[go: up one dir, main page]

JP2018135544A - Method of producing metal film - Google Patents

Method of producing metal film Download PDF

Info

Publication number
JP2018135544A
JP2018135544A JP2017028676A JP2017028676A JP2018135544A JP 2018135544 A JP2018135544 A JP 2018135544A JP 2017028676 A JP2017028676 A JP 2017028676A JP 2017028676 A JP2017028676 A JP 2017028676A JP 2018135544 A JP2018135544 A JP 2018135544A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
solid electrolyte
pressure
limit value
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017028676A
Other languages
Japanese (ja)
Inventor
飯坂 浩文
Hirofumi Iizaka
浩文 飯坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017028676A priority Critical patent/JP2018135544A/en
Publication of JP2018135544A publication Critical patent/JP2018135544A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

【課題】固体電解質膜の面積が大きな場合や基板面積に対する成膜面積の割合(被覆率)が大きな場合でも、膜厚全体を均一に金属成膜することのできる金属被膜の成膜方法を提供する。
【解決手段】陽極1と陰極2の間に固体電解質膜5を配し、陽極1と固体電解質膜5の間に金属イオンを含む水溶液Lを配し、陽極1と陰極2の間に電圧を印加し、水溶液Lを加圧して水溶液Lの液圧による加圧力Pを固体電解質膜5に付与し、金属イオンの金属からなる金属被膜Cを基板6の表面に成膜する成膜方法において、加圧力Pの平均圧力Yの上限値と下限値を、被覆率Xを用いた以下の式で規定される上限値と下限値の間に設定するものであり、上限値:Yup=2.5以下、下限値:被覆率Xが0%より大きく67%以下の場合は、Yud=(2.5×10-8)X5−(4×10-6)X4+0.0002X3−0.0065X2+0.079X+1.8、被覆率Xが67%より大きく100%以下の場合は、Yud=0.5である。
【選択図】図2
Provided is a metal film deposition method capable of uniformly depositing the entire film thickness even when the area of the solid electrolyte membrane is large or when the ratio of the deposition area to the substrate area (coverage) is large. To do.
A solid electrolyte membrane is disposed between an anode and a cathode, an aqueous solution containing metal ions is disposed between the anode and the solid electrolyte membrane, and a voltage is applied between the anode and the cathode. In the film-forming method of applying and pressurizing the aqueous solution L to apply a pressure P due to the liquid pressure of the aqueous solution L to the solid electrolyte membrane 5 and forming a metal coating C made of a metal ion metal on the surface of the substrate 6, The upper limit value and lower limit value of the average pressure Y of the applied pressure P are set between the upper limit value and the lower limit value defined by the following formula using the coverage X, and the upper limit value: Yup = 2.5 or less. lower limit: If coverage X is less than 67% greater than 0%, Yud = (2.5 × 10 -8 ) X 5 - (4 × 10 -6) X 4 + 0.0002X 3 -0.0065X 2 + 0.079X + 1 .8, Yud = 0.5 when the coverage ratio X is greater than 67% and less than 100%.
[Selection] Figure 2

Description

本発明は、基板の表面に金属被膜を成膜する、金属被膜の成膜方法に関するものである。   The present invention relates to a method for forming a metal film, in which a metal film is formed on the surface of a substrate.

均一な膜質の金属被膜を安定して基板に被覆することができる金属被膜の成膜方法が特許文献1に開示されている。   Patent Document 1 discloses a method for forming a metal film that can stably coat a metal film with a uniform film quality on a substrate.

具体的には、陽極と陰極との間に固体電解質膜を配置し、固体電解質膜を基板に接触させながら陰極を基板に導通させ、陽極と陰極との間に電圧を印加し、固体電解質膜の内部に含有された金属イオンを陰極側に析出させることにより、金属イオンの金属からなる金属被膜を基板の表面に成膜する金属被膜の成膜方法である。   Specifically, a solid electrolyte membrane is disposed between the anode and the cathode, the cathode is connected to the substrate while the solid electrolyte membrane is in contact with the substrate, a voltage is applied between the anode and the cathode, and the solid electrolyte membrane is In this method, a metal film made of metal ions is deposited on the surface of a substrate by precipitating metal ions contained in the metal on the cathode side.

この成膜方法においては、陽極と固体電解質膜との間に金属イオンを含む溶液を配置するとともに、固体電解質膜を基板に接触させたときに溶液を加圧することにより、溶液の液圧による加圧力を固体電解質膜に付与し、固体電解質膜を介して基板を加圧しながら金属被膜の成膜をおこなう。   In this film forming method, a solution containing metal ions is disposed between the anode and the solid electrolyte membrane, and the solution is pressurized when the solid electrolyte membrane is brought into contact with the substrate, so that the solution is pressurized by the liquid pressure. A pressure is applied to the solid electrolyte membrane, and a metal coating is formed while pressurizing the substrate through the solid electrolyte membrane.

