[go: up one dir, main page]

JP2018144004A - Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product - Google Patents

Inorganic compound for photocatalyst, photocatalyst composition, photocatalyst coating film and photocatalyst coating product Download PDF

Info

Publication number
JP2018144004A
JP2018144004A JP2017044309A JP2017044309A JP2018144004A JP 2018144004 A JP2018144004 A JP 2018144004A JP 2017044309 A JP2017044309 A JP 2017044309A JP 2017044309 A JP2017044309 A JP 2017044309A JP 2018144004 A JP2018144004 A JP 2018144004A
Authority
JP
Japan
Prior art keywords
inorganic compound
photocatalyst
mass
coating film
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017044309A
Other languages
Japanese (ja)
Other versions
JP6663375B2 (en
Inventor
太田 一也
Kazuya Ota
一也 太田
雄 印南
Takeshi Inami
雄 印南
高野橋 寛朗
Hiroaki Takanohashi
寛朗 高野橋
小熊 淳一
Junichi Oguma
淳一 小熊
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2017044309A priority Critical patent/JP6663375B2/en
Publication of JP2018144004A publication Critical patent/JP2018144004A/en
Application granted granted Critical
Publication of JP6663375B2 publication Critical patent/JP6663375B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Catalysts (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inorganic compound for photocatalyst which can provide a photocatalyst coating having high on-site workability for 1 layer coat type, does not damage a photocatalyst coating film under coating film, demonstrates necessary photocatalyst activity, further improves biological stain resistance and forms a coating film having high transparency, a photocatalyst composition containing the inorganic compound, a photocatalyst coating film and a photocatalyst coating product.SOLUTION: There is provided an inorganic compound for photocatalyst (AB) in which an antibacterial metal (B) of 0.5 to 5 mass% based on an inorganic compound (A) is carried on a particle surface of an inorganic compound (A) having a photocatalytic activity. In the inorganic compound for photocatalyst (AB), the inorganic compound (A) satisfies following (i) condition or satisfies both of following (i) and (ii) conditions. (i) an amount of hydrogen peroxide ([HO]) generated when a suspension containing the inorganic compound (A) is irradiated with an ultraviolet ray with wavelength of 380 nm or less and intensity of 5 mW/cmfor 60 seconds, is 80 μM or less. (ii) an amount of hydroxy radical ([.OH]) generated when the suspension containing the inorganic compound (A) is irradiated with the ultraviolet ray with wavelength of 380 nm or less and intensity of 5 mW/cmfor 60 seconds, is 1.0 μM or less.SELECTED DRAWING: None

Description

本発明は、光触媒用無機化合物、光触媒組成物、光触媒塗膜及び光触媒塗装製品に関する。   The present invention relates to an inorganic compound for photocatalyst, a photocatalyst composition, a photocatalyst coating film, and a photocatalyst-coated product.

近年、住宅及びビルなどの建築外壁に防汚性能を付与するために、光触媒塗料が実用化され、その光触媒塗料を建築外壁に塗布して、光触媒塗膜を形成する方法が適用されている。この光触媒塗料には、光触媒活性を発揮すべく、光触媒活性を有する無機化合物材料が配合されている。   In recent years, in order to impart antifouling performance to exterior walls of buildings such as houses and buildings, a photocatalyst paint has been put into practical use, and a method of applying the photocatalyst paint to an exterior wall of a building to form a photocatalyst coating film has been applied. This photocatalyst coating material is blended with an inorganic compound material having photocatalytic activity in order to exhibit photocatalytic activity.

そのような無機化合物材料のうち、最もよく使われるのは二酸化チタン(TiO2)である。この二酸化チタンに光(紫外線)が当たると、励起電子と正孔とが生成され、その生成された励起電子と正孔とにより、触媒表面での酸素と水分の存在下で、スーパーオキシドアニオン(・O2-)及びヒドロキシラジカル(・OH)(「・」は不対電子を示し、これを付した化学種がラジカル種であることを意味する。)等の活性酸素種が生成される。正孔や生成した活性酸素種は、汚れ分解機能及び窒素酸化物除去機能等の重要な機能(光触媒活性)を発現する。 Of such inorganic compound materials, titanium dioxide (TiO 2 ) is most frequently used. When this titanium dioxide is exposed to light (ultraviolet rays), excited electrons and holes are generated, and the generated excited electrons and holes generate superoxide anions (in the presence of oxygen and moisture on the catalyst surface). Active oxygen species such as O 2− ) and hydroxy radicals (• OH) (“•” represents an unpaired electron, meaning that the chemical species attached thereto are radical species) are generated. Holes and generated active oxygen species exhibit important functions (photocatalytic activity) such as a soil decomposition function and a nitrogen oxide removal function.

しかし、活性酸素種は、光触媒塗料が塗られる基材の塗膜(以下、「光触媒塗膜直下塗膜」とも記述する。)が有機塗膜の場合、かかる光触媒塗膜直下塗膜にダメージを与える。そこで、光触媒塗膜直下塗膜と光触媒塗膜との間に、シリコーン樹脂に代表される保護層を設ける2層コートタイプの光触媒塗料が提案されている(例えば、特許文献1参照)。   However, the active oxygen species may damage the coating film immediately below the photocatalyst coating film when the coating film of the substrate to which the photocatalytic coating material is applied (hereinafter also referred to as “photocatalyst coating film”) is an organic coating film. give. In view of this, a two-layer coat type photocatalyst coating in which a protective layer typified by a silicone resin is provided between the photocatalyst coating and the photocatalyst coating has been proposed (see, for example, Patent Document 1).

また、建築外壁の汚れのうち、カビや藻等の生物汚染による汚れに対しても防汚性能を付与した光触媒塗料も提案されている(例えば、特許文献2及び3参照)。   In addition, photocatalyst paints that have been imparted with antifouling performance against dirt due to biological contamination such as mold and algae among dirt on the building outer wall have also been proposed (see, for example, Patent Documents 2 and 3).

特開2003−73610号公報JP 2003-73610 A 特許第4110279号Japanese Patent No. 4110279 特許第4395886号Japanese Patent No. 4395886

光触媒塗膜や、2層コートタイプの光触媒塗料の保護層として用いられる塗膜は、その成分としてシリカやシリコーン樹脂が使用されており、該塗膜は硬くて脆いため、その膜における微小な貫通クラックの発生を完全に防ぐことは不可能である。その結果、前述の活性酸素種が、その貫通クラックを経由して光触媒塗膜直下塗膜にダメージを与えることを防ぐことはできな。また、2層コートタイプの光触媒塗料は、現場施工性について改良の余地がある。したがって、光触媒塗膜直下塗膜へのダメージを防止でき、かつ保護層が不要である1層コートタイプの光触媒塗料が待望されている。   The coating film used as a protective layer for a photocatalyst coating film or a two-layer coating type photocatalyst coating material uses silica or silicone resin as its component, and since the coating film is hard and brittle, a minute penetration in the film It is impossible to completely prevent the occurrence of cracks. As a result, it is impossible to prevent the above-mentioned active oxygen species from damaging the coating film directly under the photocatalytic coating film through the through crack. Moreover, the two-layer coat type photocatalyst paint has room for improvement in terms of on-site workability. Therefore, a one-layer coat type photocatalyst coating material that can prevent damage to the coating film directly under the photocatalyst coating film and that does not require a protective layer is desired.

また、上述のとおり、建築外壁にはカビや藻等の生物汚染も発生するため、外壁塗膜に防藻、防カビ機能を付与した塗料が提案されており、その防藻、防カビ機能の一つとして、防藻剤及び防カビ剤を使用することが一般的である。かかる防藻剤及び防カビ剤を光触媒光触媒塗膜に添加することは可能であるが、光触媒塗膜の膜厚は非常に薄く、添加できる防藻剤及び防カビ剤の量が制限されるため、光触媒塗膜に、十分な防藻、防カビ性を付与することは難しい。光触媒としては、抗菌性を持つ金属や、光触媒用無機化合物に抗菌性金属を担持させた化合物を含む、光触媒組成物がある。しかしながら、このような光触媒組成物もまた、光触媒塗膜直下塗膜にダメージを与える恐れがある。   In addition, as described above, biological contamination such as mold and algae occurs on the outer wall of the building. Therefore, a paint having an anti-algal and anti-fungal function on the outer wall coating film has been proposed. As one, it is common to use an algae and a fungicide. Although it is possible to add such an algae and antifungal agent to the photocatalytic photocatalytic coating film, the film thickness of the photocatalytic coating film is very thin, and the amount of the antialgae and antifungal agent that can be added is limited. It is difficult to impart sufficient antialgae and antifungal properties to the photocatalyst coating film. Examples of the photocatalyst include a photocatalyst composition containing an antibacterial metal or a compound in which an antibacterial metal is supported on an inorganic compound for photocatalyst. However, such a photocatalyst composition may also damage the coating film directly under the photocatalyst coating film.

本発明は、1層コートタイプ用の、現場施工性の高い光触媒塗料を提供でき、光触媒塗膜直下塗膜を損傷することなく、かつ、必要な光触媒活性を発揮し、さらに耐生物汚染性を向上し、透明性の高い塗膜をなす、光触媒用無機化合物、かかる無機化合物を含む光触媒組成物、光触媒塗膜、及び光触媒塗装製品の提供を目的とする。   The present invention can provide a photocatalyst paint with high on-site workability for a single-layer coating type, exhibits the necessary photocatalytic activity without damaging the coating film directly under the photocatalyst coating film, and further provides biofouling resistance. An object of the present invention is to provide a photocatalyst inorganic compound, a photocatalyst composition containing the inorganic compound, a photocatalyst coating film, and a photocatalyst-coated product, which improve and form a highly transparent coating film.

本発明者らは上記課題を解決すべく鋭意検討した結果、特定の条件を満たす、光触媒活性を有する無機化合物(A)の粒子表面に、特定量の抗菌性金属(B)を担持させた、光触媒用無機化合物が、現場施工性の高い光触媒塗料を提供でき、光触媒塗膜直下塗膜を損傷することなく、かつ、必要な光触媒活性を発揮し、さらに耐生物汚染性を向上し、透明性の高い塗膜になることを見いだし、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have supported a specific amount of an antibacterial metal (B) on the particle surface of the inorganic compound (A) having photocatalytic activity that satisfies a specific condition. Inorganic compound for photocatalyst can provide a photocatalyst coating with high on-site workability, without damaging the coating directly under the photocatalyst coating, exhibiting the necessary photocatalytic activity, further improving bio-fouling resistance and transparency As a result, the present invention was completed.

すなわち、本発明は以下のとおりである。
[1]
光触媒活性を有する無機化合物(A)の粒子表面に、前記無機化合物に対して0.5〜5質量%の抗菌性金属(B)が担持された、光触媒用無機化合物(AB)であって、
前記無機化合物(A)が、以下の(i)の条件を満たすか、以下の(i)及び以下の(ii)両方の条件を満たす、光触媒用無機化合物(AB)。
(i)該無機化合物(A)を含む懸濁液に、波長380nm以下、強度5mW/cm2の紫外光を60秒間照射した際に発生する過酸化水素の量([H22])が、80μM以下である;
(ii)該無機化合物(A)を含む懸濁液に、波長380nm以下、強度5mW/cm2の紫外光を60秒間照射した際に発生するヒドロキシラジカルの量([・OH])が、1.0μM以下である:
[2]
抗菌性金属(B)が、銅、銀、金、白金、及び亜鉛からなる群より選択される1種以上である、[1]に記載の光触媒用無機化合物(AB)。
[3]
光触媒活性を有する無機化合物(A)が、酸化チタンである、[1]又は[2]に記載の光触媒用無機化合物(AB)。
[4]
光触媒活性を有する無機化合物(A)が、金属酸化物(C)により、粒子表面を処理した無機化合物である、[1]〜[3]のいずれかに記載の光触媒用無機化合物(AB)。
[5]
前記金属酸化物(C)により、粒子表面を処理した無機化合物の比表面積が、80〜180m2/gである、[4]に記載の光触媒用無機化合物(AB)。
[6]
抗菌性金属(B)が、前記金属酸化物(C)により、粒子表面を処理した無機化合物の表面に、担持されている、[4]又は[5]に記載の光触媒用無機化合物(AB)。
[7]
金属酸化物(C)が、二酸化ケイ素である、[4]〜[6]のいずれかに記載の光触媒用無機化合物(AB)。
[8]
[1]〜[7]のいずれかに記載の光触媒用無機化合物(AB)と、光触媒活性を有しない無機化合物(D)とを含む、光触媒組成物。
[9]
光触媒活性を有する無機化合物(A)の割合が、光触媒組成物全量に対し、1〜20質量%である、[8]に記載の光触媒組成物。
[10]
光触媒活性を有しない無機化合物(D)が、二酸化ケイ素である、[8]又は[9]に記載の光触媒組成物。
[11]
重合体粒子(E)をさらに含む、[8]〜[10]のいずれかに記載の光触媒組成物。
[12]
フルオロカーボン界面活性剤(F)をさらに含む、[8]〜[11]のいずれかに記載の光触媒組成物。
[13]
退色性色素(G)をさらに含む、[8]〜[12]のいずれかに記載の光触媒組成物。
[14]
光触媒活性を有する無機化合物(A)に金属酸化物(C)を修飾させ、金属酸化物(C)により、粒子表面が処理された無機化合物を得る工程、及び、
前記金属酸化物(C)により、粒子表面が処理された無機化合物に、抗菌性金属(B)を担持させる工程
を含む、光触媒用無機化合物(AB)の製造方法。
[15]
光触媒活性を有する無機化合物(A)を修飾する金属酸化物(C)の割合が、光触媒活性を有する無機化合物(A)に対し1〜30質量%であり、
担持させる抗菌性金属(B)の割合が、光触媒活性を有する無機化合物(A)に対し0.5〜5質量%である、
[14]に記載の光触媒用無機化合物(AB)の製造方法。
[16]
[8]〜[13]のいずれかに記載の光触媒組成物から形成された、光触媒塗膜。
[17]
[16]に記載の光触媒塗膜を備える、光触媒塗装製品。
That is, the present invention is as follows.
[1]
An inorganic compound for photocatalyst (AB) in which 0.5 to 5% by mass of an antibacterial metal (B) is supported on the particle surface of the inorganic compound (A) having photocatalytic activity,
The inorganic compound (AB) for photocatalyst, wherein the inorganic compound (A) satisfies the following condition (i) or satisfies both the following conditions (i) and (ii):
(I) The amount of hydrogen peroxide generated when the suspension containing the inorganic compound (A) is irradiated with ultraviolet light having a wavelength of 380 nm or less and an intensity of 5 mW / cm 2 for 60 seconds ([H 2 O 2 ]) Is 80 μM or less;
(Ii) The amount of hydroxy radical ([· OH]) generated when the suspension containing the inorganic compound (A) is irradiated with ultraviolet light having a wavelength of 380 nm or less and an intensity of 5 mW / cm 2 for 60 seconds is 1 0.0 μM or less:
[2]
The inorganic compound for photocatalyst (AB) according to [1], wherein the antibacterial metal (B) is at least one selected from the group consisting of copper, silver, gold, platinum, and zinc.
[3]
The inorganic compound for photocatalyst (AB) according to [1] or [2], wherein the inorganic compound (A) having photocatalytic activity is titanium oxide.
[4]
The inorganic compound for photocatalyst (AB) according to any one of [1] to [3], wherein the inorganic compound (A) having photocatalytic activity is an inorganic compound obtained by treating the particle surface with a metal oxide (C).
[5]
The inorganic compound for photocatalyst (AB) according to [4], wherein the specific surface area of the inorganic compound whose particle surface has been treated with the metal oxide (C) is 80 to 180 m 2 / g.
[6]
The inorganic compound for photocatalyst (AB) according to [4] or [5], wherein the antibacterial metal (B) is supported on the surface of the inorganic compound obtained by treating the particle surface with the metal oxide (C). .
[7]
The inorganic compound for photocatalysts (AB) according to any one of [4] to [6], wherein the metal oxide (C) is silicon dioxide.
[8]
The photocatalyst composition containing the inorganic compound (AB) for photocatalysts in any one of [1]-[7], and the inorganic compound (D) which does not have photocatalytic activity.
[9]
The ratio of the inorganic compound (A) which has photocatalytic activity is 1-20 mass% with respect to the photocatalyst composition whole quantity, The photocatalyst composition as described in [8].
[10]
The photocatalyst composition according to [8] or [9], wherein the inorganic compound (D) having no photocatalytic activity is silicon dioxide.
[11]
The photocatalyst composition according to any one of [8] to [10], further comprising polymer particles (E).
[12]
The photocatalyst composition according to any one of [8] to [11], further comprising a fluorocarbon surfactant (F).
[13]
The photocatalyst composition according to any one of [8] to [12], further comprising a fading dye (G).
[14]
A step of modifying the metal oxide (C) to the inorganic compound (A) having photocatalytic activity to obtain an inorganic compound whose particle surface is treated with the metal oxide (C); and
The manufacturing method of the inorganic compound for photocatalysts (AB) including the process of carrying | supporting an antibacterial metal (B) to the inorganic compound by which the particle | grain surface was processed with the said metal oxide (C).
[15]
The ratio of the metal oxide (C) that modifies the inorganic compound (A) having photocatalytic activity is 1 to 30% by mass with respect to the inorganic compound (A) having photocatalytic activity,
The proportion of the antibacterial metal (B) to be supported is 0.5 to 5% by mass with respect to the inorganic compound (A) having photocatalytic activity.
[14] The method for producing an inorganic compound for photocatalyst (AB) according to [14].
[16]
The photocatalyst coating film formed from the photocatalyst composition in any one of [8]-[13].
[17]
A photocatalyst-coated product comprising the photocatalyst coating film according to [16].

本発明の光触媒用無機化合物を使用すれば、光触媒塗膜直下塗膜を損傷することなく、その上に保護層が不要のまま必要な光触媒活性を発揮する光触媒層を設けることができる。また、耐生物汚染性を付与でき、透明性の高い塗膜になる、現場施工性に優れる1層コートタイプの光触媒塗料を提供することができる。   If the inorganic compound for photocatalysts of this invention is used, the photocatalyst layer which exhibits a required photocatalytic activity can be provided on it, without damaging a coating film immediately under a photocatalyst coating film, without requiring a protective layer. In addition, it is possible to provide a one-layer coat type photocatalyst coating that can impart bio-contamination resistance and has a highly transparent coating film and excellent on-site workability.

以下、本発明を実施するための形態(以下、単に「本実施形態」という。)について詳細に説明する。以下の本実施形態は、本発明を説明するための例示であり、本発明を以下の内容に限定する趣旨ではない。本発明は、その要旨の範囲内で適宜に変形して実施できる。   Hereinafter, a mode for carrying out the present invention (hereinafter simply referred to as “the present embodiment”) will be described in detail. The following embodiments are examples for explaining the present invention, and are not intended to limit the present invention to the following contents. The present invention can be implemented with appropriate modifications within the scope of the gist thereof.

[光触媒用無機化合物(AB)]
本実施形態の光触媒用無機化合物は、光触媒活性を有する無機化合物(A)の粒子表面に、前記無機化合物(A)に対して0.1〜5質量%の抗菌性金属(B)が担持された、光触媒用無機化合物(AB)である。
また、本実施形態の光触媒用無機化合物(AB)における前記無機化合物(A)は、以下の(i)の条件を満たすか、以下の(i)及び以下の(ii)両方の条件を満たす。
(i)該無機化合物(A)を含む懸濁液に、波長380nm以下、強度5mW/cm2の紫外光(以下、「特定紫外光」ともいう。)を60秒間照射した際に発生する過酸化水素の量([H22]とも表す)が、80μM以下である;
(ii)該無機化合物(A)を含む懸濁液に、波長380nm以下、強度5mW/cm2の紫外光を60秒間照射した際に発生するヒドロキシラジカルの量([・OH]とも表す)の量が、1.0μM以下である:
[Inorganic compound for photocatalyst (AB)]
In the inorganic compound for photocatalyst of the present embodiment, 0.1 to 5% by mass of the antibacterial metal (B) is supported on the particle surface of the inorganic compound (A) having photocatalytic activity with respect to the inorganic compound (A). It is an inorganic compound (AB) for photocatalyst.
In addition, the inorganic compound (A) in the inorganic compound for photocatalyst (AB) of the present embodiment satisfies the following condition (i) or both the following conditions (i) and (ii).
(I) An excess generated when the suspension containing the inorganic compound (A) is irradiated with ultraviolet light having a wavelength of 380 nm or less and an intensity of 5 mW / cm 2 (hereinafter also referred to as “specific ultraviolet light”) for 60 seconds. The amount of hydrogen oxide (also referred to as [H 2 O 2 ]) is 80 μM or less;
(Ii) The amount of hydroxy radicals (also expressed as [· OH]) generated when the suspension containing the inorganic compound (A) is irradiated with ultraviolet light having a wavelength of 380 nm or less and an intensity of 5 mW / cm 2 for 60 seconds. The amount is 1.0 μM or less:

本実施形態の光触媒用無機化合物(AB)は、後述の製造方法によって製造することができ、光触媒用無機化合物(AB)は水等を含む組成物として得ることができる。したがって、本実施形態の光触媒用無機化合物(AB)には、水等の溶媒に、溶解又は懸濁した液体状、すなわち、光触媒水系組成物の態様が含まれる。また、本実施形態の光触媒用無機化合物(AB)は、上記光触媒水系組成物の水の除去、乾燥等の操作を行うことによって、紛体等として得ることもでき、固体状であってもよい。
上記光触媒水系組成物中の光触媒用無機化合物(AB)は、該光触媒水系組成物全量に対し、0.1〜99.9質量%であれば特に制限されず、好ましくは0.5〜50質量%、より好ましくは1.0〜30質量%、さらに好ましくは1.5〜10質量%である。
The inorganic compound for photocatalysts (AB) of this embodiment can be manufactured by the manufacturing method mentioned later, and the inorganic compound for photocatalysts (AB) can be obtained as a composition containing water or the like. Therefore, the inorganic compound for photocatalyst (AB) of the present embodiment includes a liquid form dissolved or suspended in a solvent such as water, that is, an aspect of a photocatalytic aqueous composition. Moreover, the inorganic compound for photocatalysts (AB) of this embodiment can also be obtained as a powder etc. by performing operation, such as removal of the water of the said photocatalyst aqueous composition, and drying, and may be a solid form.
The inorganic compound for photocatalyst (AB) in the photocatalytic aqueous composition is not particularly limited as long as it is 0.1 to 99.9% by mass relative to the total amount of the photocatalytic aqueous composition, and preferably 0.5 to 50 mass. %, More preferably, it is 1.0-30 mass%, More preferably, it is 1.5-10 mass%.

本実施形態の光触媒用無機化合物における光触媒活性を有する無機化合物(A)は、該無機化合物(A)の粒子表面に、抗菌性金属(B)が担持されている。本実施形態における担持とは、無機化合物(A)を担体とし、無機化合物(A)粒子の表面に、抗菌性金属(B)の単原子が相互作用し、付着していることを指す。
ここで、無機化合物(A)の粒子表面が抗菌性金属(B)により担持されている状態は、無機化合物(A)の粒子表面に、直接抗菌性金属(B)が担持されている状態でもよく、後述する金属酸化物(C)のような別の物質を介して、該物質の表面に抗菌性金属(B)が担持されている状態でもよい。
In the inorganic compound (A) having photocatalytic activity in the inorganic compound for photocatalyst of the present embodiment, an antibacterial metal (B) is supported on the particle surface of the inorganic compound (A). In the present embodiment, the term “support” refers to the fact that the inorganic compound (A) is used as a carrier and the single atom of the antibacterial metal (B) interacts and adheres to the surface of the inorganic compound (A) particles.
Here, the state where the particle surface of the inorganic compound (A) is supported by the antibacterial metal (B) may be the state where the antibacterial metal (B) is directly supported on the particle surface of the inorganic compound (A). The antibacterial metal (B) may be supported on the surface of another substance such as a metal oxide (C) described later.

本実施形態の光触媒用無機化合物(AB)は、光触媒としての性能及び塗膜透明性を向上、すなわち塗膜の白濁度を低下させる観点及び良好な分散性を示す観点から、その二次粒子径が平均(相加平均)で1〜400nmの範囲にあることが好ましく、1〜100nmの範囲にあることがより好ましく、40〜70nmであることがさらに好ましい。なお、光触媒用無機化合物(AB)の粒子形状がロッド形状等の長径と短径とを有する場合、その長径及び短径の相加平均が上記範囲内であることが好ましい。光触媒用無機化合物(AB)の二次粒子径は、任意に選択された50個の粒子を電子顕微鏡観察により測定し、それらの相加平均として導出される。なお、二次粒子径とは、粒子が塗膜中や、塗料中の粒子の状態での粒子径を指す。   The inorganic compound for photocatalyst (AB) of the present embodiment is improved in performance as a photocatalyst and coating film transparency, that is, from the viewpoint of reducing the turbidity of the coating film and exhibiting good dispersibility, the secondary particle diameter thereof. Is preferably in the range of 1 to 400 nm on average (arithmetic average), more preferably in the range of 1 to 100 nm, and still more preferably 40 to 70 nm. When the particle shape of the photocatalyst inorganic compound (AB) has a major axis and a minor axis such as a rod shape, the arithmetic average of the major axis and minor axis is preferably within the above range. The secondary particle diameter of the photocatalyst inorganic compound (AB) is derived as an arithmetic average of 50 arbitrarily selected particles measured by electron microscope observation. The secondary particle diameter refers to the particle diameter when the particles are in the coating film or in the state of particles in the paint.

