[go: up one dir, main page]

JP2018132346A - Voltage detection device - Google Patents

Voltage detection device Download PDF

Info

Publication number
JP2018132346A
JP2018132346A JP2017024620A JP2017024620A JP2018132346A JP 2018132346 A JP2018132346 A JP 2018132346A JP 2017024620 A JP2017024620 A JP 2017024620A JP 2017024620 A JP2017024620 A JP 2017024620A JP 2018132346 A JP2018132346 A JP 2018132346A
Authority
JP
Japan
Prior art keywords
voltage
detection
voltage detection
connection cable
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2017024620A
Other languages
Japanese (ja)
Inventor
大桂 池田
Taikei Ikeda
大桂 池田
浩一 柳沢
Koichi Yanagisawa
浩一 柳沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hioki EE Corp
Original Assignee
Hioki EE Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hioki EE Corp filed Critical Hioki EE Corp
Priority to JP2017024620A priority Critical patent/JP2018132346A/en
Publication of JP2018132346A publication Critical patent/JP2018132346A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Instrument Details And Bridges, And Automatic Balancing Devices (AREA)
  • Measurement Of Current Or Voltage (AREA)

Abstract

【課題】検出対象の絶縁被覆に検出電極を接触させる構成を採用しつつ検出精度の低下を回避する。【解決手段】検出対象交流電圧が生じている被覆電線51における絶縁被覆51bの表面に接触可能に検出電極34が配設されたプローブ本体部31と、プローブ本体部31に一端が連結されて芯線33aにおけるこの一端側の端部が検出電極34に直接接続された第2接続ケーブル33とを有する電圧検出プローブ2における接続ケーブル33の他端が連結可能に構成されて、接続ケーブル33の他端の連結状態において第2基準電位G2と検出対象交流電圧との電位差に応じて芯線33aに生じる検出電流を入力すると共に積分信号V3aに変換して出力する電圧検出回路部VDEを備え、接続ケーブル33の他端の連結状態において、芯線33aにおけるこの他端側の端部と電圧検出回路部VDEの信号入力部22aとの間に直列に接続されるコンデンサ21を備えている。【選択図】図2PROBLEM TO BE SOLVED: To avoid a decrease in detection accuracy while adopting a configuration in which a detection electrode is brought into contact with an insulating coating to be detected. SOLUTION: A probe main body 31 in which a detection electrode 34 is arranged so as to be in contact with the surface of an insulating coating 51b in a covered electric wire 51 in which an AC voltage to be detected is generated, and a core wire having one end connected to the probe main body 31. The other end of the connection cable 33 in the voltage detection probe 2 having the second connection cable 33 whose one end on the 33a is directly connected to the detection electrode 34 is configured to be connectable, and the other end of the connection cable 33 is connectable. The connection cable 33 is provided with a voltage detection circuit unit VDE that inputs the detection current generated in the core wire 33a according to the potential difference between the second reference potential G2 and the AC voltage to be detected and converts it into the integrated signal V3a and outputs it. In the connected state of the other end of the core wire 33a, a capacitor 21 connected in series between the other end of the core wire 33a and the signal input unit 22a of the voltage detection circuit unit VDE is provided. [Selection diagram] Fig. 2

Description

本発明は、検出対象の電圧を検出する電圧検出装置に関するものである。   The present invention relates to a voltage detection device that detects a voltage to be detected.

この種の電圧検出装置として、出願人は、下記特許文献1,2,3に開示された非接触型電圧測定装置(以下、「電圧検出装置」ともいう)を既に提案している。これらの電圧検出装置においては、検出対象(測定対象)が絶縁被覆の無い裸線であってもその電圧を非接触状態(つまり、検出対象の導体部(検出対象が電線のときには芯線)と検出電極とが電気的に接触しない状態)で検出し得るように、特許文献1では、非導電性樹脂材料で形成されたセンサ基板収納部(クリップ状に形成されたケーシングの構成部材)に検出電極が収容される構成が採用されており、また特許文献2,3では、検出電極の表面が絶縁体層(絶縁被覆)で覆われる構成が採用されている。   As this type of voltage detection apparatus, the applicant has already proposed a non-contact type voltage measurement apparatus (hereinafter also referred to as “voltage detection apparatus”) disclosed in Patent Documents 1, 2, and 3 below. In these voltage detection devices, even if the detection target (measurement target) is a bare wire without insulation coating, the voltage is detected as a non-contact state (that is, the detection target conductor (core wire when the detection target is an electric wire)). In Patent Document 1, a detection electrode is provided in a sensor substrate storage portion (a casing component formed in a clip shape) formed of a non-conductive resin material so that detection can be performed in a state where the electrode is not in electrical contact. Is employed, and Patent Documents 2 and 3 employ a configuration in which the surface of the detection electrode is covered with an insulating layer (insulating coating).

特開2014−52329号公報(第5頁、第2図)JP 2014-52329 A (page 5, FIG. 2) 特開2016−223866号公報(第7−8頁、第2図)JP-A-2006-223866 (page 7-8, FIG. 2) 特開2017−9576号公報(第5−9頁、第3−5図)Japanese Unexamined Patent Publication No. 2017-9576 (pages 5-9 and 3-5)

ところで、この種の電圧検出装置では、検出対象の導体部に対して検出電極を容量結合させることで検出対象の電圧を検出する構成を採用しており、検出精度の向上のためには検出対象の導体部と検出電極とを良好に容量結合させるのが好ましい。そこで、本願出願人は、その導体部が絶縁被覆で覆われている検出対象(例えば、被覆電線など)だけを検出対象とする電圧検出装置において、検出対象の導体部と検出電極とを良好に容量結合させるべく、検出電極を露出させて検出対象の絶縁被覆に接触させる構成とする技術を開発している。これにより、上記した従来の電圧検出装置と比較して、ケーシングの厚み分や検出電極の表面に形成していた絶縁体層の厚み分だけ検出電極を検出対象の導体部に近づけることができるため、良好な容量結合の実現が可能となる。   By the way, this type of voltage detection device employs a configuration in which the detection target voltage is detected by capacitively coupling a detection electrode to the conductor portion of the detection target. It is preferable to satisfactorily capacitively couple the conductor portion and the detection electrode. In view of this, the applicant of the present application provides a favorable detection target conductor and detection electrode in a voltage detection apparatus that detects only a detection target (for example, a covered electric wire) whose conductor is covered with an insulation coating. In order to perform capacitive coupling, a technology has been developed in which the detection electrode is exposed and brought into contact with the insulation coating to be detected. As a result, the detection electrode can be brought closer to the conductor portion to be detected by the thickness of the casing or the thickness of the insulator layer formed on the surface of the detection electrode, compared to the conventional voltage detection device described above. Therefore, it is possible to realize good capacitive coupling.

