[go: up one dir, main page]

JP2018135943A - Sliding system - Google Patents

Sliding system Download PDF

Info

Publication number
JP2018135943A
JP2018135943A JP2017030605A JP2017030605A JP2018135943A JP 2018135943 A JP2018135943 A JP 2018135943A JP 2017030605 A JP2017030605 A JP 2017030605A JP 2017030605 A JP2017030605 A JP 2017030605A JP 2018135943 A JP2018135943 A JP 2018135943A
Authority
JP
Japan
Prior art keywords
sliding
friction
sliding member
lubricating oil
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017030605A
Other languages
Japanese (ja)
Inventor
和枝 栗原
Kazue Kurihara
和枝 栗原
足立 幸志
Koshi Adachi
幸志 足立
鈴木 厚
Atsushi Suzuki
厚 鈴木
和幹 眞鍋
Kazumiki Manabe
和幹 眞鍋
亮 小池
Akira Koike
亮 小池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tohoku University NUC
Toyota Motor Corp
Toyota Motor East Japan Inc
Original Assignee
Tohoku University NUC
Toyota Motor Corp
Toyota Motor East Japan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tohoku University NUC, Toyota Motor Corp, Toyota Motor East Japan Inc filed Critical Tohoku University NUC
Priority to JP2017030605A priority Critical patent/JP2018135943A/en
Publication of JP2018135943A publication Critical patent/JP2018135943A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/86Optimisation of rolling resistance, e.g. weight reduction 

Landscapes

  • Sliding-Contact Bearings (AREA)
  • Lubricants (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a slide system that can enhance friction reduction effect of a friction modifier added to lubricant.SOLUTION: A slide system includes: lubricant containing MoDTC as an additive agent and of which base oil is constituted of full synthetic oil free from mineral oil; and a first slide member and a second slide member sliding on each other in the lubricant. The first slide member has an uppermost layer part formed of a steel material containing 13% or more of Cr and including at least a slide surface.SELECTED DRAWING: Figure 2

Description

本発明は、摺動システムに関する。   The present invention relates to a sliding system.

近年、自動車のエンジン等で使用されるオイルとして、流体潤滑領域での粘性抵抗を低減させるため、より低粘度の潤滑油が求められている。例えば、80℃での粘度が7.5mPa・sの汎用のエンジンオイルを、80℃での粘度が1.5mPa・sの潤滑油に変えると、10・15モード燃費が3.8%向上することが報告されている(例えば、非特許文献1参照)。   In recent years, as oil used in automobile engines and the like, lower viscosity lubricating oil has been demanded in order to reduce viscous resistance in a fluid lubrication region. For example, if a general-purpose engine oil with a viscosity at 80 ° C. of 7.5 mPa · s is changed to a lubricating oil with a viscosity at 80 ° C. of 1.5 mPa · s, the 10.15 mode fuel efficiency is improved by 3.8%. (For example, refer nonpatent literature 1).

しかし、低粘度を示す潤滑油は、流体潤滑領域で摩擦が低下するが、高い荷重条件下では摩擦面から容易に排出されてしまう。このため、エンジンピストンの上死点や低回転数の運転時など、境界潤滑領域となる摩擦条件では、表面間の接触により摩擦が増大してしまうことが指摘されている(例えば、非特許文献2参照)。さらに、このような摩擦条件では、焼付き荷重が低下し、金属同士の焼付きや摩耗の促進などの可能性があり課題となっている。   However, the lubricating oil having a low viscosity has a reduced friction in the fluid lubrication region, but is easily discharged from the friction surface under high load conditions. For this reason, it has been pointed out that friction is increased by contact between surfaces under frictional conditions that become a boundary lubrication region, such as when operating at the top dead center of an engine piston or at a low speed (for example, non-patent literature). 2). Furthermore, under such friction conditions, the seizure load is reduced, and there is a possibility that seizure between metals or acceleration of wear may occur, which is a problem.

また、従来、最も頻繁に使用される潤滑油の添加剤の一つに、摩擦調整剤のMoDTC(モリブデンジチオカーバメイト)がある。このMoDTCについて、摺動条件や潤滑油の添加剤の組合せによる効果の違いから、その反応過程のメカニズムが推定されている(例えば、非特許文献3参照)。また、MoDTCの摩擦低減効果が得られるメカニズムとして、摺動時にMoDTCが分解されて、低摩擦のMoS(二硫化モリブデン)が形成される反応が推定されている(例えば、非特許文献4参照)。さらに、摺動部材が異なる場合、メカニズムは特定されていないものの、MoDTCの低摩擦効果が異なることが、経験的に知られている(例えば、非特許文献5参照)。 Conventionally, one of the most frequently used lubricating oil additives is a friction modifier, MoDTC (molybdenum dithiocarbamate). About this MoDTC, the mechanism of the reaction process is estimated from the difference in the effect by the combination of sliding conditions and the additive of lubricating oil (for example, refer nonpatent literature 3). Moreover, as a mechanism for obtaining the friction reducing effect of MoDTC, a reaction in which MoDTC is decomposed during sliding to form low friction MoS 2 (molybdenum disulfide) has been estimated (for example, see Non-Patent Document 4). ). Furthermore, when the sliding members are different, the mechanism is not specified, but it is empirically known that the low friction effect of MoDTC is different (for example, see Non-Patent Document 5).

