JP2018139194A - 燃料電池システム - Google Patents
燃料電池システム Download PDFInfo
- Publication number
- JP2018139194A JP2018139194A JP2017033599A JP2017033599A JP2018139194A JP 2018139194 A JP2018139194 A JP 2018139194A JP 2017033599 A JP2017033599 A JP 2017033599A JP 2017033599 A JP2017033599 A JP 2017033599A JP 2018139194 A JP2018139194 A JP 2018139194A
- Authority
- JP
- Japan
- Prior art keywords
- target
- fuel cell
- temperature
- turbine
- turbo
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Fuel Cell (AREA)
- Control Of Turbines (AREA)
- Engine Equipment That Uses Special Cycles (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
Abstract
【課題】燃料電池に供給される酸化剤ガスの圧力の変動を抑制しつつ、タービンの回転速度を制御できる燃料電池システムを提供すること。【解決手段】燃料電池システム10は、酸化剤ガスを圧縮する電動コンプレッサ31と、電動コンプレッサ31によって圧縮された第1圧縮ガスを圧縮するターボコンプレッサ32と、両コンプレッサ31,32を繋ぐものであって第1圧縮ガスが流れる接続流路34とを備えている。燃料電池システム10は、燃料電池スタック11から排出される排出ガスによって回転するタービン43と、ターボコンプレッサ32のインペラ32aとタービン43とを連結する連結部52と、排出流路41の流路断面積を変更可能な変更部42と、接続流路34を流れる第1圧縮ガスと熱交換を行う熱交換装置60とを備えている。【選択図】図1
Description
本発明は、燃料電池システムに関する。
特許文献1には、酸化剤ガスを圧縮する電動コンプレッサ及びターボコンプレッサと、両コンプレッサによって圧縮された酸化剤ガスが供給される燃料電池と、燃料電池から排出される排出ガスから得た回転力によってターボコンプレッサを駆動するタービンとを備えた燃料電池システムが記載されている。特許文献1には、電動コンプレッサとターボコンプレッサとを繋ぐ接続流路に中間冷却器が設けられている点が記載されている。
また、特許文献1,2に記載される燃料電池システムは、タービンに吹き付けられる排気ガスが流れる流路の流路断面積を変更することによりタービンの回転速度を制御するように構成されている。
上記特許文献1,2に記載の燃料電池システムによれば、排出ガスが流れる流路の流路断面積の変更を通じたタービンの回転速度の制御により、タービンの効率の向上を図ることができる。しかしながら、このように上記流路断面積を変更すると、燃料電池から排出される排出ガスの量が変化するため、燃料電池に供給される酸化剤ガスの圧力が変動する。その結果、燃料電池に供給される酸化剤ガスの圧力に依存する燃料電池の発電量を所望の量とすることができない事態が生じ得る。
本発明は、上述した事情を鑑みてなされたものであり、その目的は燃料電池に供給される酸化剤ガスの圧力の変動を抑制しつつ、タービンの回転速度を制御できる燃料電池システムを提供することである。
上記目的を達成する燃料電池システムは、酸化剤ガスを圧縮する電動コンプレッサと、前記電動コンプレッサによって圧縮された前記酸化剤ガスである第1圧縮ガスを圧縮するものであってインペラを有するターボコンプレッサと、前記ターボコンプレッサによって圧縮された前記酸化剤ガスである第2圧縮ガスが供給される燃料電池と、前記電動コンプレッサと前記ターボコンプレッサとを繋ぐものであって、前記第1圧縮ガスが流れる接続流路と、前記燃料電池から排出される排出ガスが流れる排出流路を介して前記燃料電池と繋がっているものであって、前記排出ガスによって回転するタービンと、前記ターボコンプレッサの前記インペラと前記タービンとが一体回転するように前記インペラと前記タービンとを連結する連結部と、前記排出流路に設けられ、前記排出流路の流路断面積を変更する変更部と、前記接続流路を流れる前記第1圧縮ガスと熱交換を行う熱交換装置と、前記燃料電池にて要求される発電量である要求発電量と前記燃料電池の温度とを把握する把握部と、前記把握部によって把握された前記要求発電量及び前記燃料電池の温度と、前記タービンの効率とに基づいて、前記熱交換装置との熱交換が行われた後の前記第1圧縮ガスの温度であるターボ吸入温度についての目標値である目標温度を導出する導出部と、前記ターボ吸入温度が前記目標温度となるように、前記熱交換装置を制御する制御部と、を備えていることを特徴とする。
かかる構成によれば、電動コンプレッサとターボコンプレッサとによって、酸化剤ガスが圧縮される。これにより、電動コンプレッサのみの場合と比較して、要求発電量に対して必要となる電動コンプレッサの圧力比を小さくできる。したがって、電動コンプレッサの消費電力の低減を図ることができる。また、ターボコンプレッサは、タービンの回転力を用いて駆動されるため、駆動源として専用の電動モータ等を別途必要としない。
ここで、本願発明者らは、ターボ吸入温度が変化することによりタービンの回転速度が変化することを見出した。この知見に基づいて、本構成によれば、熱交換装置を用いて、ターボ吸入温度を、把握部により把握された要求発電量及び燃料電池の温度とタービンの効率とに基づいて導出される目標温度となるように制御することができる。これにより、タービンの回転速度が目標温度に対応した回転速度になる。したがって、燃料電池に供給される酸化剤ガスの圧力の変動を抑制しつつ、タービンの回転速度を目標値、例えばタービンの効率が比較的高くなる値にできる。
上記燃料電池システムについて、前記燃料電池に供給される前記第2圧縮ガスの流量及び圧力である供給流量及び供給圧力が、前記把握部によって把握される前記要求発電量と前記燃料電池の温度とに対応した目標流量及び目標圧力となっている条件下において、前記タービンの効率が最大となる前記タービンの回転速度を目標回転速度とすると、前記目標温度は、前記タービンの回転速度が前記目標回転速度となる前記ターボ吸入温度であるとよい。
かかる構成によれば、タービンの効率を最大にすることができるため、電動コンプレッサの消費電力を小さくできる。これにより、燃料電池において要求発電量の発電を実現しつつ、電動コンプレッサの消費電力の更なる低減を図ることができる。
上記燃料電池システムについて、前記変更部は、可変ノズルと、前記可変ノズルの開度が変更するように前記可変ノズルを駆動するアクチュエータとを有し、前記電動コンプレッサは、前記酸化剤ガスの圧縮を行う圧縮部と、前記圧縮部を駆動させる電動モータとを有し、前記導出部は、前記把握部によって把握された前記要求発電量及び前記燃料電池の温度と、前記タービンの効率とに基づいて、前記目標温度の導出に加え、前記目標圧力に対応した目標開度及び前記目標流量に対応した目標トルクを導出するものであり、前記制御部は、前記熱交換装置の制御に加え、前記可変ノズルの開度が前記目標開度となるように前記アクチュエータを制御し、且つ、前記電動モータのトルクが前記目標トルクとなるように前記電動モータを制御するものであり、前記電動コンプレッサに吸入される前記酸化剤ガスの圧力に対する前記目標圧力の比率を目標圧力比とし、前記タービンの回転速度が前記目標回転速度である条件下において前記電動コンプレッサに吸入される前記酸化剤ガスの圧力に対する前記供給圧力の比率が前記目標圧力比となるための前記電動コンプレッサの圧力比を特定圧力比とすると、前記目標トルクは、前記供給流量が前記目標流量となり、且つ、前記電動コンプレッサの圧力比が前記特定圧力比となる値に設定されているとよい。