本実施形態の光触媒用無機化合物(AB)は、該光触媒用無機化合物(AB)使用した光触媒塗膜の白濁度を低下させ、塗膜の透明性をさらに向上させることができる。これは、光触媒活性を有する無機化合物(A)に、所定の量の抗菌性金属(B)を担持させることにより、屈折率を低下させることができるためだと考えられる。   The inorganic compound for photocatalyst (AB) of this embodiment can reduce the white turbidity of the photocatalyst coating film which used this inorganic compound for photocatalyst (AB), and can further improve the transparency of a coating film. This is presumably because the refractive index can be lowered by supporting a predetermined amount of the antibacterial metal (B) on the inorganic compound (A) having photocatalytic activity.

(光触媒活性を有する無機化合物(A))
本実施形態の光触媒用無機化合物(AB)における前記無機化合物(A)は、上述の(i)の条件を満たすか、上述の(i)及び上述の(ii)両方の条件を満たす。
(Inorganic compound having photocatalytic activity (A))
The inorganic compound (A) in the inorganic compound for photocatalyst (AB) of the present embodiment satisfies the above-mentioned condition (i) or satisfies both the above-mentioned conditions (i) and (ii).

特定紫外光を60秒間照射した際に発生する上記活性酸素種量のうち、ヒドロキシルラジカルの量([・OH])が、1.0μM以下であり、好ましくは1.0μM未満であり、より好ましくは0.5μM未満である。
ここで、紫外光とは400nm以下の波長領域のことをいう。また、μMはマイクロモーラーを表し、1μM=10-6M=10-6mol/Lのことである。
Of the active oxygen species generated when irradiated with specific ultraviolet light for 60 seconds, the amount of hydroxyl radicals ([· OH]) is 1.0 μM or less, preferably less than 1.0 μM, more preferably Is less than 0.5 μM.
Here, the ultraviolet light means a wavelength region of 400 nm or less. Further, μM represents a micromolar, and 1 μM = 10 −6 M = 10 −6 mol / L.

活性酸素種のうち、ヒドロキシラジカル(・OHとも表す)は、塗膜に損傷を与えるラジカル種である。[・OH]が1.0μM以下であることによって、上記無機化合物(A)は、・OHの発生量が少なく、光触媒塗膜直下塗膜に損傷を与えることを抑制することができる、光触媒用無機化合物(AB)として使用できることを意味する。一方、[・OH]の値が1.0μMより大きい光触媒活性を有する無機化合物(A)から得られる光触媒用無機化合物(AB)を触媒塗膜に使用したとき、光触媒塗膜直下塗膜に損傷を与える傾向にある。   Of the active oxygen species, hydroxy radicals (also referred to as .OH) are radical species that damage the coating film. When the [.OH] is 1.0 μM or less, the inorganic compound (A) has a small amount of .OH generation and can suppress damage to the coating film directly under the photocatalyst coating film. It means that it can be used as an inorganic compound (AB). On the other hand, when an inorganic compound for photocatalyst (AB) obtained from an inorganic compound (A) having a photocatalytic activity with a value of [.OH] greater than 1.0 μM is used for the catalyst coating film, the coating film directly under the photocatalyst coating film is damaged. Tend to give.

光触媒塗膜直下塗膜を傷めないために、特定紫外光を60秒間照射した際に発生する上記活性酸素種量のうち、過酸化水素の量([H22])が、80μM以下であり、好ましくは20μM以下であり、より好ましくは10μM以下である。
ここで、紫外光とは400nm以下の波長領域のことをいう。また、μMはマイクロモーラーを表し、1μM=10-6M=10-6mol/Lのことである。
In order not to damage the coating film directly under the photocatalyst coating film, the amount of hydrogen peroxide ([H 2 O 2 ]) among the above-mentioned active oxygen species generated when irradiated with specific ultraviolet light for 60 seconds is 80 μM or less. Yes, preferably 20 μM or less, more preferably 10 μM or less.
Here, the ultraviolet light means a wavelength region of 400 nm or less. Further, μM represents a micromolar, and 1 μM = 10 −6 M = 10 −6 mol / L.

活性酸素種のうち、過酸化水素(H22とも表す)は、・OHのようなラジカル種に比べて、安定な物質であり、ラジカル種の寿命(1秒以下)に比べて長寿命であり、光触媒塗膜に存在するとき、遠距離まで移動して光触媒塗膜直下塗膜に損傷を与える。すなわち、[H22]が80μM以下であることによって、無機化合物(A)は、H22の発生量が少なく、光触媒塗膜直下塗膜に損傷を与えることを抑制することができる、光触媒用無機化合物(AB)として使用できることを意味する。一方、[H22]の値が80μMより大きい光触媒活性を有する無機化合物(A)から得られる光触媒用無機化合物(AB)を触媒塗膜に使用したとき、光触媒塗膜直下塗膜に損傷を与える傾向にある。 Among active oxygen species, hydrogen peroxide (also referred to as H 2 O 2 ) is a stable substance compared to radical species such as .OH, and has a longer lifetime than the lifetime of radical species (less than 1 second). And when present in the photocatalytic coating, it travels to a long distance and damages the coating just below the photocatalytic coating. That is, when [H 2 O 2 ] is 80 μM or less, the inorganic compound (A) generates a small amount of H 2 O 2 and can suppress damage to the coating film directly under the photocatalytic coating film. It means that it can be used as an inorganic compound (AB) for photocatalyst. On the other hand, when an inorganic compound (AB) for photocatalyst obtained from an inorganic compound (A) having a photocatalytic activity with a value of [H 2 O 2 ] greater than 80 μM is used for the catalyst coating film, the coating film directly under the photocatalyst coating film is damaged. Tend to give.

本実施形態の光触媒用無機化合物(AB)は、本発明による効果をより有効かつ確実に奏する観点から、上述の(i)及び上述の(ii)両方の条件を満たすことが好ましい。   The inorganic compound for photocatalyst (AB) of the present embodiment preferably satisfies the above conditions (i) and (ii) from the viewpoint of more effectively and reliably achieving the effects of the present invention.

本実施形態における懸濁液とは、[H22]の測定においては、0.01M NaOH水溶液に、光触媒活性を有する無機化合物(A)を懸濁させた液であり、[・OH]の測定においては、0.1mMのクマリン水溶液に、光触媒活性を有する無機化合物(A)を懸濁させた液である。光触媒活性を有する無機化合物(A)の懸濁液は、具体的には実施例に記載の条件によって調製することができる。 In the measurement of [H 2 O 2 ], the suspension in the present embodiment is a liquid in which an inorganic compound (A) having photocatalytic activity is suspended in a 0.01 M NaOH aqueous solution, and [.OH]. Is a liquid in which an inorganic compound (A) having photocatalytic activity is suspended in a 0.1 mM coumarin aqueous solution. Specifically, the suspension of the inorganic compound (A) having photocatalytic activity can be prepared under the conditions described in the Examples.

[・OH]及び[H22]を上記範囲内に調整する方法としては、例えば、後述するように、光触媒活性を有する無機化合物(A)の粒子表面に修飾処理を施すこと等して、活性酸素種量を抑制する方法が挙げられる。メカニズムは完全には解明されていないが、表面修飾した物質により、活性種が失活したり、トラップされたりしていると考えられる。ただし、[・OH]及び[H22]の調整方法はこれらに限定されない。 As a method of adjusting [.OH] and [H 2 O 2 ] within the above range, for example, as described later, the surface of the inorganic compound (A) particles having photocatalytic activity is modified. And a method for suppressing the amount of active oxygen species. Although the mechanism is not completely elucidated, it is thought that the active species are inactivated or trapped by the surface-modified substance. However, the adjustment method of [.OH] and [H 2 O 2 ] is not limited to these.

[H22]の測定は、ルシゲニン化学発光法を用いて行うことができる。暗箱内のマグネティックスターラ上に設置した石英セル(光路(長さ)1cm×幅1cm)に、3.5mLの0.01M NaOH水溶液を添加し、pH9に調整し、そこにさらに15mgの無機化合物(A)の粉末(例えば、ゾルを乾燥して得られたもの。以下同様。)を投入し、懸濁させて懸濁液を得る。次いで、LED(Hamamatsu Photonics(浜松ホトニクス)社製、型番「LC−L2」、波長:365nm、強度5mW/cm2)を光源として、懸濁液が入った上記セルに60秒間の紫外光照射を行う。照射後、0.7mMのルシゲニン溶液を50μL添加し、H22によって生じた化学発光をバンドパスフィルターに通した後、電子冷却光電子増倍管で検出する。 [H 2 O 2 ] can be measured using a lucigenin chemiluminescence method. To a quartz cell (optical path (length) 1 cm × width 1 cm) placed on a magnetic stirrer in a dark box, 3.5 mL of 0.01 M NaOH aqueous solution is added to adjust to pH 9, and further 15 mg of an inorganic compound ( A) powder (for example, obtained by drying a sol; the same applies hereinafter) is charged and suspended to obtain a suspension. Next, using the LED (Hamamatsu Photonics, model number “LC-L2”, wavelength: 365 nm, intensity 5 mW / cm 2 ) as a light source, the cell containing the suspension was irradiated with ultraviolet light for 60 seconds. Do. After irradiation, 50 μL of a 0.7 mM lucigenin solution is added, and chemiluminescence generated by H 2 O 2 is passed through a bandpass filter, and then detected with an electron-cooled photomultiplier tube.

[・OH]の測定は、クマリン蛍光プローブ法を用いて行うことができる。まず、0.1mMのクマリン水溶液を調製し、上記と同じ寸法の石英セル中に15mgのTiO2などの無機化合物(A)の粉末とクマリン水溶液35mLとを懸濁させて懸濁液を得る。この懸濁液に波長365nm、強度5mW/cm2のLED光を60秒照射する。次に、懸濁液からTiO2などの金属化合物(光触媒)粉末を分離するために、照射終了後の懸濁液にKClを0.5g添加し、24時間暗所に静置する。その後、上澄み液をとりサンプルとし、Fluorescence spectrophotometer(850型、HITACHI社製)で蛍光の測定をする(この時、KCl添加による蛍光測定時の光散乱は影響しないことを確認している。)。既知濃度のクマリンの蛍光強度を、上記サンプルの蛍光強度と比較することで・OHを定量する。 [.OH] can be measured using a coumarin fluorescent probe method. First, a 0.1 mM aqueous solution of coumarin is prepared, and a suspension is obtained by suspending 15 mg of a powder of an inorganic compound (A) such as TiO 2 and 35 mL of an aqueous solution of coumarin in a quartz cell having the same dimensions as described above. This suspension is irradiated with LED light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds. Next, in order to separate a metal compound (photocatalyst) powder such as TiO 2 from the suspension, 0.5 g of KCl is added to the suspension after the irradiation and left in a dark place for 24 hours. Thereafter, the supernatant is taken as a sample, and fluorescence is measured with a fluorescence spectrophotometer (850 type, manufactured by HITACHI). OH is quantified by comparing the fluorescence intensity of a known concentration of coumarin with the fluorescence intensity of the sample.

本実施形態の光触媒活性を有する無機化合物(A)は、金属酸化物(C)により、粒子表面を処理した無機化合物であることが好ましい。粒子表面を処理とは、粒子表面を金属酸化物(C)により、修飾処理することを指す。また、金属酸化物(C)により無機化合物(A)が修飾処理されると、無機化合物(A)の一部又は全部が、金属酸化物(C)により被覆される。
修飾処理をしない場合、H22や・OH等の活性酸素種の発生量が多くなり、光触媒塗膜直下塗膜に損傷を与える傾向がある。修飾する物質としては、例えば、二酸化ケイ素、アルミ、銅酸化物、鉄酸化物等の金属酸化物(C)が挙げられ、その中でも、二酸化ケイ素が好ましい。
ここで、光触媒活性を有する無機化合物(A)が金属酸化物(C)により粒子表面を処理した無機化合物である場合、無機化合物(A)の粒子表面に抗菌性金属(B)が担持されている状態は、無機化合物(A)の粒子表面に直接抗菌性金属(B)が担持されていている状態も、金属酸化物(C)を介して、該金属酸化物(C)の表面に抗菌性金属(B)が担持されている状態も含む。
The inorganic compound (A) having photocatalytic activity of the present embodiment is preferably an inorganic compound obtained by treating the particle surface with a metal oxide (C). The treatment of the particle surface means that the particle surface is modified with a metal oxide (C). When the inorganic compound (A) is modified with the metal oxide (C), part or all of the inorganic compound (A) is covered with the metal oxide (C).
When the modification treatment is not performed, the amount of active oxygen species such as H 2 O 2 and .OH generated is increased, and the coating film immediately below the photocatalyst coating film tends to be damaged. Examples of the substance to be modified include metal oxides (C) such as silicon dioxide, aluminum, copper oxide, and iron oxide. Among these, silicon dioxide is preferable.
Here, when the inorganic compound (A) having photocatalytic activity is an inorganic compound obtained by treating the particle surface with the metal oxide (C), the antibacterial metal (B) is supported on the particle surface of the inorganic compound (A). The state where the antibacterial metal (B) is directly supported on the particle surface of the inorganic compound (A) is also antibacterial on the surface of the metal oxide (C) via the metal oxide (C). It also includes a state in which the conductive metal (B) is supported.

光触媒活性を有する無機化合物(A)としては、例えば、TiO2、ZnO、SrTiO3、CdS、GaP、InP、GaAs、BaTiO3、BaTiO4、BaTi49、K2NbO3、Nb25、Fe23、Ta25、K3Ta3Si23、WO3、SnO2、Bi2O3、BiVO4、NiO、Cu2O、SiC、MoS2、InPb、RuO2、及びCeO2等が挙げられる。
光触媒活性を有する無機化合物(A)としては、安全性及びコストの観点から、TiO2が好ましい。TiO2にはアナターゼ型、ルチル型、ブルッカイト型の結晶構造があるが、いずれも使用できる。
Examples of the inorganic compound (A) having photocatalytic activity include TiO 2 , ZnO, SrTiO 3 , CdS, GaP, InP, GaAs, BaTiO 3 , BaTiO 4 , BaTi 4 O 9 , K 2 NbO 3 , Nb 2 O 5. Fe 2 O 3 , Ta 2 O 5 , K 3 Ta 3 Si 2 O 3 , WO 3 , SnO 2 , Bi 2 O 3 , BiVO 4 , NiO, Cu 2 O, SiC, MoS 2 , InPb, RuO 2 , and CeO 2 Etc.
As the inorganic compound (A) having photocatalytic activity, TiO 2 is preferable from the viewpoint of safety and cost. TiO 2 has anatase, rutile, and brookite crystal structures, any of which can be used.

本実施形態の光触媒用無機化合物(AB)は、上記金属酸化物(C)に抗菌性金属(B)が担持されていることが好ましい。このような状態を形成することにより、光触媒活性を有する無機化合物(A)に、抗菌性金属(B)が担持された上に、さらに金属酸化物(C)が被覆した状態と比較して、抗菌性金属(B)が光触媒用無機化合物(AB)粒子最表面に存在するため、耐生物汚染性の効果を発揮する。   In the inorganic compound for photocatalyst (AB) of the present embodiment, the metal oxide (C) is preferably supported with an antibacterial metal (B). By forming such a state, compared with the state in which the antibacterial metal (B) is supported on the inorganic compound (A) having photocatalytic activity and further coated with the metal oxide (C), Since the antibacterial metal (B) is present on the outermost surface of the photocatalyst inorganic compound (AB) particles, it exhibits an effect of biofouling resistance.

上記光触媒活性を有する無機化合物(A)の粒子表面を金属酸化物(C)で処理した無機化合物(以下、単に「無機化合物(A’)」という)の比表面積は、好ましくは80〜180m2/gであり、より好ましくは90〜160m2/gであり、さらに好ましくは100〜150m2/gである。
比表面積を80〜180m2/gとすることにより、粒子表面積が増大し、抗菌性金属(B)を担持させる点が多くなるため、抗菌性金属(B)を非常に効率よく、光触媒活性を有する無機化合物(A)及び/又は金属酸化物(C)の表面上に担持させることができ、耐生物汚染性を向上する。
また、比表面積を80〜180m2/gとすることにより、光触媒活性を有する無機化合物(A)の光触媒活性も十分有する。
したがって、比表面積を80〜180m2/gとすることにより、耐生物汚染性と光触媒活性とが両立される。
The specific surface area of the inorganic compound (hereinafter, simply referred to as “inorganic compound (A ′)”) obtained by treating the particle surface of the inorganic compound (A) having photocatalytic activity with the metal oxide (C) is preferably 80 to 180 m 2. / g, and more preferably from 90~160M 2 / g, more preferably from 100-150 2 / g.
By setting the specific surface area to 80 to 180 m 2 / g, the particle surface area increases, and the number of points for supporting the antibacterial metal (B) increases. It can carry | support on the surface of the inorganic compound (A) and / or metal oxide (C) which has, and improves biofouling resistance.
Moreover, by setting the specific surface area to 80 to 180 m 2 / g, the photocatalytic activity of the inorganic compound (A) having photocatalytic activity is also sufficient.
Therefore, by setting the specific surface area to 80 to 180 m 2 / g, both biofouling resistance and photocatalytic activity can be achieved.

上記のような比表面積を有する無機化合物(A’)を得る方法としては、例えば、光触媒活性を有する無機化合物(A)の粒子表面を処理する金属酸化物(C)の量を調整する方法や、反応濃度、温度、及び時間等をコントロールする方法が挙げられる。
比表面積は、窒素(N2)やアルゴン(Ar)等の気体分子を、固体粒子に吸着させ、吸着した気体分子の量から固体粒子の比表面積を測定するBET法で測定することができる。
本実施形態における、光触媒活性を有する無機化合物(A)を修飾する金属酸化物(C)の割合は、光触媒活性を有する無機化合物(A)に対し、上述の比表面積の範囲に調整するために、好ましくは1〜30質量%であり、より好ましくは5〜25質量%であり、さらに好ましくは10〜20質量%である。光触媒活性を有する無機化合物(A)を修飾する金属酸化物(C)の割合は、具体的には、実施例の3.表面修飾物の定量に記載の方法にしたがって、算出することができる。
As a method for obtaining the inorganic compound (A ′) having the specific surface area as described above, for example, a method of adjusting the amount of the metal oxide (C) for treating the particle surface of the inorganic compound (A) having photocatalytic activity, And a method of controlling the reaction concentration, temperature, time and the like.
The specific surface area can be measured by a BET method in which gas molecules such as nitrogen (N 2 ) and argon (Ar) are adsorbed on solid particles and the specific surface area of the solid particles is measured from the amount of adsorbed gas molecules.
In the present embodiment, the ratio of the metal oxide (C) that modifies the inorganic compound (A) having photocatalytic activity is adjusted to the above specific surface area range with respect to the inorganic compound (A) having photocatalytic activity. , Preferably it is 1-30 mass%, More preferably, it is 5-25 mass%, More preferably, it is 10-20 mass%. Specifically, the ratio of the metal oxide (C) that modifies the inorganic compound (A) having photocatalytic activity is the same as that in Example 3. It can be calculated according to the method described in the quantification of the surface modification product.

(抗菌性金属(B))
本実施形態における抗菌性金属(B)は、例えば、大腸菌細胞に対する金属イオンの最小発育阻止濃度(MIC)が20mM以下の金属を指す。最小発育阻止濃度(MIC)とは菌の増殖を阻止するために必要な薬剤(ここでは金属イオンを指す)の最小濃度のことである。
(Antimicrobial metal (B))
The antibacterial metal (B) in the present embodiment refers to, for example, a metal having a minimum inhibitory concentration (MIC) of metal ions for E. coli cells of 20 mM or less. The minimum inhibitory concentration (MIC) is the minimum concentration of a drug (referred to here as a metal ion) necessary to inhibit the growth of bacteria.

本実施形態の抗菌性金属(B)としては、例えば、水銀、銀、金、パラジウム、白金、カドミウム、コバルト、ニッケル、銅、亜鉛、タリウム、鉛、マンガン等の重金属が挙げられる。これらの中でも、安全性及び実用性の観点から、好ましくは、銅、銀、金、白金、亜鉛であり、より好ましくは、銅、銀、金である。
これらの重金属は、1種であってもよく、2種以上を組み合わせてもよい。
Examples of the antibacterial metal (B) of the present embodiment include heavy metals such as mercury, silver, gold, palladium, platinum, cadmium, cobalt, nickel, copper, zinc, thallium, lead, and manganese. Among these, from the viewpoints of safety and practicality, copper, silver, gold, platinum, and zinc are preferable, and copper, silver, and gold are more preferable.
These heavy metals may be used alone or in combination of two or more.

本実施形態の光触媒用無機化合物(AB)における抗菌性金属(B)の担持量は、光触媒活性を有する無機化合物(A)の質量に対して0.5〜5質量%であり、好ましくは0.5〜2質量%であり、より好ましくは0.5〜1質量%である。抗菌性金属(B)の担持量は、具体的には、実施例に記載の方法によって測定することができる。抗菌性金属(B)の担持量が0.5質量%より小さいと、耐生物汚染性の効果が低くなる傾向にある。抗菌性金属(B)の担持量が5質量%より大きいと、金属による着色が発生し、塗膜外観が優れない傾向にある。     The supported amount of the antibacterial metal (B) in the inorganic compound for photocatalyst (AB) of the present embodiment is 0.5 to 5% by mass with respect to the mass of the inorganic compound (A) having photocatalytic activity, preferably 0. 0.5 to 2% by mass, more preferably 0.5 to 1% by mass. Specifically, the amount of the antibacterial metal (B) supported can be measured by the method described in Examples. When the amount of the antibacterial metal (B) supported is less than 0.5% by mass, the effect of biofouling resistance tends to be lowered. When the amount of the antibacterial metal (B) supported is larger than 5% by mass, coloring by the metal occurs and the coating film appearance tends to be not excellent.

[光触媒用無機化合物(AB)の製造方法]
本実施形態の光触媒用無機化合物(AB)は、
光触媒活性を有する無機化合物(A)に金属酸化物(C)を修飾させ、金属酸化物(C)により、粒子表面が処理された無機化合物を得る工程、
前記金属酸化物(C)により、粒子表面が処理された無機化合物に、抗菌性金属(B)を担持させる工程
を含む。
[Method of producing inorganic compound for photocatalyst (AB)]
The inorganic compound for photocatalyst (AB) of this embodiment is
A step of modifying the metal oxide (C) to the inorganic compound (A) having photocatalytic activity to obtain an inorganic compound whose particle surface is treated with the metal oxide (C);
A step of supporting the antibacterial metal (B) on the inorganic compound whose particle surface is treated with the metal oxide (C) is included.

金属酸化物(C)を修飾させた後に、抗菌性金属(B)を担持させる順番であることにより、光触媒活性を有する無機化合物(A)に、直接抗菌性金属(B)を担持させる方法と比較して、抗菌性金属(B)自身が金属コロイド粒子になることを抑制し、効率的に光触媒活性を有する無機化合物(A)や、金属酸化物(C)の表面に、抗菌性金属(B)を担持させることができる。
金属コロイド粒子となることを抑制し、抗菌性金属(B)を担持できる理由としては、光触媒活性を有する無機化合物(A)に金属酸化物(C)を修飾したものは、より比表面積が大きくなり、抗菌性金属(B)の担持が容易になるためであると思われる。
また、抗菌性金属(B)が光触媒用無機化合物(AB)粒子最表面に存在するため、光触媒用無機化合物(AB)が耐生物汚染性の効果を発揮する。
A method of directly supporting the antibacterial metal (B) on the inorganic compound (A) having a photocatalytic activity by the order of supporting the antibacterial metal (B) after modifying the metal oxide (C); In comparison, the antibacterial metal (B) itself is prevented from becoming metal colloidal particles, and the antibacterial metal (A) or the metal oxide (C) has an antibacterial metal (C) surface efficiently. B) can be carried.
The reason why metal colloidal particles can be suppressed and the antibacterial metal (B) can be supported is that the inorganic compound (A) having photocatalytic activity modified with the metal oxide (C) has a larger specific surface area. This is probably because the antibacterial metal (B) is easily supported.
In addition, since the antibacterial metal (B) is present on the outermost surface of the inorganic compound for photocatalyst (AB) particles, the inorganic compound for photocatalyst (AB) exhibits the effect of biofouling resistance.

抗菌性金属(B)を担持させる方法としては、例えば、抗菌性金属(B)を含む水溶性化合物を使用し、該水溶性化合物を、無機化合物(A)を含む液中で還元剤により還元し、光触媒活性を有する無機化合物(A)又は金属酸化物(C)の表面に抗菌性金属(B)を析出させる方法等が挙げられる。   As a method for supporting the antibacterial metal (B), for example, a water-soluble compound containing the antibacterial metal (B) is used, and the water-soluble compound is reduced with a reducing agent in a liquid containing the inorganic compound (A). And a method of depositing the antibacterial metal (B) on the surface of the inorganic compound (A) or metal oxide (C) having photocatalytic activity.