しかしながら、本願出願人が開発している上記の電圧検出装置では、上記の特許文献2,3にも開示されているように、検出電極がシールドケーブルや同軸ケーブルの芯線を介して電圧検出部の入力段として配設された演算増幅器(電流電圧変換用の電算増幅器)の入力端子に直接接続される構成を採用している。一方、検出対象の絶縁被覆の表面には、導電路が形成されることがある。この導電路は、この絶縁被覆の表面に塵埃などの汚損物質が付着し、この汚損物質が大気中水分を吸湿することで形成されるものであり、絶縁被覆の表面の絶縁抵抗を低下させる。したがって、上記の構成(検出電極がシールドケーブル等の芯線を介して電圧検出部の入力段に直接接続される構成)を採用する本願出願人が開発中の電圧検出装置には、外部磁界、外部電界および外部ノイズの影響を受けてこの導電路に電圧が生じた際には、この導電路の電圧と上記の電圧検出部の基準電位との間の電位差に起因した直流電流(漏れ電流)がシールドケーブル等の芯線に流れ、この直流電流が電圧検出部においてDCオフセットとして検出されることに起因する検出誤差が生じて、検出精度が低下することがあるという改善すべき課題が存在している。   However, in the voltage detection device developed by the applicant of the present application, as disclosed in Patent Documents 2 and 3, the detection electrode is connected to the voltage detection unit via the core wire of a shielded cable or a coaxial cable. The configuration directly connected to the input terminal of an operational amplifier (current-voltage conversion computer amplifier) arranged as an input stage is adopted. On the other hand, a conductive path may be formed on the surface of the insulation coating to be detected. The conductive path is formed when a fouling substance such as dust adheres to the surface of the insulating coating, and the fouling substance absorbs moisture in the atmosphere, and reduces the insulation resistance of the surface of the insulating coating. Therefore, the voltage detection device under development by the present applicant adopting the above configuration (configuration in which the detection electrode is directly connected to the input stage of the voltage detection unit through a core wire such as a shielded cable) includes an external magnetic field, an external When a voltage is generated in this conductive path under the influence of an electric field and external noise, a direct current (leakage current) resulting from a potential difference between the voltage of this conductive path and the reference potential of the voltage detection unit described above is generated. There is a problem to be improved that a detection error may occur due to a detection error caused by the DC current being detected as a DC offset in the voltage detection unit by flowing through a core wire such as a shielded cable. .

本発明は、上記の課題を解決すべくなされたものであり、検出対象の絶縁被覆に検出電極を接触させる構成を採用しつつ検出精度の低下を回避し得る電圧検出装置を提供することを主目的とする。   The present invention has been made to solve the above-described problems, and mainly provides a voltage detection device that can avoid a decrease in detection accuracy while adopting a configuration in which a detection electrode is brought into contact with an insulation coating to be detected. Objective.

上記目的を達成すべく請求項1記載の電圧検出装置は、検出対象交流電圧が生じている検出対象の表面に接触可能に検出電極が配設されたプローブ本体部と、当該プローブ本体部に一端が連結されると共に内包された芯線における当該一端側の端部が前記検出電極に直接接続された接続ケーブルとを有する電圧検出プローブにおける前記接続ケーブルの他端が連結可能に構成されて、当該接続ケーブルの当該他端の連結状態において内部基準電位と前記検出対象交流電圧との電位差に応じて前記芯線に生じる交流信号を入力すると共に検出信号に変換して出力する電圧検出回路部を備えている電圧検出装置であって、前記接続ケーブルの前記他端の連結状態において、前記芯線における当該他端側の端部と前記電圧検出回路部の信号入力部との間に直列に接続されるコンデンサを備えている。   In order to achieve the above object, a voltage detection apparatus according to claim 1 is provided with a probe main body portion in which a detection electrode is disposed so as to be in contact with a surface of a detection target in which an AC voltage to be detected is generated, and one end of the probe main body portion. And the other end of the connection cable in the voltage detection probe having a connection cable in which the end on the one end side of the core wire included and connected is directly connected to the detection electrode. A voltage detection circuit unit that inputs an AC signal generated in the core wire in accordance with a potential difference between an internal reference potential and the AC voltage to be detected in the connected state of the other end of the cable, converts the signal into a detection signal, and outputs the detection signal. In the voltage detection device, in the connected state of the other end of the connection cable, an end of the core wire on the other end side and a signal input unit of the voltage detection circuit unit And a capacitor connected in series between.

請求項1記載の電圧検出装置では、電圧検出プローブの連結状態において、電圧検出プローブを構成する接続ケーブルの芯線における他端側の端部と電圧検出回路部の信号入力部との間にコンデンサが直列に接続されている。したがって、この電圧検出装置によれば、検出電極が接触する検出対象の表面に汚損物質の付着による導電路が形成されている場合において、外部磁界等の影響を受けてこの導電路に電圧(直流電圧)が生じ、これに起因して導電路の電圧と電圧検出回路部の内部基準電位との間に電位差(直流電圧)が生じたとしても、この電位差に起因した直流電流(漏れ電流)が検出電極と電圧検出回路部の信号入力部との間に流れる事態の発生をコンデンサで阻止することができる。これにより、この電圧検出装置によれば、外部磁界などの影響を受けることなく(検出精度の低下を回避しつつ)、検出対象交流電圧を正確に表す電圧信号(内部基準電位)を出力することができる。   In the voltage detection device according to claim 1, in the connected state of the voltage detection probe, a capacitor is provided between the other end of the core wire of the connection cable constituting the voltage detection probe and the signal input unit of the voltage detection circuit unit. Connected in series. Therefore, according to this voltage detection device, when a conductive path is formed on the surface of the detection target that is in contact with the detection electrode due to adhesion of a pollutant, a voltage (DC) is applied to the conductive path under the influence of an external magnetic field or the like. Even if a potential difference (DC voltage) occurs between the voltage of the conductive path and the internal reference potential of the voltage detection circuit unit due to this, a DC current (leakage current) due to this potential difference is generated. Occurrence of a situation that flows between the detection electrode and the signal input unit of the voltage detection circuit unit can be blocked by the capacitor. As a result, according to this voltage detection device, a voltage signal (internal reference potential) that accurately represents the AC voltage to be detected can be output without being affected by an external magnetic field or the like (while avoiding a decrease in detection accuracy). Can do.

電圧検出装置1および電圧検出プローブ2の外観図である。1 is an external view of a voltage detection device 1 and a voltage detection probe 2. FIG. 電圧検出装置1および電圧検出プローブ2の構成図である。1 is a configuration diagram of a voltage detection device 1 and a voltage detection probe 2. FIG. 電圧検出回路部VDEにおける電流電圧変換回路22の構成を示す回路図である。It is a circuit diagram which shows the structure of the current-voltage conversion circuit 22 in the voltage detection circuit unit VDE. 電圧検出回路部VDEにおける電流電圧変換回路22の他の構成を示す回路図である。It is a circuit diagram which shows the other structure of the current-voltage conversion circuit 22 in the voltage detection circuit unit VDE. 他の電圧検出プローブ2の外観図である。It is an external view of the other voltage detection probe 2. FIG.

以下、添付図面を参照して、電圧検出装置の実施の形態について説明する。   Hereinafter, embodiments of a voltage detection device will be described with reference to the accompanying drawings.

最初に、電圧検出装置1の構成について、図面を参照して説明する。   Initially, the structure of the voltage detection apparatus 1 is demonstrated with reference to drawings.

電圧検出装置1は、図1,3に示すように、ケース11、入力コネクタ12、および接続ケーブル13(以下、後述する電圧検出プローブ2の接続ケーブル33と区別するために第1接続ケーブル13ともいう)を備え、入力コネクタ12に電圧検出プローブ2が着脱自在に連結可能に構成されると共に、第1接続ケーブル13はオシロスコープなどの波形観測装置の入力コネクタ(不図示)に着脱自在に連結可能に構成されている。また、電圧検出装置1は、電圧検出プローブ2と共に金属非接触型の電圧検出装置として機能する。   As shown in FIGS. 1 and 3, the voltage detection device 1 includes a case 11, an input connector 12, and a connection cable 13 (hereinafter referred to as a first connection cable 13 to distinguish it from a connection cable 33 of the voltage detection probe 2 described later). And the voltage detection probe 2 is detachably connectable to the input connector 12, and the first connection cable 13 is detachably connectable to an input connector (not shown) of a waveform observation apparatus such as an oscilloscope. It is configured. The voltage detection device 1 functions as a metal non-contact type voltage detection device together with the voltage detection probe 2.