ターボコンプレッサの圧力比は、タービンの回転速度に依存する。このため、ターボ吸入温度が目標温度となるように制御されることによってタービンの回転速度が目標回転速度となる構成においては、ターボコンプレッサの圧力比は目標回転速度に対応した値となる。そして、ターボコンプレッサの圧力比が決まると、特定圧力比が決まる。かかる構成において、目標トルクは、供給流量が目標流量となり、且つ、電動コンプレッサの圧力比が特定圧力比となる値に設定されている。これにより、供給流量及び供給圧力を目標流量及び目標圧力にしつつ、タービンの効率の向上を図ることができる。したがって、燃料電池にて要求発電量の発電を行いつつ、電動コンプレッサの消費電力の低減を図ることができる。
上記燃料電池システムについて、前記ターボ吸入温度を検出するターボ吸入温度検出部を備え、前記制御部は、前記ターボ吸入温度検出部により検出される前記ターボ吸入温度と前記目標温度とが一致するように前記熱交換装置を制御するとよい。
かかる構成によれば、ターボ吸入温度検出部によってターボ吸入温度を直接的に把握できるため、ターボ吸入温度の制御を精度よく行うことができる。
特に、本燃料電池システムは、ターボ吸入温度の制御によってタービンの回転速度を制御する構成を採用している。このため、例えば接続流路を流れる第1圧縮ガスの温度を可能な範囲内で低くするといった、ターボ吸入温度の目標温度が明確に定められていない制御では、タービンの回転速度を適切に制御することができないという不都合が生じ得る。これに対して、本構成によれば、上述した通り、導出部によって目標温度が導出され、ターボ吸入温度検出部によって検出されるターボ吸入温度が目標温度となるように制御されるため、タービンの回転速度を適切に制御でき、上記不都合を抑制できる。
特に、本燃料電池システムは、ターボ吸入温度の制御によってタービンの回転速度を制御する構成を採用している。このため、例えば接続流路を流れる第1圧縮ガスの温度を可能な範囲内で低くするといった、ターボ吸入温度の目標温度が明確に定められていない制御では、タービンの回転速度を適切に制御することができないという不都合が生じ得る。これに対して、本構成によれば、上述した通り、導出部によって目標温度が導出され、ターボ吸入温度検出部によって検出されるターボ吸入温度が目標温度となるように制御されるため、タービンの回転速度を適切に制御でき、上記不都合を抑制できる。
上記燃料電池システムについて、前記熱交換装置は、前記接続流路を流れる前記第1圧縮ガスの冷却に用いられるファンを備え、前記制御部は、前記ファンの回転速度を制御することにより、前記ターボ吸入温度を制御するものであるとよい。
かかる構成によれば、ファンの回転速度の制御という比較的簡素な制御でターボ吸入温度の制御を行うことができる。
上記燃料電池システムについて、前記熱交換装置は、冷媒が流れる冷媒流路と、前記冷媒流路に前記冷媒を循環させるポンプ装置と、前記冷媒と前記第1圧縮ガスとの熱交換が行われる熱交換部と、前記冷媒と熱交換を行うラジエータと、前記ラジエータに対して送風を行うファンと、を備え、前記制御部は、前記ファンの回転速度及び前記冷媒流路を流れる前記冷媒の単位時間当たりの流量の少なくとも一方を制御することにより、前記ターボ吸入温度を制御するものであるとよい。
上記燃料電池システムについて、前記熱交換装置は、冷媒が流れる冷媒流路と、前記冷媒流路に前記冷媒を循環させるポンプ装置と、前記冷媒と前記第1圧縮ガスとの熱交換が行われる熱交換部と、前記冷媒と熱交換を行うラジエータと、前記ラジエータに対して送風を行うファンと、を備え、前記制御部は、前記ファンの回転速度及び前記冷媒流路を流れる前記冷媒の単位時間当たりの流量の少なくとも一方を制御することにより、前記ターボ吸入温度を制御するものであるとよい。
かかる構成によれば、ファンの回転速度及び冷媒流路を流れる冷媒の単位時間当たりの流量の少なくとも一方を制御することにより、ターボ吸入温度の温度を目標温度にすることができ、それを通じてタービンの回転速度の制御を行うことができる。
この発明によれば、燃料電池に供給される酸化剤ガスの圧力の変動を抑制しつつ、タービンの回転速度を制御できる。
以下、本燃料電池システムの一実施形態について説明する。なお、本実施形態の燃料電池システムは、車両に搭載されている。
図1に示すように、燃料電池システム10は、アノードガスである燃料ガスとカソードガスである酸化剤ガスとの電気化学反応によって発電する燃料電池としての燃料電池スタック11を備えている。燃料電池システム10は、燃料電池スタック11に対する燃料ガスの供給を行う燃料ガス供給部20と、燃料電池スタック11に対して酸化剤ガスを供給する酸化剤ガス供給部30と、燃料電池スタック11内の酸化剤ガスを排出するための酸化剤ガス排出部40と、を備えている。
図1に示すように、燃料電池システム10は、アノードガスである燃料ガスとカソードガスである酸化剤ガスとの電気化学反応によって発電する燃料電池としての燃料電池スタック11を備えている。燃料電池システム10は、燃料電池スタック11に対する燃料ガスの供給を行う燃料ガス供給部20と、燃料電池スタック11に対して酸化剤ガスを供給する酸化剤ガス供給部30と、燃料電池スタック11内の酸化剤ガスを排出するための酸化剤ガス排出部40と、を備えている。
燃料電池スタック11は、例えば複数のセルを有している。各セルはそれぞれ、カソード電極と、アノード電極と、両電極の間に配置されたセパレータ(電解質膜)とが積層されて構成されており、燃料ガスと酸化剤ガスとが供給されることによって発電する。なお、燃料ガスとは例えば水素である。また、酸化剤ガスとは、酸素を含むものであれば任意であるが、例えば空気である。
燃料電池スタック11内には、燃料ガス供給部20から供給された燃料ガスが流れるアノード流路12と、酸化剤ガスが流れるカソード流路13とが形成されている。カソード流路13は、酸化剤ガス供給部30を通じて酸化剤ガスが供給される供給口13aと、酸化剤ガスが排出される排出口13bとを有している。
また、燃料電池スタック11は、当該燃料電池スタック11の温度であるスタック温度Tsを検出するためのスタック温度検出部14を備えている。スタック温度検出部14は、スタック温度Tsと相関を有する物理量を検出するものである。スタック温度検出部14は、例えば上記物理量として燃料電池スタック11のセルの温度を検出する。但し、これに限られず、例えば燃料電池システム10が冷媒を用いて燃料電池スタック11を冷却する冷却機構を備えている場合には、スタック温度検出部14は、上記物理量としてその冷媒の燃料電池スタック11の冷却後の温度を検出し、その検出結果からスタック温度Tsを推定してもよい。
燃料ガス供給部20は、燃料ガスが貯蔵されたタンク及びポンプ装置を有しており、ポンプ装置を用いてタンク内の燃料ガスをアノード流路12に供給する。また、燃料ガス供給部20は、アノード流路12を通じて燃料電池スタック11から排出された燃料ガスを再度アノード流路12に循環させる。