ところで、固体電解質膜の面積が大きくなる、もしくは、基板面積に対する成膜面積の割合(被覆率)が大きくなると、固体電解質膜を基板に接触させる際に空気を巻き込み易くなってしまい、溶液の液圧による加圧力を高めても巻き込んだ空気を外へ逃がすことができず、基板と固体電解質膜とが密着できない領域が生じることに起因して膜厚全体を均一に金属成膜することが極めて難しくなる。   By the way, when the area of the solid electrolyte membrane is increased or the ratio of the film formation area to the substrate area (coverage) is increased, air is likely to be entrained when the solid electrolyte membrane is brought into contact with the substrate. Even if the applied pressure is increased, the entrained air cannot be released to the outside, and a region where the substrate and the solid electrolyte membrane cannot be adhered to each other is formed. It becomes difficult.

特開2014−51701号公報JP 2014-51701 A

本発明は上記する問題に鑑みてなされたものであり、固体電解質膜の面積が大きな場合、もしくは基板面積に対する成膜面積の割合(被覆率)が大きな場合でも、膜厚全体を均一に金属成膜することのできる金属被膜の成膜方法を提供することを目的とする。   The present invention has been made in view of the above problems, and even when the area of the solid electrolyte membrane is large, or even when the ratio of the film formation area to the substrate area (coverage) is large, the entire film thickness is uniformly formed into a metal. It is an object of the present invention to provide a method for forming a metal film that can be formed into a film.

前記目的を達成すべく、本発明による金属被膜の成膜方法は、陽極と陰極の間に固体電解質膜を配し、該陽極と該固体電解質膜の間に金属イオンを含む水溶液を配し、該固体電解質膜を基板に接触させ、前記陽極と前記陰極の間に電圧を印加し、前記水溶液を加圧して該水溶液の液圧による加圧力を前記固体電解質膜に付与し、該固体電解質膜の内部から前記金属イオンを前記陰極側に析出させ、前記金属イオンの金属からなる金属被膜を前記基板の表面に成膜する、金属被膜の成膜方法において、前記加圧力の平均圧力Yの上限値と下限値を、被覆率Xを用いた以下の式で規定される上限値と下限値の間に設定する、金属被膜の成膜方法である。
上限値:Yup=2.5以下
下限値:被覆率Xが0%より大きく67%以下の場合は、
Yud=(2.5×10-8)X5−(4×10-6)X4+0.0002X3−0.0065X2+0.079X+1.8
被覆率Xが67%より大きく100%以下の場合は、
Yud=0.5
ここで、平均圧力Y(MPa)=印加荷重/固体電解質膜の接触面積、
被覆率X(%)=成膜面積/基板面積。
In order to achieve the above object, a metal film forming method according to the present invention includes a solid electrolyte membrane disposed between an anode and a cathode, and an aqueous solution containing metal ions disposed between the anode and the solid electrolyte membrane, The solid electrolyte membrane is brought into contact with a substrate, a voltage is applied between the anode and the cathode, the aqueous solution is pressurized, and a pressure applied by the hydraulic pressure of the aqueous solution is applied to the solid electrolyte membrane, and the solid electrolyte membrane In the metal film forming method, the metal ions are deposited from the inside of the substrate on the cathode side, and a metal film made of metal of the metal ions is formed on the surface of the substrate. This is a metal film forming method in which the value and the lower limit value are set between the upper limit value and the lower limit value defined by the following formula using the coverage X.
Upper limit value: Yup = 2.5 or less Lower limit value: When coverage X is greater than 0% and less than 67%,
Yud = (2.5 × 10 −8 ) X 5 − (4 × 10 −6 ) X 4 + 0.0002X 3 −0.0065X 2 + 0.079X + 1.8
If coverage X is greater than 67% and less than 100%,
Yud = 0.5
Where, average pressure Y (MPa) = applied load / contact area of solid electrolyte membrane,
Coverage ratio X (%) = film formation area / substrate area.

本発明の金属被膜の成膜方法は、陽極と固体電解質膜の間に配された金属イオンを含む水溶液から固体電解質膜に付与される加圧力の平均圧力Yを最適な圧力範囲に設定し、その上限値と下限値を成膜面積/基板面積からなる被覆率Xを変数とする数式を用いて規定したものである。   The method for forming a metal coating of the present invention sets the average pressure Y of the applied pressure applied to the solid electrolyte membrane from an aqueous solution containing metal ions disposed between the anode and the solid electrolyte membrane in an optimum pressure range, The upper limit value and the lower limit value are defined using mathematical formulas with the coverage ratio X consisting of the film formation area / substrate area as a variable.

水溶液から固体電解質膜に付与される加圧力を上記最適範囲内に設定しながら成膜することにより、基板に対して固体電解質膜全体を可及的均一に接触させることができ、したがって成膜中に固体電解質膜が破損するのを防止することも可能になる。   By forming the film while setting the pressure applied to the solid electrolyte film from the aqueous solution within the above-mentioned optimum range, the entire solid electrolyte film can be brought into contact with the substrate as uniformly as possible. It is also possible to prevent the solid electrolyte membrane from being damaged.