ケース11は、絶縁性樹脂材を用いて、内部に電子回路が収納可能な箱体(例えば直方体)に形成されている。また、ケース11の内部には、図2に示すように、コンデンサ21、電流電圧変換回路22、積分回路23、絶縁型信号伝送回路24(以下、単に絶縁回路24ともいう)、増幅回路25、位相補償回路26、電圧生成回路27および不図示の電源回路が上記の電子回路として収納されている。   The case 11 is formed in a box (for example, a rectangular parallelepiped) that can store an electronic circuit inside using an insulating resin material. In addition, inside the case 11, as shown in FIG. 2, a capacitor 21, a current-voltage conversion circuit 22, an integration circuit 23, an insulation type signal transmission circuit 24 (hereinafter also simply referred to as an insulation circuit 24), an amplification circuit 25, A phase compensation circuit 26, a voltage generation circuit 27, and a power supply circuit (not shown) are accommodated as the electronic circuit.

この場合、電源回路は、図2に示す第1基準電位(第1グランドG1の電圧。以下、第1基準電位G1ともいう)を基準とする第1作動用電圧(増幅回路25、位相補償回路26および電圧生成回路27で構成される電圧生成部VGEのための作動用電圧)を生成する主電源回路、並びにこの作動用電圧に基づいて第2基準電位(内部基準電位としての第2グランドG2の電圧。以下、第2基準電位G2ともいう)を基準とする第2作動用電圧(電流電圧変換回路22、積分回路23および絶縁回路24で構成される電圧検出回路部VDEのための作動用電圧Vf+,Vf−(図4参照))を生成する絶縁型DC/DCコンバータを備えて、上記の特許文献2,3に開示されている主電源回路およびDC/DCコンバータを有する構成と同等に構成されている。なお、主電源回路は、ケース11がバッテリを収納可能に構成されている場合には、このバッテリからの電力給電により作動し、またケース11にUSB給電用のコネクタやACアダプタ接続用のコネクタが設けられている場合には、USBケーブルやACアダプタに接続されている電源ケーブルを介して外部から供給される電力により作動する。   In this case, the power supply circuit has a first operating voltage (amplifier circuit 25, phase compensation circuit) based on the first reference potential (the voltage of the first ground G1; hereinafter also referred to as the first reference potential G1) shown in FIG. 26 and a voltage generation circuit 27 for generating a main power supply circuit for generating a voltage for the voltage generator VGE, and a second reference potential (a second ground G2 as an internal reference potential) based on the voltage for operation. In the following, the second operation voltage (hereinafter also referred to as the second reference potential G2) is used for the operation for the voltage detection circuit unit VDE including the current-voltage conversion circuit 22, the integration circuit 23, and the insulation circuit 24. Equivalent to the configuration having an isolated DC / DC converter that generates voltages Vf + and Vf− (see FIG. 4) and having a main power supply circuit and a DC / DC converter disclosed in Patent Documents 2 and 3 above. It is configured. When the case 11 is configured to be able to store a battery, the main power supply circuit is operated by power supply from the battery, and a USB power supply connector or an AC adapter connector is attached to the case 11. In the case where it is provided, it is operated by power supplied from the outside via a USB cable or a power cable connected to an AC adapter.

入力コネクタ12は、例えばBNCコネクタなどの同軸コネクタのレセプタクルで構成されて、図1,2に示すように、ケース11の1つの壁部を貫通する状態でこの壁部に固定されている。また、入力コネクタ12の中心導体12aは、後述するようにコンデンサ21の一端に接続され、入力コネクタ12の円筒状の外部導体12bは、電圧検出回路部VDEを覆うと共に第2基準電位G2が印加されることで外来ノイズなどから電圧検出回路部VDEをガードする(外来ノイズなどの影響を低減する)ガード電極28(以下、後述するガード電極35と区別するために第1ガード電極28ともいう)に電気的に接続されている。   The input connector 12 is constituted by a receptacle of a coaxial connector such as a BNC connector, for example, and is fixed to the wall portion so as to penetrate one wall portion of the case 11 as shown in FIGS. As will be described later, the center conductor 12a of the input connector 12 is connected to one end of the capacitor 21, and the cylindrical outer conductor 12b of the input connector 12 covers the voltage detection circuit unit VDE and applies the second reference potential G2. Thus, the guard electrode 28 guards the voltage detection circuit unit VDE from external noise or the like (to reduce the influence of the external noise or the like) (hereinafter also referred to as a first guard electrode 28 in order to distinguish from the guard electrode 35 described later). Is electrically connected.

コンデンサ21は、一端が入力コネクタ12の中心導体12aに接続され、他端が電圧検出回路部VDEの信号入力部22a(具体的には、電流電圧変換回路22における信号を入力する入力部位(入力端子))に接続されている。また、コンデンサ21は、漏れ電流の少ないコンデンサ(例えば、セラミックコンデンサ、フィルムコンデンサおよびマイカコンデンサなど)で構成されている。   The capacitor 21 has one end connected to the central conductor 12a of the input connector 12, and the other end connected to the signal input unit 22a of the voltage detection circuit unit VDE (specifically, an input part (input) for inputting a signal in the current-voltage conversion circuit 22) Terminal)). Further, the capacitor 21 is composed of a capacitor with a small leakage current (for example, a ceramic capacitor, a film capacitor, a mica capacitor, etc.).

電圧検出回路部VDEを構成する電流電圧変換回路22は、一例として図3に示すように、非反転入力端子が抵抗22bを介して第2基準電位G2に規定された第1ガード電極28に接続されると共に、反転入力端子が信号入力部22aに(つまり、信号入力部22aに接続されているコンデンサ21の他端に)接続され、かつ帰還抵抗22cが反転入力端子と出力端子との間に接続された演算増幅器22dを備えて、上記の特許文献2,3に開示されている電流電圧変換回路と同等に構成されている。この電流電圧変換回路22は、演算増幅器が正電圧Vf+および負電圧Vf−で作動して、検出対象51の導体部(図2,3に示すように検出対象51が被覆電線の場合には、被覆電線51における絶縁被覆51bで外周が覆われた芯線51a)に生じている検出対象交流電圧V1と第2基準電位G2(電圧生成部VGEから出力される後述の電圧信号V4の電圧でもある)との電位差(以下、区別のため第1電位差ともいう)に起因して、この第1電位差に応じた電流値で電圧検出プローブ2を介して被覆電線51の芯線51aと電流電圧変換回路22との間に流れる検出電流(交流信号としての電流信号)Iを検出電圧信号V2に変換して出力する。   As shown in FIG. 3 as an example, the current-voltage conversion circuit 22 constituting the voltage detection circuit unit VDE has a non-inverting input terminal connected to the first guard electrode 28 defined by the second reference potential G2 via a resistor 22b. In addition, the inverting input terminal is connected to the signal input unit 22a (that is, to the other end of the capacitor 21 connected to the signal input unit 22a), and the feedback resistor 22c is interposed between the inverting input terminal and the output terminal. The connected operational amplifier 22d is provided and is configured in the same manner as the current-voltage conversion circuit disclosed in Patent Documents 2 and 3 above. In the current-voltage conversion circuit 22, when the operational amplifier operates with the positive voltage Vf + and the negative voltage Vf−, the conductor portion of the detection target 51 (when the detection target 51 is a covered electric wire as shown in FIGS. The detection target AC voltage V1 and the second reference potential G2 (which is also a voltage of a voltage signal V4 described later output from the voltage generation unit VGE) generated in the core wire 51a whose outer periphery is covered with the insulating coating 51b in the covered electric wire 51) Between the core wire 51a of the covered electric wire 51 and the current-voltage conversion circuit 22 through the voltage detection probe 2 at a current value corresponding to the first potential difference. The detection current (current signal as an alternating current signal) I flowing between is converted into a detection voltage signal V2 and output.