酸化剤ガス供給部30は、電動コンプレッサ31と、ターボコンプレッサ32と、電動コンプレッサ31に酸化剤ガスを導入する吸入流路33と、電動コンプレッサ31及びターボコンプレッサ32を繋ぐ接続流路34と、ターボコンプレッサ32と燃料電池スタック11とを繋ぐ供給流路35と、を備えている。
電動コンプレッサ31は、吸入流路33から吸入される酸化剤ガスを圧縮して、その圧縮された第1圧縮ガスを接続流路34に吐出するものである。電動コンプレッサ31は、圧縮部31aと、圧縮部31aを駆動する電動モータ31bとを有している。
圧縮部31aは、回転体を有しており、当該回転体が回転することによって圧縮動作を行う。なお、圧縮部31aの具体的な型式は任意であり、例えばインペラを有するターボ式でもよいし、スクロール式やルーツ式等でもよい。圧縮部31aの回転体は、電動モータ31bのトルクNに応じた回転速度で回転する。
ここで、燃料電池スタック11に供給される酸化剤ガスの流量である供給流量FIは、電動コンプレッサ31の駆動態様、詳細には電動モータ31bのトルクNによって決められる。詳細には、供給流量FIは、圧縮部31aの回転体が酸化剤ガスに与える時間当たりの運動量によって決められ、その運動量は、電動モータ31bのトルクNによって決められる。この点に着目すれば、供給流量FIは、電動モータ31bによって制御されるパラメータであるとも言える。
ターボコンプレッサ32は、酸化剤ガスの流下方向において、電動コンプレッサ31の下流側であって燃料電池スタック11の上流側に設けられている。ターボコンプレッサ32の吸入側は接続流路34に接続されており、ターボコンプレッサ32の吐出側は供給流路35に接続されている。ターボコンプレッサ32は回転体としてのインペラ32aを有し、当該インペラ32aが回転することによって接続流路34を流れる第1圧縮ガスを圧縮し、その圧縮された第2圧縮ガスを供給流路35に吐出するものである。
接続流路34及び供給流路35はそれぞれ、配管等で構成されている。接続流路34は、第1圧縮ガスが流れる流路であり、供給流路35は、第2圧縮ガスが流れる流路である。供給流路35は、燃料電池スタック11のカソード流路13における供給口13aに接続されている。
かかる構成によれば、吸入流路33から吸入された酸化剤ガスは、両コンプレッサ31,32によって2段階に圧縮されて、供給口13aからカソード流路13に供給される。これにより、カソード流路13に供給される酸化剤ガスの圧力である供給圧力PIが高められている。供給圧力PIは、燃料電池スタック11に供給される第2圧縮ガスの圧力である。
酸化剤ガス排出部40は、燃料電池スタック11から排出される排出ガスが流れる排出流路41と、排出流路41に設けられた変更部42と、タービン43と、を備えている。
排出流路41は、例えば配管等で構成されている。排出流路41の一端部は、燃料電池スタック11におけるカソード流路13の排出口13bに接続されており、排出流路41の他端部は、タービン43に接続されている。すなわち、燃料電池スタック11とタービン43とは、排出流路41を介して接続されている。カソード流路13の排出口13bを通じて燃料電池スタック11から排出された排出ガスは、排出流路41を通って、タービン43に導入される。
排出流路41は、例えば配管等で構成されている。排出流路41の一端部は、燃料電池スタック11におけるカソード流路13の排出口13bに接続されており、排出流路41の他端部は、タービン43に接続されている。すなわち、燃料電池スタック11とタービン43とは、排出流路41を介して接続されている。カソード流路13の排出口13bを通じて燃料電池スタック11から排出された排出ガスは、排出流路41を通って、タービン43に導入される。
変更部42は、排出流路41の流路断面積を変更するものである。変更部42は、可変ノズル42aとアクチュエータ42bとを有している。
可変ノズル42aは、排出流路41の流路断面積を変更可能に構成されている。詳細には、可変ノズル42aは、例えば排出流路41に設けられ且つ開度θを調整可能な1又は複数の弁で構成されており、開度θに応じて排出流路41の流路断面積が変更可能となっている。すなわち、開度θとは、流路断面積を規定するパラメータであり、開度θの制御とは、流路断面積の制御とも言える。
可変ノズル42aは、排出流路41の流路断面積を変更可能に構成されている。詳細には、可変ノズル42aは、例えば排出流路41に設けられ且つ開度θを調整可能な1又は複数の弁で構成されており、開度θに応じて排出流路41の流路断面積が変更可能となっている。すなわち、開度θとは、流路断面積を規定するパラメータであり、開度θの制御とは、流路断面積の制御とも言える。
なお、可変ノズル42aの具体的な構成については任意であり、例えばタービン43の外周の位置にて周方向に複数配列されているものであって回動することによって流路断面積が調整されるベーン等でもよい。この場合、開度θとは、ベーンの回動角度に対応する。また、可変ノズル42aは、排出流路41を絞るものであってその絞り具合を変更可能な可変絞りとも言える。
供給圧力PIは、可変ノズル42aの開度θに応じて変化する。このため、供給圧力PIは、可変ノズル42aの開度θによって制御されるパラメータである。
アクチュエータ42bは、可変ノズル42aの開度θが変更されるように可変ノズル42aを駆動するものである。開度θの制御は、アクチュエータ42bの制御によって実現される。
アクチュエータ42bは、可変ノズル42aの開度θが変更されるように可変ノズル42aを駆動するものである。開度θの制御は、アクチュエータ42bの制御によって実現される。
タービン43は、変更部42を通過した排出ガスの流体エネルギを機械的エネルギに変換するものである。詳細には、タービン43は、羽根が形成されたインペラで構成されており、可変ノズル42aを通過した排出ガスが吹き付けられることによって回転するように構成されている。この場合、排出ガスは、タービン43を通過することによって膨張する。これにより、タービン43から排出されるガスは、タービン43に導入される排出ガス、換言すれば可変ノズル42aを通過した排出ガスと比較して、低圧且つ低温となっている。なお、図示の都合上、可変ノズル42aとタービン43とは別体で示したが、実際には両者は一体化されている。
図1に示すように、燃料電池システム10は、燃料電池スタック11から排出される排出ガスの圧力を検出する圧力検出部51を備えている。圧力検出部51は、カソード流路13の排出口13bから可変ノズル42aに向かう排出ガスの圧力を検出する。
なお、圧力検出部51によって検出される排出ガスの圧力と供給圧力PIとの間には相関関係がある。詳細には、供給圧力PIは、上記排出ガスの圧力よりも、第2圧縮ガスがカソード流路13を流れることによって生じる損失に対応する分だけ高い。また、当該損失が無視できる場合には、排出ガスの圧力と供給圧力PIとは同一とみなすことができる。このため、本燃料電池システム10は、圧力検出部51の検出結果から供給圧力PIを把握できる。この点に着目すれば、圧力検出部51は、供給圧力PIを検出するのに用いられるものであるとも言える。
燃料電池システム10は、ターボコンプレッサ32のインペラ32aとタービン43とを連結する連結部52を備えている。ターボコンプレッサ32のインペラ32aとタービン43とは、連結部52によって一体回転するようになっている。したがって、排出ガスによってタービン43が回転することによって自ずとターボコンプレッサ32が駆動することとなる。すなわち、タービン43は、可変ノズル42aによって絞られた状態で導入される排出ガスから得た回転力によってターボコンプレッサ32を駆動する。したがって、ターボコンプレッサ32を駆動させるための専用の電動モータを設けることなく、2段階の圧縮が実現されている。この場合、ターボコンプレッサ32とタービン43との回転速度vは同一となる。なお、説明の便宜上、以降の説明において、ターボコンプレッサ32とタービン43との回転速度vを単にタービン回転速度vという。