本発明による金属被膜の成膜方法では、成膜時に、陽極と固体電解質膜の間に金属イオンを含む水溶液が配された状態で、固体電解質膜を基板に接触させ、陰極を基板に接触させて電気的に導通する。この状態で、陽極と陰極との間に電圧を印加することにより、水溶液に含まれる金属イオンが陽極側から陰極側に向かって移動し、固体電解質膜の内部を通過して固体電解質膜の陰極側に析出させることができる。この結果、陽極は消費されずに、水溶液中の金属イオンの金属からなる金属被膜を基板の表面に成膜することができる。   In the method for forming a metal coating according to the present invention, the solid electrolyte membrane is brought into contact with the substrate and the cathode is brought into contact with the substrate in the state in which an aqueous solution containing metal ions is arranged between the anode and the solid electrolyte membrane. Electrically conducting. In this state, by applying a voltage between the anode and the cathode, the metal ions contained in the aqueous solution move from the anode side toward the cathode side, pass through the inside of the solid electrolyte membrane, and pass through the cathode of the solid electrolyte membrane. Can be deposited on the side. As a result, a metal film made of a metal ion metal in an aqueous solution can be formed on the surface of the substrate without consuming the anode.

さらに、固体電解質膜内の金属イオンは成膜時に析出するとともに、固体電解質膜には陽極側の水溶液から金属イオンが供給されることになる。したがって、水溶液を随時供給することで、陽極を交換することなく、所望の膜厚の金属被膜を複数の基板の表面に連続して成膜することも可能になる。   Furthermore, the metal ions in the solid electrolyte membrane are deposited at the time of film formation, and metal ions are supplied to the solid electrolyte membrane from the aqueous solution on the anode side. Therefore, by supplying an aqueous solution as needed, it becomes possible to continuously form a metal film having a desired film thickness on the surfaces of a plurality of substrates without exchanging the anode.

また、本発明による金属被膜の成膜方法は、固体電解質膜を基板に接触させた際に金属イオンを含む水溶液を加圧することにより、この水溶液の液圧による加圧力を固体電解質膜に付与し、固体電解質膜を介して基板を加圧しながら金属被膜の成膜をおこなうため、パスカルの原理に基づき、固体電解質膜は加圧された水溶液の液圧によって基板表面を均一に加圧することができる。このような加圧状態で陽極と陰極の間に電圧を印加することにより、均一な膜厚の金属被膜を基板の表面に成膜することが可能になる。   In addition, the method for forming a metal coating according to the present invention applies pressure to the solid electrolyte membrane by pressurizing an aqueous solution containing metal ions when the solid electrolyte membrane is brought into contact with the substrate. Since the metal coating is formed while pressing the substrate through the solid electrolyte membrane, the solid electrolyte membrane can uniformly press the substrate surface by the hydraulic pressure of the pressurized aqueous solution based on the Pascal principle. . By applying a voltage between the anode and the cathode in such a pressurized state, a metal film having a uniform thickness can be formed on the surface of the substrate.

以上の説明から理解できるように、本発明の金属被膜の成膜方法によれば、陽極と固体電解質膜の間に配された金属イオンを含む水溶液から固体電解質膜に付与される加圧力の平均圧力Yを最適な圧力範囲に設定しながら成膜することにより、固体電解質膜の面積が大きな場合、もしくは基板面積に対する成膜面積の割合(被覆率)が大きな場合でも、膜厚全体を均一に金属成膜することができる。   As can be understood from the above description, according to the metal film deposition method of the present invention, the average applied pressure applied to the solid electrolyte membrane from the aqueous solution containing metal ions disposed between the anode and the solid electrolyte membrane. Even when the area of the solid electrolyte membrane is large or the ratio of the film formation area to the substrate area (coverage) is large, by forming the film while setting the pressure Y within the optimum pressure range, the entire film thickness can be made uniform. Metal film can be formed.

本発明の金属被膜の成膜方法を説明したフロー図である。It is the flowchart explaining the film-forming method of the metal film of this invention. 図1に続いて金属被膜の成膜方法を説明したフロー図である。FIG. 2 is a flowchart for explaining a metal film forming method following FIG. 1. 金属イオンを含む水溶液から固体電解質膜に付与される加圧力の平均圧力の最適範囲を示した図である。It is the figure which showed the optimal range of the average pressure of the applied pressure given to the solid electrolyte membrane from the aqueous solution containing a metal ion.

以下、図面を参照して本発明の金属被膜の成膜方法の実施の形態を説明する。
(金属被膜の成膜方法の実施の形態)
図1,2は順に、本発明の金属被膜の成膜方法を説明したフロー図である。図示する金属被膜の成膜方法は、陽極1と陰極2との間に固体電解質膜5を配し、陽極1と固体電解質膜5の間に金属イオンを含む水溶液Lを収容した液圧室4を配し、固体電解質膜5を基板6に接触させ、陽極1と陰極2を繋ぐ回路に電源3から電圧を印加し、同時に水溶液Lを加圧することにより(X方向)、水溶液Lの液圧による加圧力Pを固体電解質膜5に付与する。
Embodiments of a metal film forming method of the present invention will be described below with reference to the drawings.
(Embodiment of metal film deposition method)
1 and 2 are flow charts illustrating the metal film forming method of the present invention in order. In the illustrated method for forming a metal coating, a solid electrolyte membrane 5 is disposed between an anode 1 and a cathode 2, and a hydraulic chamber 4 containing an aqueous solution L containing metal ions between the anode 1 and the solid electrolyte membrane 5. The solid electrolyte membrane 5 is brought into contact with the substrate 6, a voltage is applied from the power source 3 to the circuit connecting the anode 1 and the cathode 2, and simultaneously the aqueous solution L is pressurized (in the X direction). Is applied to the solid electrolyte membrane 5.