なお、電流電圧変換回路22は、図3に示す構成に限定されるものではなく、例えば、図4に示すように、信号入力部22aと第1ガード電極28との間に抵抗22eを接続して検出電流Iを電圧に変換すると共に、演算増幅器22dを増幅器として機能させて(図4では一例として演算増幅器22dをボルテージフォロワとして機能させているが、演算増幅器22dを反転増幅器や非反転増幅器として機能させてもよい)、この抵抗22eの両端に発生する電圧を検出電圧信号V2に変換して出力する構成を採用することもできる。なお、図3に示す構成と同一の構成については同一の符号を付して重複する説明を省略する。   Note that the current-voltage conversion circuit 22 is not limited to the configuration shown in FIG. 3. For example, as shown in FIG. 4, a resistor 22 e is connected between the signal input unit 22 a and the first guard electrode 28. The detection current I is converted into a voltage, and the operational amplifier 22d functions as an amplifier (in FIG. 4, the operational amplifier 22d functions as a voltage follower as an example, but the operational amplifier 22d functions as an inverting amplifier or a non-inverting amplifier. The voltage generated at both ends of the resistor 22e may be converted into a detection voltage signal V2 and output. In addition, the same code | symbol is attached | subjected about the structure same as the structure shown in FIG. 3, and the overlapping description is abbreviate | omitted.

積分回路23は、例えば、上記の特許文献2,3に開示されている積分回路と同等に構成されて、検出電圧信号V2を積分することにより、検出対象交流電圧V1と第2基準電位G2との間の第1電位差に比例して電圧値が変化する積分信号V3を生成して出力する。絶縁回路24は、例えば、上記の特許文献2,3に開示されている駆動回路、この駆動回路で駆動される絶縁回路(フォロカプラ)、およびこの絶縁回路に接続された抵抗で構成される回路と同等に構成されて、第2基準電位G2を基準とする積分信号V3を、第1基準電位G1を基準とする積分信号V3a(第1電位差に比例して電圧値が変化する積分信号(電圧検出回路部VDEが出力する検出信号))に変換して出力する。   For example, the integration circuit 23 is configured in the same manner as the integration circuit disclosed in Patent Documents 2 and 3 described above, and integrates the detection voltage signal V2 to thereby detect the detection target AC voltage V1 and the second reference potential G2. An integrated signal V3 whose voltage value changes in proportion to the first potential difference between is generated and output. The insulating circuit 24 includes, for example, a drive circuit disclosed in Patent Documents 2 and 3, an insulating circuit (follower coupler) driven by the driving circuit, and a circuit configured by a resistor connected to the insulating circuit. The integration signal V3 having the same configuration and the second reference potential G2 as a reference is converted into an integration signal V3a (a voltage detection signal whose voltage value changes in proportion to the first potential difference (voltage detection). Converted into a detection signal)) output from the circuit unit VDE.

電圧生成部VGEは、電圧検出回路部VDEと共にフィードバックループを形成して、検出対象交流電圧V1と第2基準電位G2との第1電位差を減少させるように積分信号V3aを増幅する増幅動作(フィードバック制御動作)を行うことにより、電圧信号V4を生成して、電圧検出回路部VDEにおける第2基準電位G2として第1ガード電極28に印加(出力)する。   The voltage generation unit VGE forms a feedback loop together with the voltage detection circuit unit VDE to amplify the integration signal V3a so as to reduce the first potential difference between the detection target AC voltage V1 and the second reference potential G2 (feedback). By performing the control operation, the voltage signal V4 is generated and applied (output) to the first guard electrode 28 as the second reference potential G2 in the voltage detection circuit unit VDE.

一例として、電圧生成部VGEを構成する増幅回路25、位相補償回路26および電圧生成回路27は、上記の特許文献2,3に開示されている電圧生成部での増幅回路、位相補償回路および昇圧回路とそれぞれ同等に構成されている。これにより、増幅回路25は、積分信号V3aを入力して増幅することにより、電圧信号V4aを生成する。また、位相補償回路26は、上記のフィードバック制御動作の安定化(発振防止)を図るため、電圧信号V4aを入力してその位相を調整して電圧信号V4bとして出力する。電圧生成回路27は、電圧信号V4bを所定の倍率で昇圧することにより、電圧信号V4を生成して第2基準電位G2に印加する。   As an example, the amplification circuit 25, the phase compensation circuit 26, and the voltage generation circuit 27 constituting the voltage generation unit VGE are the amplification circuit, the phase compensation circuit, and the booster in the voltage generation unit disclosed in Patent Documents 2 and 3 above. Each circuit is configured equivalently. Thus, the amplifier circuit 25 generates the voltage signal V4a by inputting and amplifying the integration signal V3a. Further, the phase compensation circuit 26 receives the voltage signal V4a, adjusts its phase, and outputs it as the voltage signal V4b in order to stabilize the above feedback control operation (prevent oscillation). The voltage generation circuit 27 generates the voltage signal V4 by boosting the voltage signal V4b at a predetermined magnification, and applies the voltage signal V4 to the second reference potential G2.

このフィードバック制御動作により、検出対象交流電圧V1と第2基準電位G2との第1電位差がほぼゼロボルトになるように制御されることから、第2基準電位G2、すなわち電圧信号V4は、検出対象交流電圧V1と同電圧に制御される。   By this feedback control operation, the first potential difference between the detection target AC voltage V1 and the second reference potential G2 is controlled to be substantially zero volts, so that the second reference potential G2, that is, the voltage signal V4, is detected AC. It is controlled to the same voltage as the voltage V1.

また、この電圧信号V4は、ケース11に一体的に連結されている第1接続ケーブル13(例えば、同軸ケーブルなどのシールドケーブル)における内包された芯線13aにも出力される。第1接続ケーブル13の先端には、波形観測装置の入力コネクタ(レセプタクル)に連結可能なコネクタ14(例えばBNCコネクタなどの同軸コネクタのプラグ)が取り付けられている。   The voltage signal V4 is also output to the core wire 13a included in the first connection cable 13 (for example, a shielded cable such as a coaxial cable) integrally connected to the case 11. A connector 14 (for example, a plug of a coaxial connector such as a BNC connector) that can be connected to an input connector (receptacle) of the waveform observation apparatus is attached to the tip of the first connection cable 13.

電圧検出プローブ2は、一例として図1に示すように、プローブ本体部31と、プローブ本体部31に一端が連結されると共に他端にコネクタ32が取り付けられた接続ケーブル33(第1接続ケーブル13と区別するため、第2接続ケーブル33ともいう)を備えて構成されている。   As shown in FIG. 1 as an example, the voltage detection probe 2 includes a probe main body 31 and a connection cable 33 (first connection cable 13) having one end coupled to the probe main body 31 and a connector 32 attached to the other end. The second connection cable 33 is also provided for distinction.