ここで、タービン43の効率η(以降、単に「タービン効率η」という。)は、タービン回転速度vに応じて変化する。タービン効率ηとは、例えばタービン43での消費熱量に対するタービン43の出力(動力)の比率であり、詳細にはタービン43に導入されるガス(すなわち排出ガス)の熱量とタービン43から排出されるガスの熱量との差に対する、タービン43の出力の比率である。タービン効率ηが高いと、ターボコンプレッサ32の圧力比である第2圧力比Rbが高くなり易い一方、タービン効率ηが低いと、第2圧力比Rbが低くなり易い。なお、第2圧力比Rbとは、第1圧縮ガスの圧力P1に対する供給圧力PIの比率(=PI/P1)である。
これに対して、本実施形態の燃料電池システム10は、タービン効率ηを高める構成を備えている。当該構成について、本燃料電池システム10の制御に関する構成とともに説明する。
図1に示すように、燃料電池システム10は、接続流路34を流れる第1圧縮ガスと熱交換を行う熱交換装置60と、ターボコンプレッサ32に吸入される第1圧縮ガスの温度であるターボ吸入温度Tvを検出するターボ吸入温度検出部67と、を備えている。
熱交換装置60は、冷媒が流れる冷媒流路61と、冷媒流路61に冷媒を循環させるポンプ装置62と、熱交換を行う熱交換部63及びラジエータ64と、第1圧縮ガスの冷却に用いられるファン65と、ファン駆動部66と、を備えている。
冷媒流路61は、冷媒が循環するように閉じたループ形状となっている。本実施形態では、冷媒流路61は、車両に搭載されている他の冷媒流路とは別に独立して設けられている。なお、本実施形態では、冷媒は液体である。但し、これに限られず、冷媒は気体でもよい。
ポンプ装置62は、冷媒流路61に設けられており、冷媒の吸入及び吐出を行うことにより、所定の速度で冷媒を循環させるものである。この場合、冷媒流路61を流れる冷媒の単位時間当たりの流量は、ポンプ装置62の駆動態様によって変化する。例えば、ポンプ装置62が回転体を有しており、当該回転体が回転することにより冷媒を循環させるように構成されている場合には、ポンプ装置62の駆動態様とは回転体の回転速度である。ポンプ装置62の具体的な構成は、トロコイド式等、任意である。
熱交換部63は、第1圧縮ガスの熱を冷媒に伝達させるものである。熱交換部63は、熱伝導率の高い材料で構成されており、例えばアルミニウム等の金属で構成されている。熱交換部63内には、冷媒流路61の一部と、接続流路34の一部とが形成されており、両者は互いに近接する位置にて並設されている。熱交換部63を介して、冷媒流路61の冷媒と第1圧縮ガスとの間で熱交換が行われる。換言すれば、熱交換部63は、冷媒流路61の冷媒と、接続流路34の第1圧縮ガスとを熱的に結合させるものである。
ラジエータ64の内部には、冷媒流路61の一部が形成されている。冷媒は、ラジエータ64内を流れることにより、ラジエータ64と熱交換を行う。すなわち、ラジエータ64は、当該ラジエータ64内を流れる冷媒の熱を吸収する。なお、ラジエータ64の具体的な構成については任意である。
本実施形態では、ファン65は、ラジエータ64に対して空気を送風することにより、ラジエータ64を冷却するものである。すなわち、本実施形態では、ファン65の送風対象、すなわち冷却対象はラジエータ64である。
ファン駆動部66は、ファン65を駆動させるものである。ファン駆動部66は、例えばファン65を回転させるモータと、当該モータを駆動させるインバータ回路とを有している。ファン駆動部66は、ファン65を回転させたり停止させたりすることができるとともに、ファン65の回転速度を変更可能に構成されている。
かかる構成によれば、接続流路34を流れる第1圧縮ガスの熱は、熱交換部63を介して、冷媒流路61の冷媒に伝達される。そして、冷媒の熱は、ラジエータ64に伝達され、当該ラジエータ64の熱は、ファン65によって送風される空気に放出される。すなわち、第1圧縮ガスは、熱交換部63、冷媒及びラジエータ64を介して、ファン65によって冷却されている。
ここで、冷媒に対するラジエータ64の吸熱量は、ラジエータ64に供給される空気の流量に応じて変化する。そして、ラジエータ64に供給される空気の流量は、ファン65の回転速度に応じて変化する。このため、ファン65の回転速度を調整することによって、冷媒の温度を調整することができ、それを通じてターボ吸入温度Tvを調整できる。すなわち、本実施形態の熱交換装置60は、ファン65の回転速度が制御されることによってターボ吸入温度Tvを調整可能に構成されている。
本願発明者らは、ターボコンプレッサ32に吸入される第1圧縮ガスの温度であるターボ吸入温度Tvと、タービン回転速度vとの間に相関関係が存在すること、詳細にはターボ吸入温度Tvが変化するとタービン回転速度vが変化することを見出した。具体的には、例えば、ターボ吸入温度Tvが第1温度である条件下において燃料電池スタック11が所定の発電量だけ発電するように本燃料電池システム10が動作している場合において、ファン65の回転速度の変更によってターボ吸入温度Tvが第1温度から第2温度に変化すると、それに伴ってタービン回転速度vが変化する。すなわち、タービン回転速度vは、ターボ吸入温度Tvによって制御されるパラメータであり、詳細にはファン65の回転速度によって制御されるパラメータである。
ターボ吸入温度検出部67は、接続流路34における熱交換部63の下流側の部分に設けられている。ターボ吸入温度検出部67は、ターボ吸入温度Tv、詳細にはターボコンプレッサ32に吸入されるものであって熱交換装置60との熱交換が行われた後の第1圧縮ガスの温度を検出する。なお、ターボ吸入温度検出部67は例えば温度センサである。
図1に示すように、燃料電池システム10は、電動モータ31b、変更部42(アクチュエータ42b)、ポンプ装置62、及びファン65をそれぞれ制御する制御部として機能する制御装置70を備えている。
制御装置70は、スタック温度Ts、ターボ吸入温度Tv、及び供給圧力PIを把握する把握部71を備えている。詳細には、スタック温度検出部14、ターボ吸入温度検出部67、及び圧力検出部51はそれぞれ、その検出結果を制御装置70に出力する。制御装置70の把握部71は、スタック温度検出部14の検出結果に基づいてスタック温度Tsを把握し、ターボ吸入温度検出部67の検出結果に基づいてターボ吸入温度Tvを把握する。把握部71は、圧力検出部51の検出結果に基づいて供給圧力PIを把握する。
スタック温度Tsは、燃料電池システム10の動作状況に応じて変動する。このため、把握部71は、値が相違する複数種類のスタック温度Tsを把握することとなる。なお、説明の便宜上、把握部71によって把握される複数種類のスタック温度Tsを、スタック温度Ts1,Ts2,…,Tsn(但し、nは任意の自然数)と示す場合がある。
更に把握部71は、燃料電池システム10に要求される要求発電量Pwを把握する。詳細には、制御装置70は、車両に搭載されている車両ECU100と電気的に接続されており、信号のやり取りを行う。車両ECU100は、車両に設けられているアクセルペダルの操作態様等に基づいて要求発電量Pwを算出し、その要求発電量Pwを制御装置70の把握部71に通知する。把握部71は、車両ECU100からの通知に基づいて、要求発電量Pwを把握する。