ここで、陽極1は金属イオンを含む水溶液Lに対して耐食性を有し、所定の導電性を有するものであればよく、たとえば、水溶液Lに含有される金属イオンよりもイオン化傾向が低く、当該金属イオンの金属よりも貴なる金属である、金等から構成される。   Here, the anode 1 has only to have corrosion resistance to the aqueous solution L containing metal ions and has a predetermined conductivity. For example, the anode 1 has a lower ionization tendency than the metal ions contained in the aqueous solution L, and It is composed of gold or the like, which is a noble metal rather than a metal ion metal.

一方、陰極2も金属イオンを含む水溶液Lに対して耐食性を有し、所定の導電性を有するものであればよく、さらに、基板6を載置することができる形状および寸法を有している。   On the other hand, the cathode 2 only needs to have corrosion resistance with respect to the aqueous solution L containing metal ions and have a predetermined conductivity, and further has a shape and dimensions on which the substrate 6 can be placed. .

ここで、基板6はたとえばニッケルからなり、水溶液Lに含まれる金属イオンはたとえばスズイオンである。   Here, the substrate 6 is made of nickel, for example, and the metal ions contained in the aqueous solution L are, for example, tin ions.

また、固体電解質膜5は、固体電解質からなる膜やフィルム等から形成される。この固体電解質膜5は、金属イオンを含む水溶液Lに接触させることにより、金属イオンを内部に含浸することができ、電圧を印加したときに陰極2側において金属イオン由来の金属が析出できれば特に限定されるものではない。固体電解質膜5の素材としては、たとえばデュポン社製のナフィオン(登録商標)などのフッ素系樹脂や炭化水素系樹脂、ポリアミック酸膜、旭硝子社製のセレミオンなどのイオン交換機能を有した膜を挙げることができる。   The solid electrolyte membrane 5 is formed from a membrane or film made of a solid electrolyte. This solid electrolyte membrane 5 is particularly limited as long as metal ions can be impregnated inside by contacting with the aqueous solution L containing metal ions, and metal derived from metal ions can be deposited on the cathode 2 side when a voltage is applied. Is not to be done. Examples of the material of the solid electrolyte membrane 5 include a membrane having an ion exchange function such as a fluorine resin such as Nafion (registered trademark) manufactured by DuPont, a hydrocarbon resin, a polyamic acid film, and a selemion manufactured by Asahi Glass. be able to.

液圧室4の下方開口を介して水溶液Lが固体電解質膜5に接しており、液圧室4の上方には加圧板7が配設され、加圧板7の下面に陽極1が取り付けられている。   The aqueous solution L is in contact with the solid electrolyte membrane 5 through the lower opening of the hydraulic chamber 4, a pressure plate 7 is disposed above the hydraulic chamber 4, and the anode 1 is attached to the lower surface of the pressure plate 7. Yes.

ここで、本成膜方法では、加圧力Pの平均圧力Yの上限値と下限値を、被覆率Xを用いた以下の式で規定される上限値と下限値の間に設定する。なお、下記式に基づく加圧力の平均圧力の最適範囲を図3に示す。   Here, in this film forming method, the upper limit value and the lower limit value of the average pressure Y of the applied pressure P are set between the upper limit value and the lower limit value defined by the following formula using the coverage X. In addition, the optimal range of the average pressure of the applied pressure based on the following formula is shown in FIG.

(1)上限値:Yup=2.5以下(図3のaライン)。
(2)下限値:被覆率Xが0%より大きく67%以下の場合は、
Yud=(2.5×10-8)X5−(4×10-6)X4+0.0002X3−0.0065X2+0.079X+1.8(図3のb曲線)。
被覆率Xが67%より大きく100%以下の場合は、
Yud=0.5(図3のcライン)。
ここで、平均圧力Y(MPa)=印加荷重/固体電解質膜の接触面積、
被覆率X(%)=成膜面積/基板面積。
(1) Upper limit value: Yup = 2.5 or less (a line in FIG. 3).
(2) Lower limit: When coverage X is greater than 0% and less than 67%,
Yud = (2.5 × 10 −8 ) X 5 − (4 × 10 −6 ) X 4 + 0.0002X 3 −0.0065X 2 + 0.079X + 1.8 (b curve in FIG. 3).
If coverage X is greater than 67% and less than 100%,
Yud = 0.5 (c line in FIG. 3).
Where, average pressure Y (MPa) = applied load / contact area of solid electrolyte membrane,
Coverage ratio X (%) = film formation area / substrate area.

上式および図3で示す平均圧力範囲内に設定された加圧力にて成膜することにより、固体電解質膜5の面積が大きな場合、もしくは基板6の面積に対する成膜面積の割合(被覆率)が大きな場合であっても、膜厚全体を均一に金属成膜することが可能になる。   If the area of the solid electrolyte membrane 5 is large, or the ratio of the area of the film formation to the area of the substrate 6 (coverage) by forming the film at a pressure set within the average pressure range shown in the above equation and FIG. Even if this is large, it becomes possible to form a metal film uniformly over the entire film thickness.