プローブ本体部31は、一例として、上記の特許文献2,3に開示されている各電圧検出プローブのいずれかとほぼ同等(後述する検出電極34の表面が絶縁体層(絶縁被覆)で覆われていない点を除いて同等)に構成されて、検出対象51としての被覆電線(以下、被覆電線51ともいう)に引っ掛けるための凹部(凹溝)31aが先端に形成されている。また、プローブ本体部31には、表面が絶縁体層(絶縁被覆)で覆われていない形態の検出電極34が配設されている。この構成により、プローブ本体部31では、被覆電線51に引っ掛けた状態(凹部31aの内部に被覆電線51が位置して、検出対象交流電圧V1を検出する状態)において、検出電極34が被覆電線51の表面(絶縁被覆の表面)に直接接触可能となっている。また、検出電極34は、図2に示すように、被覆電線51の表面に直接接触した状態で、被覆電線51の芯線51aと容量結合する。また、プローブ本体部31には、検出電極34への外来ノイズの影響を低減するためのガード電極35(第1ガード電極28と区別するため、第2ガード電極35ともいう)が検出電極34に対して電気的に絶縁された状態で配設されている。   As an example, the probe main body 31 is substantially equivalent to any one of the voltage detection probes disclosed in Patent Documents 2 and 3 described above (the surface of a detection electrode 34 described later is covered with an insulator layer (insulation coating)). A concave portion (concave groove) 31a for being hooked on a covered electric wire (hereinafter also referred to as a covered electric wire 51) as the detection target 51 is formed at the tip. The probe main body 31 is provided with a detection electrode 34 whose surface is not covered with an insulator layer (insulation coating). With this configuration, in the probe main body 31, the detection electrode 34 is covered with the covered electric wire 51 in a state where it is hooked on the covered electric wire 51 (a state where the covered electric wire 51 is located inside the recess 31 a and detects the detection target AC voltage V <b> 1). It is possible to directly contact the surface (surface of the insulation coating). Further, as shown in FIG. 2, the detection electrode 34 is capacitively coupled to the core wire 51 a of the covered electric wire 51 while being in direct contact with the surface of the covered electric wire 51. In the probe main body 31, a guard electrode 35 (also referred to as a second guard electrode 35 for distinguishing from the first guard electrode 28) for reducing the influence of external noise on the detection electrode 34 is provided on the detection electrode 34. On the other hand, it is disposed in an electrically insulated state.

なお、プローブ本体部31については、図1に示すような被覆電線51に引っ掛ける凹部31aが形成されている構成に限定されず、例えば、図5に示すような上記の特許文献1に開示されている電圧測定用センサ(本例の電圧検出プローブに相当する)とほぼ同等の構成(センサ基板収容部41と測定対象導線押付け部42とを備えてクリップ状に形成されたケーシング(本例のプローブ本体部に相当する)を有して、センサ基板収容部41と測定対象導線押付け部42との間で被覆電線51を挟み込む構成)を採用することもできる。ただし、検出電極34に関する構成については、特許文献1の電圧測定用センサの構成とは異なり、センサ基板収容部41の外壁部から検出電極34を露出させる構成とする。これにより、センサ基板収容部41と測定対象導線押付け部42との間で挟み込まれた被覆電線51の表面が検出電極34と接触可能となる。   Note that the probe main body 31 is not limited to the configuration in which the concave portion 31a hooked on the covered electric wire 51 as shown in FIG. 1 is formed. For example, the probe main body 31 is disclosed in Patent Document 1 as shown in FIG. A casing (a probe in this example) having a configuration substantially equivalent to a voltage measurement sensor (corresponding to the voltage detection probe in this example) (including a sensor substrate housing portion 41 and a measurement target conductor pressing portion 42). (Corresponding to the main body portion), and a configuration in which the covered electric wire 51 is sandwiched between the sensor substrate housing portion 41 and the measurement target conductor pressing portion 42) may be employed. However, the configuration related to the detection electrode 34 is different from the configuration of the voltage measurement sensor of Patent Document 1 in that the detection electrode 34 is exposed from the outer wall portion of the sensor substrate housing portion 41. Thereby, the surface of the covered electric wire 51 sandwiched between the sensor substrate housing portion 41 and the measurement target conductor pressing portion 42 can come into contact with the detection electrode 34.

第2接続ケーブル33は、同軸ケーブルなどのシールドケーブルで構成されて、図2に示すように、内包された芯線33a(内部導体)における第2接続ケーブル33の一端側の端部が検出電極34に直接接続されると共に、芯線33aを覆うシールド層33b(外部導体)における第2接続ケーブル33の一端側の端部が第2ガード電極35に直接接続されている。   The second connection cable 33 is composed of a shielded cable such as a coaxial cable, and as shown in FIG. 2, the end of the second connection cable 33 in the included core wire 33 a (internal conductor) is the detection electrode 34. In addition, the end of one end side of the second connection cable 33 in the shield layer 33 b (external conductor) covering the core wire 33 a is directly connected to the second guard electrode 35.

コネクタ32は、ケース11に配設された入力コネクタ12に連結可能に構成されている。本例では、入力コネクタ12が上記したように同軸コネクタのレセプタクルで構成されているため、コネクタ32は、このレセプタクルに連結可能な同種の同軸コネクタのプラグで構成されている。また、コネクタ32の中心導体32aは、芯線33aにおける第2接続ケーブル33の他端側の端部に直接接続されると共に、コネクタ32の外部導体32bは、シールド層33bにおける第2接続ケーブル33の他端側の端部に直接接続されている。   The connector 32 is configured to be connectable to the input connector 12 disposed in the case 11. In this example, since the input connector 12 is constituted by the receptacle of the coaxial connector as described above, the connector 32 is constituted by a plug of the same type of coaxial connector that can be connected to the receptacle. The central conductor 32a of the connector 32 is directly connected to the end of the second connection cable 33 on the core wire 33a, and the external conductor 32b of the connector 32 is connected to the second connection cable 33 on the shield layer 33b. It is directly connected to the end on the other end side.

次いで、電圧検出装置1および電圧検出プローブ2を用いて、被覆電線51の芯線51aに生じている検出対象交流電圧V1を検出する際の電圧検出装置1および電圧検出プローブ2の動作について、検出手順と共に説明する。なお、ケース11内の電源回路は上記したバッテリなどからの電力給電で動作して電圧生成部VGEのための作動用電圧および電圧検出回路部VDEのための作動用電圧Vf+,Vf−を生成しており、これにより、電圧生成部VGEおよび電圧検出回路部VDEは作動状態にあるものとする。   Next, a detection procedure for the operation of the voltage detection device 1 and the voltage detection probe 2 when detecting the detection target AC voltage V1 generated in the core wire 51a of the covered electric wire 51 using the voltage detection device 1 and the voltage detection probe 2 is performed. It explains together. Note that the power supply circuit in the case 11 operates by supplying power from the above-described battery or the like, and generates operating voltages for the voltage generating unit VGE and operating voltages Vf + and Vf− for the voltage detecting circuit unit VDE. Thus, it is assumed that the voltage generation unit VGE and the voltage detection circuit unit VDE are in an operating state.

まず、電圧検出プローブ2のコネクタ32を電圧検出装置1の入力コネクタ12に連結する。これにより、コネクタ32の中心導体32aは入力コネクタ12の中心導体12aに接続されると共に、コネクタ32の外部導体32bは入力コネクタ12の外部導体12bに接続されることから、図3に示すように、電圧検出プローブ2側の検出電極34が、第2接続ケーブル33の芯線33aを経由して電圧検出装置1側のコンデンサ21の一端に直接接続され、また電圧検出プローブ2側の第2ガード電極35が、第2接続ケーブル33のシールド層33bを経由して、電圧検出装置1側の第1ガード電極28に直接接続される。また、電圧検出装置1の第1接続ケーブル13の先端に取り付けられているコネクタ14を波形観測装置の入力コネクタに連結する。これにより、第1接続ケーブル13から出力される電圧信号V4を波形観測装置で観測(測定)することが可能となる。   First, the connector 32 of the voltage detection probe 2 is connected to the input connector 12 of the voltage detection device 1. As a result, the center conductor 32a of the connector 32 is connected to the center conductor 12a of the input connector 12, and the outer conductor 32b of the connector 32 is connected to the outer conductor 12b of the input connector 12, as shown in FIG. The detection electrode 34 on the voltage detection probe 2 side is directly connected to one end of the capacitor 21 on the voltage detection device 1 side via the core wire 33a of the second connection cable 33, and the second guard electrode on the voltage detection probe 2 side. 35 is directly connected to the first guard electrode 28 on the voltage detection device 1 side via the shield layer 33 b of the second connection cable 33. Further, the connector 14 attached to the tip of the first connection cable 13 of the voltage detection device 1 is connected to the input connector of the waveform observation device. Thereby, the voltage signal V4 output from the first connection cable 13 can be observed (measured) by the waveform observation device.