車両ECU100は、状況に応じて異なる値の要求発電量Pwを制御装置70の把握部71に通知する。このため、把握部71は、値が相違する複数種類の要求発電量Pwを把握する。なお、説明の便宜上、把握部71によって把握される複数種類の要求発電量Pwを、要求発電量Pw1,Pw2,…,Pwm(但し、mは任意の自然数)と示す場合がある。また、把握部71は、スタック温度Ts、ターボ吸入温度Tv、供給圧力PI及び要求発電量Pwを取得する取得部とも言える。
制御装置70は、把握部71によって把握された要求発電量Pw及びスタック温度Tsと、タービン効率ηとに基づいて、可変ノズル42aの開度θ及び電動モータ31bのトルクNを制御するとともに、ターボ吸入温度Tv、本実施形態ではファン65の回転速度を制御する。これらの具体的な制御態様について以下に詳細に説明する。
制御装置70は、把握部71の把握結果に基づいて、可変ノズル42aの目標開度θx、電動モータ31bの目標トルクNx、及びターボ吸入温度Tvの目標値である目標温度Tvxを導出する導出部72を備えている。導出部72は、目標開度θx、目標トルクNx及び目標温度Tvxを導出するのに用いられる導出データ72aを備えている。
図2に示すように、導出データ72aは、例えば要求発電量Pwとスタック温度Tsとに対応付けて、目標開度θx、目標トルクNx及び目標温度Tvxが設定されているマップデータである。例えば、第1要求発電量Pw1及び第1スタック温度Ts1に対応させて、目標開度θx(1,1)、目標トルクNx(1,1)及び目標温度Tvx(1,1)が設定されている。
また、複数種類の要求発電量Pw1,Pw2,…,Pwmと複数種類のスタック温度Ts1,Ts2,…,Tsnとが把握されることに対応させて、導出データ72aでは、各要求発電量Pw1,Pw2,…,Pwmのそれぞれに対して複数種類のスタック温度Ts1,Ts2,…,Tsnが対応付けられて設定されている。そして、導出データ72aでは、要求発電量Pw1,Pw2,…,Pwm及びスタック温度Ts1,Ts2,…,Tsnの組み合わせに対応する目標開度θx、目標トルクNx及び目標温度Tvxが設定されている。例えば、第m要求発電量Pwm及び第nスタック温度Tsnに対応させて、目標開度θx(m,n)、目標トルクNx(m,n)及び目標温度Tvx(m,n)が設定されている。
導出部72は、把握部71によって要求発電量Pwが把握された場合、すなわち車両ECU100から要求発電量Pwの通知があった場合には、導出データ72aを参照することにより、当該要求発電量Pwと把握部71によって把握された現在のスタック温度Tsとの双方に対応した目標開度θx、目標トルクNx及び目標温度Tvxを導出する。
そして、制御装置70は、可変ノズル42aの開度θが目標開度θxとなるように変更部42のアクチュエータ42bを制御し、電動モータ31bが目標トルクNxで駆動するように電動モータ31bを制御する。
更に、制御装置70は、ターボ吸入温度Tvが目標温度Tvxに一致するように、ターボ吸入温度検出部67の検出結果に基づいて熱交換装置60を制御する。詳細には、制御装置70は、ターボ吸入温度Tvが目標温度Tvxとなるように、ターボ吸入温度検出部67の検出結果に基づいてファン65の回転速度をフィードバック制御する。実際には、制御装置70は、ファン駆動部66の駆動態様の制御(例えばインバータ制御)を行う。
なお、本実施形態では、制御装置70は、冷媒が一定の速度で冷媒流路61を流れるようにポンプ装置62を制御する。このため、冷媒流路61を流れる冷媒の単位時間当たりの流量は一定となっている。
次に、要求発電量Pw及びスタック温度Tsと、目標開度θx、目標トルクNx及び目標温度Tvxとの関係について説明する。
燃料電池スタック11の発電量は、スタック温度Tsと、燃料電池スタック11に供給される第2圧縮ガスの流量及び圧力である供給流量FI及び供給圧力PIとに依存する。かかる構成においては、スタック温度Tsが把握されれば、燃料電池スタック11の発電量を要求発電量Pwにするために必要な供給流量FI及び供給圧力PIが決まる。説明の便宜上、要求発電量Pwを発電するために必要な供給流量FI及び供給圧力PIを、目標流量FIx及び目標圧力PIxとする。
燃料電池スタック11の発電量は、スタック温度Tsと、燃料電池スタック11に供給される第2圧縮ガスの流量及び圧力である供給流量FI及び供給圧力PIとに依存する。かかる構成においては、スタック温度Tsが把握されれば、燃料電池スタック11の発電量を要求発電量Pwにするために必要な供給流量FI及び供給圧力PIが決まる。説明の便宜上、要求発電量Pwを発電するために必要な供給流量FI及び供給圧力PIを、目標流量FIx及び目標圧力PIxとする。
ここで、既に説明したとおり、供給流量FIは、電動モータ31bのトルクNに依存しており、供給圧力PIは、可変ノズル42aの開度θに依存している。また、タービン効率ηは、タービン回転速度vに応じて変化するものであり、当該タービン回転速度vは、ターボ吸入温度Tvに応じて変化する。
この場合、目標開度θx、目標トルクNx及び目標温度Tvxは、開度θ、トルクN及びターボ吸入温度Tvが目標開度θx、目標トルクNx及び目標温度Tvxである条件下において、供給流量FI及び供給圧力PIが目標流量FIx及び目標圧力PIxとなり且つタービン効率ηが最大となるように、スタック温度Tsに対応させて設定されている。
具体的には、目標開度θxは、供給圧力PIが目標圧力PIxとなるように設定されている。
目標温度Tvxは、タービン効率ηに基づいて設定されている。詳細には、供給流量FI及び供給圧力PIが目標流量FIx及び目標圧力PIxとなっている条件下においてタービン効率ηが最大となるタービン回転速度vを目標回転速度vxとすると、目標温度Tvxは、タービン回転速度vが目標回転速度vxとなるターボ吸入温度Tvに設定されている。
目標温度Tvxは、タービン効率ηに基づいて設定されている。詳細には、供給流量FI及び供給圧力PIが目標流量FIx及び目標圧力PIxとなっている条件下においてタービン効率ηが最大となるタービン回転速度vを目標回転速度vxとすると、目標温度Tvxは、タービン回転速度vが目標回転速度vxとなるターボ吸入温度Tvに設定されている。
ここで、ターボコンプレッサ32の圧力比である第2圧力比Rbは、タービン回転速度v(換言すればターボ吸入温度Tv)に応じて変化する。このため、ターボ吸入温度Tvが目標温度Tvxに設定されている場合、第2圧力比Rbは一義的に定まる。
また、電動コンプレッサ31の圧力比である第1圧力比Ra、及び、電動コンプレッサ31の消費電力は、トルクNに応じて異なる。なお、第1圧力比Raとは、吸入流路33から電動コンプレッサ31に吸入される酸化剤ガスの圧力P0に対する第1圧縮ガスの圧力P1の比率(=P1/P0)である。電動コンプレッサ31に吸入される酸化剤ガスの圧力P0とは、例えば大気圧である。
かかる構成において、電動コンプレッサ31に吸入される酸化剤ガスの圧力P0に対する目標圧力PIxの比率を目標圧力比Rx(=PIx/P0)とする。この場合、ターボ吸入温度Tvが目標温度Tvxに設定されている条件下、すなわちタービン回転速度vが目標回転速度vxとなっている条件下において、電動コンプレッサ31に吸入される酸化剤ガスの圧力P0に対する供給圧力PIの比率(=PI/P0)が目標圧力比Rxとなるための第1圧力比Raを、特定圧力比Raxとする。この場合、目標トルクNxは、運転可能な範囲内において、供給流量FIが目標流量FIxとなり、且つ、第1圧力比Raが特定圧力比Raxとなる値に設定されている。