なお、被覆率がたとえば67%超と極めて大きな場合、固体電解質膜5を基板6に接触させる際に気体を巻き込む頻度が高くなるが、加圧力Pの平均圧力Yの上限値と下限値を上記数式範囲に規定しながら、さらに真空ポンプ等を用いて気体を強制的に排出することにより、固体電解質膜5と基板6をより一層均一に接触させることができ、より一層均一な膜厚を実現する成膜が可能になる。   Note that when the coverage is extremely large, for example, more than 67%, the frequency of entraining the gas when the solid electrolyte membrane 5 is brought into contact with the substrate 6 is increased. By forcibly discharging the gas using a vacuum pump or the like while defining the numerical formula range, the solid electrolyte membrane 5 and the substrate 6 can be brought into more uniform contact, and a more uniform film thickness can be achieved. It becomes possible to form a film.

液圧室4の内部において加圧板7を下方の固体電解質膜5側に摺動させることにより(X方向)、液圧室4内の水溶液Lを加圧力Pで加圧することができる。   The aqueous solution L in the hydraulic chamber 4 can be pressurized with the applied pressure P by sliding the pressure plate 7 toward the lower solid electrolyte membrane 5 side in the hydraulic chamber 4 (X direction).

水溶液Lが加圧されることで水溶液L(中の金属イオン)が固体電解質膜5に含浸し、固体電解質膜5の内部から金属イオンが陰極2側に析出する。   By pressurizing the aqueous solution L, the solid electrolyte membrane 5 is impregnated with the aqueous solution L (metal ions therein), and metal ions are deposited on the cathode 2 side from the inside of the solid electrolyte membrane 5.

なお、図示を省略するが、金属イオンを含む水溶液Lを液圧室4に供給する供給タンクが液圧室4に流体連通しており、液圧室4内の水溶液Lの減少にともなって水溶液Lを随時供給できるようになっている。   Although not shown, a supply tank that supplies the aqueous solution L containing metal ions to the hydraulic chamber 4 is in fluid communication with the hydraulic chamber 4, and the aqueous solution is reduced as the aqueous solution L in the hydraulic chamber 4 decreases. L can be supplied at any time.

図2で示すように、固体電解質膜5の内部から金属イオンを陰極2側に析出させることにより、金属イオン由来の金属からなる金属被膜Cが基板6の表面に成膜される。   As shown in FIG. 2, metal ions C are deposited on the surface of the substrate 6 by depositing metal ions from the inside of the solid electrolyte membrane 5 on the cathode 2 side.

(水溶液からの加圧力および膜厚による成膜形態を検証した実験とその結果)
本発明者等は、水溶液からの加圧力および膜厚を変化させながら、各条件にて生成される成膜の形態を比較検証する実験をおこなった。
(Experiment and results of verifying the film formation mode by applying pressure and film thickness from aqueous solution)
The present inventors conducted an experiment to compare and verify the form of film formation generated under each condition while changing the applied pressure and film thickness from an aqueous solution.

<試料>
成膜する金属成分として銅を、基板として銅/チタン/ガラス基板(厚さ50nm/300nm/1mm、大きさ1×30×30mm、協同インターナショナル(株)製)を使用した。銅膜の成膜条件では、電解液として1M硫酸銅水溶液を、電解質膜としてイオン交換膜 Nafion117(デュポン社製)を、陽極として発泡銅(♯3835、グッドフェロー社製)を使用し、析出条件では、電極間距離1cm、電解液量54cm3、基板温度60℃、圧力1MPa、パルス8mA×8秒×60℃、析出膜厚500μmとした。電解液の加熱では、実機ヘッドにリボンヒータ(TFHU、東京硝子器械社(株)製)を取り付けた。さらに、電解質膜の前処理(原材料ポリマー及び金属不純物除去)では、電解質膜を3%過酸化水素水中で1時間煮沸後、1M硫酸溶液中で1時間煮沸する処理を実施した。
<Sample>
Copper was used as the metal component for film formation, and a copper / titanium / glass substrate (thickness 50 nm / 300 nm / 1 mm, size 1 × 30 × 30 mm, manufactured by Kyodo International Co., Ltd.) was used as the substrate. The deposition conditions for the copper film were 1M copper sulfate aqueous solution as the electrolyte, ion exchange membrane Nafion117 (DuPont) as the electrolyte membrane, and foamed copper (# 3835, Goodfellow) as the anode. Then, the distance between electrodes was 1 cm, the amount of electrolyte was 54 cm 3 , the substrate temperature was 60 ° C., the pressure was 1 MPa, the pulse was 8 mA × 8 seconds × 60 ° C., and the deposited film thickness was 500 μm. For heating the electrolyte, a ribbon heater (TFHU, manufactured by Tokyo Glass Instruments Co., Ltd.) was attached to the actual machine head. Further, in the pretreatment (removal of raw material polymer and metal impurities) of the electrolyte membrane, the electrolyte membrane was boiled in 3% hydrogen peroxide water for 1 hour and then boiled in 1M sulfuric acid solution for 1 hour.