Okuyama, Y., et.al., “Study of Low-Viscosity Engine Oil on Fuel Economy and Engine Reliability”, SAE International, 2011.04.12, No. 2011-01-1247Okuyama, Y., et.al., “Study of Low-Viscosity Engine Oil on Fuel Economy and Engine Reliability”, SAE International, 2011.04.12, No. 2011-01-1247 Ushioda, N., et al., “Effect of Low Viscosity Passenger Car Motor Oils on Fuel Economy Engine Tests”, SAE International, 2013.10.14, No. 2013-01-2606Ushioda, N., et al., “Effect of Low Viscosity Passenger Car Motor Oils on Fuel Economy Engine Tests”, SAE International, 2013.10.14, No. 2013-01-2606 A. Morina and A. Neville, “Tribofilms: aspects of formation, stability and removal”, Journal of Physics D: Applied Physics, 2007, Vol. 40, No. 18, p.5476-5487A. Morina and A. Neville, “Tribofilms: aspects of formation, stability and removal”, Journal of Physics D: Applied Physics, 2007, Vol. 40, No. 18, p.5476-5487 M. I. De Barros Bouchet et al., “Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: effect of oxidative degradation”, Wear, June 2005, Vol. 258, p.1643-1650M. I. De Barros Bouchet et al., “Mechanisms of MoS2 formation by MoDTC in presence of ZnDTP: effect of oxidative degradation”, Wear, June 2005, Vol. 258, p.1643-1650 権藤、山本、「モリブデンジチオカーバメイト(MoDTC)による表面膜形成機構と摩擦面材質の影響」、トライボロジスト、1991年、36、3、p.242-248Gondo, Yamamoto, “Effects of surface film formation mechanism and friction surface material by molybdenum dithiocarbamate (MoDTC)”, tribologist, 1991, 36, 3, p.242-248

非特許文献2に記載のように、低粘度の潤滑油ほど上死点や低回転時などの境界潤滑領域での摩擦が増大してしまうことから、境界潤滑領域でも低摩擦を維持できる摺動機構を開発するために、まず潤滑油中の添加剤が低摩擦の反応膜を形成するメカニズムを解明する必要があると考えられる。非特許文献3に記載のように、摺動条件や添加剤の組合せによる効果の違いから、添加剤の反応過程のメカニズムが推定されているが、摺動部材と添加剤との組合せ、すなわち添加剤の摩擦低減効果を活かす摺動部材について検討したものは存在しない。   As described in Non-Patent Document 2, the lower the lubricating oil, the higher the friction in the boundary lubrication region such as top dead center and low rotation, so that the sliding that can maintain low friction in the boundary lubrication region In order to develop the mechanism, it is necessary to first elucidate the mechanism by which additives in lubricating oil form a low-friction reaction film. As described in Non-Patent Document 3, the mechanism of the reaction process of the additive has been estimated from the difference in effect due to the sliding condition and the combination of additives, but the combination of the sliding member and additive, that is, the addition There has been no study on a sliding member that makes use of the friction reducing effect of the agent.

そこで、本発明は、潤滑油に添加される摩擦調整剤の摩擦低減効果を高めることができる摺動システムを提供することを目的とする。   Then, an object of this invention is to provide the sliding system which can heighten the friction reduction effect of the friction modifier added to lubricating oil.

本発明者等は、摩擦調整剤を含む潤滑油中での摺動特性が摺動部材の種類により異なるという知見から、様々な摺動部材の摩擦面に形成される反応膜のでき方に着目し、表層にCrの不動態膜が形成される摺動部材が、低摩擦の二硫化モリブデンを生成しやすいことを見出し、本発明に至った。   The present inventors pay attention to how reaction films formed on the friction surfaces of various sliding members are formed, based on the knowledge that sliding characteristics in lubricating oil containing friction modifiers differ depending on the type of sliding member. The present inventors have found that a sliding member in which a Cr passivation film is formed on the surface layer easily produces low-friction molybdenum disulfide, and has led to the present invention.

すなわち、本発明に係る摺動システムは、添加剤としてMoDTCを含有し、基油が鉱物油を含まない全合成油から成る潤滑油と、前記潤滑油中で互いに摺動する第1の摺動部材および第2の摺動部材とを有し、前記第1の摺動部材は、少なくとも摺動面を含む表層部が、Crを13%以上含む鋼材から成ることを特徴とする。   That is, the sliding system according to the present invention includes a lubricating oil that includes MoDTC as an additive and whose base oil does not include mineral oil, and a first sliding that slides on each other in the lubricating oil. The first sliding member is characterized in that at least the surface layer portion including the sliding surface is made of a steel material containing 13% or more of Cr.