ちなみに、目標温度Tvxがタービン効率ηに基づいて設定されている点に着目すれば、導出部72は、要求発電量Pw、スタック温度Ts及びタービン効率ηに基づいて、目標開度θx、目標トルクNx及び目標温度Tvxを導出しているものと言える。
なお、把握部71は、定期的に、圧力検出部51の検出結果に基づいて供給圧力PIを把握し、制御装置70は、その把握結果に基づいて可変ノズル42aの開度θの微調整等を行ってもよい。この場合、導出部72は、要求発電量Pw及びスタック温度Tsに基づいて、目標開度θx、目標トルクNx及び目標温度Tvxに加えて、目標圧力PIxを導出し、制御装置70は、供給圧力PIが目標圧力PIxとなるように可変ノズル42aの開度θをフィードバック制御するとよい。
次に本実施形態の作用について説明する。
ターボ吸入温度Tvが制御されることによって、タービン回転速度vがタービン効率ηに基づいて設定された目標回転速度vxとなるため、タービン効率ηが高くなっている。これにより、高効率でターボコンプレッサ32が駆動するため、第2圧力比Rbが高くなり易い。これに伴って、目標圧力比Rxを得るために必要な第1圧力比Raである特定圧力比Raxが低くなり易いため、電動モータ31bのトルクNが小さくて済み易い。したがって、電動コンプレッサ31における消費電力が小さくなり易い。
ターボ吸入温度Tvが制御されることによって、タービン回転速度vがタービン効率ηに基づいて設定された目標回転速度vxとなるため、タービン効率ηが高くなっている。これにより、高効率でターボコンプレッサ32が駆動するため、第2圧力比Rbが高くなり易い。これに伴って、目標圧力比Rxを得るために必要な第1圧力比Raである特定圧力比Raxが低くなり易いため、電動モータ31bのトルクNが小さくて済み易い。したがって、電動コンプレッサ31における消費電力が小さくなり易い。
以上詳述した本実施形態によれば以下の効果を奏する。
(1)電動コンプレッサ31とターボコンプレッサ32とによって、酸化剤ガスが圧縮される。これにより、電動コンプレッサ31のみの場合と比較して、要求発電量Pwに対して必要となる電動コンプレッサ31の圧力比である第1圧力比Raが小さくなる。したがって、電動コンプレッサ31の消費電力の低減を図ることができる。また、ターボコンプレッサ32は、タービン43の回転力を用いて駆動されるものであるため、駆動源として専用の電動モータ等を別途必要としない。
(1)電動コンプレッサ31とターボコンプレッサ32とによって、酸化剤ガスが圧縮される。これにより、電動コンプレッサ31のみの場合と比較して、要求発電量Pwに対して必要となる電動コンプレッサ31の圧力比である第1圧力比Raが小さくなる。したがって、電動コンプレッサ31の消費電力の低減を図ることができる。また、ターボコンプレッサ32は、タービン43の回転力を用いて駆動されるものであるため、駆動源として専用の電動モータ等を別途必要としない。
更に、ターボ吸入温度Tvは、熱交換装置60によって、把握部71の把握結果とタービン効率ηとに基づいて導出される目標温度Tvxとなっている。これにより、供給圧力PIの変動(換言すれば可変ノズル42aの開度θの変更)を抑制しつつ、タービン回転速度vを目標値、詳細にはタービン効率ηが高い値にできる。
詳述すると、タービン回転速度vを制御するものとしては、例えば可変ノズル42aの開度θが考えられる。しかしながら、可変ノズル42aの開度θは、供給圧力PIに寄与するパラメータである。このため、仮にタービン効率ηが高いタービン回転速度vに対応させて可変ノズル42aの開度θが設定されると、供給圧力PIが要求発電量Pwに対応する値(目標圧力PIx)から乖離し、燃料電池スタック11において要求発電量Pwに相当する発電量が得られなくなる場合がある。
これに対して、本実施形態の燃料電池システム10は、タービン回転速度vを制御するパラメータとして、新たにターボ吸入温度Tvを採用し、このターボ吸入温度Tvを制御するための構成である熱交換装置60を備えている。これにより、可変ノズル42aの開度θを供給圧力PIに対応する値に設定しつつ、タービン回転速度vを制御できる。
(2)目標温度Tvxは、タービン回転速度vが目標回転速度vxとなるターボ吸入温度Tvである。目標回転速度vxは、供給流量FI及び供給圧力PIが、把握部71によって把握される要求発電量Pw及びスタック温度Tsに対応した目標流量FIx及び目標圧力PIxとなっている条件下においてタービン効率ηが最大となるタービン回転速度vである。かかる構成によれば、タービン効率ηを最大にすることができるため、電動コンプレッサ31の消費電力を小さくできる。
(3)制御装置70は、ターボ吸入温度検出部67の検出結果に基づいて、ターボ吸入温度Tvが目標温度Tvxとなるように熱交換装置60を制御する。かかる構成によれば、ターボ吸入温度検出部67によってターボ吸入温度Tvを直接的に把握できる。これにより、ターボ吸入温度Tvの制御を精度よく行うことができる。
特に、本燃料電池システム10は、ターボ吸入温度Tvの制御によってタービン回転速度vを制御している。このため、例えば接続流路34を流れる第1圧縮ガスの温度を可能な範囲内で低くするといった目標温度Tvxが明確に定められていない制御では、タービン回転速度vを適切に制御することができず、タービン効率ηの向上を図ることができないという不都合が生じ得る。
これに対して、本実施形態によれば、上述した通り、導出部72によって目標温度Tvxが導出され、ターボ吸入温度検出部67によって検出されるターボ吸入温度Tvが目標温度Tvxと一致するように制御されるため、タービン回転速度vを適切に制御でき、上記不都合を抑制できる。
なお、上記実施形態は以下のように変更してもよい。
○ 実施形態では、制御装置70は、ファン65の回転速度を制御することにより、ターボ吸入温度Tvの制御を行う構成であったが、これに限られない。例えば、制御装置70は、ファン65の回転速度に代えて、冷媒流路61を流れる冷媒の単位時間当たりの流量を制御することにより、ターボ吸入温度Tvを制御する構成でもよい。詳細には、制御装置70は、ポンプ装置62の駆動態様を制御することにより、冷媒流路61を流れる冷媒の単位時間当たりの流量を制御するとよい。この場合、ファン65を省略してもよい。
○ 実施形態では、制御装置70は、ファン65の回転速度を制御することにより、ターボ吸入温度Tvの制御を行う構成であったが、これに限られない。例えば、制御装置70は、ファン65の回転速度に代えて、冷媒流路61を流れる冷媒の単位時間当たりの流量を制御することにより、ターボ吸入温度Tvを制御する構成でもよい。詳細には、制御装置70は、ポンプ装置62の駆動態様を制御することにより、冷媒流路61を流れる冷媒の単位時間当たりの流量を制御するとよい。この場合、ファン65を省略してもよい。
また、制御装置70は、ファン65の回転速度及び冷媒流路61を流れる冷媒の単位時間当たりの流量の双方を制御する構成でもよい。要は、制御装置70は、ファン65の回転速度及び冷媒流路61を流れる冷媒の単位時間当たりの流量の少なくとも一方を制御すればよい。
