JP2018130676A - Microfluidic transportation structure where through hole and flow channel are integrated, and method for manufacturing the same - Google Patents
Microfluidic transportation structure where through hole and flow channel are integrated, and method for manufacturing the same Download PDFInfo
- Publication number
- JP2018130676A JP2018130676A JP2017026311A JP2017026311A JP2018130676A JP 2018130676 A JP2018130676 A JP 2018130676A JP 2017026311 A JP2017026311 A JP 2017026311A JP 2017026311 A JP2017026311 A JP 2017026311A JP 2018130676 A JP2018130676 A JP 2018130676A
- Authority
- JP
- Japan
- Prior art keywords
- flow path
- forming
- mold
- hole
- region
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 49
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 35
- 239000007788 liquid Substances 0.000 claims abstract description 51
- 239000000463 material Substances 0.000 claims abstract description 40
- 230000032258 transport Effects 0.000 claims description 71
- 239000000758 substrate Substances 0.000 claims description 59
- 230000008569 process Effects 0.000 claims description 21
- 239000000470 constituent Substances 0.000 claims description 19
- 238000005192 partition Methods 0.000 claims description 15
- 230000015572 biosynthetic process Effects 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- 239000011347 resin Substances 0.000 claims description 10
- 238000010030 laminating Methods 0.000 claims description 9
- 238000004080 punching Methods 0.000 claims description 9
- 238000000059 patterning Methods 0.000 claims description 8
- 239000013013 elastic material Substances 0.000 claims description 7
- 230000010354 integration Effects 0.000 claims description 7
- 238000011049 filling Methods 0.000 claims description 6
- 238000000926 separation method Methods 0.000 claims description 5
- 238000005429 filling process Methods 0.000 claims 1
- 238000003475 lamination Methods 0.000 claims 1
- 238000002360 preparation method Methods 0.000 claims 1
- 239000002245 particle Substances 0.000 abstract description 7
- 239000007787 solid Substances 0.000 abstract description 5
- 210000004027 cell Anatomy 0.000 description 78
- 239000010408 film Substances 0.000 description 50
- 239000004205 dimethyl polysiloxane Substances 0.000 description 21
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 21
- 235000012431 wafers Nutrition 0.000 description 17
- 239000011368 organic material Substances 0.000 description 13
- 230000006870 function Effects 0.000 description 12
- 238000001723 curing Methods 0.000 description 11
- 229920002120 photoresistant polymer Polymers 0.000 description 11
- 238000012545 processing Methods 0.000 description 10
- 238000013461 design Methods 0.000 description 9
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 8
- 238000000206 photolithography Methods 0.000 description 8
- 239000003795 chemical substances by application Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000012528 membrane Substances 0.000 description 7
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 6
- 238000005304 joining Methods 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- 239000010703 silicon Substances 0.000 description 6
- 229910052710 silicon Inorganic materials 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229920002307 Dextran Polymers 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 238000009832 plasma treatment Methods 0.000 description 5
- 239000004033 plastic Substances 0.000 description 5
- 229920003023 plastic Polymers 0.000 description 5
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- 239000002904 solvent Substances 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000000016 photochemical curing Methods 0.000 description 4
- 235000012239 silicon dioxide Nutrition 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000010409 thin film Substances 0.000 description 4
- 230000003915 cell function Effects 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000010453 quartz Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 description 2
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 2
- 235000017491 Bambusa tulda Nutrition 0.000 description 2
- 241001330002 Bambuseae Species 0.000 description 2
- 229910002601 GaN Inorganic materials 0.000 description 2
- 229910005540 GaP Inorganic materials 0.000 description 2
- 229910001218 Gallium arsenide Inorganic materials 0.000 description 2
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 description 2
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 2
- -1 Polydimethylsiloxane Polymers 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 239000006087 Silane Coupling Agent Substances 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000011425 bamboo Substances 0.000 description 2
- 238000004364 calculation method Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- HZXMRANICFIONG-UHFFFAOYSA-N gallium phosphide Chemical compound [Ga]#P HZXMRANICFIONG-UHFFFAOYSA-N 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000005240 physical vapour deposition Methods 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012827 research and development Methods 0.000 description 2
- 239000004065 semiconductor Substances 0.000 description 2
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 2
- 229910010271 silicon carbide Inorganic materials 0.000 description 2