本発明に係る摺動システムは、図1に示す反応により、Crを含むFe系材料とMoDTCとが相互作用して、二硫化モリブデン(MoS)層を含む安定した反応膜を形成すると推定される。すなわち、図1(a)に示すように、添加剤として摩擦調整剤のMoDTCを含む潤滑油中で、Crを含むFe系材料から成る第1の摺動部材(Fe/Cr Substrate)に対して第2の摺動部材を摺動させたとき、摺動の初期の段階で、第1の摺動部材の表面が露出する。また、非特許文献4に記載のように、摺動時にはMoDTCが分解(MoDTC resolution)され、MoSと中間生成物のMoS2−xとが生成される。このとき、図1(b)に示すように、露出した第1の摺動部材の表面に分布するCrにより、MoS2−xが還元(Reduction)され、第1の摺動部材の表面にCr酸化物(Cr oxide)が生成される。また、CrがMoS2−xを還元することにより、MoS層の生成が促進される。また、形成された不動態膜により第1の摺動部材中のFeの酸化を防ぎ、MoS層を含む安定した反応膜を形成すると推定される。 The sliding system according to the present invention is presumed to form a stable reaction film including a molybdenum disulfide (MoS 2 ) layer by the interaction between the Fe-based material including Cr and MoDTC by the reaction shown in FIG. The That is, as shown in FIG. 1A, in the lubricating oil containing the friction modifier MoDTC as an additive, the first sliding member (Fe / Cr Substrate) made of Fe-based material containing Cr. When the second sliding member is slid, the surface of the first sliding member is exposed at the initial stage of sliding. Further, as described in Non-Patent Document 4, MoDTC is decomposed (MoDTC resolution) at the time of sliding, and MoS 2 and intermediate product MoS 2-x O x are generated. At this time, as shown in FIG. 1B, MoS 2-x O x is reduced by Cr distributed on the exposed surface of the first sliding member, and the surface of the first sliding member is reduced. Cr oxide is produced. Further, by Cr to reduce MoS 2-x O x, generation of MoS 2 layer is accelerated. Further, it is estimated that the formed passive film prevents oxidation of Fe in the first sliding member and forms a stable reaction film including the MoS 2 layer.

このように、本発明に係る摺動システムは、低摩擦の安定した反応膜を形成することができ、添加剤の摩擦調整剤の摩擦低減効果を高めることができる。第1の摺動部材として、少なくとも摺動面を含む表層部がCrを13%以上含む鋼材を用いて摩擦をすることにより、摩擦を低減することができる。これは、Crを多く含むことにより、反応膜中に低摩擦のMoS層が形成されやすく、かつ反応膜が薄く形成され、MoS層が配向しやすいことに起因する。これにより、摩擦低下が早く進むとともに、摩擦係数をより小さくすることができると考えられる。 Thus, the sliding system according to the present invention can form a stable reaction film with low friction, and can enhance the friction reduction effect of the friction modifier of the additive. Friction can be reduced by using a steel material in which at least the surface layer portion including the sliding surface includes 13% or more of Cr as the first sliding member. This is due to the fact that, by containing a large amount of Cr, a low friction MoS 2 layer is easily formed in the reaction film, the reaction film is formed thin, and the MoS 2 layer is easily oriented. As a result, it is considered that the friction lowers faster and the friction coefficient can be further reduced.

本発明に係る摺動システムは、基油の潤滑油が鉱物油を含んでいない。一般的に、鉱物油には金属を含む様々な不純物が入っているため、合成油と比較して酸化劣化しやすい。このため、潤滑油が鉱物油を含んでいると、鉱物油中の不純物が酸化することで、金属面上でのCrの酸化を阻害し、MoS層の生成が抑制されてしまう可能性が考えられる。また、鉱物油中の不純物が摺動面に吸着し、MoDTCの吸着を阻害するため、やはりMoS層の生成が阻害されてしまう。このことから、本発明に係る摺動システムは、基油の潤滑油が鉱物油を含まないため、MoS層を含む安定した反応膜を効率良く形成することができる。 In the sliding system according to the present invention, the lubricating oil of the base oil does not contain mineral oil. Generally, since mineral oil contains various impurities including metals, it is more susceptible to oxidative degradation than synthetic oil. For this reason, if the lubricating oil contains mineral oil, the impurities in the mineral oil are oxidized, thereby inhibiting the oxidation of Cr on the metal surface and possibly suppressing the generation of the MoS 2 layer. Conceivable. Moreover, since impurities in the mineral oil are adsorbed on the sliding surface and inhibit the adsorption of MoDTC, the generation of the MoS 2 layer is also inhibited. From this, the sliding system according to the present invention can efficiently form a stable reaction film including the MoS 2 layer because the lubricating oil of the base oil does not contain mineral oil.