次いで、電圧検出プローブ2のプローブ本体部31を手で持って、凹部31a内に被覆電線51を入れることで、プローブ本体部31を被覆電線51に引っ掛ける。これにより、図2,3に示すように、プローブ本体部31に設けられた検出電極34が、凹部31aの内部に位置する被覆電線51の絶縁被覆51bに接触する。また、これにより、検出電極34が被覆電線51の芯線51aと良好な状態で容量結合することから、電圧検出装置1および電圧検出プローブ2は、被覆電線51の芯線51aに生じている検出対象交流電圧V1の検出動作を開始する。   Next, the probe main body 31 of the voltage detection probe 2 is held by hand and the covered electric wire 51 is inserted into the recess 31 a, so that the probe main body 31 is hooked on the covered electric wire 51. Thereby, as shown in FIGS. 2 and 3, the detection electrode 34 provided on the probe main body 31 comes into contact with the insulating coating 51b of the covered electric wire 51 located inside the recess 31a. Further, as a result, the detection electrode 34 is capacitively coupled with the core wire 51 a of the covered electric wire 51 in a good state, so that the voltage detection device 1 and the voltage detection probe 2 are detected ACs generated on the core wire 51 a of the covered electric wire 51. The detection operation of the voltage V1 is started.

具体的には、図3に示すように、検出電極34が被覆電線51の芯線51aと結合容量Cを介して容量結合することから、芯線51aと電圧検出回路部VDEの信号入力部22aとの間には、芯線51aに生じている検出対象交流電圧V1と第2基準電位G2(電圧生成部VGEから出力される電圧信号V4の電圧)との第1電位差に起因して、この第1電位差に応じた電流値の検出電流(交流電流)Iが、検出電極34、第2接続ケーブル33の芯線33aおよびコンデンサ21を介して流れる。   Specifically, as shown in FIG. 3, since the detection electrode 34 is capacitively coupled to the core wire 51a of the covered electric wire 51 via the coupling capacitor C, the core wire 51a and the signal input unit 22a of the voltage detection circuit unit VDE are connected. In the meantime, this first potential difference is caused by the first potential difference between the detection target AC voltage V1 generated in the core wire 51a and the second reference potential G2 (voltage of the voltage signal V4 output from the voltage generation unit VGE). A detection current (alternating current) I having a current value corresponding to the current flows through the detection electrode 34, the core wire 33 a of the second connection cable 33, and the capacitor 21.

電圧検出回路部VDEでは、電流電圧変換回路22が、この検出電流Iを検出電圧信号V2に変換して出力する。この場合、汚損物質の付着による導電路(上記の発明が解決しようとする課題で説明した導電路)が被覆電線51の絶縁被覆51bの表面に形成されており、外部磁界、外部電界および外部ノイズの影響を受けてこの導電路に電圧が生じ、この結果として、この導電路の電圧と電圧検出回路部VDEの第2基準電位G2(電圧信号V4の電圧)との間に電位差(直流電圧)が生じたとしても、この電位差に起因した直流電流(漏れ電流)が検出電極34と電圧検出回路部VDEの信号入力部22aとの間に流れる事態の発生がコンデンサ21によって阻止される。したがって、電流電圧変換回路22は、この外部磁界などの影響を受けてこの導電路に電圧が生じたとしても、この電圧の影響を受けることなく、検出対象交流電圧V1と第2基準電位G2(電圧信号V4の電圧)との第1電位差に起因して生じる検出電流Iだけを検出電圧信号V2に変換して出力する。   In the voltage detection circuit unit VDE, the current-voltage conversion circuit 22 converts this detection current I into a detection voltage signal V2 and outputs it. In this case, a conductive path (conductive path described in the above-described problem to be solved by the invention) is formed on the surface of the insulating coating 51b of the covered electric wire 51, and an external magnetic field, an external electric field, and an external noise are formed. As a result, a potential difference (DC voltage) is generated between the voltage of the conductive path and the second reference potential G2 (voltage of the voltage signal V4) of the voltage detection circuit unit VDE. Even if this occurs, the capacitor 21 prevents the DC current (leakage current) caused by this potential difference from flowing between the detection electrode 34 and the signal input unit 22a of the voltage detection circuit unit VDE. Therefore, even if the current-voltage conversion circuit 22 is affected by the external magnetic field or the like and a voltage is generated in the conductive path, the current-to-voltage conversion circuit 22 is not affected by the voltage, and the detection target AC voltage V1 and the second reference potential G2 ( Only the detection current I generated due to the first potential difference with the voltage of the voltage signal V4) is converted into the detection voltage signal V2 and output.

これにより、この電流電圧変換回路22と、上記の積分回路23および上記の絶縁回路24とを備えた電圧検出回路部VDEが、第1基準電位G1を基準とする積分信号V3a(検出対象交流電圧V1と第2基準電位G2との間の第1電位差に比例して電圧値が変化する積分信号)を出力する。   As a result, the voltage detection circuit unit VDE including the current-voltage conversion circuit 22, the integration circuit 23, and the insulation circuit 24 performs an integration signal V3a (detection target AC voltage) with the first reference potential G1 as a reference. An integrated signal whose voltage value changes in proportion to the first potential difference between V1 and the second reference potential G2.

また、この電圧検出回路部VDEと共にフィードバックループを形成する電圧生成部VGEが、上記の第1電位差を減少させるように積分信号V3aを増幅して電圧信号V4を生成し、この電圧信号V4を電圧検出回路部VDEのガード電極28に印加するというフィードバック制御動作を実行する。このフィードバック制御動作により、検出対象交流電圧V1と第2基準電位G2との第1電位差がほぼゼロに制御されることから、第2基準電位G2、すなわち電圧信号V4は、検出対象交流電圧V1と同電圧に(一致するように)制御される。また、この電圧信号V4は第1接続ケーブル13を介して波形観測装置に出力されるため、この波形観測装置において電圧信号V4、すなわち検出対象交流電圧V1を観測することが可能となる。   In addition, the voltage generation unit VGE that forms a feedback loop together with the voltage detection circuit unit VDE generates the voltage signal V4 by amplifying the integration signal V3a so as to reduce the first potential difference, and the voltage signal V4 is A feedback control operation of applying to the guard electrode 28 of the detection circuit unit VDE is executed. By this feedback control operation, the first potential difference between the detection target AC voltage V1 and the second reference potential G2 is controlled to be substantially zero. Therefore, the second reference potential G2, that is, the voltage signal V4 is equal to the detection target AC voltage V1. It is controlled (to match) the same voltage. Further, since this voltage signal V4 is output to the waveform observation device via the first connection cable 13, the voltage signal V4, that is, the detection target AC voltage V1 can be observed in this waveform observation device.