還元剤としては、例えば、クエン酸、アスコルビン酸、タンニン酸、ジボラン、水素化ホウ素塩、ホルムアルデヒド、エタノール等からなる群より選択される1種以上が好適に挙げられる。抗菌性金属(B)を含む水溶性化合物が還元されずに残存すると、抗菌性金属(B)が水溶性を有するため、塗膜中から抗菌性化合物が溶出しやすくなり、耐生物汚染性の持続性が劣る傾向があることから、上記還元剤を適宜選択するとよい。   As the reducing agent, for example, one or more selected from the group consisting of citric acid, ascorbic acid, tannic acid, diborane, borohydride, formaldehyde, ethanol and the like can be preferably mentioned. If the water-soluble compound containing the antibacterial metal (B) remains without being reduced, the antibacterial metal (B) has water solubility, so that the antibacterial compound is easily eluted from the coating film, and is resistant to biofouling. Since the sustainability tends to be inferior, the reducing agent may be appropriately selected.

抗菌性金属(B)を含む水溶性化合物としては、抗菌性金属(B)カチオンと、アニオンとの塩を使用することができる。   As a water-soluble compound containing an antibacterial metal (B), a salt of an antibacterial metal (B) cation and an anion can be used.

光触媒活性を有する無機化合物(A)に金属酸化物(C)を修飾させる方法としては、特に限定されないが、例えば、酸化チタンを含む水系組成物に金属酸化物(C)の原料となる化合物(例えば二酸化ケイ素で修飾の場合、ケイ酸ナトリウムやテトラエトキシシランなど)を70〜90℃の加温条件で反応させる方法等が挙げられる。   The method for modifying the metal oxide (C) to the inorganic compound (A) having photocatalytic activity is not particularly limited. For example, a compound (for example, a compound that is a raw material for the metal oxide (C) in an aqueous composition containing titanium oxide) For example, in the case of modification with silicon dioxide, a method of reacting sodium silicate, tetraethoxysilane, etc.) under a heating condition of 70 to 90 ° C., and the like.

二酸化ケイ素を修飾する方法としては、例えば酸化チタンのスラリーにケイ素の化合物を添加し、中和等して含水酸化物を析出させる。ケイ素化合物としては、ケイ酸ナトリウム等の水溶性ケイ酸アルカリ金属塩を用いることができ、それらの中でも、ケイ酸ナトリウムは、無色であり、酸化チタンゾルが着色しないので好ましい。ケイ素の含水酸化物の処理量は、酸化チタンに対して酸化物基準で3〜25質量%が好ましく、5〜20質量%がより好ましい。処理量が前記範囲より少ないと、活性酸素種量が多くなり光触媒塗膜直下塗膜を傷めてしまい好ましくない。また、処理量が前記範囲より多いと、逆に酸化チタンが凝集し、ゾルの粘度が上昇しやすく、分散性が悪化し、透明性に優れたものが得られ難いため好ましくない。   As a method for modifying silicon dioxide, for example, a silicon compound is added to a titanium oxide slurry, and a hydrous oxide is precipitated by neutralization or the like. As the silicon compound, a water-soluble alkali metal silicate such as sodium silicate can be used. Among them, sodium silicate is preferable because it is colorless and the titanium oxide sol is not colored. The treatment amount of the hydrous oxide of silicon is preferably 3 to 25% by mass, more preferably 5 to 20% by mass with respect to titanium oxide. When the treatment amount is less than the above range, the amount of active oxygen species is increased, and the coating film immediately below the photocatalyst coating film is damaged, which is not preferable. On the other hand, when the treatment amount is larger than the above range, titanium oxide is aggregated conversely, the viscosity of the sol tends to increase, the dispersibility is deteriorated, and it is difficult to obtain a product having excellent transparency, which is not preferable.

本実施形態の製造方法において、光触媒活性を有する無機化合物(A)を修飾する金属酸化物(C)の割合は、光触媒活性を有する無機化合物(A)に対し、好ましくは1〜30質量%であり、より好ましくは5〜25質量%であり、さらに好ましくは10〜20質量%である。
本実施形態の製造方法において、抗菌性金属(B)の担持量は、光触媒活性を有する無機化合物(A)の質量に対して0.5〜5質量%であり、好ましくは0.5〜2質量%であり、より好ましくは0.5〜1質量%である。抗菌性金属(B)の担持量は、具体的には、実施例に記載の方法によって測定することができる。
In the production method of the present embodiment, the ratio of the metal oxide (C) that modifies the inorganic compound (A) having photocatalytic activity is preferably 1 to 30% by mass with respect to the inorganic compound (A) having photocatalytic activity. Yes, more preferably 5 to 25% by mass, still more preferably 10 to 20% by mass.
In the production method of the present embodiment, the amount of the antibacterial metal (B) supported is 0.5 to 5% by mass, preferably 0.5 to 2%, based on the mass of the inorganic compound (A) having photocatalytic activity. It is mass%, More preferably, it is 0.5-1 mass%. Specifically, the amount of the antibacterial metal (B) supported can be measured by the method described in Examples.

[光触媒組成物]
本実施形態の光触媒用無機化合物(AB)は、光触媒活性を有しない無機化合物(D)を配合し、光触媒組成物とすることができる。すなわち、本実施形態の一つは、本実施形態の光触媒用無機化合物(AB)と、光触媒活性を有しない無機化合物(D)とを含む、光触媒組成物である。
本実施形態の光触媒組成物は、塗膜外観の観点から、光触媒組成物中の、光触媒活性を有する無機化合物(A)の割合が1〜20質量%であることが好ましい。この範囲であることにより光触媒としての性能及び塗膜透明性を兼ね備えたものとなる。また、光触媒活性を有する無機化合物(A)の割合は、より好ましくは3〜15質量%であり、さらに好ましくは7〜15質量%である。
[Photocatalyst composition]
The inorganic compound (AB) for photocatalyst of this embodiment can be blended with an inorganic compound (D) that does not have photocatalytic activity to form a photocatalytic composition. That is, one of the present embodiments is a photocatalyst composition containing the inorganic compound for photocatalyst (AB) of the present embodiment and the inorganic compound (D) having no photocatalytic activity.
In the photocatalyst composition of the present embodiment, the proportion of the inorganic compound (A) having photocatalytic activity in the photocatalyst composition is preferably 1 to 20% by mass from the viewpoint of the coating film appearance. By being in this range, the performance as a photocatalyst and the transparency of the coating film are combined. Moreover, the ratio of the inorganic compound (A) having photocatalytic activity is more preferably 3 to 15% by mass, and further preferably 7 to 15% by mass.

(無機化合物(D))
光触媒活性を有しない無機化合物(D)としては、例えば、二酸化ケイ素(シリカ)粒子、酸化アルミニウム(アルミナ)粒子、珪酸カルシウム粒子、酸化マグネシウム粒子、酸化アンチモン粒子、酸化ジルコニウム粒子、及び、これらの複合酸化物粒子等が挙げられる。これらは1種を単独で又は2種以上を組み合わせて用いられる。これらの中でも、表面水酸基が多く、無機化合物粒子の表面積が大きくなり、無機化合物粒子同士の結合、又は、無機化合物と重合体粒子との結合を強固にできるという観点から、二酸化ケイ素粒子、酸化アルミニウム粒子、酸化アンチモン粒子、及び、これらの複合酸化物粒子が好ましく、二酸化ケイ素を基本単位とするシリカが溶媒中に分散した、コロイダルシリカ粒子がより好ましい。
(Inorganic compound (D))
Examples of the inorganic compound (D) having no photocatalytic activity include silicon dioxide (silica) particles, aluminum oxide (alumina) particles, calcium silicate particles, magnesium oxide particles, antimony oxide particles, zirconium oxide particles, and composites thereof. Examples thereof include oxide particles. These are used singly or in combination of two or more. Among these, from the viewpoint that there are many surface hydroxyl groups, the surface area of the inorganic compound particles is increased, and the bond between the inorganic compound particles or the bond between the inorganic compound and the polymer particles can be strengthened, silicon dioxide particles, aluminum oxide Particles, antimony oxide particles, and composite oxide particles thereof are preferable, and colloidal silica particles in which silica having silicon dioxide as a basic unit is dispersed in a solvent are more preferable.

コロイダルシリカは、ゾル−ゲル法により調製したものを使用することもでき、市販品を利用することもできる。ゾル−ゲル法で調製する場合には、Werner Stober etal;J.Colloid and Interface Sci.,26,62−69(1968)、Rickey D.Badley et al;Lang muir 6,792−801(1990)、色材協会誌,61[9]488−493(1988)等を参照することができる。   As colloidal silica, one prepared by a sol-gel method can be used, and a commercially available product can also be used. For preparation by the sol-gel method, Werner Stober et al; Colloid and Interface Sci. , 26, 62-69 (1968), Rickey D .; Badley et al; Lang muir 6, 792-801 (1990), Color Material Association Journal, 61 [9] 488-493 (1988), and the like.

コロイダルシリカとしては、例えば、水を分散媒体とする、酸性のコロイダルシリカ及び塩基性のコロイダルシリカ、並びに、水溶性溶媒を分散媒体とするコロイダルシリカ等が挙げられる。   Examples of colloidal silica include acidic colloidal silica and basic colloidal silica using water as a dispersion medium, and colloidal silica using a water-soluble solvent as a dispersion medium.

酸性のコロイダルシリカとしては、例えば、市販品として日産化学工業(株)製スノーテックス(登録商標)−O、スノーテックス−OS、旭電化工業(株)製アデライト(登録商標)AT−20Q、クラリアントジャパン(株)製クレボゾール(登録商標)20H12、クレボゾール30CAL25等を挙げることができる。   Examples of the acidic colloidal silica include commercially available products such as Snowtechs (registered trademark) -O, manufactured by Nissan Chemical Industries, Snowtex-OS, Adelite (registered trademark) AT-20Q, manufactured by Asahi Denka Kogyo Co., Ltd., and Clariant. Examples include clebosol (registered trademark) 20H12 and clebosol 30CAL25 manufactured by Japan Corporation.

塩基性のコロイダルシリカとしては、例えば、アルカリ金属イオン、アンモニウムイオン、アミン等の添加により安定化したシリカ等が挙げられ、具体的には、日産化学工業(株)製スノーテックス−NS、スノーテックス−20、スノーテックス−30、スノーテックス−C、スノーテックス−C30、スノーテックス−CM40、スノーテックス−N、スノーテックス−N30、スノーテックス−K、スノーテックス−XL、スノーテックス−YL、スノーテックス−ZL、スノーテックスPS−M、スノーテックスPS−L等;旭電化工業(株)製アデライトAT−20、アデライトAT−30、アデライトAT−20N、アデライトAT−30N、アデライトAT−20A、アデライトAT−30A、アデライトAT−40、アデライトAT−50等;クラリアントジャパン(株)製クレボゾール30R9、クレボゾール30R50、クレボゾール50R50等;デュポン社製ルドックス(商標)HS−40、ルドックスHS−30、ルドックスLS、ルドックスSM−30等;を挙げることができる。   Examples of basic colloidal silica include silica stabilized by addition of alkali metal ions, ammonium ions, amines, and the like. Specifically, SNOWTEX-NS, SNOWTEX manufactured by Nissan Chemical Industries, Ltd. -20, Snowtex-30, Snowtex-C, Snowtex-C30, Snowtex-CM40, Snowtex-N, Snowtex-N30, Snowtex-K, Snowtex-XL, Snowtex-YL, Snowtex -ZL, Snowtex PS-M, Snowtex PS-L, etc .; manufactured by Asahi Denka Kogyo Co., Ltd., Adelite AT-20, Adelite AT-30, Adelite AT-20N, Adelite AT-30N, Adelite AT-20A, Adelite AT -30A, Adelite AT-40, Adela Clarant Japan Co., Ltd. clebosol 30R9, clebosol 30R50, clebosol 50R50, etc .; DuPont Ludox (trademark) HS-40, Ludox HS-30, Ludox LS, Ludox SM-30, etc. Can do.

水溶性溶媒を分散媒体とするコロイダルシリカとしては、例えば、日産化学工業(株)製MA−ST−M(粒子径が20〜25nmのメタノール分散タイプ)、IPAST(粒子径が10〜15nmのイソプロピルアルコール分散タイプ)、EG−ST(粒子径が10〜15nmのエチレングリコール分散タイプ)、EG−ST−ZL(粒子径が70〜100nmのエチレングリコール分散タイプ)、NPC−ST(粒子径が10〜15nmのエチレングリコールモノプロピルエーテール分散タイプ)等を挙げることができる。   Examples of colloidal silica using a water-soluble solvent as a dispersion medium include MA-ST-M (methanol dispersion type having a particle size of 20 to 25 nm) and IPAST (isopropyl having a particle size of 10 to 15 nm) manufactured by Nissan Chemical Industries, Ltd. Alcohol dispersion type), EG-ST (ethylene glycol dispersion type with particle diameter of 10 to 15 nm), EG-ST-ZL (ethylene glycol dispersion type with particle diameter of 70 to 100 nm), NPC-ST (particle diameter of 10 to 10 nm) 15 nm ethylene glycol monopropyl ether dispersion type).

これらのコロイダルシリカは、1種、又は2種類以上を組み合わせてもよい。
コロイダルシリカは、少量成分として、アルミナ、アルミン酸ナトリウム等を含んでいてもよい。また、コロイダルシリカは、安定剤として無機塩基(水酸化ナトリウム、水酸化カリウム、水酸化リチウム、アンモニア等)や有機塩基(テトラメチルアンモニウム等)を含んでいてもよい。
These colloidal silicas may be used alone or in combination of two or more.
Colloidal silica may contain alumina, sodium aluminate or the like as a minor component. Colloidal silica may contain an inorganic base (such as sodium hydroxide, potassium hydroxide, lithium hydroxide, or ammonia) or an organic base (such as tetramethylammonium) as a stabilizer.

無機化合物(D)の粒子径は、好ましくは平均で100nm以下であり、より好ましくは50nm以下であり、さらに好ましくは20nm以下である。また、粒子径が平均で10nm以下の無機酸化物粒子は、得られる光触媒塗膜の透明性が非常に高くなる観点から、よりさらに好ましい。
無機化合物(D)の粒子径(数平均粒子径)は、下記実施例に記載の方法に準拠して測定することができる。
本実施形態の光触媒組成物は、塗膜の親水性、耐候性の観点から、光触媒活性を有しない無機化合物(D)の割合は、光触媒組成物全量に対し、好ましくは40〜99質量%であり、より好ましくは40〜90質量%であり、さらに好ましくは45〜85質量%である。
The average particle size of the inorganic compound (D) is preferably 100 nm or less, more preferably 50 nm or less, and even more preferably 20 nm or less. Further, inorganic oxide particles having an average particle size of 10 nm or less are more preferable from the viewpoint that the resulting photocatalyst coating film has very high transparency.
The particle diameter (number average particle diameter) of the inorganic compound (D) can be measured according to the method described in the following examples.
In the photocatalyst composition of the present embodiment, the proportion of the inorganic compound (D) having no photocatalytic activity is preferably 40 to 99% by mass with respect to the total amount of the photocatalyst composition, from the viewpoint of the hydrophilicity and weather resistance of the coating film. Yes, more preferably 40 to 90% by mass, still more preferably 45 to 85% by mass.

(重合体粒子(E))
本実施形態の光触媒組成物は、重合体粒子(E)をさらに含むことが好ましい。
本実施形態の光触媒組成物に使用できる重合体粒子(E)としては、全ての合成樹脂及び天然樹脂が使用可能である。また、その形態については、ペレットの形態であっても、溶媒に溶解あるいは分散した形態であってもよく、特に制限はないが、コーティング用としての樹脂塗料の形態が好ましい。
(Polymer particles (E))
The photocatalyst composition of the present embodiment preferably further includes polymer particles (E).
As the polymer particles (E) that can be used in the photocatalyst composition of the present embodiment, all synthetic resins and natural resins can be used. Further, the form thereof may be a form of pellets or a form dissolved or dispersed in a solvent, and is not particularly limited, but a form of a resin paint for coating is preferable.

樹脂塗料の例としては、油性塗料、ラッカー、溶剤系合成樹脂塗料(アクリル樹脂系、エポキシ樹脂系、ウレタン樹脂系、フッ素樹脂系、シリコーン−アクリル樹脂系、アルキド樹脂系、アミノアルキド樹脂系、ビニル樹脂系、不飽和ポリエステル樹脂系、塩化ゴム系等)、水系合成樹脂塗料(エマルジョン系、水性樹脂系等)、無溶剤合成樹脂塗料(粉体塗料等)、無機質塗料、電気絶縁塗料等を挙げることができる。
これらの樹脂塗料の中で、光触媒に対し難分解性であるシリコーン系樹脂やフッ素系樹脂、さらにはシリコーン系樹脂とフッ素系樹脂の併用系の樹脂塗料が好ましく用いられる。
Examples of resin paints include oil-based paints, lacquers, solvent-based synthetic resin paints (acrylic resins, epoxy resins, urethane resins, fluororesins, silicone-acrylic resins, alkyd resins, aminoalkyd resins, vinyl. Resin-based, unsaturated polyester resin-based, chlorinated rubber-based, etc.), water-based synthetic resin coatings (emulsion-based, water-based resin-based, etc.), solvent-free synthetic resin coatings (powder coatings, etc.), inorganic coatings, electrical insulation coatings, etc. be able to.
Among these resin coatings, silicone resins and fluorine resins that are hardly decomposable with respect to the photocatalyst, and a combination resin coating of a silicone resin and a fluorine resin are preferably used.

このようなシリコーン系樹脂としては、例えばアルコキシシラン及び/又はオルガノアルコキシシランやそれらの加水分解生成物(ポリシロキサン)及び/又はコロイダルシリカ、さらにはシリコーン含有量1〜80質量%のアクリル−シリコーン樹脂、エポキシ−シリコーン樹脂、ウレタン−シリコーン樹脂やアルコキシシラン及び/又はオルガノアルコキシシランやそれらの加水分解生成物(ポリシロキサン)及び/又はコロイダルシリカを1〜80質量%含有する樹脂等が挙げられる。これらのシリコーン系樹脂は、溶剤に溶けたタイプ、分散タイプ、粉体タイプのいずれであってもよく、また架橋剤、触媒等の添加剤が含まれていてもよい。   Examples of such silicone resins include alkoxysilanes and / or organoalkoxysilanes, their hydrolysis products (polysiloxanes) and / or colloidal silica, and acrylic-silicone resins having a silicone content of 1 to 80% by mass. , An epoxy-silicone resin, a urethane-silicone resin, an alkoxysilane and / or an organoalkoxysilane, a hydrolysis product thereof (polysiloxane) and / or a resin containing 1 to 80% by mass of colloidal silica. These silicone resins may be any of a solvent-soluble type, a dispersion type, and a powder type, and may contain additives such as a crosslinking agent and a catalyst.

本実施形態の光触媒組成物は、耐候性の観点から、光触媒活性を有しない重合体粒子(E)の割合が、光触媒組成物全量に対し、好ましくは0〜40質量%であり、より好ましくは0〜30質量%であり、さらに好ましくは0〜20質量%である。   In the photocatalyst composition of the present embodiment, from the viewpoint of weather resistance, the proportion of the polymer particles (E) having no photocatalytic activity is preferably 0 to 40% by mass, more preferably, relative to the total amount of the photocatalyst composition. It is 0-30 mass%, More preferably, it is 0-20 mass%.

(フルオロカーボン界面活性剤(F))
本実施形態の光触媒組成物は、フルオロカーボン界面活性剤(F)をさら更に含むことが好ましい。これにより、本実施形態の水系コーティング剤組成物やこれを含む水系塗料を用いて塗装する際における、有機基材等への濡れ性が一層向上し、はじき等の外観上のトラブルも一層抑制することができる。さらには、塗膜の均一性も一層向上する。これらの理由としては定かではないが、(F)成分を含有することにより、水系コーティング剤組成物の表面張力を低下させることができると推測される(但し、本実施形態の作用はこれらに限定されない。)。
(Fluorocarbon surfactant (F))
It is preferable that the photocatalyst composition of this embodiment further contains a fluorocarbon surfactant (F). This further improves the wettability to the organic base material and the like when coating with the aqueous coating agent composition of the present embodiment or the aqueous coating material containing the same, and further suppresses appearance troubles such as repellency. be able to. Furthermore, the uniformity of the coating film is further improved. Although it is not certain as these reasons, it is presumed that the surface tension of the aqueous coating agent composition can be lowered by containing the component (F) (however, the action of this embodiment is limited to these). Not.)

(F)成分としては、特に限定されないが、両性界面活性剤が好ましい。両性界面活性剤としては、例えば、非イオン性両性界面活性剤、陰イオン性両性界面活性剤、陽イオン性両性界面活性剤等が挙げられる。好ましい具体例としては、例えば、炭素数3〜20のパーフルオロアルキル基を有する両性界面活性剤が挙げられる。   Although it does not specifically limit as (F) component, Amphoteric surfactant is preferable. Examples of amphoteric surfactants include nonionic amphoteric surfactants, anionic amphoteric surfactants, and cationic amphoteric surfactants. Preferable specific examples include amphoteric surfactants having a C 3-20 perfluoroalkyl group.

炭素数3〜20のパーフルオロアルキル基を有する両性界面活性剤の具体例としては、パーフルオロアルキルスルホン酸塩、パーフルオロアルキルカルボン酸塩、パーフルオロアルキルアミンオキシド、パーフルオロアルキルエチレンオキシド付加物、陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物等が挙げられる。これらの中でも、塗料の表面張力の低下の観点から、パーフルオロアルキルエチレンオキシド付加物、陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物が好ましい。   Specific examples of the amphoteric surfactant having a C 3-20 perfluoroalkyl group include perfluoroalkyl sulfonate, perfluoroalkyl carboxylate, perfluoroalkyl amine oxide, perfluoroalkyl ethylene oxide adduct, negative Examples include perfluoroalkyl compounds having an ionic group and a cationic group. Among these, from the viewpoint of lowering the surface tension of the paint, perfluoroalkylethylene oxide adducts and perfluoroalkyl compounds having an anionic group and a cationic group are preferred.

パーフルオロアルキルカルボン酸塩としては、例えば、市販品を用いることもできる。パーフルオロアルキルカルボン酸塩の市販品としては、AGCセイミケミカル社製の「サーフロンS−211」等が挙げられる。
パーフルオロアルキルアミンオキシドとしては、例えば、市販品を用いることもできる。パーフルオロアルキルアミンオキシドの市販品としては、AGCセイミケミカル社製の「サーフロンS−241」等が挙げられる。
パーフルオロアルキルエチレンオキシド付加物としては、例えば、市販品を用いることもできる。パーフルオロアルキルエチレンオキシド付加物のような市販品としては、例えば、DIC社製の「メガファックF−444」、AGCセイミケミカル社製の「サーフロンS−242」等が挙げられる。
陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物としては、例えば、市販品を用いることもできる。陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物のような市販品としては、AGCセイミケミカル社製の「サーフロンS−231」、「サーフロンS−232」、「サーフロンS−233」等が挙げられる。
これらパーフルオロアルキル基を有する両性界面活性剤は1種単独で用いてもよいし、2種以上を併用してもよい。
As a perfluoroalkyl carboxylate, a commercial item can also be used, for example. Examples of commercially available perfluoroalkyl carboxylates include “Surflon S-211” manufactured by AGC Seimi Chemical Co., Ltd.
As the perfluoroalkylamine oxide, for example, a commercially available product can be used. Examples of commercially available perfluoroalkylamine oxides include “Surflon S-241” manufactured by AGC Seimi Chemical Co., Ltd.
As a perfluoroalkyl ethylene oxide adduct, a commercial item can also be used, for example. Examples of commercially available products such as perfluoroalkylethylene oxide adducts include “Megafac F-444” manufactured by DIC and “Surflon S-242” manufactured by AGC Seimi Chemical.
As a perfluoroalkyl compound having an anionic group and a cationic group, for example, a commercially available product can be used. Commercially available products such as perfluoroalkyl compounds having an anionic group and a cationic group include “Surflon S-231”, “Surflon S-232”, and “Surflon S-233” manufactured by AGC Seimi Chemical Co., Ltd. Etc.
These amphoteric surfactants having a perfluoroalkyl group may be used alone or in combination of two or more.

水系コーティング剤組成物中の(F)成分の含有量は、特に限定されないが、好ましくは0.0001〜0.50質量%であり、より好ましくは0.01〜0.10質量%である。(F)成分の含有量を上記下限値以上とすることで、得られる塗膜の均一性が一層向上する。(F)成分の含有量を上記上限値以下とすることで、得られる塗膜の耐候性が一層向上する。   The content of the component (F) in the aqueous coating agent composition is not particularly limited, but is preferably 0.0001 to 0.50 mass%, more preferably 0.01 to 0.10 mass%. By making content of (F) component more than the said lower limit, the uniformity of the coating film obtained improves further. By making content of (F) component below the said upper limit, the weather resistance of the coating film obtained further improves.