本発明に係る摺動システムで、第1の摺動部材は、少なくとも摺動面を含む表層部がCrを13%以上含む鋼材であればよく、表層部以外の部分は、Crの含有量が13%以上であっても13%未満であってもよい。また、表層部以外の部分は、鋼材であっても、鋼材以外の材質であってもよい。Crを13%以上含む鋼材は、例えば、マルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼、クロムメッキなどである。   In the sliding system according to the present invention, the first sliding member may be a steel material in which at least the surface layer portion including the sliding surface contains 13% or more of Cr, and the portion other than the surface layer portion has a Cr content. It may be 13% or more or less than 13%. Further, the portion other than the surface layer portion may be a steel material or a material other than the steel material. Examples of the steel material containing 13% or more of Cr include martensitic stainless steel, austenitic stainless steel, and chrome plating.

本発明に係る摺動システムで、前記潤滑油は、基油がポリアルファオレフィン(PAO)から成ることが好ましい。この場合、PAOと他の基油とを混合したものと比較して、MoDTCの摩擦低減効果をより高めることができる。   In the sliding system according to the present invention, the lubricating oil preferably has a base oil made of polyalphaolefin (PAO). In this case, the friction reduction effect of MoDTC can be further enhanced as compared with a mixture of PAO and another base oil.

本発明に係る摺動システムで、第2の摺動部材も鋼材から成ることが好ましい。第1の摺動部材と第2の摺動部材は、同じ種類の鋼材であってよく、異なるものであってもよい。鋼材は、例えば、軸受鋼、ステンレス鋼などである。   In the sliding system according to the present invention, it is preferable that the second sliding member is also made of a steel material. The first sliding member and the second sliding member may be the same type of steel material or may be different. Examples of the steel material include bearing steel and stainless steel.

本発明に係る摺動システムは、前記潤滑油中で摺動したとき、摺動面にCr酸化物が形成されるよう構成されていることが好ましい。この場合、表面にCrが多く露出しているものや、表層にCrを多く含んでいるものが好ましい。また、あらかじめ摺動面にCr酸化物を有していてもよい。これらにより、摺動面に露出した活性なCrがMoDTCを還元し、低摩擦の安定した反応膜を形成することができ、摩擦調整剤の摩擦低減効果を高めることができる。   The sliding system according to the present invention is preferably configured such that Cr sliding is formed on the sliding surface when sliding in the lubricating oil. In this case, it is preferable that the surface has a large amount of Cr exposed or the surface layer contains a large amount of Cr. Moreover, you may have Cr oxide in the sliding surface previously. As a result, the active Cr exposed on the sliding surface can reduce MoDTC, form a stable reaction film with low friction, and enhance the friction reducing effect of the friction modifier.

本発明に係る摺動システムで、第1の摺動部材と第2の摺動部材とを潤滑油中で摺動させることにより第1の摺動部材の摺動面に形成される低摩擦の反応膜は、XPSの定量分析による全Mo量のうち、Mo(IV)を55%以上含む低摩擦摺動被膜と、前記低摩擦摺動被膜の摺動面とは反対側に形成される酸化層とを有することが好ましい。すなわち、摺動させることにより、本発明に係る摺動システムは、添加剤としてMoDTCを含有し、基油が鉱物油を含まない全合成油から成る潤滑油と、前記潤滑油中で互いに摺動する第1の摺動部材および第2の摺動部材とを有し、前記第1の摺動部材は、少なくとも摺動面を含む表層部がCrを13%以上含む鋼材から成り、摺動面に、Mo(IV)を全Moのうち55%以上含む低摩擦摺動被膜を有し、前記低摩擦摺動被膜の摺動面とは反対側に酸化層を有することが好ましい。この場合、低摩擦摺動被膜がMo(IV)を55%以上含むため、低摩擦のMoSが形成される割合が多くなり、より低い摩擦を示すことができる。 In the sliding system according to the present invention, the first friction member and the second sliding member are slid in the lubricating oil to form a low friction formed on the sliding surface of the first sliding member. The reaction film consists of a low friction sliding coating containing 55% or more of Mo (IV) in the total Mo amount by quantitative analysis of XPS and an oxidation formed on the opposite side of the sliding surface of the low friction sliding coating. It is preferable to have a layer. That is, by sliding, the sliding system according to the present invention slides with each other in the lubricating oil, which contains MoDTC as an additive and the base oil is composed of a total synthetic oil not containing mineral oil. A first sliding member and a second sliding member, wherein the first sliding member is made of a steel material in which at least a surface layer portion including the sliding surface includes 13% or more of Cr, and the sliding surface Furthermore, it is preferable to have a low friction sliding coating containing 55% or more of Mo (IV) out of the total Mo, and to have an oxide layer on the side opposite to the sliding surface of the low friction sliding coating. In this case, since the low-friction sliding coating contains 55% or more of Mo (IV), the ratio of low-friction MoS 2 is increased, and lower friction can be exhibited.

本発明によれば、潤滑油に添加される摩擦調整剤の摩擦低減効果を高めることができる摺動システムを提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the sliding system which can raise the friction reduction effect of the friction modifier added to lubricating oil can be provided.