<実験概要>
面内圧力分布測定を導電性インク式(I-SCAN、ニッタ(株)製)により実施した。導電性インク式では、2枚のフィルム(PET)にそれぞれ、行、列の銀電極が配線され、銀電極の上に感圧導電性インクがコーティングされている。そして、行及び列の電極の交点がセンシングポイントとなり、圧力がかかると電気抵抗値が変化し、電気抵抗値は8bitのデジタル値に変換され、パソコンに取り込まれた電気抵抗値を圧力に換算する。そのため、測定範囲は感圧電導性インクの配合を変えることにより設定することができる。
ここでは、低圧力測定用(最大測定圧力0.7MPa)と高圧力測定用(最大測定圧力3.5MPa)のプローブを使用した。
<Outline of experiment>
In-plane pressure distribution measurement was performed with a conductive ink type (I-SCAN, manufactured by Nitta Corporation). In the conductive ink type, row and column silver electrodes are wired on two films (PET), respectively, and pressure sensitive conductive ink is coated on the silver electrodes. The intersection of the row and column electrodes becomes a sensing point. When pressure is applied, the electrical resistance value changes, the electrical resistance value is converted to an 8-bit digital value, and the electrical resistance value taken into the personal computer is converted to pressure. . Therefore, the measurement range can be set by changing the composition of the piezoelectric conductive ink.
Here, probes for low pressure measurement (maximum measurement pressure 0.7 MPa) and high pressure measurement (maximum measurement pressure 3.5 MPa) were used.

<実験結果その1>
液圧方式では、固体電解質膜を基板に接触させた際に、金属イオンを含む溶液を加圧することにより、この溶液の液圧で固体電解質膜を介して基板を加圧しながら、金属被膜の成膜をおこなう。この結果、パスカルの原理により、固体電解質膜は、加圧された溶液の液圧により基板表面を均一に加圧することができる。このような加圧状態で、陽極と陰極との間に電圧を印加することで均一な膜厚の金属被膜を基板の表面に成膜することができる。しかしながら、液圧が低くて均一ではない場合、析出時間を長くして成膜した際に金属被膜の形態がどのように変化するか否かは現在明らかになっていない。
<Experiment result 1>
In the hydraulic method, when the solid electrolyte membrane is brought into contact with the substrate, a solution containing metal ions is pressurized, so that the metal coating is formed while the substrate is pressurized through the solid electrolyte membrane with the liquid pressure of this solution. Do the film. As a result, according to Pascal's principle, the solid electrolyte membrane can uniformly pressurize the substrate surface by the liquid pressure of the pressurized solution. A metal film having a uniform thickness can be formed on the surface of the substrate by applying a voltage between the anode and the cathode in such a pressurized state. However, when the liquid pressure is low and not uniform, it is not clear at present how the form of the metal coating changes when the film is formed with a long deposition time.

そのため、本実験では、圧力及び析出時間(膜厚)を変化させ、ニッケル基板上にスズ被膜を成膜し、スズ被膜の形態変化を検証した。検証の結果、圧力を高くすると、スズ被膜の膜厚の違いに関わらず、スズ被膜の面積が大きくなり、未析出部が少なくなることが分かった。   Therefore, in this experiment, the pressure and deposition time (film thickness) were changed, a tin film was formed on the nickel substrate, and the form change of the tin film was verified. As a result of verification, it was found that when the pressure was increased, the area of the tin coating was increased and the number of undeposited portions was reduced regardless of the difference in the thickness of the tin coating.

また、圧力が0.5MPaの際に、析出時間を長くしてスズ被膜の膜厚を0.1μmから0.4μm以上に厚くすると、スズの析出面積(スズ被膜面積)が大きくなることが分かった。   It was also found that when the pressure was 0.5 MPa and the deposition time was increased to increase the thickness of the tin coating from 0.1 μm to 0.4 μm or more, the tin deposition area (tin coating area) increased.

一方、圧力が0.1MPaの際に、スズ被膜の膜厚を変化させても未析出部が多く、スズ被膜の面積は小さいままで変化せず、圧力が1.0MPaの際には、スズ被膜の膜厚を変化させても未析出部が少なく、スズ被膜の面積は大きいままで変化しないことも判明した。   On the other hand, when the pressure is 0.1 MPa, there are many undeposited parts even if the thickness of the tin coating is changed, the area of the tin coating remains small, and when the pressure is 1.0 MPa, the tin coating does not change. It was also found that even when the film thickness was changed, there were few undeposited parts, and the area of the tin coating remained large and did not change.

<実験結果その2>
液圧式固相電析法において、電解液に印加する平均圧力を高くすると、膜厚の違いに関わらず、成膜の被覆率が目標値に近づくこと、および、液圧式固相電析法において成膜の被覆率が目標値に近づくためには印加する圧力に閾値が存在すること、に基づき、導電性インク式プローブ(I-SCAN)を用いて、面内圧力分布測定による最適圧力範囲を検証した。
<Experiment result 2>
In the hydraulic solid-phase electrodeposition method, if the average pressure applied to the electrolyte is increased, the film deposition coverage approaches the target value regardless of the difference in film thickness. Based on the fact that there is a threshold value for the pressure to be applied in order for the coating coverage to approach the target value, the optimum pressure range by in-plane pressure distribution measurement can be determined using a conductive ink probe (I-SCAN). Verified.