本実施形態の光触媒組成物は、退色性色素(G)をさらに含むことが好ましい。これにより、塗装忘れ、重複塗装、塗装むら等のトラブルを防ぐことができる。
(G)成分としては、太陽光の照射により失色し、下地の意匠性を損ねないものが好ましい。失色までの時間は季節や照射方角等により異なるが、通常、目視で失色が確認されるまでの期間が、好ましくは20日以下であり、より好ましくは10日以下であり、さらに好ましくは3日以下である。
It is preferable that the photocatalyst composition of this embodiment further contains a fading dye (G). As a result, troubles such as forgetting to paint, overlapping painting, and uneven painting can be prevented.
(G) As a component, the thing which loses color by irradiation of sunlight and does not impair the design of the ground is preferable. Although the time until the color loss varies depending on the season, the irradiation direction, etc., the period until the color loss is confirmed visually is usually 20 days or less, more preferably 10 days or less, and even more preferably 3 days. It is as follows.

(G)成分としては、太陽光の照射で失色する性質を有するものであれば特に限定されないが、好適例としては、メチレンブルー、クリスタルバイオレット、マラカイトグリーン、ブリリアントブルーFCF、エリスロシン、ニューコクシン、フロキシン、ローズベンガル、アシッドレッド、及びファーストグリーンFCFからなる群より選ばれる1種等が挙げられる。これらの中でも、発色性が良く、失色速度も早い観点から、メチレンブルーがより好ましい。これらは1種単独で用いてもよいし、2種以上を併用してもよい。
水系コーティング剤組成物中の(G)成分の含有量は、特に限定されないが、好ましくは0.0002〜0.01質量%であり、より好ましくは0.001〜0.007質量%である。水系コーティング剤組成物中の(G)成分の含有量を上記範囲とすることで、塗膜の発色性や退色性が一層向上する。ここでいう発色性とは、塗装面と未塗装面が色の違いから目視で区別される程度まで発色する性質をいい、退色性とは、基材の意匠性を損ねない色の程度まで退色する性質をいう。
The component (G) is not particularly limited as long as it has the property of being decolored by irradiation with sunlight. Preferred examples include methylene blue, crystal violet, malachite green, brilliant blue FCF, erythrosin, new coxin, phloxine. , Rose Bengal, Acid Red, and First Green FCF. Among these, methylene blue is more preferable from the viewpoint of good color developability and fast decolorization rate. These may be used alone or in combination of two or more.
Although content of (G) component in a water-system coating agent composition is not specifically limited, Preferably it is 0.0002-0.01 mass%, More preferably, it is 0.001-0.007 mass%. By setting the content of the component (G) in the aqueous coating agent composition within the above range, the color developability and color fading of the coating film are further improved. Color development here refers to the property of coloring to the extent that the painted and unpainted surfaces are visually distinguished from the difference in color, and fading is the color that does not impair the design of the base material. Refers to the nature of

水系コーティング剤組成物から得られる塗膜中の(G)成分の含有量は、特に限定され
ないが、好ましくは0.01〜0.5質量%であり、より好ましくは0.05〜0.2質
量%であり、更に好ましくは0.1〜0.2質量%である。(G)成分の含有量を上記下
限値以上とすることで、塗膜の発色性が一層向上し、上記上限値以下とすることで、塗膜
の退色性が一層向上する。
Although content of (G) component in the coating film obtained from an aqueous coating agent composition is not specifically limited, Preferably it is 0.01-0.5 mass%, More preferably, it is 0.05-0.2. It is mass%, More preferably, it is 0.1-0.2 mass%. By making content of (G) component more than the said lower limit, the coloring property of a coating film improves further, and the fading property of a coating film improves further by setting it as the said upper limit or less.

[光触媒塗膜]
本実施形態の光触媒組成物は、光触媒塗膜を形成することができる。すなわち、本実施形態の一つは、本実施形態の光触媒組成物から形成された、光触媒塗膜である。
本実施形態の光触媒塗膜の膜厚は特に限定されないが、0.05〜50μmであることが好ましく、0.1〜10μmであることがより好ましく、0.2〜2.0μmであることが更に好ましい。この厚さが50μm以下であることにより、良好な透明性を確保することができ、0.05μm以上であることにより、防汚性、光触媒活性等の機能をより有効に発現することができる。
[Photocatalytic coating]
The photocatalyst composition of this embodiment can form a photocatalyst coating film. That is, one of the embodiments is a photocatalyst coating film formed from the photocatalyst composition of the embodiment.
Although the film thickness of the photocatalyst coating film of this embodiment is not specifically limited, It is preferable that it is 0.05-50 micrometers, It is more preferable that it is 0.1-10 micrometers, It is that it is 0.2-2.0 micrometers. Further preferred. When the thickness is 50 μm or less, good transparency can be ensured, and when the thickness is 0.05 μm or more, functions such as antifouling property and photocatalytic activity can be expressed more effectively.

本実施形態の光触媒塗膜には、そこに含まれる各粒子の分散安定性の観点から、分散安定剤が含まれていてもよい。分散安定剤としては、例えば、ポリカルボン酸及びスルホン酸塩からなる群から選ばれる各種の水溶性オリゴマー類、ポリビニルアルコール、ヒドロキシエチルセルロース、澱粉、マレイン化ポリブタジエン、マレイン化アルキッド樹脂、ポリアクリル酸(塩)、ポリアクリルアミド、アクリル樹脂に代表される合成若しくは天然の各種の高分子物質等が挙げられる。分散安定剤は、1種を単独で、又は2種以上を混合して用いられる。   The photocatalyst coating film of the present embodiment may contain a dispersion stabilizer from the viewpoint of dispersion stability of each particle contained therein. Examples of the dispersion stabilizer include various water-soluble oligomers selected from the group consisting of polycarboxylic acids and sulfonates, polyvinyl alcohol, hydroxyethyl cellulose, starch, maleated polybutadiene, maleated alkyd resin, polyacrylic acid (salt ), Various synthetic or natural polymer materials represented by polyacrylamide and acrylic resins, and the like. A dispersion stabilizer is used individually by 1 type or in mixture of 2 or more types.

また、本実施形態の光触媒塗膜には、その用途及び使用方法などに応じて、通常の塗料や成型用樹脂に添加配合される成分、例えば、溶剤、増粘剤、レベリング剤、チクソ化剤、消泡剤、凍結安定剤、艶消し剤、架橋反応触媒、顔料、硬化触媒、架橋剤、充填剤、皮張り防止剤、分散剤、湿潤剤、光安定剤、酸化防止剤、紫外線吸収剤、レオロジーコントロール剤、消泡剤、成膜助剤、防錆剤、染料、可塑剤、潤滑剤、還元剤、防腐剤、防黴剤、消臭剤、黄変防止剤、静電防止剤又は帯電調製剤等が含まれていてもよい。前述したように防藻防カビ剤を光触媒塗膜に添加しても防藻防カビ性能は付与できないと推測されるが、もし添加してもその他塗膜性能には影響がないと思われる。   In addition, the photocatalyst coating film of the present embodiment has components added to and blended with ordinary paints and molding resins, for example, a solvent, a thickener, a leveling agent, and a thixotropic agent, depending on the application and method of use. , Antifoaming agent, Freezing stabilizer, Matting agent, Crosslinking reaction catalyst, Pigment, Curing catalyst, Crosslinking agent, Filler, Anti-skinning agent, Dispersant, Wetting agent, Light stabilizer, Antioxidant, UV absorber , Rheology control agent, antifoaming agent, film forming aid, rust preventive agent, dye, plasticizer, lubricant, reducing agent, preservative, antifungal agent, deodorant, anti-yellowing agent, antistatic agent or A charge adjusting agent or the like may be contained. As described above, it is presumed that adding an anti-algal fungicide to the photocatalyst coating does not give an anti-algal anti-fungal performance, but adding it does not seem to affect other coating performance.

本実施形態の光触媒塗膜は、光触媒組成物を基体又は基体を被覆するコーティングの表面に塗布して乾燥することにより得られる。光触媒組成物を塗布する基体材料としては、例えば合成樹脂、天然樹脂、繊維に代表される有機基材、金属、セラミックス、ガラス、石、セメント、コンクリートに代表される無機基材や、それらの組み合わせが挙げられる。   The photocatalyst coating film of this embodiment is obtained by applying the photocatalyst composition to the surface of a substrate or a coating covering the substrate and drying it. Examples of the base material on which the photocatalyst composition is applied include organic substrates represented by synthetic resins, natural resins, fibers, inorganic substrates represented by metals, ceramics, glass, stone, cement, concrete, and combinations thereof. Is mentioned.

上記合成樹脂としては、熱可塑性樹脂及び硬化性樹脂(熱硬化性樹脂、光硬化性樹脂、湿気硬化性樹脂等)が挙げられる。その具体例としては、例えば、シリコーン樹脂、アクリル樹脂、メタクリル樹脂、フッ素樹脂、アルキド樹脂、アミノアルキド樹脂、ビニル樹脂、ポリエステル樹脂、スチレン−ブタジエン樹脂、ポリオレフィン樹脂、ポリスチレン樹脂、ポリケトン樹脂、ポリアミド樹脂、ポリカーボネート樹脂、ポリアセタール樹脂、ポリエーテルエーテルケトン樹脂、ポリフェニレンオキシド樹脂、ポリスルホン樹脂、ポリフェニレンスルホン樹脂ポリエーテル樹脂、ポリ塩化ビニル樹脂、ポリ塩化ビニリデン樹脂、尿素樹脂、フェノール樹脂、メラミン樹脂、エポキシ樹脂、ウレタン樹脂、シリコーン−アクリル樹脂が挙げられる。また、上記天然樹脂としては、例えば、セルロース系樹脂、天然ゴムに代表されるイソプレン系樹脂、カゼインに代表されるタンパク質系樹脂等が挙げられる。   Examples of the synthetic resin include thermoplastic resins and curable resins (thermosetting resins, photocurable resins, moisture curable resins, and the like). Specific examples thereof include, for example, silicone resin, acrylic resin, methacrylic resin, fluororesin, alkyd resin, aminoalkyd resin, vinyl resin, polyester resin, styrene-butadiene resin, polyolefin resin, polystyrene resin, polyketone resin, polyamide resin, Polycarbonate resin, polyacetal resin, polyether ether ketone resin, polyphenylene oxide resin, polysulfone resin, polyphenylene sulfone resin polyether resin, polyvinyl chloride resin, polyvinylidene chloride resin, urea resin, phenol resin, melamine resin, epoxy resin, urethane resin And silicone-acrylic resin. Examples of the natural resin include cellulose resins, isoprene resins typified by natural rubber, protein resins typified by casein, and the like.

基体が樹脂板や繊維である場合、その表面は、コロナ放電処理やフレーム処理、プラズマ処理等の表面処理がされていてもよいが、これらの表面処理は必須ではない。   When the substrate is a resin plate or fiber, the surface thereof may be subjected to a surface treatment such as a corona discharge treatment, a flame treatment, or a plasma treatment, but these surface treatments are not essential.

本実施形態の光触媒塗膜は、光触媒組成物をその用途等に応じて、任意の方法で塗布され得られる。塗布方法としては、例えばスプレー吹き付け法、フローコーティング法、ロールコート法、刷毛塗り法、ディップコーティング法、スピンコーティング法、スクリーン印刷法、キャスティング法、グラビア印刷法、フレキソ印刷法が挙げられる。   The photocatalyst coating film of the present embodiment can be applied by any method according to the use of the photocatalyst composition. Examples of the application method include spray spraying, flow coating, roll coating, brush coating, dip coating, spin coating, screen printing, casting, gravure printing, and flexographic printing.

本実施形態の光触媒塗膜は、光触媒組成物を塗布した後、乾燥して揮発分を除去することにより得られる。この際、例えば、20℃〜80℃の低温で乾燥した後、所望により、好ましくは20℃〜500℃、より好ましくは40℃〜250℃の熱処理を行ってもよく、紫外線照射等を行ってもよい。   The photocatalyst coating film of this embodiment is obtained by applying a photocatalyst composition and then drying to remove volatile components. At this time, for example, after drying at a low temperature of 20 ° C. to 80 ° C., heat treatment at 20 ° C. to 500 ° C., more preferably 40 ° C. to 250 ° C. may be performed as desired, and ultraviolet irradiation or the like is performed. Also good.

[光触媒塗装製品]
本実施形態の光触媒塗装製品は、本実施形態の光触媒塗膜を備える製品であり、基体と、その基体上に形成された上記光触媒塗膜とを備える。この光触媒塗装製品は、本実施形態の光触媒塗膜を備える他は公知の態様と同様であればよい。本実施形態の光触媒塗装製品の具体例としては、例えば、建材、建物外装、建物内装、窓枠、窓ガラス、構造部材、住宅等建築設備、車両用照明灯のカバー、窓ガラス、機械装置や物品の外装、防塵カバー及び塗装、表示機器、そのカバー、交通標識、各種表示装置、広告塔等の表示物、道路用、鉄道用等の遮音壁、橋梁、ガードレールの外装及び塗装、トンネル内装及び塗装、碍子、太陽電池カバー、太陽熱温水器集熱カバー等の外部で用いられる電子、電気機器の外装部、特に透明部材、ビニールハウス、温室等の外装が挙げられる。この光触媒塗装製品は、基体の表面に光触媒組成物を塗布し乾燥し、基体上に光触媒塗膜を形成することによって得てもよいが、その製造方法はこれに限定されない。例えば、基体と光触媒塗膜とを同時に成形してもよく、より具体的には一体成形してもよい。
[Photocatalyst coating products]
The photocatalyst-coated product of the present embodiment is a product including the photocatalyst coating film of the present embodiment, and includes a substrate and the photocatalyst coating film formed on the substrate. The photocatalyst-coated product may be the same as the known embodiment except that the photocatalyst coating film of the present embodiment is provided. Specific examples of the photocatalyst-coated product of the present embodiment include, for example, building materials, building exteriors, building interiors, window frames, window glass, structural members, building facilities such as houses, vehicle illumination lamp covers, window glass, mechanical devices, Exterior of goods, dustproof cover and painting, display equipment, its covers, traffic signs, various display devices, display objects such as advertising towers, sound insulation walls for roads and railways, bridges, exterior and painting of guardrails, tunnel interior and painting , Electronic parts used outside such as insulators, solar battery covers, solar water heater heat collection covers, etc., and exterior parts of electrical equipment, especially exteriors such as transparent members, greenhouses and greenhouses. This photocatalyst-coated product may be obtained by applying a photocatalyst composition on the surface of a substrate and drying it to form a photocatalyst coating film on the substrate, but the production method is not limited thereto. For example, the substrate and the photocatalyst coating film may be molded at the same time, and more specifically, may be integrally molded.

また、本実施形態の光触媒塗膜をある基体上に成形した後、その光触媒塗膜をその基体から剥離させた又はその基体と密着させた状態で、別の基体に接着、融着等により密着させてもよい。   In addition, after the photocatalyst coating film of the present embodiment is formed on a substrate, the photocatalyst coating film is adhered to another substrate by adhesion, fusion, or the like in a state where the photocatalyst coating film is peeled off or adhered to the substrate. You may let them.

以上、本発明を実施するための形態について説明したが、本発明は上記本実施形態に限
定されるものではない。本発明は、その要旨を逸脱しない範囲で様々な変形が可能である
As mentioned above, although the form for implementing this invention was demonstrated, this invention is not limited to the said this embodiment. The present invention can be variously modified without departing from the gist thereof.

以下の、製造例、実施例、及び比較例、並びに、製造実施例、及び製造比較例により本発明を具体的に説明するが、これらは本発明の範囲を限定するものではない。各種の物性は以下に示す方法で測定した。   The following production examples, examples, and comparative examples, as well as production examples and production comparative examples, will specifically describe the present invention, but these do not limit the scope of the present invention. Various physical properties were measured by the following methods.

1.H22の定量
[H22]の測定は、ルシゲニン化学発光法を用いて行った。
まず、暗箱内のマグネティックスターラ上に設置した石英セル(光路(長さ)1cm×幅1cm)に、3.5mLの0.01M NaOH水溶液を添加し、pH9に調整し、そこにさらに15mgの、ゾルを乾燥して得られた無機化合物(A)の粉末を投入し、懸濁させて懸濁液を得た。
次に、LED(Hamamatsu Photonics(浜松ホトニクス)社製、型番「LC−L2」、波長:365nm、強度5mW/cm2)を光源として、懸濁液が入った上記セルに60秒間の紫外光照射を行った。照射後、0.7mMのルシゲニン溶液を50μL添加し、H22によって生じた化学発光をバンドパスフィルターに通した後、電子冷却光電子増倍管で検出した。化学発光の検出量から、[H22]を導出した。
1. Measurement of quantitative [H 2 O 2] in the H 2 O 2 was performed using a lucigenin chemiluminescence method.
First, to a quartz cell (optical path (length) 1 cm × width 1 cm) placed on a magnetic stirrer in a dark box, 3.5 mL of 0.01 M NaOH aqueous solution was added to adjust to pH 9, and further 15 mg of A powder of the inorganic compound (A) obtained by drying the sol was added and suspended to obtain a suspension.
Next, using the LED (Hamamatsu Photonics, model number “LC-L2”, wavelength: 365 nm, intensity 5 mW / cm 2 ) as a light source, the cell containing the suspension was irradiated with ultraviolet light for 60 seconds. Went. After irradiation, 50 μL of a 0.7 mM lucigenin solution was added, and chemiluminescence generated by H 2 O 2 was passed through a bandpass filter, and then detected with an electron-cooled photomultiplier tube. [H 2 O 2 ] was derived from the detected amount of chemiluminescence.

2.ヒドロキシラジカルの定量
[・OH]の測定は、クマリン蛍光プローブ法を用いて行った。
まず、0.1mMのクマリン水溶液を調製し、石英セル(光路(長さ)1cm×幅1cm)中に15mgの、ゾルを乾燥して得られた無機化合物(A)とクマリン水溶液35mLとを懸濁させて懸濁液を得た。この懸濁液に波長365nm、強度5mW/cm2のLED光を60秒照射した。
次に、無機化合物(A)粉末を分離するために、照射終了後の懸濁液にKClを0.5g添加し、24時間暗所に静置した。
その後、上澄み液をとりサンプルとし、Fluorescence spectrophotometer(850型、HITACHI社製)で蛍光の測定をした(この時、KCl添加による蛍光測定時の光散乱は影響しないことを確認している。)。既知濃度のクマリンの蛍光強度を、上記サンプルの蛍光強度と比較することで・OHを定量し、[・OH]の値を導出した。
2. Hydroxyl radical quantification [.OH] was measured using a coumarin fluorescent probe method.
First, a 0.1 mM coumarin aqueous solution was prepared, and 15 mg of an inorganic compound (A) obtained by drying the sol and 35 mL of the coumarin aqueous solution were suspended in a quartz cell (optical path (length) 1 cm × width 1 cm). Suspension was obtained. This suspension was irradiated with LED light having a wavelength of 365 nm and an intensity of 5 mW / cm 2 for 60 seconds.
Next, in order to separate the inorganic compound (A) powder, 0.5 g of KCl was added to the suspension after the irradiation, and the mixture was allowed to stand in the dark for 24 hours.
Thereafter, the supernatant was taken as a sample, and the fluorescence was measured with a fluorescence spectrophotometer (850 type, manufactured by HITACHI). By comparing the fluorescence intensity of the coumarin having a known concentration with the fluorescence intensity of the sample, .OH was quantified, and the value of [.OH] was derived.

3.表面修飾物の定量
蛍光X線分析装置を用いて、理論と基礎定数Fundamental Parameter(FP)により定量分析を行なうFP法にて定量を行った。
3. Quantification of surface-modified product Using a fluorescent X-ray analyzer, quantification was performed by the FP method in which quantitative analysis was performed according to the theory and the fundamental constant Fundamental Parameter (FP).

4.粒子径
(光触媒用無機化合物(AB)の二次粒子径)
光触媒用無機化合物(AB)の二次粒子径は、任意に選択された50個の粒子を電子顕微鏡観察により測定し、それらの相加平均として導出した。
(無機化合物(D)及び重合体粒子(E)の数平均粒子径)
試料中の固形分含有量が1〜20質量%となるよう適宜溶媒を加えて希釈し、湿式粒度分析計(日本国日機装製マイクロトラックUPA−9230)を用いて測定した。
4). Particle size (secondary particle size of inorganic compound for photocatalyst (AB))
The secondary particle size of the inorganic compound for photocatalyst (AB) was determined by observing 50 arbitrarily selected particles by observation with an electron microscope and calculating them as an arithmetic average thereof.
(Number average particle diameter of inorganic compound (D) and polymer particles (E))
The sample was appropriately diluted by adding a solvent so that the solid content in the sample was 1 to 20% by mass, and the measurement was performed using a wet particle size analyzer (Microtrac UPA-9230 manufactured by Nippon Nikkiso).

5.塗膜の膜厚
塗膜の膜厚を、ハロゲン光源装置(MORITEX社製、商品名「MHF−D100LR」)を装着した膜厚測定装置(SPECTRA・COOP社製、商品名「HandyLambda II THICKNESS」)を用いて測定した。
5. Film thickness of coating film Film thickness measurement system (SPECTRA COOP, trade name "HandyLambda II THICKNESS") equipped with halogen light source (MORITEX, trade name "MHF-D100LR") It measured using.

6.塗装性
試験板を走査型電子顕微鏡(日本電子株式会社製、NeoScope JCM-5000)にて塗膜表面状態を観察、撮影し、光触媒塗膜率を塗装率として算出した。
[評価基準]
○ :塗装率が80%以上であった。
△ :塗装率が80〜50%であった。
× :塗装率が50%以下であった。
6). Paintability The test plate surface state was observed and photographed with a scanning electron microscope (manufactured by JEOL Ltd., NeoScope JCM-5000), and the photocatalyst coating rate was calculated as the coating rate.
[Evaluation criteria]
○: The coating rate was 80% or more.
(Triangle | delta): The coating rate was 80 to 50%.
X: The coating rate was 50% or less.

7.光触媒活性(色素分解活性)
JIS R1703−2に準拠して求めた。試験片浄化条件は、照度1mW/cm2で24時間照射、メチレンブルー吸着条件は、吸着液濃度0.02mMで吸着時間24時間照射、メチレンブルーの分解測定条件は、照度1mW/cm2、試験液濃度0.01mM、注入量35mL、照射後に採取した試験液の吸光スペクトルを分光光度計で測定し、分解活性指数(nM/min)を算出した。吸光度測定波長は664nmであった。
[評価基準]
◎ :分解活性指数が10nM/min以上であった。
○ :分解活性指数が7nM/min以上、10nM/min未満であった。
○△:分解活性指数が5nM/min以上、7nM/min未満であった。
× :分解活性指数が5nM/min未満であった。
7). Photocatalytic activity (pigment degradation activity)
It calculated | required based on JISR1703-2. The test piece purification conditions were irradiation for 24 hours at an illuminance of 1 mW / cm 2 , the methylene blue adsorption conditions were irradiation for an adsorption time of 24 hours at an adsorption liquid concentration of 0.02 mM, and the decomposition measurement conditions for methylene blue were illuminance of 1 mW / cm 2 and the test liquid concentration. Absorption spectrum of the test solution collected after irradiation with 0.01 mM, injection volume of 35 mL was measured with a spectrophotometer, and a degradation activity index (nM / min) was calculated. The absorbance measurement wavelength was 664 nm.
[Evaluation criteria]
A: Decomposition activity index was 10 nM / min or more.
○: Decomposition activity index was 7 nM / min or more and less than 10 nM / min.
(Circle) (triangle | delta): The decomposition activity index was 5 nM / min or more and less than 7 nM / min.
X: The decomposition activity index was less than 5 nM / min.

8.光触媒塗膜直下塗膜の劣化観察
試料をエポキシ樹脂(商品名、Quetol812)に包埋後、独国Reichert社製ULTRACUT−N型ミクロトーム(商品名)により50〜60nmの厚さの超薄切片を作製し、支持膜を張ったメッシュに積載した後、カーボン蒸着を行い、検鏡用試料とし、TEM(日立製HF2000型、加速電圧:125kV)により塗膜断面の観察を行い、光触媒塗膜直下塗膜の劣化状態を評価した。
[評価基準]
○ :光触媒塗膜直下塗膜の劣化が観察されなかった。
○△:光触媒塗膜直下塗膜の劣化が極僅かに観察されたが、全体的には問題ないと判断された。
△ :光触媒塗膜直下塗膜の劣化が一部観察された。
× :光触媒塗膜直下塗膜の劣化が全体的に観察された。
8). Deterioration observation of the coating film directly under the photocatalyst coating film After embedding the sample in an epoxy resin (trade name, Quetol 812), an ultrathin section having a thickness of 50 to 60 nm was obtained with a ULTRACUT-N type microtome (trade name) manufactured by Reichert, Germany. After being prepared and loaded on a mesh with a support film, carbon deposition was performed to make a sample for speculum, and the cross section of the coating film was observed with TEM (Hitachi HF2000 type, acceleration voltage: 125 kV). The deterioration state of the coating film was evaluated.
[Evaluation criteria]
○: Deterioration of the coating film directly under the photocatalyst coating film was not observed.
○ Δ: Slight deterioration of the coating film directly under the photocatalyst coating film was observed, but it was judged that there was no problem as a whole.
Δ: Some deterioration of the coating film directly under the photocatalyst coating film was observed.
X: Deterioration of the coating film directly under the photocatalyst coating film was observed as a whole.