本発明に係る摺動システムの、摺動による反応膜の形成過程を示す(a)摺動の初期の段階で、第1の摺動部材の表面が露出する状態、(b)第1の摺動部材の表面にCr酸化物が生成され、MoS層の生成が促進される状態の説明図である。(A) A state in which the surface of the first sliding member is exposed at the initial stage of sliding in the sliding system according to the present invention. It is explanatory drawing of the state by which Cr oxide is produced | generated on the surface of a moving member and the production | generation of MoS 2 layer is accelerated | stimulated. 本発明の実施の形態の摺動システムの、ボールオンディスク摩擦試験により得られたボールの摩擦回数と摩擦係数μとの関係を示すグラフである。It is a graph which shows the relationship between the frequency | count of friction of the ball | bowl obtained by the ball-on-disk friction test of the sliding system of embodiment of this invention, and friction coefficient (micro | micron | mu). 本発明の実施の形態の摺動システムの、摺動部材中のCr量に対して示した、図2に示すボールオンディスク摩擦試験後に摺動部材上に形成された反応膜の透過型電子顕微鏡(TEM)写真および元素分析結果である。The transmission electron microscope of the reaction film formed on the sliding member after the ball-on-disk friction test shown in FIG. 2 with respect to the Cr amount in the sliding member of the sliding system of the embodiment of the present invention (TEM) Photograph and elemental analysis result. 本発明の実施の形態の摺動システムの、図2に示すボールオンディスク試験後の摩耗痕の、(a)光電子分光分析装置(XPS)による定量分析結果を示すグラフ、(b)全Mo量に占めるMo(IV)の比率と摩擦係数との関係を示すグラフである。(A) A graph showing a quantitative analysis result by the photoelectron spectrometer (XPS) of the wear scar after the ball-on-disk test shown in FIG. 2 of the sliding system according to the embodiment of the present invention, (b) a total Mo amount It is a graph which shows the relationship between the ratio of Mo (IV) which occupies, and a friction coefficient. 本発明の実施の形態の摺動システムの、第1の摺動部材であるFe-17%Cr(SUS440C)の、図2に示すボールオンディスク試験後の、第1の摺動システムと反応膜との境界付近の(a)透過型電子顕微鏡(TEM)写真、(b)エネルギー分散型X線分析(EDX)による元素分析結果を示すグラフ、(c)電子エネルギー損失分光法(EELS)分析のスペクトルである。The first sliding system and reaction film of the first sliding member Fe-17% Cr (SUS440C) of the sliding system according to the embodiment of the present invention after the ball-on-disk test shown in FIG. (A) Transmission electron microscope (TEM) photograph near the boundary with (b) Graph showing elemental analysis results by energy dispersive X-ray analysis (EDX), (c) Electron energy loss spectroscopy (EELS) analysis It is a spectrum.

本発明の実施の形態の摺動システムは、添加剤としてMoDTCを含有し、基油がPAOから成る潤滑油と、潤滑油中で互いに摺動する第1の摺動部材および第2の摺動部材とを有しており、第1の摺動部材は、Crを13%以上含む鋼材から成っている。
以下、第1の摺動部材を含む様々な摺動部材に対して行ったボールオンディスク試験および、形成された反応膜の元素分析の結果に基づいて、本発明の実施の形態の摺動システムについて説明する。
A sliding system according to an embodiment of the present invention includes a lubricating oil containing MoDTC as an additive and a base oil composed of PAO, and a first sliding member and a second sliding that slide with each other in the lubricating oil. The first sliding member is made of a steel material containing 13% or more of Cr.
Hereinafter, based on the results of the ball-on-disk test performed on various sliding members including the first sliding member and the elemental analysis of the formed reaction film, the sliding system according to the embodiment of the present invention. Will be described.

[ボールオンディスク試験]
回転するディスクに対し、回転しないよう固定したボールを接触させて摩擦抵抗を計測するボールオンディスク(Ball on disk)試験を行った。ボールオンディスク試験は、各摺動部材から成るディスクとスチール(SUJ2)製のボールとを接触させ、摩擦調整剤のMoDTCを含み、基油がPAO8から成る潤滑油の中に浸漬させて実施した。ボールの押付荷重は10Nで、0.5m/sの速度で円運動させて摩擦力の測定を行った。潤滑油は、80℃で一定となるように温度調整をした。なお、本発明の実施の形態の摺動システムでは、第1の摺動部材がディスクに対応し、第2の摺動部材がボールに対応している。
[Ball-on-disk test]
A ball on disk test was performed in which a ball fixed so as not to rotate was brought into contact with the rotating disk to measure the frictional resistance. The ball-on-disk test was performed by bringing a disk made of each sliding member into contact with a steel (SUJ2) ball and immersing it in a lubricating oil containing a friction modifier MoDTC and having a base oil of PAO8. . The pressing force of the ball was 10 N, and the frictional force was measured by circular movement at a speed of 0.5 m / s. The temperature of the lubricating oil was adjusted to be constant at 80 ° C. In the sliding system according to the embodiment of the present invention, the first sliding member corresponds to a disk, and the second sliding member corresponds to a ball.