- 229920002050 silicone resin Polymers 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 238000009849 vacuum degassing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 238000001039 wet etching Methods 0.000 description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 229920000856 Amylose Polymers 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- 238000000018 DNA microarray Methods 0.000 description 1
- 229920001353 Dextrin Polymers 0.000 description 1
- 239000004375 Dextrin Substances 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- 235000010627 Phaseolus vulgaris Nutrition 0.000 description 1
- 244000046052 Phaseolus vulgaris Species 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 235000010419 agar Nutrition 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000007321 biological mechanism Effects 0.000 description 1
- 239000000679 carrageenan Substances 0.000 description 1
- 235000010418 carrageenan Nutrition 0.000 description 1
- 229920001525 carrageenan Polymers 0.000 description 1
- 229940113118 carrageenan Drugs 0.000 description 1
- 239000006285 cell suspension Substances 0.000 description 1
- 230000004656 cell transport Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 235000019425 dextrin Nutrition 0.000 description 1
- 238000004720 dielectrophoresis Methods 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- 238000003255 drug test Methods 0.000 description 1
- 238000004049 embossing Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- HJUFTIJOISQSKQ-UHFFFAOYSA-N fenoxycarb Chemical compound C1=CC(OCCNC(=O)OCC)=CC=C1OC1=CC=CC=C1 HJUFTIJOISQSKQ-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000000017 hydrogel Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000011147 inorganic material Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000008611 intercellular interaction Effects 0.000 description 1
- 238000002032 lab-on-a-chip Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 238000005459 micromachining Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- JHJNPOSPVGRIAN-SFHVURJKSA-N n-[3-[(1s)-1-[[6-(3,4-dimethoxyphenyl)pyrazin-2-yl]amino]ethyl]phenyl]-5-methylpyridine-3-carboxamide Chemical compound C1=C(OC)C(OC)=CC=C1C1=CN=CC(N[C@@H](C)C=2C=C(NC(=O)C=3C=C(C)C=NC=3)C=CC=2)=N1 JHJNPOSPVGRIAN-SFHVURJKSA-N 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229920001277 pectin Polymers 0.000 description 1
- 239000001814 pectin Substances 0.000 description 1
- 235000010987 pectin Nutrition 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 239000004926 polymethyl methacrylate Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000004043 responsiveness Effects 0.000 description 1
- 229910052594 sapphire Inorganic materials 0.000 description 1
- 239000010980 sapphire Substances 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 231100000820 toxicity test Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 210000001912 transporting cell Anatomy 0.000 description 1
- 238000010977 unit operation Methods 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 description 1
Landscapes
- Micromachines (AREA)
- Physical Or Chemical Processes And Apparatus (AREA)
Abstract
【課題】単一細胞などの固形粒子を含む液体を効率よく輸送する流路とそれらを滴下するのに適した直径と深さを有する貫通孔で構成されたマイクロ流体輸送構造体およびその製造方法を提供する。【解決手段】剛性の高い材料でできた流路底部に、径寸法に対する深さ寸法の割合(アスペクト比)を1.0以下とする複数の貫通孔31を備え、弾性体で構成した流路上部に、流路下部の貫通孔の付近には可動膜を備え、空圧により可動膜が膨張することで貫通孔の開閉動作するバルブ機能を有するもので構成されたものである。【選択図】図2A microfluidic transport structure including a flow path for efficiently transporting a liquid containing solid particles such as a single cell, a through-hole having a diameter and a depth suitable for dropping them, and a method for manufacturing the same I will provide a. A flow path bottom made of a highly rigid material is provided with a plurality of through holes 31 having a ratio of the depth dimension to the diameter dimension (aspect ratio) of 1.0 or less. The part is provided with a movable film in the vicinity of the through hole at the lower part of the flow path, and has a valve function for opening and closing the through hole when the movable film is expanded by air pressure. [Selection] Figure 2
Description
本発明は細胞などの固形粒子を含んだ液体を輸送し、所定の位置に滴下するための貫通孔を有する輸送構造体とその製造方法に関するものである。 The present invention relates to a transport structure having a through hole for transporting a liquid containing solid particles such as cells and dropping it at a predetermined position, and a method for manufacturing the transport structure.
ライフサイエンスとケミストリ分野では、μTAS(micro total analysis system)という微小な流路や反応器を内蔵した装置を使った研究開発が盛んに行われている。μTASを使った研究開発ではマイクロ流路と反応器を複雑に組み合わせた構造体を作り、液体や細胞などの固形粒子を含んだ溶液を混合、合成、反応などを行う試みが行われている。特にバイオチップの研究分野では、最近、幹細胞を用いた再生医療技術などに希少な幹細胞を分離する方法として、MEMS(Micro Electro Mechanical Systems)によるマイクロ・セルソーティングや細胞機能評価の技術が活発に開発されている。 In the life science and chemistry fields, research and development using micro-TAS (micro total analysis system) and a device incorporating a minute flow path and a reactor are actively performed. In research and development using μTAS, an attempt is made to create a structure in which microchannels and reactors are combined in a complex manner, and to mix, synthesize, and react a solution containing solid particles such as liquid and cells. Particularly in the biochip research field, recently, MEMS (Micro Electro Mechanical Systems) micro cell sorting and cell function evaluation technologies have been actively developed as methods for isolating rare stem cells in regenerative medical technology using stem cells. Has been.