9.防藻性、防カビ性(短期)
藻類が存在するシャーレー中に試験体を入れ、一定温度に保った恒温槽中に入れ試験を実施した。判定は試験開始後4週間目で判定した。また、防カビ性はJIS Z2911:2010に準拠してカビ抵抗性試験を実施した。判定は試験開始後2週間目で判定した。
[評価基準]
○ :藻及びカビの生育が見られなかった。
△ :わずかな藻及びカビの生育が見られるが全体的には問題ないと判断された。
× :藻及びカビの生育が明らかに見られた。
9. Algae-proof, mold-proof (short term)
The test specimen was placed in a petri dish containing algae and placed in a thermostatic bath maintained at a constant temperature, and the test was conducted. Judgment was made 4 weeks after the start of the test. In addition, the mold resistance test was conducted in accordance with JIS Z2911: 2010. The determination was made 2 weeks after the start of the test.
[Evaluation criteria]
○: Growth of algae and mold was not observed.
Δ: Slight growth of algae and mold was observed, but it was judged that there was no problem overall.
X: Growth of algae and mold was clearly seen.

10.防藻性、防カビ性(長期)
千葉県銚子市の近隣に森林があり、芝生の生えている土地に試験体を北面90°にて屋外曝露試験を実施した。判定は曝露後1年で判定した。
[評価基準]
○ :目視観察、顕微鏡観察(40倍)で藻、カビの生育は見られなかった。
△ :目視観察で藻、カビの生育はみられないが、顕微鏡観察(40倍)では生育が見られなかった。
× :目視観察で藻、カビの生育が見られた。
10. Algae-proof, mold-proof (long-term)
In the neighborhood of Choshi City, Chiba Prefecture, an outdoor exposure test was conducted at 90 ° north of the specimen on land where lawns grow. Judgment was made one year after exposure.
[Evaluation criteria]
A: Growth of algae and mold was not observed by visual observation and microscopic observation (40 times).
Δ: Growth of algae and mold was not observed by visual observation, but growth was not observed by microscopic observation (40 times).
X: Growth of algae and mold was observed by visual observation.

11.透明性(塗膜の白濁度)
ガラス板((株)テストピース製 並板ガラス;60mm*60mm*2mm)の下に黒紙を敷いた状態での色差を測定した。その後、ディップコーター(アイデン社製 DC4200、昇降速度:下降時 10mm/秒、上昇時 10mm/秒)にて塗布し、塗布後2日間乾燥。その後、照度5000Lxに調整した蛍光灯下で10日間放置し着色剤を脱色させた試験体の色彩色差を測定した。塗布前後での色差(明度差ΔL)を評価した。なお、色差は、カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。色差ΔLが低いほど、透明性が高く、外観性に優れることを意味する。
[評価基準]
○ :色差ΔLが1.6未満であった。
△ :色差ΔLが1.6〜3.0未満であった。
× :色差ΔLが3.0以上であった。
11. Transparency (coating opacity)
The color difference was measured in a state where black paper was laid under a glass plate (manufactured by Testpiece Corp., flat plate glass; 60 mm * 60 mm * 2 mm). Thereafter, it was applied with a dip coater (DC4200, manufactured by Aiden, elevating speed: 10 mm / sec when descending, 10 mm / sec when raising), and dried for 2 days after coating. Then, the color difference of the test body which left it for 10 days under the fluorescent lamp adjusted to illumination intensity 5000Lx and decolored the coloring agent was measured. The color difference (lightness difference ΔL) before and after coating was evaluated. The color difference was obtained from a standard plate using a color guide (BYK Gardner). The lower the color difference ΔL, the higher the transparency and the better the appearance.
[Evaluation criteria]
○: Color difference ΔL was less than 1.6.
Δ: Color difference ΔL was 1.6 to less than 3.0.
X: The color difference ΔL was 3.0 or more.

12.耐候性(SWOM5000時間曝露後の色差)
スガ試験機社製のサンシャインウエザーメーターを用いて曝露試験(ブラックパネル温度63℃、降雨18分/2時間)を行い、曝露前と曝露開始5000時間後との間での色差を上記7の方法で測定し、曝露前の色差を標準とし、曝露前後の状態変化をΔE*として評価した。なお、色差は、カラーガイド(BYK Gardner社製)を用いて標準板からの色差を求めた。色差ΔE*が低いほど、外観性に優れ、耐候性に優れることを意味する。
[評価基準]
○ :ΔE*が2未満であった。
○△:ΔE*が2以上、3未満であった。
△ :ΔE*が3以上、5未満であった。
× :ΔE*が5以上であった。
12 Weather resistance (color difference after exposure to SWOM5000 hours)
Using the sunshine weather meter manufactured by Suga Test Instruments Co., Ltd., an exposure test (black panel temperature: 63 ° C., rainfall: 18 minutes / 2 hours) The color difference before exposure was used as a standard, and the state change before and after exposure was evaluated as ΔE *. The color difference was obtained from a standard plate using a color guide (BYK Gardner). The lower the color difference ΔE *, the better the appearance and the better the weather resistance.
[Evaluation criteria]
○: ΔE * was less than 2.
○ Δ: ΔE * was 2 or more and less than 3.
Δ: ΔE * was 3 or more and less than 5.
X: ΔE * was 5 or more.

[製造例1]シリカ修飾ルチル型酸化チタン
TiO2として200g/Lの濃度の四塩化チタン水溶液700mLと、Na2Oとして100g/Lの濃度の水酸化ナトリウム水溶液を、系のpHを5〜9に維持するように水中に並行添加した。その後、系のpHを7に調整した後、濾過し、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度28.3質量%の酸化チタン湿ケーキ1を得た。この酸化チタン湿ケーキ1は、ルチル型構造を有し、その平均粒径は8nmであった。
得られたルチル型酸化チタン湿ケーキ1を純水で希釈して、1モル/Lのスラリーを調製した。このスラリー1Lを3Lのフラスコに仕込み、さらに、酸化チタンと硝酸とのモル比(酸化チタン/硝酸)が1となるよう、1規定の硝酸を1L添加し、95℃の温度に加熱し、この温度で2時間保持して、酸加熱処理を行った。次いで、酸加熱処理後のスラリーを室温まで冷却し、28%アンモニア水を用いて中和(pH=6.7)して、濾過した後、濾液の導電率が100μS/cmとなるまで洗浄し、固形分濃度25質量%の酸化チタン湿ケーキ2を得た。
得られた酸化チタン湿ケーキ2に、10質量%の水酸化ナトリウム水溶液を添加し、リパルプし、その後、超音波洗浄機で3時間分散させ、pH=10.5、固形分濃度10質量%のアルカリ性酸化チタンゾルを得た。このアルカリ性酸化チタンゾル2Lを3Lのフラスコに仕込み、70℃の温度に昇温し、SiO2として432g/Lの濃度のケイ酸ナトリウム水溶液69.4mlを添加し、その後90℃に昇温して、1時間熟成した後、10%の硫酸を添加してpHを6に調整して、酸化チタンの表面をケイ素の含水酸化物で表面処理した。
得られた酸化チタンゾルを室温まで冷却し、5.4Lの純水を添加し、脱塩濃縮装置を用いて、不純物の除去、及び濃縮を行ない、pH=7.3、固形分濃度29質量%、導電率1.18mS/cmの中性ルチル型酸化チタンゾルを得た。Ti2に対してSiO2基準で15質量%のケイ素の含水酸化物を含有していた。このゾル中の酸化チタンの平均粒径は60nmであった。また、シリカ修飾ルチル型酸化チタンの比表面積は、145m2/gであった。
[Production Example 1] Silica-modified rutile type titanium oxide 700 mL of a titanium tetrachloride aqueous solution having a concentration of 200 g / L as TiO 2 and a sodium hydroxide aqueous solution having a concentration of 100 g / L as Na 2 O, and the pH of the system being 5 to 9 Were added in parallel in water to maintain Thereafter, the pH of the system was adjusted to 7, then filtered, and washed until the filtrate had a conductivity of 100 μS / cm, to obtain a titanium oxide wet cake 1 having a solid content concentration of 28.3 mass%. This titanium oxide wet cake 1 had a rutile structure, and its average particle size was 8 nm.
The obtained rutile-type titanium oxide wet cake 1 was diluted with pure water to prepare a 1 mol / L slurry. 1 L of this slurry was charged into a 3 L flask, 1 L of 1N nitric acid was added so that the molar ratio of titanium oxide and nitric acid (titanium oxide / nitric acid) was 1, and the mixture was heated to a temperature of 95 ° C. The acid heat treatment was performed by maintaining the temperature for 2 hours. Next, the acid-heated slurry is cooled to room temperature, neutralized with 28% aqueous ammonia (pH = 6.7), filtered, and washed until the filtrate has a conductivity of 100 μS / cm. A titanium oxide wet cake 2 having a solid content of 25% by mass was obtained.
To the obtained titanium oxide wet cake 2, a 10% by mass sodium hydroxide aqueous solution was added, repulped, and then dispersed for 3 hours with an ultrasonic washer, pH = 10.5, solid content concentration 10% by mass. An alkaline titanium oxide sol was obtained. This alkaline titanium oxide sol 2L was charged into a 3 L flask, heated to a temperature of 70 ° C., 69.4 ml of a sodium silicate aqueous solution having a concentration of 432 g / L as SiO 2 was added, and then heated to 90 ° C. After aging for 1 hour, 10% sulfuric acid was added to adjust the pH to 6, and the surface of titanium oxide was surface treated with a hydrous oxide of silicon.
The obtained titanium oxide sol was cooled to room temperature, 5.4 L of pure water was added, impurities were removed and concentrated using a desalting and concentrating device, pH = 7.3, solid content concentration 29% by mass A neutral rutile-type titanium oxide sol having a conductivity of 1.18 mS / cm was obtained. It contained 15 wt% of silicon oxide hydroxide with SiO 2 basis relative to Ti 2. The average particle diameter of titanium oxide in this sol was 60 nm. The specific surface area of the silica-modified rutile type titanium oxide was 145 m 2 / g.

[製造例2]シリカ修飾アナタース型酸化チタン
チタン鉱石を硫酸と反応させ、得られた硫酸チタン溶液を加熱加水分解して生成させた凝集メタチタン酸をTiO2換算30質量%の水性スラリーとし、このスラリーをアンモニア水でpH7に中和し、その後濾過洗浄して硫酸根を除去し、脱水ケーキを得た。得られた脱水ケーキに硝酸を加えて解膠処理して、アナタース型結晶構造を含む酸化チタン微粒子(二次粒子径7nm)からなるpH1.5の酸性酸化チタンゾルを得た。得られた酸性酸化チタンゾルを純水で希釈して、TiO2換算200g/Lの酸化チタンゾル600mlとした後、70℃に昇温し、次いで、SiO2換算濃度432g/Lのケイ酸ナトリウム水溶液20.8mlを20%硫酸と同時に添加し、その後、30分間熟成した。次いで、10質量%水酸化ナトリウム水溶液でpHを8に調整した後、2%硫酸水溶液でpHを6に調整し、濾過・洗浄を行い、湿ケーキを得た。この湿ケーキを純水中にリパルプした後、超音波分散して、中性域で安定な酸化チタンゾル(固形分濃度20質量%。pH=7.5)を得た。この試料には、酸化チタン微粒子の表面に凝集シリカが多孔質の状態で被着しており、その含有量は、TiO2 100質量部に対して、SiO2換算で7質量部であった。また、シリカ修飾ルチル型酸化チタンの比表面積は、90m2/gであった。
[Production Example 2] Silica-modified anatase-type titanium oxide Titanium ore is reacted with sulfuric acid, and the resulting titanium sulfate solution is hydrolyzed with heating to form an agglomerated metatitanic acid as an aqueous slurry of 30% by mass in terms of TiO 2. The slurry was neutralized with aqueous ammonia to pH 7, and then filtered and washed to remove sulfate radicals to obtain a dehydrated cake. Nitric acid was added to the obtained dehydrated cake and peptized to obtain an acidic titanium oxide sol having a pH of 1.5 consisting of titanium oxide fine particles (secondary particle diameter 7 nm) containing an anatase type crystal structure. The obtained acidic titanium oxide sol is diluted with pure water to make 600 ml of titanium oxide sol of 200 g / L in terms of TiO 2 , heated to 70 ° C., and then a sodium silicate aqueous solution 20 having a concentration of 432 g / L in terms of SiO 2. .8 ml was added simultaneously with 20% sulfuric acid and then aged for 30 minutes. Next, the pH was adjusted to 8 with a 10% by mass aqueous sodium hydroxide solution, the pH was adjusted to 6 with a 2% aqueous sulfuric acid solution, filtered and washed to obtain a wet cake. The wet cake was repulped into pure water and then ultrasonically dispersed to obtain a titanium oxide sol (solid content concentration 20% by mass, pH = 7.5) stable in the neutral range. In this sample, the aggregated silica was deposited on the surface of the titanium oxide fine particles in a porous state, and the content thereof was 7 parts by mass in terms of SiO 2 with respect to 100 parts by mass of TiO 2 . The specific surface area of the silica-modified rutile titanium oxide was 90 m 2 / g.

[製造例1]、[製造例2]、[市販品1](石原産業(株)製、アナターゼ型酸化チタンST−01)、及び、[市販品2](テイカ(株)製、ルチル型酸化チタンMT150A)の[H22]、[・OH]を表1に示す。 [Production Example 1], [Production Example 2], [Commercial product 1] (Ishihara Sangyo Co., Ltd., anatase-type titanium oxide ST-01), and [Commercial product 2] (Teika Co., Ltd., rutile type) Table 1 shows [H 2 O 2 ] and [.OH] of titanium oxide MT150A).

[実施例1]銀担持酸化チタン
[製造例1]及び[製造例2]で得られた酸化チタン水分散体(固形分2質量%)400gを、それぞれについて、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、硝酸銀水溶液(濃度5質量%)を、担持量に応じて、1.26g〜5.04g添加し、その直後クエン酸三ナトリウム水溶液(濃度10質量%)を0.85g〜3.4gとタンニン酸水溶液(濃度1質量%)を3.18g〜12.72gとを添加した。添加後、1時間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は約60nm前後であった。
[製造例1]で得られた酸化チタン水分散体から、銀担持シリカ修飾ルチル型酸化チタンを得た。[製造例2]で得られた酸化チタン水分散体から、銀担持シリカ修飾アナタース型酸化チタンを得た。
[Example 1] Silver-supported titanium oxide 400 g of the titanium oxide aqueous dispersion (solid content: 2% by mass) obtained in [Production Example 1] and [Production Example 2] was charged into a 500 mL flask and heated to 80 ° C. Warmed up. When the temperature reaches 80 ° C., an aqueous silver nitrate solution (concentration of 5% by mass) is added in an amount of 1.26 g to 5.04 g depending on the supported amount, and immediately thereafter trisodium citrate aqueous solution (concentration of 10% by mass) is added to 0.85 g. 3.4 g and 3.18 g to 12.72 g of an aqueous tannic acid solution (concentration 1% by mass) were added. After the addition, the mixture was stirred for 1 hour, and after stirring, cooled to room temperature was used as a composite. The average secondary particle diameter of titanium oxide in the obtained composite was about 60 nm.
From the titanium oxide aqueous dispersion obtained in [Production Example 1], a silver-supporting silica-modified rutile type titanium oxide was obtained. From the titanium oxide aqueous dispersion obtained in [Production Example 2], a silver-supporting silica-modified anatase-type titanium oxide was obtained.

[実施例2]銅担持酸化チタン
[製造例1]及び[製造例2]で得られた酸化チタン水分散体(固形分2質量%)400gを、それぞれについて、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、塩化銅水溶液(濃度5質量%)を担持量に応じて、0.11g〜0.22g添加し、その直後クエン酸三ナトリウム水溶液(濃度10質量%)を0.85g〜3.4gとタンニン酸水溶液(濃度1質量%)を3.18g〜12.72gとを添加した。添加後、1時間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は60〜70nmであった。
[製造例1]で得られた酸化チタン水分散体から、銅担持シリカ修飾ルチル型酸化チタンを得た。[製造例2]で得られた酸化チタン水分散体から、銅担持シリカ修飾アナタース型酸化チタンを得た。
[Example 2] Copper-supported titanium oxide 400 g of the titanium oxide aqueous dispersion (solid content: 2% by mass) obtained in [Production Example 1] and [Production Example 2] was charged into a 500 mL flask and heated to 80 ° C. Warmed up. When the temperature reached 80 ° C., 0.11 g to 0.22 g of an aqueous copper chloride solution (concentration of 5% by mass) was added depending on the amount supported, and immediately thereafter trisodium citrate aqueous solution (concentration of 10% by mass) was added to 0.85 g. To 3.4 g and 3.18 g to 12.72 g of a tannic acid aqueous solution (concentration 1% by mass) were added. After the addition, the mixture was stirred for 1 hour, and after stirring, cooled to room temperature was used as a composite. The average secondary particle diameter of titanium oxide in the obtained composite was 60 to 70 nm.
From the titanium oxide aqueous dispersion obtained in [Production Example 1], a copper-supported silica-modified rutile type titanium oxide was obtained. From the titanium oxide aqueous dispersion obtained in [Production Example 2], a copper-supported silica-modified anatase-type titanium oxide was obtained.

[実施例3]金担持酸化チタン
[製造例1]及び[製造例2]で得られた酸化チタン水分散体(固形分2質量%)400gを、それぞれについて、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、塩化金酸水溶液(濃度5質量%)を担持量に応じて、0.08g〜0.33g添加し、その直後クエン酸三ナトリウム水溶液(濃度10質量%)を0.85g〜3.4gとタンニン酸水溶液(濃度1質量%)を3.18g〜12.72gとを添加した。添加後、1時間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は60nm前後であった。
[製造例1]で得られた酸化チタン水分散体から、金担持シリカ修飾ルチル型酸化チタンを得た。[製造例2]で得られた酸化チタン水分散体から、金担持シリカ修飾アナタース型酸化チタンを得た。
[Example 3] Gold-supported titanium oxide 400 g of the titanium oxide aqueous dispersion (solid content: 2% by mass) obtained in [Production Example 1] and [Production Example 2] was charged into a 500 mL flask and heated to 80 ° C. Warmed up. When the temperature reached 80 ° C., 0.08 g to 0.33 g of a chloroauric acid aqueous solution (concentration of 5% by mass) was added depending on the supported amount, and immediately after that, a trisodium citrate aqueous solution (concentration of 10% by mass) was added to 0.03 g. 85 g to 3.4 g and 3.18 g to 12.72 g of a tannic acid aqueous solution (concentration 1% by mass) were added. After the addition, the mixture was stirred for 1 hour, and after stirring, cooled to room temperature was used as a composite. The average secondary particle diameter of titanium oxide in the obtained composite was around 60 nm.
From the titanium oxide aqueous dispersion obtained in [Production Example 1], a gold-supporting silica-modified rutile type titanium oxide was obtained. From the titanium oxide aqueous dispersion obtained in [Production Example 2], a gold-supporting silica-modified anatase-type titanium oxide was obtained.

[実施例4]銀−銅担持酸化チタン
[製造例1]及び[製造例2]で得られた酸化チタン水分散体(固形分2質量%)400gを、それぞれについて、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、硝酸銀水溶液(濃度5質量%)を担持量に応じて、1.89g〜2.52g添加し、その直後クエン酸三ナトリウム水溶液(濃度=10%)を1.28g〜1.7gとタンニン酸水溶液(濃度=1%)を4.77g〜6.36gとを添加した。添加後、45分間撹拌し、その後塩化銅水溶液(濃度5質量%)を担持量に応じて、0.11g〜0.16g添加し、その直後タンニン酸水溶液(濃度1質量%)3.18g〜4.77gを添加した。添加後、45分間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は約60nmであった。
[製造例1]で得られた酸化チタン水分散体から、銀−銅担持シリカ修飾ルチル型酸化チタンを得た。[製造例2]で得られた酸化チタン水分散体から、銀−銅担持シリカ修飾アナタース型酸化チタンを得た。
[Example 4] Silver-copper-supported titanium oxide 400 g of the titanium oxide aqueous dispersion (solid content 2% by mass) obtained in [Production Example 1] and [Production Example 2] was charged into a 500 mL flask, 80 Warmed to ° C. When the temperature reached 80 ° C., 1.89 g to 2.52 g of an aqueous silver nitrate solution (concentration of 5% by mass) was added depending on the supported amount, and immediately after that an aqueous solution of trisodium citrate (concentration = 10%) was added to 1.28 g to 1.7 g and 4.77 g to 6.36 g of an aqueous tannic acid solution (concentration = 1%) were added. After the addition, the mixture is stirred for 45 minutes, and then an aqueous copper chloride solution (concentration 5 mass%) is added in an amount of 0.11 g to 0.16 g depending on the supported amount, and immediately after that, an aqueous tannic acid solution (concentration 1 mass%) 3.18 g 4.77 g was added. After the addition, the mixture was stirred for 45 minutes, and the mixture was cooled to room temperature after stirring to obtain a composite. The average secondary particle diameter of titanium oxide in the obtained composite was about 60 nm.
From the titanium oxide aqueous dispersion obtained in [Production Example 1], a silver-copper-supported silica-modified rutile type titanium oxide was obtained. Silver-copper-supported silica-modified anatase-type titanium oxide was obtained from the titanium oxide aqueous dispersion obtained in [Production Example 2].

[実施例5]銅−金担持酸化チタン
[製造例1]及び[製造例2]で得られた酸化チタン水分散体(固形分2質量%)400gを、それぞれについて、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、塩化金酸水溶液(濃度5質量%)を0.17g添加し、その直後クエン酸三ナトリウム水溶液(濃度10質量%)を1.7gとタンニン酸水溶液(濃度1質量%)を6.36gとを添加した。添加後、45分間撹拌し、その後塩化銅水溶液(濃度5質量%)を0.11g添加し、その直後タンニン酸水溶液(濃度1質量%)を3.18g添加した。添加後、45分間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は約60nmであった。
[製造例1]で得られた酸化チタン水分散体から、銅−金担持シリカ修飾ルチル型酸化チタンを得た。[製造例2]で得られた酸化チタン水分散体から、銅−金担持シリカ修飾アナタース型酸化チタンを得た。
[Example 5] Copper-gold-supported titanium oxide 400 g of the titanium oxide aqueous dispersion (solid content 2% by mass) obtained in [Production Example 1] and [Production Example 2] was charged into a 500 mL flask, 80 Warmed to ° C. When the temperature reached 80 ° C., 0.17 g of chloroauric acid aqueous solution (concentration 5% by mass) was added, and immediately after that 1.7 g of trisodium citrate aqueous solution (concentration 10% by mass) and tannic acid aqueous solution (concentration 1% by mass) ) Was added to 6.36 g. After the addition, the mixture was stirred for 45 minutes, and then 0.11 g of an aqueous copper chloride solution (concentration 5 mass%) was added, and immediately after that 3.18 g of an aqueous tannic acid solution (concentration 1 mass%) was added. After the addition, the mixture was stirred for 45 minutes, and the mixture was cooled to room temperature after stirring to obtain a composite. The average secondary particle diameter of titanium oxide in the obtained composite was about 60 nm.
From the titanium oxide aqueous dispersion obtained in [Production Example 1], a copper-gold supported silica-modified rutile type titanium oxide was obtained. From the titanium oxide aqueous dispersion obtained in [Production Example 2], copper-gold supported silica modified anatase type titanium oxide was obtained.

[実施例6]銀−金担持酸化チタン
[製造例1]及び[製造例2]で得られた酸化チタン水分散体(固形分2質量%)400gを、それぞれについて、500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、硝酸銀水溶液(濃度5質量%)を担持量に応じて、1.26g〜2.52g添加し、その直後クエン酸三ナトリウム水溶液(濃度10質量%)を0.85g〜1.7gとタンニン酸水溶液(濃度1質量%)を3.18g〜6.36gとを添加した。添加後、45分間撹拌し、その後塩化金酸水溶液(濃度5質量%)を0.17g添加し、その直後タンニン酸水溶液(濃度1質量%)を6.36g添加した。添加後、45分間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は約60nmであった。
[製造例1]で得られた酸化チタン水分散体から、銀−金担持シリカ修飾ルチル型酸化チタンを得た。[製造例2]で得られた酸化チタン水分散体から、銀−金担持シリカ修飾アナタース型酸化チタンを得た。
[Example 6] Silver-gold-supported titanium oxide 400 g of the titanium oxide aqueous dispersion (solid content 2% by mass) obtained in [Production Example 1] and [Production Example 2] was charged into a 500 mL flask, 80 Warmed to ° C. When the temperature reached 80 ° C., an aqueous silver nitrate solution (concentration of 5% by mass) was added in an amount of 1.26 g to 2.52 g depending on the amount supported, and immediately thereafter trisodium citrate aqueous solution (concentration of 10% by mass) was added from 0.85 g to 1.7 g and 3.18 g to 6.36 g of a tannic acid aqueous solution (concentration 1% by mass) were added. After the addition, the mixture was stirred for 45 minutes, and then 0.17 g of an aqueous chloroauric acid solution (concentration 5% by mass) was added, and immediately after that 6.36 g of an aqueous tannic acid solution (concentration 1% by mass) was added. After the addition, the mixture was stirred for 45 minutes, and the mixture was cooled to room temperature after stirring to obtain a composite. The average secondary particle diameter of titanium oxide in the obtained composite was about 60 nm.
From the titanium oxide aqueous dispersion obtained in [Production Example 1], a silver-gold supported silica modified rutile type titanium oxide was obtained. From the titanium oxide aqueous dispersion obtained in [Production Example 2], a silver-gold supported silica modified anatase type titanium oxide was obtained.