試験では、ディスクを構成する各摺動部材として、鉄を主成分とした鋼材から成り、それぞれCrを1.0%含むもの(Fe-1.0%Cr;SCr440)、1.5%含むもの(Fe-1.5%Cr;SUJ2)、12%含むもの(Fe-12%Cr)、14%含むもの(Fe-14%Cr)、17%含むもの(Fe-17%Cr;SUS440C)、および、鋼材の表面にCrメッキを施したもの(Cr plating;表面のCrの含有量は99%)の6種類を使用した。   In the test, each sliding member constituting the disk is made of a steel material mainly composed of iron and contains 1.0% Cr (Fe-1.0% Cr; SCr440) and 1.5% (Fe -1.5% Cr; SUJ2), containing 12% (Fe-12% Cr), containing 14% (Fe-14% Cr), containing 17% (Fe-17% Cr; SUS440C), and steel Six types of Cr plating (Cr plating; 99% Cr content on the surface) were used.

各摺動部材を使用して得られた、ボールの回転数と摩擦係数μとの関係を、図2に示す。図2に示すように、Crの含有量が多いほど、摩擦係数μの低下が速く、低下後の摩擦係数μも低い傾向があることが確認された。特に、Crを14%以上含む摺動部材では、2000〜3000回で、摩擦係数μが約0.05〜0.06まで低下し、3000回以上で、その低下した摩擦係数μで安定することが確認された。   FIG. 2 shows the relationship between the number of rotations of the ball and the friction coefficient μ obtained by using each sliding member. As shown in FIG. 2, it was confirmed that as the Cr content increases, the friction coefficient μ decreases more rapidly and the decreased friction coefficient μ tends to be lower. In particular, in a sliding member containing 14% or more of Cr, the friction coefficient μ decreases to about 0.05 to 0.06 after 2000 to 3000 times, and stabilizes at the reduced friction coefficient μ after 3000 times. Was confirmed.

[反応膜の元素分析]
ボールオンディスク試験後に摺動面に形成された反応膜の構造を把握するため、透過型電子顕微鏡(TEM)の中で反応膜断面の元素分析を行った。元素分析には、エネルギー分散型X線分光法(EDX)および電子エネルギー損失分光法(EELS)を用いた。分析は、摺動部材を、Cr量が0〜1%のもの、1〜13%のもの、13〜20%のもの、20%以上のものの4つに分類して行った。
[Elemental analysis of reaction film]
In order to grasp the structure of the reaction film formed on the sliding surface after the ball-on-disk test, elemental analysis of the reaction film cross section was performed in a transmission electron microscope (TEM). For elemental analysis, energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) were used. The analysis was performed by classifying the sliding members into four types: those with a Cr amount of 0 to 1%, those with 1 to 13%, those with 13 to 20%, and those with 20% or more.

各摺動部材の反応膜の透過型電子顕微鏡(TEM)写真および元素分析結果を、図3に示す。なお、図3には、図2に示す摺動部材のうち、Cr量が0〜1%のものを代表して、Crを含まない材料(Fe-0%Cr;マルエージング鋼)の結果を、Cr量が1〜13%のものを代表して、Crを1.5%含むもの(Fe-1.5%Cr;SUJ2)の結果を、Cr量が13〜20%のものを代表して、Crを17%含むもの(Fe-17%Cr;SUS440C)の結果を、Cr量が20%以上のものを代表して、鋼材の表面にCrメッキを施したもの(Cr plating;表面のCrの含有量は99%)の結果を示す。   The transmission electron microscope (TEM) photograph and elemental analysis result of the reaction film of each sliding member are shown in FIG. FIG. 3 shows the results of the material containing no Cr (Fe-0% Cr; maraging steel), representing the Cr amount of 0 to 1% among the sliding members shown in FIG. As a representative of the Cr content of 1-13%, the results of 1.5% Cr (Fe-1.5% Cr; SUJ2), the Cr content of 13-20% The result of 17% Cr (Fe-17% Cr; SUS440C), with the Cr content representing 20% or more, Cr plated on the surface of the steel (Cr plating; The content is 99%).