厚み500μmの銅被膜を大きさ3×3cmの基板上に大きさを変えて成膜し、陽極ヘッドに取り付けられた電解質膜と銅被膜の間に導電性インク式プローブ(I-SCAN)を挿入し、銅被膜の面内圧力分布を測定して最適圧力範囲を検証した結果、図3で示す最適範囲が特定された。   A 500 μm thick copper film is formed on a 3 x 3 cm substrate with varying dimensions, and a conductive ink probe (I-SCAN) is inserted between the electrolyte film attached to the anode head and the copper film. As a result of measuring the in-plane pressure distribution of the copper coating and verifying the optimum pressure range, the optimum range shown in FIG. 3 was identified.

図3は、被覆率(銅成膜の面積/基板面積)と平均圧力(ロードセルの印加加重/電解質膜の接触面積)の関係を示している。ここで、最適圧力範囲の下限値は、銅被膜の形状を画像で確認でき、かつ、銅被膜内の面内圧力分布が均一である平均圧力値とした。また、最適圧力範囲の上限値は、平均圧力が2.5MPaよりも高いと電解質膜が破損するため、2.5MPaを上限値とした。   FIG. 3 shows the relationship between the coverage ratio (area of copper film formation / substrate area) and the average pressure (load applied to load cell / contact area of electrolyte membrane). Here, the lower limit value of the optimum pressure range was an average pressure value at which the shape of the copper coating could be confirmed by an image and the in-plane pressure distribution in the copper coating was uniform. The upper limit value of the optimum pressure range was 2.5 MPa because the electrolyte membrane was damaged when the average pressure was higher than 2.5 MPa.

図3より、被覆率が小さいときには最適圧力範囲の下限値は高いが、被覆率が増加するにつれて最適圧力範囲の下限値が低くなり、被覆率が67%超になると最適圧力範囲の下限値は一定に近づくことが分かった。   From Fig. 3, the lower limit value of the optimum pressure range is high when the coverage is small, but the lower limit value of the optimum pressure range decreases as the coverage increases, and when the coverage exceeds 67%, the lower limit value of the optimum pressure range is It turned out to be close to constant.

ここで、被覆率が67%超になると、電解質膜を基板に接触(アプローチ)させる際に気体を巻き込んでしまい、さらに圧力を高くしてもパッキングから空気をベントさせることができず、基板と電解質膜が密着できなくなる現象が生じ、膜厚が均一な金属被膜を形成できないことが判明したため、装置内基板取り付け側に真空ポンプを備えることにより、気体を強制的に排出し、電解質膜が基板に均一に接するような状態を形成させ、膜厚が均一な金属被膜の成膜が可能になった。   Here, if the coverage ratio exceeds 67%, gas is entrained when the electrolyte membrane is brought into contact (approach) with the substrate, and even if the pressure is increased, air cannot be vented from the packing, and the substrate and Since the phenomenon that the electrolyte membrane cannot be adhered occurs and it was found that a metal film with a uniform film thickness cannot be formed, by providing a vacuum pump on the substrate mounting side in the apparatus, the gas is forcibly discharged, and the electrolyte membrane is the substrate Thus, it was possible to form a metal film having a uniform film thickness.

なお、真空ポンプで抜く代わりに、電解質膜と基板の間に遮蔽板を挿入して被膜表面に空気抜き用の溝を形成する方法や、電解液漏洩防止用パッキングをはめ込む溝(陽極ヘッド側)に気体抜きの穴をあらかじめ形成しておく方法などであってもよい。   Instead of using a vacuum pump, a shield plate is inserted between the electrolyte membrane and the substrate to form a groove for venting air on the surface of the coating, or a groove (anode head side) into which the electrolyte leakage prevention packing is fitted. A method of forming a vent hole in advance may be used.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更等があっても、それらは本発明に含まれるものである。   The embodiment of the present invention has been described in detail with reference to the drawings. However, the specific configuration is not limited to this embodiment, and there are design changes and the like without departing from the gist of the present invention. They are also included in the present invention.

1…陽極、2…陰極、3…電源、4…液圧室、5…固体電解質膜、6…基板、7…加圧板、L…水溶液、C…金属被膜   DESCRIPTION OF SYMBOLS 1 ... Anode, 2 ... Cathode, 3 ... Power supply, 4 ... Fluid pressure chamber, 5 ... Solid electrolyte membrane, 6 ... Substrate, 7 ... Pressure plate, L ... Aqueous solution, C ... Metal coating

Claims (1)