[比較例1]銅担持ルチル型酸化チタン
[市販品2](テイカ(株)製ルチル型酸化チタンMT150A)の水分散体(固形分2質量%)400gを500mLフラスコに仕込み、80℃に加温した。80℃に達したとき、塩化銅水溶液(濃度5質量%)を担持量に応じて、0.11g〜0.22g添加し、その直後クエン酸三ナトリウム水溶液(濃度10質量%)を0.85g〜3.4gとタンニン酸水溶液(濃度1質量%)を3.18g〜12.72gとを添加した。添加後、1時間撹拌し、撹拌後室温まで冷却したものを合成物とした。得られた合成物中の酸化チタンの平均二次粒子径は200nmであった。
[Comparative Example 1] Copper-supported rutile type titanium oxide [Commercially available product 2] (rutile titanium oxide MT150A manufactured by Teika Co., Ltd.) 400 g of an aqueous dispersion (solid content: 2% by mass) was charged into a 500 mL flask and heated to 80 ° C. Warm up. When the temperature reached 80 ° C., 0.11 g to 0.22 g of an aqueous copper chloride solution (concentration of 5% by mass) was added depending on the amount supported, and immediately thereafter trisodium citrate aqueous solution (concentration of 10% by mass) was added to 0.85 g. To 3.4 g and 3.18 g to 12.72 g of a tannic acid aqueous solution (concentration 1% by mass) were added. After the addition, the mixture was stirred for 1 hour, and after stirring, cooled to room temperature was used as a composite. The average secondary particle diameter of titanium oxide in the obtained composite was 200 nm.

[製造例3]重合体エマルジョン粒子(E1)水分散体の合成
還流冷却器、滴下槽、温度計及び撹拌装置を有する反応器に、イオン交換水830g、10質量%のドデシルベンゼンスルホン酸水溶液40.0gを投入した後、撹拌下で反応器中の温度を80℃に加温した。この反応器中に、ジメチルジメトキシシラン90.7g、メチルトリメトキシシラン83.5gからなる混合液と水10gとを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。その際、ジメチルジメトキシシランとメチルトリメトキシシランからなる混合液を滴下後1時間経過した時点で10質量%のドデシルベンゼンスルホン酸水溶液2gを投入した。ジメチルジメトキシシランとメチルトリメトキシシランからなる混合液を全量滴下後、反応器中の温度を80℃に維持して約30分撹拌を続けた後、10質量%のドデシルベンゼンスルホン酸水溶液14.8gを投入し、反応器中の温度を80℃に維持して2.5時間撹拌を続けた。
次に、過硫酸アンモニウムの0.5質量%水溶液26.4gを投入し、アクリル酸n−ブチル0.1g、フェニルトリメトキシシラン36.7g、テトラエトキシシラン27.8g、及び3−メタクリロキシプロピルトリメトキシシラン1.1gからなる混合液にさらに水10gを添加したものと、ジエチルアクリルアミド0.1g、アクリル酸0.9g、反応性乳化剤(商品名「アデカリアソープSR−1025」、旭電化(株)製、固形分25%水溶液)4.5g、反応性乳化剤(商品名「アクアロンKH−1025」、第一工業製薬(株)製、固形分25%水溶液)2.3g、過硫酸アンモニウムの0.5質量%水溶液120g、及びイオン交換水256.4gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに、反応器中の温度を80℃に維持して約2時間撹拌を続けた後、室温まで冷却し、100メッシュの金網で濾過した。イオン交換水で固形分を10.0質量%に調整し、重合体粒子として、数平均粒子径20nmの重合体エマルジョン粒子(E−1)の水分散体を得た。
[Production Example 3] Synthesis of polymer emulsion particles (E1) aqueous dispersion A reactor having a reflux condenser, a dropping tank, a thermometer and a stirrer was charged with 830 g of ion-exchanged water and a 10% by mass dodecylbenzenesulfonic acid aqueous solution 40. After charging 0.0 g, the temperature in the reactor was heated to 80 ° C. with stirring. In this reactor, 90.7 g of dimethyldimethoxysilane and 83.5 g of methyltrimethoxysilane and 10 g of water were simultaneously dropped over about 2 hours while maintaining the temperature in the reactor at 80 ° C. did. At that time, 2 g of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid was added when 1 hour had passed after the mixed solution composed of dimethyldimethoxysilane and methyltrimethoxysilane was dropped. After dropping a total amount of a mixed liquid composed of dimethyldimethoxysilane and methyltrimethoxysilane, the temperature in the reactor was maintained at 80 ° C. and stirring was continued for about 30 minutes, and then 14.8 g of a 10% by mass aqueous solution of dodecylbenzenesulfonic acid. And the temperature in the reactor was maintained at 80 ° C., and stirring was continued for 2.5 hours.
Next, 26.4 g of 0.5% by weight aqueous solution of ammonium persulfate was added, 0.1 g of n-butyl acrylate, 36.7 g of phenyltrimethoxysilane, 27.8 g of tetraethoxysilane, and 3-methacryloxypropyltri A mixture of 1.1 g of methoxysilane with 10 g of water added, 0.1 g of diethyl acrylamide, 0.9 g of acrylic acid, reactive emulsifier (trade name “Adekaria Soap SR-1025”, Asahi Denka Co., Ltd. ), 25% solid content aqueous solution) 4.5 g, reactive emulsifier (trade name “AQUALON KH-1025”, Daiichi Kogyo Seiyaku Co., Ltd., 25% aqueous solution solid content) 2.3 g, ammonium persulfate A mixture of 120 g of 5% by mass aqueous solution and 256.4 g of ion-exchanged water was added for about 2 hours with the temperature in the reactor kept at 80 ° C. It was dropped at the same time Te. Further, the temperature in the reactor was maintained at 80 ° C. and stirring was continued for about 2 hours, and then the mixture was cooled to room temperature and filtered through a 100-mesh wire mesh. The solid content was adjusted to 10.0% by mass with ion-exchanged water, and an aqueous dispersion of polymer emulsion particles (E-1) having a number average particle diameter of 20 nm was obtained as polymer particles.

[製造例4]重合体エマルジョン粒子(E2)水分散体の合成
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器に、イオン交換水850g、10質量%のドデシルベンゼンスルホン酸水溶液10.0gを投入した後、攪拌下で反応器中の温度を80℃に加温した。この反応器中に、ジメチルジメトキシシラン140.0g、フェニルトリメトキシシラン20.0g、メチルトリメトキシシラン5.0gからなる混合液を、反応器中の温度を80℃に保った状態で約2時間かけて滴下した。その後、反応器中の温度を80℃に維持して30分攪拌を続けた。
次に、10質量%のドデシルベンゼンスルホン酸水溶液16.8gを投入した後、反応器中の温度を80℃に維持して2時間攪拌を続けた。そこに、2質量%の過硫酸アンモニウム水溶液6.6gを投入した後、フェニルトリメトキシシラン26.8g、テトラエトキシシラン28.6g、及び3−メタクリロキシプロピルトリメトキシシラン1.1gからなる混合液と、アクリル酸0.9g、反応性乳化剤(ADEKA社製、「アデカリアソープSR−1025」;固形分量25質量%水溶液)2.3g、反応性乳化剤(第一工業製薬社製、「アクアロンKH−1025」;固形分量25質量%水溶液)2.3g、過硫酸アンモニウムの2.0質量%水溶液30g、及びイオン交換水170.0gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに、反応器中の温度を80℃に維持して約1時間攪拌を続けた後、室温まで冷却し、25%アンモニア水溶液を反応液に添加してpHを8に調整した後、100メッシュの金網で濾過した。イオン交換水で固形分量を10.0質量%に調整し、重合体として数平均粒子径119nmの重合体(E2)の水分散体を得た。
[Production Example 4] Synthesis of polymer emulsion particles (E2) aqueous dispersion A reactor having a reflux condenser, a dropping tank, a thermometer, and a stirrer was charged with 850 g of ion-exchanged water, 10% by mass of dodecylbenzenesulfonic acid aqueous solution 10. After adding 0.0 g, the temperature in the reactor was heated to 80 ° C. with stirring. In this reactor, a mixed solution consisting of 140.0 g of dimethyldimethoxysilane, 20.0 g of phenyltrimethoxysilane, and 5.0 g of methyltrimethoxysilane was added for about 2 hours while maintaining the temperature in the reactor at 80 ° C. It was dripped over. Thereafter, the temperature in the reactor was maintained at 80 ° C., and stirring was continued for 30 minutes.
Next, 16.8 g of a 10% by mass dodecylbenzenesulfonic acid aqueous solution was added, and then the temperature in the reactor was maintained at 80 ° C. and stirring was continued for 2 hours. Then, 6.6 g of a 2 mass% ammonium persulfate aqueous solution was added thereto, and then a mixed solution composed of 26.8 g of phenyltrimethoxysilane, 28.6 g of tetraethoxysilane, and 1.1 g of 3-methacryloxypropyltrimethoxysilane; 0.9 g of acrylic acid, reactive emulsifier (manufactured by ADEKA, “ADEKA rear soap SR-1025”; solid content 25% by mass aqueous solution) 2.3 g, reactive emulsifier (manufactured by Daiichi Kogyo Seiyaku Co., Ltd., “AQUALON KH- 1025 "; 25 mass% solid content aqueous solution) 2.3 g, 30 g of 2.0 mass% ammonium persulfate aqueous solution, and 170.0 g of ion-exchanged water, the temperature in the reactor was kept at 80 ° C. In the state, it was dripped simultaneously over about 2 hours. Further, the temperature in the reactor was maintained at 80 ° C. and stirring was continued for about 1 hour, followed by cooling to room temperature, adjusting the pH to 8 by adding 25% aqueous ammonia solution to the reaction solution, and then adding 100 mesh. Filtered through a wire mesh. The solid content was adjusted to 10.0% by mass with ion-exchanged water, and an aqueous dispersion of a polymer (E2) having a number average particle diameter of 119 nm was obtained as a polymer.

[製造例5]重合体エマルジョン粒子(E3)水分散体の合成
還流冷却器、滴下槽、温度計及び攪拌装置を有する反応器に、イオン交換水850g、10質量%のドデシルベンゼンスルホン酸水溶液5.6gを投入した後、攪拌下で反応器中の温度を80℃に加温した。この反応器中に、ジメチルジメトキシシラン110.0g、フェニルトリメトキシシラン73.0g、メチルトリメトキシシラン29.4gからなる混合液を、反応器中の温度を80℃に保った状態で約2時間かけて滴下した。その後、反応器中の温度を80℃に維持して30分攪拌を続けた。
次に、10質量%のドデシルベンゼンスルホン酸水溶液5.6gを投入した後、反応器中の温度を80℃に維持して2時間攪拌を続けた。そこに、2質量%の過硫酸アンモニウム水溶液6.6gを投入した後、メタクリル酸メチル22.5g、アクリル酸n−ブチル11.2g、フェニルトリメトキシシラン12.3g、テトラエトキシシラン28.6g、及び3−メタクリロキシプロピルトリメトキシシラン1.1gからなる混合液と、アクリル酸0.9g、反応性乳化剤(ADEKA社製、「アデカリアソープSR−1025」;固形分量25質量%水溶液)1.2g、反応性乳化剤(第一工業製薬社製、「アクアロンKH−1025」;固形分量25質量%水溶液)1.2g、過硫酸アンモニウムの2.0質量%水溶液30g、及びイオン交換水286.4gからなる混合液とを、反応器中の温度を80℃に保った状態で約2時間かけて同時に滴下した。さらに、反応器中の温度を80℃に維持して約1時間攪拌を続けた後、室温まで冷却し、25%アンモニア水溶液を反応液に添加してpHを8に調整した後、100メッシュの金網で濾過した。イオン交換水で固形分量を10.0質量%に調整し、重合体として数平均粒子径155nmの重合体(E3)の水分散体を得た
[Production Example 5] Synthesis of polymer emulsion particle (E3) aqueous dispersion A reactor having a reflux condenser, a dropping tank, a thermometer and a stirrer was charged with 850 g of ion-exchanged water and an aqueous solution of dodecylbenzenesulfonic acid 5 of 10% by mass. After charging .6 g, the temperature in the reactor was heated to 80 ° C. with stirring. In this reactor, 110.0 g of dimethyldimethoxysilane, 73.0 g of phenyltrimethoxysilane, and 29.4 g of methyltrimethoxysilane were mixed for about 2 hours with the temperature in the reactor kept at 80 ° C. It was dripped over. Thereafter, the temperature in the reactor was maintained at 80 ° C., and stirring was continued for 30 minutes.
Next, 5.6 g of a 10% by mass dodecylbenzenesulfonic acid aqueous solution was added, and then the temperature in the reactor was maintained at 80 ° C. and stirring was continued for 2 hours. After charging 6.6 g of a 2% by mass aqueous ammonium persulfate solution, 22.5 g of methyl methacrylate, 11.2 g of n-butyl acrylate, 12.3 g of phenyltrimethoxysilane, 28.6 g of tetraethoxysilane, and A mixed solution composed of 1.1 g of 3-methacryloxypropyltrimethoxysilane, 0.9 g of acrylic acid, reactive emulsifier (manufactured by ADEKA, “ADEKA rear soap SR-1025”; solid content 25% by mass aqueous solution) 1.2 g , Reactive emulsifier (Daiichi Kogyo Seiyaku Co., Ltd., “Aqualon KH-1025”; solid content 25% by weight aqueous solution) 1.2 g, ammonium persulfate 2.0% by weight aqueous solution 30 g, and ion-exchanged water 286.4 g. The mixed solution was simultaneously added dropwise over about 2 hours while maintaining the temperature in the reactor at 80 ° C. Further, the temperature in the reactor was maintained at 80 ° C. and stirring was continued for about 1 hour, followed by cooling to room temperature, adjusting the pH to 8 by adding 25% aqueous ammonia solution to the reaction solution, and then adding 100 mesh. Filtered through a wire mesh. The solid content was adjusted to 10.0% by mass with ion-exchanged water, and an aqueous dispersion of a polymer (E3) having a number average particle diameter of 155 nm was obtained as a polymer.

[製造実施例1]
実施例1で作製した銀担持シリカ修飾ルチル型酸化チタンのうち、銀担持量が酸化チタンに対し1質量%の銀担持シリカ修飾ルチル型酸化チタンを、光触媒用無機化合物(AB1)として使用した。
光触媒用無機化合物(AB1)163.8gと、塩基性のコロイダルシリカである、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、パーフルオロアルキルエチレンオキシド付加物である、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−1)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−1)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−1)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−1)を得た。この試験板(I−1)の各種評価結果を表2に示す。
[Production Example 1]
Of the silver-supported silica-modified rutile titanium oxide prepared in Example 1, silver-supported silica-modified rutile titanium oxide having a silver support amount of 1% by mass with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB1).
163.8 g of inorganic compound for photocatalyst (AB1) and basic colloidal silica, water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., 120.6 g of solid content 20% by mass), 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), which is a perfluoroalkylethylene oxide adduct, and solid with ion-exchanged water The photocatalytic composition (H-1) was prepared by mixing and stirring 140 g of a fading dye (G) (manufactured by Kishida Chemical Co., “Methylene Blue”) whose amount was adjusted to 1.0% by mass and 656.2 g of water. Was made.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-1) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-1) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-1) at normal temperature for 1 hour. Various evaluation results of this test plate (I-1) are shown in Table 2.

[製造実施例2]
実施例1で作製した銀担持シリカ修飾ルチル型酸化チタンのうち、銀担持量が酸化チタンに対し2質量%の銀担持シリカ修飾ルチル型酸化チタンを、光触媒用無機化合物(AB2)として使用した。
光触媒用無機化合物(AB2)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−2)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−2)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−2)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−2)を得た。この試験板(I−2)の各種評価結果を表2に示す。
[Production Example 2]
Of the silver-supported silica-modified rutile titanium oxide prepared in Example 1, silver-supported silica-modified rutile titanium oxide having a silver support amount of 2% by mass with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB2).
163.8 g of photocatalyst inorganic compound (AB2) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-2) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-2) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-2) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-2) at normal temperature for 1 hour. Various evaluation results of this test plate (I-2) are shown in Table 2.

[製造実施例3]
実施例2で作製した銅担持シリカ修飾ルチル型酸化チタンのうち、銅担持量が酸化チタンに対し1質量%の銅担持シリカ修飾ルチル型酸化チタンを、光触媒用無機化合物(AB3)として使用した。
光触媒用無機化合物(AB3)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−3)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−3)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−3)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−3)を得た。この試験板(I−3)の各種評価結果を表2に示す。
[Production Example 3]
Of the copper-supported silica-modified rutile titanium oxide prepared in Example 2, copper-supported silica-modified rutile titanium oxide having a copper support amount of 1% by mass with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB3).
163.8 g of inorganic compound for photocatalyst (AB3) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-3) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-3) was apply | coated to the single side | surface (surface) of this glass plate with the spray method. Then, the test plate (I-3) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-3) at normal temperature for 1 hour. Various evaluation results of this test plate (I-3) are shown in Table 2.

[製造実施例4]
実施例3で作製した金担持シリカ修飾ルチル型酸化チタンのうち、金担持量が酸化チタンに対し1質量%の金担持シリカ修飾ルチル型酸化チタンを、光触媒用無機化合物(AB4)として使用した。
光触媒用無機化合物(AB4)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを混合し攪拌することにより光触媒組成物(H−4)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−4)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−4)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−4)を得た。この試験板(I−4)の各種評価結果を表2に示す。
[Production Example 4]
Of the gold-supported silica-modified rutile titanium oxide prepared in Example 3, gold-supported silica-modified rutile titanium oxide having a gold support amount of 1% by mass relative to titanium oxide was used as the inorganic compound for photocatalyst (AB4).
163.8 g of inorganic compound for photocatalyst (AB4) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-4) was prepared by mixing 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water and stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-4) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-4) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-4) at normal temperature for 1 hour. Various evaluation results of this test plate (I-4) are shown in Table 2.

[製造実施例5]
実施例3で作製した金担持シリカ修飾ルチル型酸化チタンのうち、金担持量が酸化チタンに対し2質量%の金担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB5)として使用した。
光触媒用無機化合物(AB5)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−5)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−5)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−5)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−5)を得た。この試験板(I−5)の各種評価結果を表2に示す。
[Production Example 5]
Of the gold-supported silica-modified rutile titanium oxide prepared in Example 3, gold-supported silica-modified rutile titanium oxide having a gold support amount of 2 mass% with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB5).
163.8 g of inorganic compound for photocatalyst (AB5) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-5) was produced by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-5) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-5) was dried at room temperature for 1 hour to obtain a test plate (I-5) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-5) are shown in Table 2.

[製造実施例6]
実施例4で作製した銀−銅担持シリカ修飾ルチル型酸化チタンのうち、銀/銅担持量が酸化チタンに対し1質量%/0.5質量%の銀−銅担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB6)として使用した。
光触媒用無機化合物(AB6)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−6)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−6)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−6)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−6)を得た。この試験板(I−6)の各種評価結果を表2に示す。
[Production Example 6]
Of the silver-copper-supported silica-modified rutile titanium oxide prepared in Example 4, a silver-copper-supported silica-modified silica-modified rutile titanium oxide having a silver / copper support amount of 1% by mass / 0.5% by mass relative to titanium oxide. Used as an inorganic compound for photocatalyst (AB6).
163.8 g of photocatalyst inorganic compound (AB6) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-6) was produced by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-6) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-6) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-6) at normal temperature for 1 hour. The various evaluation results of this test plate (I-6) are shown in Table 2.

[製造実施例7]
実施例4で作製した銀−銅担持シリカ修飾ルチル型酸化チタンのうち、銀/銅担持量が酸化チタンに対し0.75質量%/0.75質量%の銀−銅担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(A7)として使用した。
光触媒用無機化合物(A7)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−7)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−7)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−7)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−7)を得た。この試験板(I−7)の各種評価結果を表2に示す。
[Production Example 7]
Of the silver-copper-supported silica-modified rutile titanium oxide prepared in Example 4, the silver-copper-supported silica-modified silica-modified rutile-type oxide having a silver / copper support amount of 0.75% by mass / 0.75% by mass with respect to titanium oxide. Titanium was used as the inorganic compound for photocatalyst (A7).
163.8 g of inorganic compound for photocatalyst (A7) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-7) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-7) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-7) was dried at room temperature for 1 hour to obtain a test plate (I-7) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-7) are shown in Table 2.

[製造実施例8]
実施例5で作製した銅−金担持シリカ修飾ルチル型酸化チタンのうち、銅/金担持量が酸化チタンに対し0.5質量%/1質量%の銅−金担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB8)として使用した。
光触媒用無機化合物(AB8)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−8)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−8)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−8)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−8)を得た。この試験板(I−8)の各種評価結果を表2に示す。
[Production Example 8]
Of the copper-gold supported silica modified rutile type titanium oxide prepared in Example 5, the copper / gold supported silica modified rutile type titanium oxide having a copper / gold supported amount of 0.5% by mass / 1% by mass with respect to titanium oxide. Used as an inorganic compound for photocatalyst (AB8).
163.8 g of inorganic compound for photocatalyst (AB8) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-8) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-8) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-8) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-8) at normal temperature for 1 hour. Various evaluation results of this test plate (I-8) are shown in Table 2.

[製造実施例9]
実施例6で作製した銀−金担持シリカ修飾ルチル型酸化チタンのうち、銀/金担持量が酸化チタンに対し0.5質量%/1質量%の銀−金担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB9)として使用した。
光触媒用無機化合物(AB9)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−9)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−9)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−9)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−9)を得た。この試験板(I−9)の各種評価結果を表2に示す。
[Production Example 9]
Of the silver-gold supported silica modified rutile type titanium oxide prepared in Example 6, the silver / gold supported silica modified rutile type titanium oxide having a silver / gold supported amount of 0.5 mass% / 1 mass% with respect to titanium oxide. Used as an inorganic compound for photocatalyst (AB9).
163.8 g of inorganic compound for photocatalyst (AB9) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-9) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-9) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-9) was dried at room temperature for 1 hour to obtain a test plate (I-9) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-9) are shown in Table 2.

[製造実施例10]
実施例6で作製した銀−金担持シリカ修飾ルチル型酸化チタンのうち、銀/金担持量が酸化チタンに対し1質量%/1質量%の銀−金担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB10)として使用した。
光触媒用無機化合物(AB10)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−10)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−10)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−10)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−10)を得た。この試験板(I−10)の各種評価結果を表2に示す。
[Production Example 10]
Of the silver-gold supported silica modified rutile titanium oxide prepared in Example 6, the silver / gold supported silica modified rutile titanium oxide having a silver / gold supported amount of 1% by mass / 1% by mass with respect to titanium oxide was used for the photocatalyst. Used as an inorganic compound (AB10).
163.8 g of inorganic compound for photocatalyst (AB10) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-10) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-10) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-10) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-10) at normal temperature for 1 hour. Various evaluation results of this test plate (I-10) are shown in Table 2.

[製造実施例11]
光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−11)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−11)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−11)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−11)を得た。この試験板(I−11)の各種評価結果を表2に示す。
[Production Example 11]
163.8 g of inorganic compound for photocatalyst (AB1) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 0 g, 38.7 g of a polymer emulsion particle (E1) aqueous dispersion shown in Production Example 3 (solid content: 8.5% by mass) and a fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0% by mass with ion-exchanged water, and 530.2 g of water were mixed. The photocatalyst composition (H-11) was produced by stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-11) was apply | coated to the single side | surface (surface) of this glass plate with the spray method. Then, the test plate (I-11) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-11) at normal temperature for 1 hour. Various evaluation results of this test plate (I-11) are shown in Table 2.

[製造実施例12]
光触媒用無機化合物(AB2)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−12)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−12)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−12)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−12)を得た。この試験板(I−12)の各種評価結果を表2に示す。
[Production Example 12]
163.8 g of inorganic compound for photocatalyst (AB2) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 0 g, 38.7 g of a polymer emulsion particle (E1) aqueous dispersion shown in Production Example 3 (solid content: 8.5% by mass) and a fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0% by mass with ion-exchanged water, and 530.2 g of water were mixed. The photocatalyst composition (H-12) was produced by stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-12) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-12) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-12) at normal temperature for 1 hour. Various evaluation results of this test plate (I-12) are shown in Table 2.