○ 実施形態の冷媒流路61は、独立して設けられていたが、これに限られず、燃料電池システム10とは別に設けられているものであって車両に搭載されている他の冷媒流路と兼用される構成でもよい。例えば、本燃料電池システム10の冷媒流路61は、上記他の冷媒流路の一部が延設されることによって形成されている構成でもよい。この場合、上記他の冷媒流路にポンプ装置が設けられている場合には、冷媒流路61上のポンプ装置62を省略してもよい。すなわち、燃料電池システム10がポンプ装置62を備えることは必須ではない。なお、上記のように、冷媒流路61及び上記他の冷媒流路の両者において同一の冷媒を用いる構成においては、ターボ吸入温度Tvの制御が可能となるように、制御装置70が、冷媒流路61及び上記他の冷媒流路を流れる冷媒を制御できるように構成されているとよい。この場合、上記他の冷媒流路から冷媒流路61を通じてラジエータ64に流れ込む冷媒の温度に関わらず、ターボ吸入温度Tvが目標温度Tvxと一致するように熱交換装置60を制御することができることが望ましい。
○ 熱交換装置60の具体的な構成は、実施形態のものに限られず、第1圧縮ガスと熱交換可能であってその熱交換態様が制御可能であれば任意である。例えば、ファン65の送風対象は、ラジエータ64に限られず、熱交換部63でもよい。
○ 目標回転速度vxは、実施形態では、タービン効率ηが最大となるタービン回転速度vであったが、これに限られず、これ以外の値に設定されていてもよい。
例えば、目標回転速度vxは、タービン効率ηが予め定められた閾値効率以上となるタービン回転速度vに設定されていてもよい。この場合であっても、燃料電池スタック11において要求発電量Pwの発電を実現しつつタービン効率ηが閾値効率以上となる状態を実現できる。換言すれば、制御装置70は、タービン効率ηが閾値効率未満とならないようにターボ吸入温度Tvを制御してもよい。
例えば、目標回転速度vxは、タービン効率ηが予め定められた閾値効率以上となるタービン回転速度vに設定されていてもよい。この場合であっても、燃料電池スタック11において要求発電量Pwの発電を実現しつつタービン効率ηが閾値効率以上となる状態を実現できる。換言すれば、制御装置70は、タービン効率ηが閾値効率未満とならないようにターボ吸入温度Tvを制御してもよい。
また、例えば、第2圧力比Rbが最大になるタービン回転速度vと、タービン効率ηが最大となるタービン回転速度vとが異なる場合には、目標回転速度vxは、第2圧力比Rbが最大になるタービン回転速度vに設定されていてもよい。更に、目標回転速度vxは、タービン効率ηと電動コンプレッサ31の消費電力とを考慮して、燃料電池システム10の全体の発電効率が最大となるタービン回転速度vに設定されていてもよい。
○ ターボ吸入温度検出部67を省略してもよい。この場合、導出データ72aには、ターボ吸入温度Tvに代えてファン65の目標回転速度が設定されており、制御装置70は、ファン65の回転速度が目標回転速度となるようにファン65(ファン駆動部66)を制御してもよい。かかる構成において、ファン65の目標回転速度は、ターボ吸入温度Tvが目標温度Tvxとなる値に設定される。
○ 導出部72の具体的な構成、すなわち目標開度θx、目標トルクNx及び目標温度Tvxを導出する具体的な制御態様は、実施形態のものに限られず任意である。例えば、導出データ72aは、マップデータではなく関数データであってもよい。また、導出部72は、要求発電量Pw及びスタック温度Tsに基づいて、目標流量FIx及び目標圧力PIxを導出し、その導出された目標流量FIx及び目標圧力PIxに基づいて、目標開度θx、目標トルクNx及び目標温度Tvxを導出する構成でもよい。この場合、導出部72は、要求発電量Pw及びスタック温度Tsに対して目標流量FIx及び目標圧力PIxが対応付けられたデータと、目標流量FIx及び目標圧力PIxに対して目標開度θx、目標トルクNx及び目標温度Tvxが対応付けられたデータとを有し、これらのデータを用いて導出処理を行うとよい。
○ 把握部71及び導出部72の少なくとも一方は、制御装置70とは別に設けられていてもよい。要は、制御装置70が把握部71及び導出部72を備えていることは必須ではなく、燃料電池システム10が、全体として、「把握部」、「導出部」及び「制御部」を有していればよい。
○ 燃料電池システム10の搭載対象は、車両に限られず、燃料電池システム10において要求される発電量が動作状況によって都度変化する他の電動式機械であってもよい。
10…燃料電池システム、11…燃料電池スタック(燃料電池)、14…スタック温度検出部、31…電動コンプレッサ、31a…圧縮部、31b…電動モータ、32…ターボコンプレッサ、32a…インペラ、34…接続流路、41…排出流路、42…変更部、42a…可変ノズル、42b…アクチュエータ、43…タービン、52…連結部、60…熱交換装置、61…冷媒流路、62…ポンプ装置、63…熱交換部、64…ラジエータ、65…ファン、67…ターボ吸入温度検出部、70…制御装置、71…把握部、72…導出部、72a…導出データ、Pw…要求発電量、Ts…スタック温度(燃料電池の温度)、Tv…ターボ吸入温度、Tvx…目標温度、PI…供給圧力、PIx…目標圧力、FI…供給流量、FIx…目標流量、θ…開度、θx…目標開度、N…トルク、Nx…目標トルク、v…タービン回転速度、vx…目標回転速度、η…タービン効率、Rax…特定圧力比、Rx…目標圧力比。
Claims (6)
- 酸化剤ガスを圧縮する電動コンプレッサと、
前記電動コンプレッサによって圧縮された前記酸化剤ガスである第1圧縮ガスを圧縮するものであってインペラを有するターボコンプレッサと、
前記ターボコンプレッサによって圧縮された前記酸化剤ガスである第2圧縮ガスが供給される燃料電池と、
前記電動コンプレッサと前記ターボコンプレッサとを繋ぐものであって、前記第1圧縮ガスが流れる接続流路と、
前記燃料電池から排出される排出ガスが流れる排出流路を介して前記燃料電池と繋がっているものであって、前記排出ガスによって回転するタービンと、
前記ターボコンプレッサの前記インペラと前記タービンとが一体回転するように前記インペラと前記タービンとを連結する連結部と、
前記排出流路に設けられ、前記排出流路の流路断面積を変更する変更部と、
前記接続流路を流れる前記第1圧縮ガスと熱交換を行う熱交換装置と、
前記燃料電池にて要求される発電量である要求発電量と前記燃料電池の温度とを把握する把握部と、
前記把握部によって把握された前記要求発電量及び前記燃料電池の温度と、前記タービンの効率とに基づいて、前記熱交換装置との熱交換が行われた後の前記第1圧縮ガスの温度であるターボ吸入温度についての目標値である目標温度を導出する導出部と、
前記ターボ吸入温度が前記目標温度となるように、前記熱交換装置を制御する制御部と、
を備えていることを特徴とする燃料電池システム。 - 前記燃料電池に供給される前記第2圧縮ガスの流量及び圧力である供給流量及び供給圧力が、前記把握部によって把握される前記要求発電量と前記燃料電池の温度とに対応した目標流量及び目標圧力となっている条件下において、前記タービンの効率が最大となる前記タービンの回転速度を目標回転速度とすると、
前記目標温度は、前記タービンの回転速度が前記目標回転速度となる前記ターボ吸入温度である請求項1に記載の燃料電池システム。 - 前記変更部は、可変ノズルと、前記可変ノズルの開度が変更するように前記可変ノズルを駆動するアクチュエータとを有し、
前記電動コンプレッサは、前記酸化剤ガスの圧縮を行う圧縮部と、前記圧縮部を駆動させる電動モータとを有し、
前記導出部は、前記把握部によって把握された前記要求発電量及び前記燃料電池の温度と、前記タービンの効率とに基づいて、前記目標温度の導出に加え、前記目標圧力に対応した目標開度及び前記目標流量に対応した目標トルクを導出するものであり、
前記制御部は、前記熱交換装置の制御に加え、前記可変ノズルの開度が前記目標開度となるように前記アクチュエータを制御し、且つ、前記電動モータのトルクが前記目標トルクとなるように前記電動モータを制御するものであり、