図3に示すように、反応膜(Reaction film)の厚さは、Cr量が0〜1%のもので200nm以上、Cr量が1〜13%のもので50〜100nm、Cr量が13〜20%のもので30〜50nm、Cr量が20%以上のもので10〜20nmであり、Crの含有量が多いほど薄くなることが確認された。また、反応膜は、Cr量が1%以上のもので、摺動部材側に鉄やモリブデンの酸化層(Fe, Mo oxide)を有し、表面側に二硫化モリブデン層(MoS)を有していることが確認された。また、二硫化モリブデン層は、Crの含有量が多いほど薄くなり、配向がより明確になることが確認された。なお、Cr量が0〜1%のものでは、反応膜は、酸化鉄の結晶(Fe oxide)から成っており、二硫化モリブデン層は形成されていないことが確認された。 As shown in FIG. 3, the thickness of the reaction film is 200 nm or more when the Cr amount is 0 to 1%, 50 to 100 nm when the Cr amount is 1 to 13%, and the Cr amount is 13 to 13%. It was confirmed that the thickness was 20-50%, 30-50 nm, the Cr content was 20% or more, 10-20 nm, and the thinner the Cr content, the thinner. The reaction film has a Cr content of 1% or more, and has an iron or molybdenum oxide layer (Fe, Mo oxide) on the sliding member side and a molybdenum disulfide layer (MoS 2 ) on the surface side. It was confirmed that Further, it was confirmed that the molybdenum disulfide layer became thinner and the orientation became clearer as the Cr content increased. It was confirmed that when the Cr content was 0 to 1%, the reaction film was made of iron oxide crystals (Fe oxide) and no molybdenum disulfide layer was formed.

各摺動部材の、図2に示すボールオンディスク試験後の摩耗痕について、光電子分光分析(XPS)により得られたMoのスペクトルを、図4(a)に示す。図4(a)に示すように、Moのスペクトルは、二硫化モリブデンを示すMo(IV)の2つのピークと、酸化モリブデンを示すMo(VI)の2つのピークとが存在することが確認された。このピーク強度から全Mo量に占めるMo(IV)の比率を求め、摩擦係数(Friction coefficient)との相関をプロットしたものを、図4(b)に示す。図4(b)に示すように、横軸であるMo(IV)/Moが大きい、つまりMo(IV)の生成比率が多いほど、摩擦係数が低減することが確認された。特に、摩擦係数μが0.06以下を示す領域では、Mo(IV)の比率が55%以上であり、MoSがより多く生成することが低摩擦に寄与することが確認された。 FIG. 4A shows the spectrum of Mo obtained by photoelectron spectroscopic analysis (XPS) for the wear marks after the ball-on-disk test shown in FIG. 2 of each sliding member. As shown in FIG. 4 (a), the spectrum of Mo was confirmed to have two peaks of Mo (IV) indicating molybdenum disulfide and two peaks of Mo (VI) indicating molybdenum oxide. It was. FIG. 4 (b) shows the ratio of Mo (IV) to the total amount of Mo determined from the peak intensity and the correlation with the friction coefficient plotted. As shown in FIG. 4B, it was confirmed that the coefficient of friction decreases as the Mo (IV) / Mo on the horizontal axis is larger, that is, as the Mo (IV) generation ratio is larger. In particular, in the region where the friction coefficient μ is 0.06 or less, the ratio of Mo (IV) is 55% or more, and it was confirmed that more MoS 2 is generated contributes to low friction.

Fe-17%Cr(SUS440C)の摺動部材について、摺動部材と反応膜との境界付近を詳しく分析した結果を、図5に示す。図5(a)に示すように、摺動部材と酸化層との間に、3〜5nmの層が認められた。この境界層をEDXで分析すると、図5(b)に示すように、CrとOとを比較的多く含むことが確認された。また、図5(c)に示すように、摺動部材、境界層および酸化層をEELSで分析すると、摺動部材および境界層で、スペクトル中にCr−LおよびCr−Lの二つのピークが認められた。この2つのピークから、摺動部材および境界層は、それぞれCrを含む金属(Cr metal)およびCrであることが確認された。また、酸化層では、スペクトル中にピークは認められず、酸化層はアモルファス(Amorphous)であることが確認された。 FIG. 5 shows the result of detailed analysis of the vicinity of the boundary between the sliding member and the reaction film for the Fe-17% Cr (SUS440C) sliding member. As shown to Fig.5 (a), the 3-5 nm layer was recognized between the sliding member and the oxide layer. When this boundary layer was analyzed by EDX, it was confirmed that a relatively large amount of Cr and O was contained as shown in FIG. Further, as shown in FIG. 5C, when the sliding member, the boundary layer, and the oxide layer are analyzed by EELS, the sliding member and the boundary layer have two spectra of Cr-L 2 and Cr-L 3 in the spectrum. A peak was observed. From these two peaks, it was confirmed that the sliding member and the boundary layer were Cr metal and Cr 2 O 3 , respectively. In the oxide layer, no peak was observed in the spectrum, and it was confirmed that the oxide layer was amorphous.

以上のボールオンディスク試験や元素分析の結果から、以下のことが確認された。すなわち、本発明の実施の形態の摺動システムは、添加剤としてMoDTCを含み、基油が鉱物油を含まない全合成油から成る潤滑油中で摺動することにより、低摩擦のMoS層を含む安定した反応膜を形成することができ、添加剤の摩擦調整剤の摩擦低減効果を高めることができる。また、MoSの生成量が多く、MoS層が配向しやすいため、摩擦低下が早く進むとともに、摩擦係数をより小さくすることができる。また、第1の摺動部材の表面に形成されたCr酸化物の不動態膜により、第1の摺動部材中のFeの酸化を防ぐことができる。
From the results of the above ball-on-disk test and elemental analysis, the following was confirmed. That is, the sliding system according to the embodiment of the present invention includes a low friction MoS 2 layer by sliding in a lubricating oil that includes MoDTC as an additive and the base oil does not include mineral oil. Can be formed, and the friction reducing effect of the friction modifier of the additive can be enhanced. In addition, since the amount of MoS 2 produced is large and the MoS 2 layer is easily oriented, the frictional reduction is advanced quickly and the friction coefficient can be further reduced. Moreover, the oxidation of Fe in the first sliding member can be prevented by the passive film of Cr oxide formed on the surface of the first sliding member.