[製造実施例13]
光触媒用無機化合物(AB3)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−13)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−13)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−13)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−13)を得た。この試験板(I−13)の各種評価結果を表2に示す。
[Production Example 13]
163.8 g of inorganic compound for photocatalyst (AB3) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 0 g, 38.7 g of a polymer emulsion particle (E1) aqueous dispersion shown in Production Example 3 (solid content: 8.5% by mass) and a fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0% by mass with ion-exchanged water, and 530.2 g of water were mixed. The photocatalyst composition (H-13) was produced by stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-13) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-13) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-13) at normal temperature for 1 hour. Various evaluation results of this test plate (I-13) are shown in Table 2.

[製造実施例14]
光触媒用無機化合物(AB4)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−14)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−14)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−14)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−14)を得た。この試験板(I−14)の各種評価結果を表2に示す。
[Production Example 14]
163.8 g of inorganic compound for photocatalyst (AB4) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 0 g, 38.7 g of a polymer emulsion particle (E1) aqueous dispersion shown in Production Example 3 (solid content: 8.5% by mass) and a fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0% by mass with ion-exchanged water, and 530.2 g of water were mixed. The photocatalyst composition (H-14) was produced by stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-14) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-14) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-14) at normal temperature for 1 hour. Various evaluation results of this test plate (I-14) are shown in Table 2.

[製造実施例15]
質量%光触媒用無機化合物(AB6)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−15)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−15)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−15)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−15)を得た。この試験板(I−15)の各種評価結果を表2に示す。
[Production Example 15]
163.8 g of mass% inorganic compound for photocatalyst (AB6) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 104.0 g, 38.7 g of the polymer emulsion particles (E1) aqueous dispersion (solid content 8.5% by mass) shown in Production Example 3, and a fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F -444 "), 0.99 g, 140 g of a fading dye (G) (manufactured by Kishida Chemical Co.," methylene blue ") whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 530.2 g of water. By mixing and stirring, a photocatalyst composition (H-15) was produced.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-15) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-15) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-15) at normal temperature for 1 hour. Various evaluation results of this test plate (I-15) are shown in Table 2.

[製造実施例16]
実施例1で作製した銀担持シリカ修飾アナタース型酸化チタンのうち、銀担持量が酸化チタンに対し1質量%の銀担持シリカ修飾アナタース型酸化チタンを光触媒用無機化合物(AB11)として使用した。
光触媒用無機化合物(AB11)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−16)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−16)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−16)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−16)を得た。この試験板(I−16)の各種評価結果を表2に示す。
[Production Example 16]
Of the silver-supported silica-modified anatase-type titanium oxide prepared in Example 1, silver-supported silica-modified anatase-type titanium oxide having a silver support amount of 1% by mass with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB11).
163.8 g of inorganic compound for photocatalyst (AB11) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-16) was produced by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-16) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-16) was dried at room temperature for 1 hour to obtain a test plate (I-16) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-16) are shown in Table 2.

[製造実施例17]
実施例2で作製した銅担持シリカ修飾アナタース型酸化チタンのうち、銅担持量が酸化チタンに対し1質量%の銅担持シリカ修飾アナタース型酸化チタンを光触媒用無機化合物(AB12)として使用した。
光触媒用無機化合物(AB12)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを混合し攪拌することにより光触媒組成物(H−17)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−17)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−17)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−17)を得た。この試験板(I−17)の各種評価結果を表2に示す。
[Production Example 17]
Of the copper-supported silica-modified anatase-type titanium oxide prepared in Example 2, copper-supported silica-modified anatase-type titanium oxide having a copper support amount of 1% by mass with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB12).
163.8 g of inorganic compound for photocatalyst (AB12) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-17) was prepared by mixing 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water and stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-17) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-17) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-17) at normal temperature for 1 hour. Various evaluation results of this test plate (I-17) are shown in Table 2.

[製造実施例18]
実施例4で作製した銀−銅担持シリカ修飾アナタース型酸化チタンのうち、銀/銅担持量が酸化チタンに対し1質量%/0.5質量%の銀−銅担持シリカ修飾アナタース型酸化チタンを光触媒用無機化合物(AB13)として使用した。
光触媒用無機化合物(AB13)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−18)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−18)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−18)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−18)を得た。この試験板(I−18)の各種評価結果を表2に示す。
[Production Example 18]
Of the silver-copper-supported silica-modified anatase-type titanium oxide prepared in Example 4, a silver-copper-supported silica-modified anatase-type titanium oxide having a silver / copper support amount of 1% by mass / 0.5% by mass with respect to titanium oxide. Used as an inorganic compound for photocatalyst (AB13).
163.8 g of inorganic compound for photocatalyst (AB13) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-18) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-18) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-18) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-18) at normal temperature for 1 hour. Various evaluation results of this test plate (I-18) are shown in Table 2.

[製造実施例19]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)93.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体64.4g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水515.5gとを、混合し攪拌することにより光触媒組成物(H−19)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−19)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−19)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−19)を得た。この試験板(I−19)の各種評価結果を表2に示す。
[Production Example 19]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 93.0 g, polymer emulsion particles (E1) aqueous dispersion 64.4 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 515.5 g of water Were mixed and stirred to prepare a photocatalyst composition (H-19).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-19) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-19) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-19) at normal temperature for 1 hour. Various evaluation results of this test plate (I-19) are shown in Table 2.

[製造実施例20]
実施例1質量%光触媒用無機化合物(AB1)163.5gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)65.7gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体128.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水515.5gとを、混合し攪拌することにより光触媒組成物(H−20)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−20)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−20)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−20)を得た。この試験板(I−20)の各種評価結果を表2に示す。
[Production Example 20]
Example 1 163.5 g of a mass% inorganic compound for photocatalyst (AB1) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 65.7 g, polymer emulsion particles (E1) aqueous dispersion 128.7 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 515.5 g of water Were mixed and stirred to prepare a photocatalyst composition (H-20).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-20) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-20) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-20) at normal temperature for 1 hour. Various evaluation results of this test plate (I-20) are shown in Table 2.

[製造実施例21]
実施例1質量%光触媒用無機化合物(AB1)163.5gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)52.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体160.9g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水482.61gとを、混合し攪拌することにより光触媒組成物(H−21)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−21)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−21)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−21)を得た。この試験板(I−21)の各種評価結果を表2に示す。
[Production Example 21]
Example 1 163.5 g of a mass% inorganic compound for photocatalyst (AB1) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 52.0 g, polymer emulsion particles (E1) aqueous dispersion 160.9 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ") 0.99 g, 140 g of a fading dye (G) (Methylene Blue, manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 482.61 g of water Were mixed and stirred to prepare a photocatalyst composition (H-21).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-21) was apply | coated to the single side | surface (surface) of this glass plate with the spray method. Then, the test plate (I-21) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-21) at normal temperature for 1 hour. Various evaluation results of this test plate (I-21) are shown in Table 2.

[製造実施例22]
実施例1質量%光触媒用無機化合物(AB1)273.5gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)82.1gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体64.4g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水439.0gとを、混合し攪拌することにより光触媒組成物(H−22)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−22)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−22)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−22)を得た。この試験板(I−22)の各種評価結果を表3に示す。
[Production Example 22]
Example 1 273.5 g of inorganic compound (AB1) for mass% photocatalyst and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 82.1 g (mass%), polymer emulsion particles (E1) aqueous dispersion 64.4 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ MegaFuck F-444 ") 0.99 g, 140 g of fading dye (G) (Methylene Blue, manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 439.0 g of water Were mixed and stirred to prepare a photocatalyst composition (H-22).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-22) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-22) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-22) at normal temperature for 1 hour. Various evaluation results of this test plate (I-22) are shown in Table 3.

[製造実施例23]
実施例1質量%光触媒用無機化合物(AB1)273.5gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)68.45gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体96.6g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水420.5gとを、混合し攪拌することにより光触媒組成物(H−23)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−22)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−23)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−23)を得た。この試験板(I−23)の各種評価結果を表3に示す。
[Production Example 23]
Example 1 273.5 g of inorganic compound (AB1) for mass% photocatalyst and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 68.45 g, polymer emulsion particles (E1) aqueous dispersion 96.6 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ") 0.99g, 140g of fading dye (G) (" Methylene Blue "manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 420.5g of water Were mixed and stirred to prepare a photocatalyst composition (H-23).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-22) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-23) was dried at room temperature for 1 hour to obtain a test plate (I-23) on which a photocatalyst coating film was formed. Table 3 shows various evaluation results of the test plate (I-23).

[製造実施例24]
実施例1質量%光触媒用無機化合物(AB1)273.5gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)27.35gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体193.2g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水364.98gとを、混合し攪拌することにより光触媒組成物(H−24)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−24)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−24)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−24)を得た。この試験板(I−24)の各種評価結果を表3に示す。
[Production Example 24]
Example 1 273.5 g of inorganic compound (AB1) for mass% photocatalyst and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 27.35 g, polymer emulsion particles (E1) aqueous dispersion 193.2 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ") 0.99 g, fading dye (G) (Methylene Blue, manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 364.98 g of water Were mixed and stirred to prepare a photocatalyst composition (H-24).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-24) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-24) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-24) at normal temperature for 1 hour. Various evaluation results of this test plate (I-24) are shown in Table 3.

[製造実施例25]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、酸性のコロイダルシリカである、数平均粒子径8nmの水分散コロイダルシリカ(D2)(商品名「スノーテックスOS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水574.6gとを、混合し攪拌することにより光触媒組成物(H−25)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−25)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−25)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−25)を得た。この試験板(I−25)の各種評価結果を表3に示す。
[Production Example 25]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and acidic colloidal silica, water-dispersed colloidal silica (D2) having a number average particle size of 8 nm (trade name “Snowtex OS”, Nissan Chemical Industries ( Co., Ltd., solid content 20% by mass) 120.6 g, fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”) 0.99 g, and the solid content with ion-exchanged water is 1.0. A photocatalytic composition (H-25) was prepared by mixing and stirring 140 g of a fading dye (G) (manufactured by Kishida Chemical Co., “methylene blue”) adjusted to mass% and 574.6 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-25) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-25) was dried at room temperature for 1 hour to obtain a test plate (I-25) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-25) are shown in Table 3.

[製造実施例26]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、酸性のコロイダルシリカである、数平均粒子径25nmの水分散コロイダルシリカ(D3)(商品名「スノーテックスO−40」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水574.6gとを、混合し攪拌することにより光触媒組成物(H−26)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−26)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−26)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−26)を得た。この試験板(I−26)の各種評価結果を表3に示す。
[Production Example 26]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and acidic colloidal silica, water-dispersed colloidal silica (D3) having a number average particle size of 25 nm (trade name “Snowtex O-40”, Nissan Chemical Co., Ltd.) 120.6 g manufactured by Kogyo Co., Ltd., solid content 20% by mass), 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and the amount of solid content is 1 with ion-exchanged water. The photocatalytic composition (H-26) was prepared by mixing and stirring 140 g of the fading dye (G) (Kishida Chemical Co., “methylene blue”) adjusted to 0.0 mass% and 574.6 g of water. .
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-26) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-26) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-26) at normal temperature for 1 hour. Table 3 shows various evaluation results of the test plate (I-26).

[製造実施例27]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D2)(商品名「スノーテックスOS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水552.5gとを、混合し攪拌することにより光触媒組成物(H−27)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−27)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−27)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−27)を得た。この試験板(I−27)の各種評価結果を表3に示す。
[Production Example 27]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and water-dispersed colloidal silica (D2) having a number average particle diameter of 8 nm (trade name “Snowtex OS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 104.0 g, the polymer emulsion particles (E1) shown in Production Example 3 (38.7 g) (solid content 8.5% by mass), fluorocarbon surfactant (F) (manufactured by DIC Corporation, “ MegaFuck F-444 ") 0.99 g, 140 g fading dye (G) (" Methylene Blue "manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 552.5 g water Were mixed and stirred to prepare a photocatalyst composition (H-27).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-27) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-27) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-27) at normal temperature for 1 hour. Various evaluation results of this test plate (I-27) are shown in Table 3.

[製造実施例28]
実施例1質量%光触媒用無機化合物(AB1)として163.8gと、数平均粒子径25nmの水分散コロイダルシリカ(D2)(商品名「スノーテックスO−40」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水552.5gとを、混合し攪拌することにより光触媒組成物(H−28)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−28)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−28)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−28)を得た。この試験板(I−28)の各種評価結果を表3に示す。
[Production Example 28]
Example 1 163.8 g as an inorganic compound (AB1) for mass% photocatalyst, water-dispersed colloidal silica (D2) having a number average particle diameter of 25 nm (trade name “Snowtex O-40”, manufactured by Nissan Chemical Industries, Ltd., 104.0 g of solid content (20% by mass), 38.7 g of polymer emulsion particles (E1) aqueous dispersion shown in Production Example 3 (8.5% by mass of solid content), and fluorocarbon surfactant (F) (DIC Corporation) Manufactured by “Megafac F-444”), 0.99 g, 140 g of a fading dye (G) (“Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) having a solid content adjusted to 1.0% by mass with ion-exchanged water, water 552.5 g was mixed and stirred to prepare a photocatalyst composition (H-28).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The photocatalyst composition (H-28) was applied to one surface (surface) of this glass plate by a spray method. Then, the test plate (I-28) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-28) at normal temperature for 1 hour. Table 3 shows various evaluation results of this test plate (I-28).

[製造実施例29]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例4に示す重合体エマルジョン粒子(E2)水分散体32.9g(固形分10.0質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水558.3gとを、混合し攪拌することにより光触媒組成物(H−29)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−29)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−29)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−29)を得た。この試験板(I−29)の各種評価結果を表3に示す。
[Production Example 29]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 104.0 g, polymer emulsion particles (E2) aqueous dispersion 32.9 g (solid content 10.0 mass%) shown in Production Example 4, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ") 0.99 g, fading dye (G) (Methylene Blue, manufactured by Kishida Chemical Co., Ltd.) having a solid content adjusted to 1.0 mass% with ion-exchanged water, and 558.3 g of water Were mixed and stirred to prepare a photocatalyst composition (H-29).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-29) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-29) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-29) at normal temperature for 1 hour. Various evaluation results of this test plate (I-29) are shown in Table 3.

[製造実施例30]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例5に示す重合体エマルジョン粒子(E3)水分散体32.9g(固形分10.0質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水558.3gとを、混合し攪拌することにより光触媒組成物(H−30)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−30)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−30)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−30)を得た。この試験板(I−30)の各種評価結果を表3に示す。
[Production Example 30]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 104.0 g, polymer emulsion particles (E3) aqueous dispersion 32.9 g (solid content 10.0 mass%) shown in Production Example 5, and fluorocarbon surfactant (F) (manufactured by DIC, “ Megafa F-444 ") 0.99 g, fading dye (G) (Methylene Blue, manufactured by Kishida Chemical Co., Ltd.) having a solid content adjusted to 1.0 mass% with ion-exchanged water, and 558.3 g of water Were mixed and stirred to prepare a photocatalyst composition (H-30).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-30) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-30) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-30) at normal temperature for 1 hour. Table 3 shows various evaluation results of the test plate (I-30).

[製造実施例31]
光触媒用無機化合物(AB1)163.8gと、塩基性のコロイダルシリカである、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、陰イオン性基と陽イオン性基とを有するパーフルオロアルキル化合物である、フルオロカーボン界面活性剤(F2)(AGCセイミケミカル社製「サーフロンS−232」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−31)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−31)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−31)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−31)を得た。この試験板(I−31)の各種評価結果を表2に示す。
[Production Example 31]
163.8 g of inorganic compound for photocatalyst (AB1) and basic colloidal silica, water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., Fluorocarbon surfactant (F2) (“Surflon S-232” manufactured by AGC Seimi Chemical Co., Ltd.), which is a perfluoroalkyl compound having a solid content of 20% by mass) 120.6 g and an anionic group and a cationic group 0.99 g, 140 g of a fading dye (G) (manufactured by Kishida Chemical Co., “methylene blue”) whose solid content is adjusted to 1.0 mass% with ion-exchanged water, and 656.2 g of water are mixed and stirred. This produced the photocatalyst composition (H-31).
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-31) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-31) was dried at room temperature for 1 hour to obtain a test plate (I-31) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-31) are shown in Table 2.

[製造実施例32]
光触媒用無機化合物(AB3)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F2)(AGCセイミケミカル社製「サーフロンS−232」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−32)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−32)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−32)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−32)を得た。この試験板(I−32)の各種評価結果を表2に示す。
[Production Example 32]
163.8 g of inorganic compound for photocatalyst (AB3) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of a fluorocarbon surfactant (F2) (“Surflon S-232” manufactured by AGC Seimi Chemical Co., Ltd.), and a fading dye (G) whose solid content is adjusted to 1.0 mass% with ion-exchanged water ( A photocatalyst composition (H-32) was produced by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-32) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-32) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-32) at normal temperature for 1 hour. Various evaluation results of this test plate (I-32) are shown in Table 2.

[製造実施例33]
光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F2)(AGCセイミケミカル社製「サーフロンS−232」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−33)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−33)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−33)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−33)を得た。この試験板(I−33)の各種評価結果を表2に示す。
[Production Example 33]
163.8 g of inorganic compound for photocatalyst (AB1) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 0 g, 38.7 g of the polymer emulsion particles (E1) aqueous dispersion shown in Production Example 3 (solid content: 8.5% by mass), fluorocarbon surfactant (F2) (“Surflon S-232 manufactured by AGC Seimi Chemical Co., Ltd.) ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0% by mass with ion-exchanged water, and 530.2 g of water were mixed. The photocatalyst composition (H-33) was produced by stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-33) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-33) was dried at room temperature for 1 hour to obtain a test plate (I-33) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-33) are shown in Table 2.

[製造実施例34]
実施例2光触媒用無機化合物(AB3)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体38.7g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F2)(AGCセイミケミカル社製「サーフロンS−232」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水530.2gとを、混合し攪拌することにより光触媒組成物(H−34)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−34)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−34)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−34)を得た。この試験板(I−34)の各種評価結果を表2に示す。
[Production Example 34]
Example 2 163.8 g of photocatalyst inorganic compound (AB3) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content of 20% by mass ) 104.0 g, 38.7 g of the polymer emulsion particles (E1) aqueous dispersion shown in Production Example 3 (solid content 8.5% by mass), fluorocarbon surfactant (F2) (manufactured by AGC Seimi Chemical Co., Ltd., “Surflon”) S-232 ”) 0.99 g, 140 g of a fading dye (G) (“ Methylene Blue ”manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0 mass% with ion-exchanged water, and 530.2 g of water. The photocatalyst composition (H-34) was prepared by mixing and stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-34) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-34) was dried at room temperature for 1 hour to obtain a test plate (I-34) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-34) are shown in Table 2.

[製造比較例1]
[市販品1](石原産業(株)製アナターゼ型酸化チタンST−01)を光触媒用無機化合物(AB14)として163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−31)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−31)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−31)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−31)を得た。この試験板(I−31)の各種評価結果を表3に示す。
[Production Comparative Example 1]
[Commercially available product 1] (Ishihara Sangyo Co., Ltd., anatase-type titanium oxide ST-01) as an inorganic compound for photocatalyst (AB14), 163.8 g, water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name) “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 120.6 g, fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”) 0.99 g, A photocatalytic composition is prepared by mixing and stirring 140 g of a fading dye (G) (manufactured by Kishida Chemical Co., “methylene blue”) whose solid content is adjusted to 1.0% by mass with ion-exchanged water and 656.2 g of water. (H-31) was produced.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-31) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-31) was dried at room temperature for 1 hour to obtain a test plate (I-31) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-31) are shown in Table 3.

[製造比較例2]
[市販品2](テイカ(株)製ルチル型酸化チタンMT150A)を光触媒用無機化合物(AB15)として163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−32)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−32)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−32)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−32)を得た。この試験板(I−32)の各種評価結果を表3に示す。
[Production Comparative Example 2]
[Commercially available product 2] 163.8 g of rutile titanium oxide MT150A manufactured by Teika Co., Ltd. as an inorganic compound for photocatalyst (AB15), water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex”) NS ", Nissan Chemical Industries, Ltd., solid content 20% by mass) 120.6 g, Fluorocarbon Surfactant (F) (DIC," Megafac F-444 ") 0.99 g, and ion-exchanged water The photocatalytic composition (H-) was prepared by mixing and stirring 140 g of the fading dye (G) (manufactured by Kishida Chemical Co., “Methylene Blue”) whose solid content was adjusted to 1.0% by mass by water and 656.2 g of water. 32) was produced.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-32) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-32) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-32) at normal temperature for 1 hour. Various evaluation results of this test plate (I-32) are shown in Table 3.

[製造比較例3]
[製造例1]のシリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB16)として163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−33)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−33)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−33)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−33)を得た。この試験板(I−33)の各種評価結果を表3に示す。
[Production Comparative Example 3]
163.8 g of silica-modified rutile type titanium oxide of [Production Example 1] as an inorganic compound for photocatalyst (AB16), water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, Nissan Chemical Co., Ltd.) 120.6 g manufactured by Kogyo Co., Ltd., solid content 20% by mass), 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and the amount of solid content is 1 with ion-exchanged water. The photocatalytic composition (H-33) was prepared by mixing and stirring 140 g of the fading dye (G) (manufactured by Kishida Chemical Co., “Methylene Blue”) adjusted to 0.0 mass% and 656.2 g of water. .
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-33) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-33) was dried at room temperature for 1 hour to obtain a test plate (I-33) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-33) are shown in Table 3.

[製造比較例4]
[製造例2]のシリカ修飾アナタース型酸化チタンを光触媒用無機化合物(AB17)として163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−34)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−34)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−34)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−34)を得た。この試験板(I−34)の各種評価結果を表3に示す。
[Production Comparative Example 4]
163.8 g of silica-modified anatase-type titanium oxide of [Production Example 2] as an inorganic compound for photocatalyst (AB17), water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, Nissan Chemical Co., Ltd.) 120.6 g manufactured by Kogyo Co., Ltd., solid content 20% by mass), 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and the amount of solid content is 1 with ion-exchanged water. The photocatalytic composition (H-34) was prepared by mixing and stirring 140 g of the fading dye (G) (manufactured by Kishida Chemical Co., “Methylene Blue”) adjusted to 0.0 mass% and 656.2 g of water. .
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-34) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Thereafter, the coated photocatalyst composition (H-34) was dried at room temperature for 1 hour to obtain a test plate (I-34) on which a photocatalyst coating film was formed. Various evaluation results of this test plate (I-34) are shown in Table 3.

[製造比較例5]
[実施例1]と同様の方法で作製した、銀担持が6質量%の銀担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB18)として使用した。
光触媒用無機化合物(AB18)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−35)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−35)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−35)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−35)を得た。この試験板(I−35)の各種評価結果を表3に示す。
[Production Comparative Example 5]
A silver-supporting silica-modified rutile titanium oxide having a silver support of 6% by mass, prepared in the same manner as in [Example 1], was used as the inorganic compound for photocatalyst (AB18).
163.8 g of inorganic compound for photocatalyst (AB18) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-35) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-35) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-35) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-35) at normal temperature for 1 hour. Table 3 shows various evaluation results of the test plate (I-35).

[製造比較例6]
[実施例1]と同様の方法で作製した、銀担持が0.1質量%の銀担持シリカ修飾ルチル型酸化チタンを光触媒用無機化合物(AB19)として使用した。
光触媒用無機化合物(AB19)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−36)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−36)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−36)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−36)を得た。この試験板(I−36)の各種評価結果を表3に示す。
[Production Comparative Example 6]
A silver-supported silica-modified rutile type titanium oxide having a silver support of 0.1% by mass, prepared in the same manner as in [Example 1], was used as the inorganic compound for photocatalyst (AB19).
163.8 g of photocatalyst inorganic compound (AB19) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20% by mass) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-36) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-36) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-36) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-36) at normal temperature for 1 hour. Various evaluation results of this test plate (I-36) are shown in Table 3.

[製造比較例7]
[比較例1]の銅担持ルチル型酸化チタンのうち、銅担持量が酸化チタンに対し1質量%の銅担持ルチル型酸化チタンを光触媒用無機化合物(AB20)として使用した。
光触媒用無機化合物(AB20)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−37)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−37)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−37)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−37)を得た。この試験板(I−37)の各種評価結果を表3に示す。
[Production Comparative Example 7]
Of the copper-supported rutile type titanium oxide of [Comparative Example 1], a copper-supported rutile type titanium oxide having a copper support amount of 1% by mass with respect to titanium oxide was used as the inorganic compound for photocatalyst (AB20).
163.8 g of inorganic compound for photocatalyst (AB20) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 6 g, 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-37) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-37) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-37) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-37) at normal temperature for 1 hour. Various evaluation results of this test plate (I-37) are shown in Table 3.

[製造比較例8]
実施例1質量%光触媒用無機化合物(AB1)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gと、炭化水素系界面活性剤(F’)(商品名「ペレックスOT−P」、花王(株)製)0.99gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−38)を作製した。退色性色素(G)は使用しなかった。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−38)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−38)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−38)を得た。この試験板(I−38)の各種評価結果を表3に示す。
[Production Comparative Example 8]
Example 1 163.8 g of inorganic compound for photocatalyst (AB1) 163.8 g and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 (Mass%) 120.6 g, hydrocarbon surfactant (F ′) (trade name “Perex OT-P”, manufactured by Kao Corporation) 0.99 g, and water 656.2 g are mixed and stirred. This produced the photocatalyst composition (H-38). No fading dye (G) was used.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-38) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-38) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-38) at normal temperature for 1 hour. Various evaluation results of this test plate (I-38) are shown in Table 3.