このように、被覆電線51における絶縁被覆51bの表面に検出電極34が接触する電圧検出プローブ2が接続される電圧検出装置1では、この電圧検出プローブ2の連結状態において、電圧検出プローブ2を構成する第2接続ケーブル33の芯線33aにおける他端側の端部(コネクタ32が取り付けられている側の端部)と電圧検出回路部VDE(本例では、電圧検出回路部VDEを構成する電流電圧変換回路22の信号入力部22a)との間にコンデンサ21が直列に接続されている(介装されている)。   Thus, in the voltage detection device 1 in which the voltage detection probe 2 in which the detection electrode 34 is in contact with the surface of the insulating coating 51b in the covered electric wire 51 is connected, the voltage detection probe 2 is configured in the connected state of the voltage detection probe 2. The other end of the core wire 33a of the second connection cable 33 (the end on the side where the connector 32 is attached) and the voltage detection circuit unit VDE (in this example, the current voltage constituting the voltage detection circuit unit VDE) A capacitor 21 is connected in series (interposed) to the signal input unit 22a) of the conversion circuit 22.

したがって、この電圧検出装置1によれば、検出電極34が接触する絶縁被覆51bの表面に汚損物質の付着による導電路が形成されている場合において、外部磁界等の影響を受けてこの導電路に電圧(直流電圧)が生じ、これに起因して導電路の電圧と電圧検出回路部VDEの第2基準電位G2(電圧信号V4の電圧)との間に電位差(直流電圧)が生じたとしても、この電位差に起因した直流電流(漏れ電流)が検出電極34と電圧検出回路部VDEの信号入力部22aとの間に流れる事態の発生をコンデンサ21で阻止することができる。これにより、この電圧検出装置1によれば、外部磁界などの影響を受けることなく(検出精度の低下を回避しつつ)、検出対象交流電圧V1の電圧を正確に表す電圧信号V4を出力することができる。   Therefore, according to the voltage detection device 1, when a conductive path is formed by adhesion of a pollutant on the surface of the insulating coating 51b with which the detection electrode 34 contacts, the conductive path is affected by an external magnetic field or the like. Even if a voltage (DC voltage) is generated, and due to this, a potential difference (DC voltage) occurs between the voltage of the conductive path and the second reference potential G2 (voltage of the voltage signal V4) of the voltage detection circuit unit VDE. The occurrence of a situation in which a direct current (leakage current) caused by this potential difference flows between the detection electrode 34 and the signal input unit 22a of the voltage detection circuit unit VDE can be prevented by the capacitor 21. Thus, according to the voltage detection device 1, the voltage signal V4 that accurately represents the voltage of the detection target AC voltage V1 is output without being affected by an external magnetic field or the like (while avoiding a decrease in detection accuracy). Can do.

なお、図3において破線で示すように、電圧検出プローブ2の連結状態において、電圧検出プローブ2を構成する第2接続ケーブル33の芯線33aが接続される電圧検出回路部VDEの電流電圧変換回路22の信号入力部22aと第2基準電位G2との間にサージアブソーバ29(ダイオードやバリスタなど)が配設されている構成のときには、コンデンサ21は、同図に示すように、サージアブソーバ29の接続点Aよりも信号入力部22a寄りとなる位置に配設する構成を採用するのが好ましい。この構成を採用することにより、仮にサージアブソーバ29に漏れ電流(直流電流)が生じた場合であっても、この漏れ電流の影響をコンデンサ21で阻止しつつ、電流電圧変換回路22で検出電流Iを検出電圧信号V2に変換して出力することができるため、検出対象交流電圧V1の電圧を正確に表す電圧信号V4を出力することができる。   As indicated by a broken line in FIG. 3, in the connected state of the voltage detection probe 2, the current-voltage conversion circuit 22 of the voltage detection circuit unit VDE to which the core wire 33 a of the second connection cable 33 constituting the voltage detection probe 2 is connected. When the surge absorber 29 (diode, varistor, etc.) is disposed between the signal input portion 22a and the second reference potential G2, the capacitor 21 is connected to the surge absorber 29 as shown in FIG. It is preferable to employ a configuration that is disposed at a position closer to the signal input portion 22a than the point A. By adopting this configuration, even if a leakage current (DC current) occurs in the surge absorber 29, the current-voltage conversion circuit 22 detects the current I while blocking the influence of the leakage current with the capacitor 21. Can be converted into a detection voltage signal V2 and output, so that a voltage signal V4 that accurately represents the voltage of the detection target AC voltage V1 can be output.

また、上記の電圧検出装置1は、入力コネクタ12を備えて、第2接続ケーブル33の他端にコネクタ32が取り付けられた電圧検出プローブ2を着脱自在に連結し得る構成を採用しているが、図示はしないが、入力コネクタ12およびコネクタ32の配設を省いて、第2接続ケーブル33の芯線33aにおける第2接続ケーブル33の他端側の端部をコンデンサ21の一端に直接接続すると共に第2接続ケーブル33のシールド層33bにおける第2接続ケーブル33の他端側の端部をケース11内に収納されている第1ガード電極28に直接接続(一体的に連結)する構成(電圧検出プローブ2の着脱が不可となる構成)を採用することもできる。また、図示はしないが、電圧検出装置1を波形観測装置に内蔵する構成を採用することもできる。   In addition, the voltage detection device 1 described above employs a configuration that includes the input connector 12 and can removably connect the voltage detection probe 2 having the connector 32 attached to the other end of the second connection cable 33. Although not shown, the input connector 12 and the connector 32 are omitted, and the end of the second connection cable 33 on the core wire 33a of the second connection cable 33 is directly connected to one end of the capacitor 21. Configuration in which the end of the second connection cable 33 in the shield layer 33b of the second connection cable 33 is directly connected (integratedly connected) to the first guard electrode 28 housed in the case 11 (voltage detection) It is also possible to adopt a configuration in which the probe 2 cannot be attached or detached. Although not shown, a configuration in which the voltage detection device 1 is built in the waveform observation device may be employed.

1 電圧検出装置
2 電圧検出プローブ
21 コンデンサ
22 電流電圧変換回路
22a 信号入力部
31 プローブ本体
33 第2接続ケーブル
34 検出電極
51 被覆電線(検出対象)
51a 芯線
G2 第2基準電位
I 検出電流
V1 検出対象交流電圧
DESCRIPTION OF SYMBOLS 1 Voltage detection apparatus 2 Voltage detection probe 21 Capacitor 22 Current-voltage conversion circuit 22a Signal input part 31 Probe main body 33 2nd connection cable 34 Detection electrode 51 Covered electric wire (detection object)
51a Core wire G2 Second reference potential I Detection current V1 Detection target AC voltage

Claims (1)

検出対象交流電圧が生じている検出対象の表面に接触可能に検出電極が配設されたプローブ本体部と、当該プローブ本体部に一端が連結されると共に内包された芯線における当該一端側の端部が前記検出電極に直接接続された接続ケーブルとを有する電圧検出プローブにおける前記接続ケーブルの他端が連結可能に構成されて、当該接続ケーブルの当該他端の連結状態において内部基準電位と前記検出対象交流電圧との電位差に応じて前記芯線に生じる交流信号を入力すると共に検出信号に変換して出力する電圧検出回路部を備えている電圧検出装置であって、
前記接続ケーブルの前記他端の連結状態において、前記芯線における当該他端側の端部と前記電圧検出回路部の信号入力部との間に直列に接続されるコンデンサを備えている電圧検出装置。
A probe main body part in which a detection electrode is disposed so as to be able to contact the surface of the detection target in which an AC voltage to be detected is generated, and an end part on the one end side of the core wire having one end connected to the probe main body part and contained therein The other end of the connection cable in the voltage detection probe having a connection cable directly connected to the detection electrode is configured to be connectable, and the internal reference potential and the detection target in the connection state of the other end of the connection cable A voltage detection device including a voltage detection circuit unit that inputs an AC signal generated in the core wire in accordance with a potential difference with an AC voltage, converts the signal into a detection signal, and outputs the detection signal.
The voltage detection apparatus provided with the capacitor | condenser connected in series between the edge part of the said other end side in the said core wire, and the signal input part of the said voltage detection circuit part in the connection state of the said other end of the said connection cable.
JP2017024620A 2017-02-14 2017-02-14 Voltage detection device Pending JP2018132346A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017024620A JP2018132346A (en) 2017-02-14 2017-02-14 Voltage detection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017024620A JP2018132346A (en) 2017-02-14 2017-02-14 Voltage detection device