Claims (4)

添加剤としてMoDTCを含有し、基油が鉱物油を含まない全合成油から成る潤滑油と、
前記潤滑油中で互いに摺動する第1の摺動部材および第2の摺動部材とを有し、
前記第1の摺動部材は、少なくとも摺動面を含む表層部が、Crを13%以上含む鋼材から成ることを
特徴とする摺動システム。
A lubricating oil comprising MoDTC as an additive and a base oil comprising a total synthetic oil not containing mineral oil;
A first sliding member and a second sliding member that slide relative to each other in the lubricating oil;
The sliding system is characterized in that the first sliding member is made of a steel material in which at least a surface layer including a sliding surface contains 13% or more of Cr.
前記第1の摺動部材は、摺動面に、Mo(IV)を全Moのうち55%以上含む低摩擦摺動被膜を有し、前記低摩擦摺動被膜の摺動面とは反対側に酸化層を有することを特徴とする請求項1記載の摺動システム。   The first sliding member has a low friction sliding coating containing 55% or more of Mo (IV) in the Mo on the sliding surface, and is opposite to the sliding surface of the low friction sliding coating. The sliding system according to claim 1, further comprising an oxide layer. 前記潤滑油は、基油がポリアルファオレフィン(PAO)から成ることを特徴とする請求項1または2記載の摺動システム。   The sliding system according to claim 1 or 2, wherein the lubricating oil includes a base oil made of polyalphaolefin (PAO). 前記第2の摺動部材は鋼材から成ることを特徴とする請求項1乃至3のいずれか1項に記載の摺動システム。
The sliding system according to any one of claims 1 to 3, wherein the second sliding member is made of a steel material.
JP2017030605A 2017-02-22 2017-02-22 Sliding system Pending JP2018135943A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017030605A JP2018135943A (en) 2017-02-22 2017-02-22 Sliding system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017030605A JP2018135943A (en) 2017-02-22 2017-02-22 Sliding system

Publications (1)

Publication Number Publication Date
JP2018135943A true JP2018135943A (en) 2018-08-30

Family

ID=63365378

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017030605A Pending JP2018135943A (en) 2017-02-22 2017-02-22 Sliding system

Country Status (1)

Country Link
JP (1) JP2018135943A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230619A1 (en) 2018-05-31 2019-12-05 株式会社吉野工業所 Application container

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019230619A1 (en) 2018-05-31 2019-12-05 株式会社吉野工業所 Application container

Similar Documents

Publication Publication Date Title
Bahari et al. Friction and wear response of vegetable oils and their blends with mineral engine oil in a reciprocating sliding contact at severe contact conditions
Cai et al. Effect of oil temperature on tribological behavior of a lubricated steel− steel contact
De Mello et al. Effect of precursor content and sintering temperature on the scuffing resistance of sintered self lubricating steel
JP5783303B2 (en) Copper-based sintered sliding member
WO2015128973A1 (en) Anti-friction bearing
KR20120115601A (en) Bearing device
Zhang et al. Tribological behavior of LaF3 nanoparticles as additives in poly‐alpha‐olefin
Campos et al. Tribological evaluation of self-lubricating sintered steels
KR20230110837A (en) Sliding member, bearing, manufacturing method of sliding member, manufacturing method of bearing
de Oliveira Jr et al. Solid lubrication in fluid film lubrication
JP7040532B2 (en) Low friction sliding mechanism
JP2014084938A (en) Rolling bearing
CN110318053A (en) Sliding component and its manufacturing method
JP6114730B2 (en) Sliding system
JP5080505B2 (en) Sliding member
JP2018135943A (en) Sliding system
JP5897961B2 (en) Plain bearing
Li et al. Friction and lubrication mechanism of a new type of anti-magnetic bearing Ti60 titanium alloy material
US7404866B2 (en) Sliding member and method for manufacture thereof
JP5385039B2 (en) Powder for shot peening imparting slidability and surface compressive residual stress at the same time, and method for producing slidable member using the same
CN110857460B (en) Sliding member and method of manufacturing the same
CN109825757B (en) cast iron material
Ng et al. Tribological performances of ZDDP and ashless triphenyl phosphorothionate (TPPT) as lubricant additives on Ti–N and Ti–Al–N coated steel surfaces
JP6808560B2 (en) Sliding system
JP2014047403A (en) Rolling bearing

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20170223