陽極と陰極の間に固体電解質膜を配し、該陽極と該固体電解質膜の間に金属イオンを含む水溶液を配し、該固体電解質膜を基板に接触させ、前記陽極と前記陰極の間に電圧を印加し、前記水溶液を加圧して該水溶液の液圧による加圧力を前記固体電解質膜に付与し、該固体電解質膜の内部から前記金属イオンを前記陰極側に析出させ、前記金属イオンの金属からなる金属被膜を前記基板の表面に成膜する、金属被膜の成膜方法において、
前記加圧力の平均圧力Yの上限値と下限値を、被覆率Xを用いた以下の式で規定される上限値と下限値の間に設定する、金属被膜の成膜方法。
上限値:Yup=2.5以下
下限値:被覆率Xが0%より大きく67%以下の場合は、
Yud=(2.5×10-8)X5−(4×10-6)X4+0.0002X3−0.0065X2+0.079X+1.8
被覆率Xが67%より大きく100%以下の場合は、
Yud=0.5
ここで、平均圧力Y(MPa)=印加荷重/固体電解質膜の接触面積、
被覆率X(%)=成膜面積/基板面積。
A solid electrolyte membrane is disposed between the anode and the cathode, an aqueous solution containing metal ions is disposed between the anode and the solid electrolyte membrane, the solid electrolyte membrane is brought into contact with the substrate, and the anode and the cathode are disposed between the anode and the cathode. A voltage is applied, the aqueous solution is pressurized to apply a pressure due to the hydraulic pressure of the aqueous solution to the solid electrolyte membrane, the metal ions are precipitated from the inside of the solid electrolyte membrane to the cathode side, and the metal ions In the method of forming a metal film, a metal film made of metal is formed on the surface of the substrate.
A metal film forming method, wherein an upper limit value and a lower limit value of the average pressure Y of the pressurizing force are set between an upper limit value and a lower limit value defined by the following formula using the coverage X.
Upper limit value: Yup = 2.5 or less Lower limit value: When coverage X is greater than 0% and less than 67%,
Yud = (2.5 × 10 −8 ) X 5 − (4 × 10 −6 ) X 4 + 0.0002X 3 −0.0065X 2 + 0.079X + 1.8
If coverage X is greater than 67% and less than 100%,
Yud = 0.5
Where, average pressure Y (MPa) = applied load / contact area of solid electrolyte membrane,
Coverage ratio X (%) = film formation area / substrate area.
JP2017028676A 2017-02-20 2017-02-20 Method of producing metal film Pending JP2018135544A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017028676A JP2018135544A (en) 2017-02-20 2017-02-20 Method of producing metal film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017028676A JP2018135544A (en) 2017-02-20 2017-02-20 Method of producing metal film

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2020073985A Division JP2020109215A (en) 2020-04-17 2020-04-17 Method of producing metal film

Publications (1)

Publication Number Publication Date
JP2018135544A true JP2018135544A (en) 2018-08-30

Family

ID=63365957

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017028676A Pending JP2018135544A (en) 2017-02-20 2017-02-20 Method of producing metal film

Country Status (1)

Country Link
JP (1) JP2018135544A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109215A (en) * 2020-04-17 2020-07-16 トヨタ自動車株式会社 Method of producing metal film
JP2023091220A (en) * 2021-12-20 2023-06-30 トヨタ自動車株式会社 METAL FILM FORMING APPARATUS AND METHOD OF FORMING THE SAME
JP2023097530A (en) * 2021-12-28 2023-07-10 トヨタ自動車株式会社 Film forming apparatus and film forming method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030912A (en) * 2013-08-07 2015-02-16 トヨタ自動車株式会社 Apparatus and method for film deposition of metal coating

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015030912A (en) * 2013-08-07 2015-02-16 トヨタ自動車株式会社 Apparatus and method for film deposition of metal coating

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020109215A (en) * 2020-04-17 2020-07-16 トヨタ自動車株式会社 Method of producing metal film
JP2023091220A (en) * 2021-12-20 2023-06-30 トヨタ自動車株式会社 METAL FILM FORMING APPARATUS AND METHOD OF FORMING THE SAME
JP7632262B2 (en) 2021-12-20 2025-02-19 トヨタ自動車株式会社 Metal film forming apparatus and method
JP2023097530A (en) * 2021-12-28 2023-07-10 トヨタ自動車株式会社 Film forming apparatus and film forming method
JP7707911B2 (en) 2021-12-28 2025-07-15 トヨタ自動車株式会社 Film forming apparatus and film forming method

Similar Documents

Publication Publication Date Title
JP5692268B2 (en) Metal film forming apparatus and film forming method
JP5803858B2 (en) Metal film forming apparatus and film forming method
US10418643B2 (en) Bipolar plate for electrochemical cells and method for the production thereof
JP2020109215A (en) Method of producing metal film
JP7310599B2 (en) Wiring board manufacturing method and wiring board
JP2018135544A (en) Method of producing metal film
JP6065886B2 (en) Metal film deposition method
KR20210033412A (en) Method for manufacturing wiring board, and wiring board
CN105473769B (en) Film forming system and film forming method for forming metal film
US10151042B2 (en) Coating forming device and coating forming method for forming metal coating
JP6794723B2 (en) Method of forming a metal film
JP5915602B2 (en) Metal film forming apparatus and film forming method
JP5849941B2 (en) Metal film forming apparatus and film forming method
JP6806014B2 (en) Metal film film forming equipment
JP5949696B2 (en) Metal film forming apparatus and film forming method
JP6437070B2 (en) Coating equipment
US11127957B2 (en) Fuel cell separator
JP2015107446A (en) Coating apparatus
Gago et al. Improved Water Management with Thermally Sprayed Coatings on Stainless Steel Bipolar Plates of PEMFC
JP2017218603A (en) Method for forming metal coating
JP2023038499A (en) Film formation method of copper coating film
JP2020100864A (en) Metal film forming equipment
JP2017137548A (en) Film deposition apparatus of metal film and film deposition method thereof
JP2005105348A (en) Plating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190529

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200818