Publications (1)

Publication Number Publication Date
JP2018132346A true JP2018132346A (en) 2018-08-23

Family

ID=63248286

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017024620A Pending JP2018132346A (en) 2017-02-14 2017-02-14 Voltage detection device

Country Status (1)

Country Link
JP (1) JP2018132346A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687344A (en) * 2019-10-24 2020-01-14 南京南瑞继保电气有限公司 Single-phase voltage sag detection method and device, voltage restorer, equipment and medium
CN110988439A (en) * 2019-12-16 2020-04-10 深圳圣斯尔电子技术有限公司 Detection head and alternating voltage detection device
WO2021090478A1 (en) * 2019-11-08 2021-05-14 三菱電機株式会社 Non-contact voltage observation device
CN113721071A (en) * 2021-07-16 2021-11-30 中国电力科学研究院有限公司 System and method for measuring non-intrusive voltage to ground
JPWO2022224325A1 (en) * 2021-04-20 2022-10-27
WO2022222119A1 (en) * 2021-04-23 2022-10-27 华为数字能源技术有限公司 Current detection device, electric energy detection device, and control method for current detection device
JP7205000B1 (en) * 2021-12-27 2023-01-16 三菱電機株式会社 Non-contact voltage sensor device
CN117008070A (en) * 2023-10-07 2023-11-07 成都世源频控技术股份有限公司 Radar simulator with electric leakage detection function

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184423U (en) * 1974-12-26 1976-07-07
EP0314849A1 (en) * 1987-11-06 1989-05-10 Roosevelt A. Fernandes Electrical power line and substation monitoring apparatus and systems
JPH06235739A (en) * 1993-02-10 1994-08-23 Watakiyuu Create:Kk Detector
JPH06242154A (en) * 1993-02-12 1994-09-02 Watakiyuu Create:Kk Voltage detector
US5473244A (en) * 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JP2001099875A (en) * 1999-09-30 2001-04-13 Matsushita Electric Works Ltd Analog input detection circuit and voltage detection level judging method
JP2003028900A (en) * 2001-07-11 2003-01-29 Yokogawa Electric Corp Non-contact voltage measurement method and apparatus
JP2015175655A (en) * 2014-03-13 2015-10-05 オムロン株式会社 Noncontact voltage measuring apparatus
JP2017009576A (en) * 2015-06-24 2017-01-12 日置電機株式会社 Voltage detection probe and measurement device

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5184423U (en) * 1974-12-26 1976-07-07
EP0314849A1 (en) * 1987-11-06 1989-05-10 Roosevelt A. Fernandes Electrical power line and substation monitoring apparatus and systems
US5473244A (en) * 1992-09-17 1995-12-05 Libove; Joel M. Apparatus for measuring voltages and currents using non-contacting sensors
JPH06235739A (en) * 1993-02-10 1994-08-23 Watakiyuu Create:Kk Detector
JPH06242154A (en) * 1993-02-12 1994-09-02 Watakiyuu Create:Kk Voltage detector
JP2001099875A (en) * 1999-09-30 2001-04-13 Matsushita Electric Works Ltd Analog input detection circuit and voltage detection level judging method
JP2003028900A (en) * 2001-07-11 2003-01-29 Yokogawa Electric Corp Non-contact voltage measurement method and apparatus
JP2015175655A (en) * 2014-03-13 2015-10-05 オムロン株式会社 Noncontact voltage measuring apparatus
US20170059619A1 (en) * 2014-03-13 2017-03-02 Omron Corporation Non-contact voltage measurement device
JP2017009576A (en) * 2015-06-24 2017-01-12 日置電機株式会社 Voltage detection probe and measurement device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110687344A (en) * 2019-10-24 2020-01-14 南京南瑞继保电气有限公司 Single-phase voltage sag detection method and device, voltage restorer, equipment and medium
JP7003338B2 (en) 2019-11-08 2022-02-10 三菱電機株式会社 Non-contact voltage observation device
WO2021090478A1 (en) * 2019-11-08 2021-05-14 三菱電機株式会社 Non-contact voltage observation device
JPWO2021090478A1 (en) * 2019-11-08 2021-05-14
CN110988439A (en) * 2019-12-16 2020-04-10 深圳圣斯尔电子技术有限公司 Detection head and alternating voltage detection device
JPWO2022224325A1 (en) * 2021-04-20 2022-10-27
WO2022224325A1 (en) * 2021-04-20 2022-10-27 三菱電機株式会社 Non-contact voltage sensor device
JP7292555B2 (en) 2021-04-20 2023-06-16 三菱電機株式会社 Non-contact voltage sensor device
WO2022222119A1 (en) * 2021-04-23 2022-10-27 华为数字能源技术有限公司 Current detection device, electric energy detection device, and control method for current detection device
CN113721071A (en) * 2021-07-16 2021-11-30 中国电力科学研究院有限公司 System and method for measuring non-intrusive voltage to ground
JP7205000B1 (en) * 2021-12-27 2023-01-16 三菱電機株式会社 Non-contact voltage sensor device
WO2023126991A1 (en) * 2021-12-27 2023-07-06 三菱電機株式会社 Non-contact voltage sensor device
CN117008070A (en) * 2023-10-07 2023-11-07 成都世源频控技术股份有限公司 Radar simulator with electric leakage detection function
CN117008070B (en) * 2023-10-07 2023-12-19 成都世源频控技术股份有限公司 Radar simulator with electric leakage detection function

Similar Documents

Publication Publication Date Title
JP2018132346A (en) Voltage detection device
US10041977B2 (en) Voltage detecting probe and measuring device
JP7182510B2 (en) Non-contact DC voltage measuring device with vibration sensor
CN107533091B (en) Non-contact voltage measuring device
US10267829B2 (en) Voltage detecting probe and measuring device
JP6495103B2 (en) Voltage detection probe and measuring device
JP6636372B2 (en) Voltage detection probe and measuring device
JP6665007B2 (en) Voltage detection probe and measuring device
WO2015135318A1 (en) Fingerprint detection circuit and fingerprint detection apparatus
JP2017009576A5 (en)
JP2010025653A (en) Measuring device
JP2010025918A (en) Voltage detection device and line voltage detection device
JP2018136301A (en) Sensor subsystem for non-contact voltage measuring equipment
JP2018204963A (en) Sensor and measurement device
CN100454028C (en) Impedance measuring circuit, its method, and capacitance measuring circuit
JP6486765B2 (en) Clamp type sensor and measuring device
JP6372164B2 (en) Voltage measuring device and voltage measuring method
WO2015178051A1 (en) Voltage measurement device and voltage measurement method
CN118202254A (en) Circuit for impedance measurement
CN110780122B (en) Conductivity meter
JP6974194B2 (en) Bus-side connector, device-side connector and reading system
JP5313033B2 (en) Voltage detector and line voltage detector
CN118329104A (en) Measuring device
JP6679408B2 (en) Voltage detection probe and measuring device
JPS63302371A (en) Current detector

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201215

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210622