前記電動コンプレッサに吸入される前記酸化剤ガスの圧力に対する前記目標圧力の比率を目標圧力比とし、前記タービンの回転速度が前記目標回転速度である条件下において前記電動コンプレッサに吸入される前記酸化剤ガスの圧力に対する前記供給圧力の比率が前記目標圧力比となるための前記電動コンプレッサの圧力比を特定圧力比とすると、
前記目標トルクは、前記供給流量が前記目標流量となり、且つ、前記電動コンプレッサの圧力比が前記特定圧力比となる値に設定されている請求項2に記載の燃料電池システム。 - 前記ターボ吸入温度を検出するターボ吸入温度検出部を備え、
前記制御部は、前記ターボ吸入温度検出部により検出される前記ターボ吸入温度と前記目標温度とが一致するように前記熱交換装置を制御する請求項1〜3のうちいずれか一項に記載の燃料電池システム。 - 前記熱交換装置は、前記接続流路を流れる前記第1圧縮ガスの冷却に用いられるファンを備え、
前記制御部は、前記ファンの回転速度を制御することにより、前記ターボ吸入温度を制御するものである請求項1〜4のうちいずれか一項に記載の燃料電池システム。 - 前記熱交換装置は、
冷媒が流れる冷媒流路と、
前記冷媒流路に前記冷媒を循環させるポンプ装置と、
前記冷媒と前記第1圧縮ガスとの熱交換が行われる熱交換部と、
前記冷媒と熱交換を行うラジエータと、
前記ラジエータに対して送風を行うファンと、
を備え、
前記制御部は、前記ファンの回転速度及び前記冷媒流路を流れる前記冷媒の単位時間当たりの流量の少なくとも一方を制御することにより、前記ターボ吸入温度を制御するものである請求項1〜4のうちいずれか一項に記載の燃料電池システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017033599A JP2018139194A (ja) | 2017-02-24 | 2017-02-24 | 燃料電池システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017033599A JP2018139194A (ja) | 2017-02-24 | 2017-02-24 | 燃料電池システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018139194A true JP2018139194A (ja) | 2018-09-06 |
Family
ID=63451017
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017033599A Pending JP2018139194A (ja) | 2017-02-24 | 2017-02-24 | 燃料電池システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018139194A (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190131642A1 (en) * | 2017-11-02 | 2019-05-02 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method for turbine |
CN115020758A (zh) * | 2021-03-03 | 2022-09-06 | 郑州宇通客车股份有限公司 | 一种燃料电池系统、阴极能量回收控制方法及装置 |
-
2017
- 2017-02-24 JP JP2017033599A patent/JP2018139194A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20190131642A1 (en) * | 2017-11-02 | 2019-05-02 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method for turbine |
US10818943B2 (en) * | 2017-11-02 | 2020-10-27 | Toyota Jidosha Kabushiki Kaisha | Fuel cell system and control method for turbine |
CN115020758A (zh) * | 2021-03-03 | 2022-09-06 | 郑州宇通客车股份有限公司 | 一种燃料电池系统、阴极能量回收控制方法及装置 |
CN115020758B (zh) * | 2021-03-03 | 2023-09-08 | 宇通客车股份有限公司 | 一种燃料电池系统、阴极能量回收控制方法及装置 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10128516B2 (en) | Fuel cell system | |
US8622716B2 (en) | Oil-cooled air compressor | |
EP3365619B1 (en) | A method for controlling a vapour compression system in ejector mode for a prolonged time | |
US10184359B2 (en) | Waste heat recovery device and waste heat recovery method | |
JP2018531358A6 (ja) | 長時間エジェクタモードで蒸気圧縮システムを制御するための方法 | |
US20090017340A1 (en) | Control method for cold fuel cell system operation | |
US20190136843A1 (en) | Air Compressor | |
KR20090015273A (ko) | 연료전지 냉각 및 압축공기 가열을 위한 공기공급장치 | |
JP2018139194A (ja) | 燃料電池システム | |
US8855945B2 (en) | Feedforward control of the volume flow in a hydraulic system | |
JP4321043B2 (ja) | 自動車用空調システム | |
US12148960B2 (en) | Cooling method for operating a fuel-cell system | |
JP4403702B2 (ja) | 燃料電池システムの制御装置 | |
JP4701664B2 (ja) | 燃料電池システム | |
JP2016023638A (ja) | コンプレッサ駆動装置 | |
JP4747495B2 (ja) | 燃料電池システム | |
JP4984392B2 (ja) | 燃料電池システム | |
JP2020057552A (ja) | 燃料電池システム | |
JP7468437B2 (ja) | 燃料電池システム | |
JP2020030929A (ja) | 燃料電池システム | |
JP2019021545A (ja) | 燃料電池システム | |
JP2004168186A (ja) | 自動車用空調システム | |
JP2010073461A (ja) | 燃料電池システム | |
JP2017135017A (ja) | 燃料電池用電動コンプレッサ | |
WO2024004292A1 (ja) | 燃料電池システム |