[製造比較例9]
製造例光触媒用無機化合物(AB16)59.56gと、数平均粒子径8nmの水分散コロイダルシリカ(D2)(商品名「スノーテックスOS」、日産化学工業(株)製、固形分20質量%)52.0gと、製造例4に示す重合体エマルジョン粒子(E2)水分散体160.9g(固形分10.0質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水586.55gとを、混合し攪拌することにより光触媒組成物(H−39)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−39)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−39)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−39)を得た。この試験板(I−39)の各種評価結果を表3に示す。
[Production Comparative Example 9]
Production Example 59.56 g of photocatalyst inorganic compound (AB16) and water-dispersed colloidal silica (D2) having a number average particle diameter of 8 nm (trade name “Snowtex OS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 52.0 g, 160.9 g of the polymer emulsion particles (E2) aqueous dispersion shown in Production Example 4 (solid content: 10.0% by mass), and fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F -444 "), 0.99 g, 140 g of a fading dye (G) (manufactured by Kishida Chemical Co.," Methylene Blue ") whose solid content was adjusted to 1.0% by mass with ion-exchanged water, and 586.55 g of water, The photocatalyst composition (H-39) was produced by mixing and stirring.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-39) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-39) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-39) at normal temperature for 1 hour. Various evaluation results of this test plate (I-39) are shown in Table 3.

[製造比較例10]
実施例1質量%光触媒用無機化合物(AB1)826.5gと、数平均粒子径8nmの水分散コロイダルシリカ(D2)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)22.8gと、製造例3に示す重合体エマルジョン粒子(E1)水分散体73.8g(固形分8.5質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gとを、混合し攪拌することにより光触媒組成物(H−40)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−40)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−40)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−40)を得た。この試験板(I−40)の各種評価結果を表3に示す。
[Production Comparative Example 10]
Example 1 826.5 g of inorganic compound for photocatalyst (AB1) 826.5 g and water-dispersed colloidal silica (D2) having a number average particle size of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 22.8 g (mass%), polymer emulsion particles (E1) aqueous dispersion 73.8 g (solid content 8.5 mass%) shown in Production Example 3, and fluorocarbon surfactant (F) (manufactured by DIC, “ 0.99 g of MegaFuck F-444 ") and 140 g of a fading dye (G) (Methylene Blue, manufactured by Kishida Chemical Co., Ltd.) whose solid content was adjusted to 1.0% by mass with ion-exchanged water and stirred. Thus, a photocatalyst composition (H-40) was produced.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-40) was apply | coated to the single side | surface (surface) of this glass plate with the spray method. Then, the test plate (I-40) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-40) at normal temperature for 1 hour. Table 3 shows various evaluation results of this test plate (I-40).

[製造比較例11]
数平均粒子径8nmの水分散コロイダルシリカ(D2)(商品名「スノーテックスOS」、日産化学工業(株)製、固形分20質量%)104.0gと、製造例4に示す重合体エマルジョン粒子(E2)水分散体65.4g(固形分10.0質量%)と、フルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水689.0gとを、混合し攪拌することにより光触媒組成物(H−41)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−41)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−41)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−41)を得た。この試験板(I−41)の各種評価結果を表3に示す。
[Production Comparative Example 11]
104.0 g of water-dispersed colloidal silica (D2) having a number average particle size of 8 nm (trade name “Snowtex OS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) and 104.0 g of the polymer emulsion particles shown in Production Example 4 (E2) 65.4 g of water dispersion (solid content: 10.0% by mass), 0.99 g of fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”), solid with ion-exchanged water The photocatalytic composition (H-41) was prepared by mixing and stirring 140 g of the fading dye (G) (Kishida Chemical Co., Ltd., “methylene blue”) whose amount was adjusted to 1.0% by mass, and 689.0 g of water. Was made.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-41) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-41) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-41) at normal temperature for 1 hour. Table 3 shows various evaluation results of the test plate (I-41).

[製造比較例12]
実施例1で作製した銀担持酸化チタンのうち、シリカ修飾がされていない酸化チタン水分散体に、上記と同様の方法で銀を担持させ、その後に[製造例1]記載と同様の方法でシリカ修飾させた銀担持酸化チタン(銀担持量1質量%)を光触媒用無機化合物(AB1’)として使用した。
光触媒用無機化合物(AB1’)163.8gと、数平均粒子径8nmの水分散コロイダルシリカ(D1)(商品名「スノーテックスNS」、日産化学工業(株)製、固形分20質量%)120.6gとフルオロカーボン界面活性剤(F)(DIC社製、「メガファックF−444」)0.99gと、イオン交換水により固形分量を1.0質量%に調整した退色性色素(G)(キシダ化学社製、「メチレンブルー」)140gと、水656.2gとを、混合し攪拌することにより光触媒組成物(H−42)を作製した。
片面(裏面)に白色印刷が施されたガラス板の別の片面(表面)にアクリルシリコーン樹脂を予め100μmの膜厚で塗工した10cm×10cmのガラス板を準備した。このガラス板の片面(表面)に上記光触媒組成物(H−42)をスプレー法にて塗布した。その後、塗布した光触媒組成物(H−42)を常温で1時間乾燥することにより、光触媒塗膜が形成された試験板(I−42)を得た。この試験板(I−42)の各種評価結果を表3に示す。
[Production Comparative Example 12]
Among the silver-supported titanium oxides produced in Example 1, silver is supported on a titanium oxide aqueous dispersion not modified with silica in the same manner as described above, and thereafter, in the same manner as described in [Production Example 1]. Silica-modified silver-supported titanium oxide (silver supported amount of 1% by mass) was used as an inorganic compound for photocatalyst (AB1 ′).
163.8 g of inorganic compound for photocatalyst (AB1 ′) and water-dispersed colloidal silica (D1) having a number average particle diameter of 8 nm (trade name “Snowtex NS”, manufactured by Nissan Chemical Industries, Ltd., solid content 20 mass%) 120 .6 g, fluorocarbon surfactant (F) (manufactured by DIC, “Megafac F-444”) 0.99 g, and a fading dye (G) (solid content adjusted to 1.0 mass% with ion-exchanged water) (G) ( A photocatalyst composition (H-42) was prepared by mixing and stirring 140 g of “Methylene Blue” manufactured by Kishida Chemical Co., Ltd.) and 656.2 g of water.
A glass plate having a size of 10 cm × 10 cm, in which an acrylic silicone resin was applied in advance to a thickness of 100 μm on another surface (front surface) of a glass plate on which one side (back surface) was subjected to white printing, was prepared. The said photocatalyst composition (H-42) was apply | coated to the single side | surface (surface) of this glass plate by the spray method. Then, the test plate (I-42) in which the photocatalyst coating film was formed was obtained by drying the apply | coated photocatalyst composition (H-42) at normal temperature for 1 hour. Various evaluation results of this test plate (I-42) are shown in Table 3.

本発明の光触媒用無機化合物(AB)を使用すれば、光触媒塗膜直下塗膜の上に、保護層が不要のまま必要な光触媒活性を発揮する光触媒層を設けることができる。本発明の光触媒用無機化合物(AB)は、さらに抗菌性を付与することにより、防藻性及び防カビ性を付与でき、現場施工性に優れ、透明性の高い1層コートタイプの光触媒塗料を提供できる。本発明の光触媒塗膜は、セルフクリーニング性に優れ、建築外装、内装材、外装表示用途、自動車、ディスプレイ等の分野において産業上の利用可能性を有する。   If the inorganic compound for photocatalysts (AB) of this invention is used, the photocatalyst layer which exhibits required photocatalytic activity can be provided on a coating film directly under a photocatalyst coating film, without requiring a protective layer. The inorganic compound for photocatalyst (AB) of the present invention can provide anti-algal and anti-fungal properties by providing anti-bacterial properties, is excellent in on-site workability, and has a highly transparent one-layer coat type photo-catalytic coating. Can be provided. The photocatalyst coating film of the present invention is excellent in self-cleaning properties, and has industrial applicability in fields such as architectural exteriors, interior materials, exterior display applications, automobiles, and displays.

Claims (17)

光触媒活性を有する無機化合物(A)の粒子表面に、前記無機化合物に対して0.5〜5質量%の抗菌性金属(B)が担持された、光触媒用無機化合物(AB)であって、
前記無機化合物(A)が、以下の(i)の条件を満たすか、以下の(i)及び以下の(ii)両方の条件を満たす、光触媒用無機化合物(AB)。
(i)該無機化合物(A)を含む懸濁液に、波長380nm以下、強度5mW/cm2の紫外光を60秒間照射した際に発生する過酸化水素の量([H22])が、80μM以下である;
(ii)該無機化合物(A)を含む懸濁液に、波長380nm以下、強度5mW/cm2の紫外光を60秒間照射した際に発生するヒドロキシラジカルの量([・OH])が、1.0μM以下である:
An inorganic compound for photocatalyst (AB) in which 0.5 to 5% by mass of an antibacterial metal (B) is supported on the particle surface of the inorganic compound (A) having photocatalytic activity,
The inorganic compound (AB) for photocatalyst, wherein the inorganic compound (A) satisfies the following condition (i) or satisfies both the following conditions (i) and (ii):
(I) The amount of hydrogen peroxide generated when the suspension containing the inorganic compound (A) is irradiated with ultraviolet light having a wavelength of 380 nm or less and an intensity of 5 mW / cm 2 for 60 seconds ([H 2 O 2 ]) Is 80 μM or less;
(Ii) The amount of hydroxy radical ([· OH]) generated when the suspension containing the inorganic compound (A) is irradiated with ultraviolet light having a wavelength of 380 nm or less and an intensity of 5 mW / cm 2 for 60 seconds is 1 0.0 μM or less:
抗菌性金属(B)が、銅、銀、金、白金、及び亜鉛からなる群より選択される1種以上である、請求項1に記載の光触媒用無機化合物(AB)。   The inorganic compound (AB) for photocatalysts according to claim 1, wherein the antibacterial metal (B) is at least one selected from the group consisting of copper, silver, gold, platinum, and zinc. 光触媒活性を有する無機化合物(A)が、酸化チタンである、請求項1又は2に記載の光触媒用無機化合物(AB)。   The inorganic compound (AB) for photocatalyst according to claim 1 or 2, wherein the inorganic compound (A) having photocatalytic activity is titanium oxide. 光触媒活性を有する無機化合物(A)が、金属酸化物(C)により、粒子表面を処理した無機化合物である、請求項1〜3のいずれか一項に記載の光触媒用無機化合物(AB)。   The inorganic compound for photocatalysts (AB) as described in any one of Claims 1-3 whose inorganic compound (A) which has photocatalytic activity is an inorganic compound which processed the particle | grain surface with the metal oxide (C). 前記金属酸化物(C)により、粒子表面を処理した無機化合物の比表面積が、80〜180m2/gである、請求項4に記載の光触媒用無機化合物(AB)。 The inorganic compound (AB) for photocatalysts of Claim 4 whose specific surface area of the inorganic compound which processed the particle | grain surface with the said metal oxide (C) is 80-180 m < 2 > / g. 抗菌性金属(B)が、前記金属酸化物(C)により、粒子表面を処理した無機化合物の表面に、担持されている、請求項4又は5に記載の光触媒用無機化合物(AB)。   The inorganic compound (AB) for photocatalysts according to claim 4 or 5, wherein the antibacterial metal (B) is supported on the surface of the inorganic compound whose particle surface is treated with the metal oxide (C). 金属酸化物(C)が、二酸化ケイ素である、請求項4〜6のいずれか一項に記載の光触媒用無機化合物(AB)。   The inorganic compound (AB) for photocatalysts as described in any one of Claims 4-6 whose metal oxide (C) is silicon dioxide. 請求項1〜7のいずれか一項に記載の光触媒用無機化合物(AB)と、光触媒活性を有しない無機化合物(D)とを含む、光触媒組成物。   The photocatalyst composition containing the inorganic compound (AB) for photocatalysts as described in any one of Claims 1-7, and the inorganic compound (D) which does not have photocatalytic activity. 光触媒活性を有する無機化合物(A)の割合が、光触媒組成物全量に対し、1〜20質量%である、請求項8に記載の光触媒組成物。   The photocatalyst composition of Claim 8 whose ratio of the inorganic compound (A) which has photocatalytic activity is 1-20 mass% with respect to the photocatalyst composition whole quantity. 光触媒活性を有しない無機化合物(D)が、二酸化ケイ素である、請求項8又は9に記載の光触媒組成物。   The photocatalyst composition according to claim 8 or 9, wherein the inorganic compound (D) having no photocatalytic activity is silicon dioxide. 重合体粒子(E)をさらに含む、請求項8〜10のいずれか一項に記載の光触媒組成物。   The photocatalyst composition according to any one of claims 8 to 10, further comprising polymer particles (E). フルオロカーボン界面活性剤(F)をさらに含む、請求項8〜11のいずれか一項に記載の光触媒組成物。   The photocatalyst composition according to any one of claims 8 to 11, further comprising a fluorocarbon surfactant (F). 退色性色素(G)をさらに含む、請求項8〜12のいずれか一項に記載の光触媒組成物。   The photocatalyst composition according to any one of claims 8 to 12, further comprising a fading dye (G). 光触媒活性を有する無機化合物(A)に金属酸化物(C)を修飾させ、金属酸化物(C)により、粒子表面が処理された無機化合物を得る工程、及び、
前記金属酸化物(C)により、粒子表面が処理された無機化合物に、抗菌性金属(B)を担持させる工程
を含む、光触媒用無機化合物(AB)の製造方法。
A step of modifying the metal oxide (C) to the inorganic compound (A) having photocatalytic activity to obtain an inorganic compound whose particle surface is treated with the metal oxide (C); and
The manufacturing method of the inorganic compound for photocatalysts (AB) including the process of carrying | supporting an antibacterial metal (B) to the inorganic compound by which the particle | grain surface was processed with the said metal oxide (C).
光触媒活性を有する無機化合物(A)を修飾する金属酸化物(C)の割合が、光触媒活性を有する無機化合物(A)に対し1〜30質量%であり、
担持させる抗菌性金属(B)の割合が、光触媒活性を有する無機化合物(A)に対し0.5〜5質量%である、
請求項14に記載の光触媒用無機化合物(AB)の製造方法。
The ratio of the metal oxide (C) that modifies the inorganic compound (A) having photocatalytic activity is 1 to 30% by mass with respect to the inorganic compound (A) having photocatalytic activity,
The proportion of the antibacterial metal (B) to be supported is 0.5 to 5% by mass with respect to the inorganic compound (A) having photocatalytic activity.
The manufacturing method of the inorganic compound (AB) for photocatalysts of Claim 14.
請求項8〜13のいずれか一項に記載の光触媒組成物から形成された、光触媒塗膜。   The photocatalyst coating film formed from the photocatalyst composition as described in any one of Claims 8-13. 請求項16に記載の光触媒塗膜を備える、光触媒塗装製品。   The photocatalyst coating product provided with the photocatalyst coating film of Claim 16.
JP2017044309A 2017-03-08 2017-03-08 Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products Active JP6663375B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017044309A JP6663375B2 (en) 2017-03-08 2017-03-08 Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017044309A JP6663375B2 (en) 2017-03-08 2017-03-08 Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products

Publications (2)

Publication Number Publication Date
JP2018144004A true JP2018144004A (en) 2018-09-20
JP6663375B2 JP6663375B2 (en) 2020-03-11

Family

ID=63590311

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017044309A Active JP6663375B2 (en) 2017-03-08 2017-03-08 Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products

Country Status (1)

Country Link
JP (1) JP6663375B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622021A (en) * 2019-01-15 2019-04-16 晋中艾珂灵科技有限公司 A kind of preparation method of copper ion-photo-catalytic sterilization taste removal film and its application on lamps and lanterns
WO2020255848A1 (en) * 2019-06-21 2020-12-24 久保井塗装株式会社 Antibacterial coated object, antibacterial paint, method for producing antibacterial paint, and method for producing antibacterial coated object
CN113976110A (en) * 2021-11-25 2022-01-28 浙江理工大学 A kind of catalyst for photocatalytic alcohol-water system hydrogen production and preparation method thereof
JPWO2022070934A1 (en) * 2020-10-01 2022-04-07
JP2022076442A (en) * 2020-11-09 2022-05-19 ホヤ レンズ タイランド リミテッド Method of fabricating spectacle lenses
JP2022076441A (en) * 2020-11-09 2022-05-19 ホヤ レンズ タイランド リミテッド Spectacle lenses and spectacles
CN117089277A (en) * 2023-08-23 2023-11-21 东周化学工业(昆山)有限公司 Matte water-based ultraviolet light curing coating with odor removing function and preparation method thereof
JP7657637B2 (en) 2021-03-30 2025-04-07 大阪瓦斯株式会社 Metal-loaded titania nanoparticles and method for producing same

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225319A (en) * 1996-02-23 1997-09-02 Agency Of Ind Science & Technol Photocatalyst particle and preparation thereof
WO2001017680A1 (en) * 1999-09-08 2001-03-15 Showa Denko Kabushiki Kaisha Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP2003199810A (en) * 2001-09-27 2003-07-15 National Institute Of Advanced Industrial & Technology Functional adsorbent and method for producing the same
JP2006305527A (en) * 2005-05-02 2006-11-09 Altis Kk Photocatalyst particle, coating material containing the photocatalyst particle, and method for producing the photocatalyst particle
JP2008161838A (en) * 2006-12-28 2008-07-17 Nbc Inc Catalyst carrier
JP2008221113A (en) * 2007-03-12 2008-09-25 Osaka Univ Floating photocatalyst and method for treating contaminated water using the same
JP2013220397A (en) * 2012-04-18 2013-10-28 Asahi Kasei Chemicals Corp Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2015214645A (en) * 2014-05-09 2015-12-03 旭化成ケミカルズ株式会社 Aqueous coating agent composition, aqueous paint, coating, and coated product
JP2016113417A (en) * 2014-12-16 2016-06-23 昭和電工株式会社 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method
JP2017124393A (en) * 2015-07-31 2017-07-20 Toto株式会社 Photocatalytic material and manufacturing method therefor

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09225319A (en) * 1996-02-23 1997-09-02 Agency Of Ind Science & Technol Photocatalyst particle and preparation thereof
WO2001017680A1 (en) * 1999-09-08 2001-03-15 Showa Denko Kabushiki Kaisha Particulate titanium dioxide photocatalyst, process for producing the same, and applications thereof
JP2003199810A (en) * 2001-09-27 2003-07-15 National Institute Of Advanced Industrial & Technology Functional adsorbent and method for producing the same
JP2006305527A (en) * 2005-05-02 2006-11-09 Altis Kk Photocatalyst particle, coating material containing the photocatalyst particle, and method for producing the photocatalyst particle
JP2008161838A (en) * 2006-12-28 2008-07-17 Nbc Inc Catalyst carrier
JP2008221113A (en) * 2007-03-12 2008-09-25 Osaka Univ Floating photocatalyst and method for treating contaminated water using the same
JP2013220397A (en) * 2012-04-18 2013-10-28 Asahi Kasei Chemicals Corp Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2015214645A (en) * 2014-05-09 2015-12-03 旭化成ケミカルズ株式会社 Aqueous coating agent composition, aqueous paint, coating, and coated product
JP2016113417A (en) * 2014-12-16 2016-06-23 昭和電工株式会社 Antiviral composition, antiviral agent, photocatalyst and virus deactivation method
JP2017124393A (en) * 2015-07-31 2017-07-20 Toto株式会社 Photocatalytic material and manufacturing method therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ABDULLA-AL-MAMUN, MD. ET AL.: "Enhanced photocatalytic cytotoxic activity of Ag@Fe-doped TiO2 nanocomposites against human epitheli", JOURNAL OF MATERIALS CHEMISTRY, vol. 22, JPN6019037238, 2012, GB, pages 5460 - 5469, ISSN: 0004123935 *

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109622021A (en) * 2019-01-15 2019-04-16 晋中艾珂灵科技有限公司 A kind of preparation method of copper ion-photo-catalytic sterilization taste removal film and its application on lamps and lanterns
WO2020255848A1 (en) * 2019-06-21 2020-12-24 久保井塗装株式会社 Antibacterial coated object, antibacterial paint, method for producing antibacterial paint, and method for producing antibacterial coated object
JP2021001278A (en) * 2019-06-21 2021-01-07 久保井塗装株式会社 Antibacterial coated matter, antibacterial coating, manufacturing method of antibacterial coating and manufacturing method of antibacterial coated matter
US12054641B2 (en) 2019-06-21 2024-08-06 Kuboi Coating Works Co., Ltd. Antibacterial-coated product, antibacterial coating material, method for manufacturing antibacterial coating material, and method for manufacturing antibacterial-coated product
JPWO2022070934A1 (en) * 2020-10-01 2022-04-07
WO2022070934A1 (en) * 2020-10-01 2022-04-07 Dic株式会社 Coating composition
CN116322988A (en) * 2020-10-01 2023-06-23 Dic株式会社 Coating Composition
JP7203147B2 (en) 2020-11-09 2023-01-12 ホヤ レンズ タイランド リミテッド Spectacle lens manufacturing method
JP2022076441A (en) * 2020-11-09 2022-05-19 ホヤ レンズ タイランド リミテッド Spectacle lenses and spectacles
JP2022076442A (en) * 2020-11-09 2022-05-19 ホヤ レンズ タイランド リミテッド Method of fabricating spectacle lenses
JP7657637B2 (en) 2021-03-30 2025-04-07 大阪瓦斯株式会社 Metal-loaded titania nanoparticles and method for producing same
CN113976110B (en) * 2021-11-25 2023-01-03 浙江理工大学 Catalyst for photocatalytic hydrogen production in alcohol-water system and preparation method thereof
CN113976110A (en) * 2021-11-25 2022-01-28 浙江理工大学 A kind of catalyst for photocatalytic alcohol-water system hydrogen production and preparation method thereof
CN117089277A (en) * 2023-08-23 2023-11-21 东周化学工业(昆山)有限公司 Matte water-based ultraviolet light curing coating with odor removing function and preparation method thereof
CN117089277B (en) * 2023-08-23 2024-06-04 东周化学工业(昆山)有限公司 Matte water-based ultraviolet light curing coating with odor removing function and preparation method thereof

Also Published As

Publication number Publication date
JP6663375B2 (en) 2020-03-11

Similar Documents

Publication Publication Date Title
JP6663375B2 (en) Inorganic compounds for photocatalysts, photocatalyst compositions, photocatalyst coatings and photocatalyst coating products
KR101082721B1 (en) Photocatalytic coating material, photocatalytic composite material and process for producing the same, self-cleaning water-based coating comopsitions, and self-cleaning member
JP2019098297A (en) Antibacterial metal carrying photocatalyst, photocatalyst composition, photocatalyst coated film, and photocatalyst coating product
JP4823045B2 (en) Water-based photocatalytic composition
JP7060583B2 (en) Method for producing iron-containing rutile-type titanium oxide fine particle dispersion, iron-containing rutile-type titanium oxide fine particles and their uses
CN102821850B (en) Light catalyst loating body and photocatalyst masking liquid
US20120168649A1 (en) Near-infrared shielding coating agent curable at ordinary temperatures, near infrared shielding film using same, and manufacturing method therefor
CN101903102A (en) Photocatalytic film, method for producing photocatalytic film, article, and hydrophilization method
DE102004021425A1 (en) Use of photocatalytic TiO2 layers for the functionalization of substrates
JP2018095498A (en) Metatitanic acid particles and method for producing the same, composition for forming photocatalyst, photocatalyst and structure
JP4879839B2 (en) Photocatalyst layer forming composition
JP4738736B2 (en) Photocatalyst composite, coating solution for forming photocatalyst layer, and photocatalyst carrying structure
JP5252876B2 (en) Photocatalytic hydrosol and aqueous photocatalytic coating agent
JP6714530B2 (en) Photocatalyst composition, photocatalyst coating film and photocatalyst coating product
JP7023689B2 (en) Photocatalyst coating body and photocatalyst coating composition
JP2013220397A (en) Metal compound for photocatalyst, photocatalytic composition, photocatalytic coating film and photocatalytic coating product
JP2002079109A (en) Optical semiconductor metal-organic substance mixed body, composition containing optical semiconductor metal, method for producing photocatalytic film and photocatalytic member
CN108884339A (en) Coating layer
JP2001040291A (en) Photocatalytic colored coated article and colored primer coating composition for coating
WO2009123135A1 (en) Photocatalyst coating composition
JP6646603B2 (en) Multilayer coating, coating agent set, and painted body
US20200070124A1 (en) Photocatalytic coating, process for producing photocatalytic coating, and process for producing photocatalytic body
JP4972268B2 (en) Liquid for forming titanium oxide film, method for forming titanium oxide film, titanium oxide film and photocatalytic member
JP7074556B2 (en) Coating film and water-based composition
JP2009101287A (en) Modified photocatalytic sol and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190930

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200214

R150 Certificate of patent or registration of utility model

Ref document number: 6663375

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150