or combined with salinity affects physiological parameters and antioxidant capacity in Sesuvium portulacastrum
Ribeiro et al. Colored shade nets induced changes in growth, anatomy and essential oil of Pogostemon cablin
Nguyen et al. Physiological and biochemical responses of green and red perilla to LED‐based light
Kivimäenpä et al. Alteration in light spectra causes opposite responses in volatile phenylpropanoids and terpenoids compared with phenolic acids in sweet basil (Ocimum basilicum) leaves
HAJIBOLAND et al. Effect of Se application on photosynthesis, osmolytes and water relations in two durum wheat (Triticum durum L.) genotypes under drought stress
Kapchina-Toteva et al. Adaptive changes in photosynthetic performance and secondary metabolites during white dead nettle micropropagation
Maggini et al. Growth and accumulation of caffeic acid derivatives in Echinacea angustifolia DC. var. angustifolia grown in hydroponic culture
KR102415907B1 (en) Cultivation method to increase cannabidiol(CBD) of hemp(Cannabis sativa)
JP6823504B2 (en) How to increase the amount of secondary metabolites contained in flowers
Dobreva Dynamics of the headspace chemical components of Rosa damascena Mill. flowers ana dobreva
Kok et al. Mini-Review: extraction of patchouli oil from Pogostemon cablin Benth. Leaves
JP2007068512A (en) How to grow Lamiaceae plants
Ilyas et al. Chemical composition of essential oil from in vitro grown Peperomia obtusifolia through GC-MS
JP6997987B2 (en) How to grow plants and how to increase the rosmarinic acid content in plants
Malayeri et al. Effects of light period and light intensity on essential oil composition of Japanese mint grown in a closed production system
Boontiang et al. Effect of paclobutrazol on growth and development of Curcuma alismatifolia Gagnep. grown off-season
Al-Maameri et al. Effect of putrescine and type of light in callus of Gardenia Jasminoides L. content from some effective medical compounds
Arsule et al. Comparative effectiveness of ascorbic acid, salicylic acid and orange juice on soybean cultivar (Glycine Max L.) under UV-B (ultraviolet radiation) stress

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200819

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201222

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210108

R151 Written notification of patent or utility model registration

Ref document number: 6823504

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250