細胞は生体の基本的な構成要素であり、機能解明が課題とされている。多細胞生物における組織は、複数種の細胞が集合した3 次元構造を持ち、個々の細胞は周囲細胞との相互作用で機能を変化させる。生体内では、複数種の細胞が特定の配置状態を取り、相互作用により個々の細胞機能が調節されている。細胞間相互作用とは、二つ以上の細胞間で起こる物理的・生理的なコミュニケーションを指しており、細胞間のシグナル伝達物質を介した仕組みと細胞同士が直接接触して行う仕組みがある。生体内に見られる細胞の特異的な配列を生体外実験環境下にて再構築し、細胞機能を解析することは、医学・生物学の研究を大きく進展させる。生体外で3 次元生体組織を再構築できれば、その現象を高効率に解析することが可能になる。単一細胞レベルでの再構築には、単一細胞を緻密に3 次元的に組み上げるシステムが必要となる。 Cells are fundamental components of living organisms, and elucidation of their functions is an issue. A tissue in a multicellular organism has a three-dimensional structure in which multiple types of cells are assembled, and each cell changes its function by interacting with surrounding cells. In a living body, a plurality of types of cells take a specific arrangement state, and individual cell functions are regulated by interaction. The cell-cell interaction refers to physical / physiological communication that occurs between two or more cells, and includes a mechanism through a signaling substance between cells and a mechanism in which cells directly contact each other. Reconstructing a specific arrangement of cells found in vivo in an in vitro experimental environment and analyzing cell functions greatly advance medical and biological research. If the 3D tissue can be reconstructed outside the body, the phenomenon can be analyzed with high efficiency. Reconstruction at the single cell level requires a system that assembles single cells precisely in three dimensions.
また、細胞を用いた薬物検査や、毒性試験、遺伝子注入などを行うとき、多数の細胞を整列配置し、個々を識別しながら継続的に観察することが望まれている。現在、生体のメカニズムの解明、医療のための計測や治療、細胞や遺伝子レベルでの操作などに幅広くマイクロマシーニング技術が応用されている。 In addition, when performing drug tests using cells, toxicity tests, gene injections, and the like, it is desired to arrange a large number of cells and continuously observe them while identifying each individual. Currently, micromachining technology is widely applied to elucidation of biological mechanisms, measurement and treatment for medical treatment, and manipulation at the cell and gene level.
μTASは、シリコンやガラスなどの基板上に、高精度な微細加工を施し、化学合成や、化学分析の単位操作である混合、反応、検出や分離回収といった様々な要素をマイクロ化して基板上に集積化したものが一般的である。 μTAS performs high-precision microfabrication on a substrate such as silicon or glass, and microfabricates various elements such as mixing, reaction, detection and separation / recovery that are unit operations of chemical synthesis and chemical analysis on the substrate. An integrated one is common.
μTASの一例として、特許文献1には、試料流体が流入する試料流入部と、試料流体が流出する試料流出部と、試料流入部と試料流出部とを接続する試料流路とからなる複数のフロースルーセルが配設された帯状シートからなるラボオンチップの技術が開示されている。 As an example of μTAS, Patent Document 1 discloses a plurality of sample inflow portions into which a sample fluid flows, a sample outflow portion from which the sample fluid flows out, and a plurality of sample flow paths that connect the sample inflow portion and the sample outflow portion. A lab-on-a-chip technique is disclosed that includes a belt-like sheet in which a flow-through cell is disposed.
かかるμTASの場合、化学的に安定な基板としてシリコンウェハーやガラス、石英などが用いられることが多かったが、これらの基板上に流路等を形成するには剛性の高い硬い基板表面を高精度に切削加工しなければならず、製作が容易ではない。このため、特許文献1では基板として加工の容易な樹脂が好ましいとの記載がある。更に、流路内部に有機溶媒を使用する際には、無機系材料あるいは有機系材料で架橋された剛性高い材料を使用することが望ましいとの記載がある。また、親油性あるいは親水性を付与したい部分については、プラズマ処理などによりヒドロキシ基などを形成する方法などが開示されている。 In the case of such μTAS, a silicon wafer, glass, quartz or the like is often used as a chemically stable substrate. However, in order to form a flow path or the like on these substrates, a rigid and hard substrate surface is highly accurate. Therefore, it is difficult to manufacture. For this reason, Patent Document 1 describes that a resin that is easily processed is preferable as the substrate. Furthermore, there is a description that when an organic solvent is used in the flow path, it is desirable to use a highly rigid material crosslinked with an inorganic material or an organic material. In addition, a method for forming a hydroxy group or the like by plasma treatment or the like is disclosed for a portion to be given lipophilicity or hydrophilicity.
特許文献2には、従来のシリコンウェハーやガラス、石英などの基板を備えたμTASと比較して、製作が容易かつ安価で大量生産に適した実用的なμTASを提供することを目的に、溝状の流路が表面に形成されたプラスチック基板を型押し加工や射出成形により溝加工は容易にできることを開示している。プラスチック基板は光硬化樹脂の一つであるPDMS(Polydimethylsiloxane)を使い、エンボス加工などによりサブミクロンオーダーの構造をプラスチック基板上にパターン転写することができ、プラスチック同士の接合も容易である結果、量産性のすぐれたμTASが実現できるとしている。かかるプラスチック基板がPMMAで構成する場合は、フォトリソグラフで容易にプラスチック基板の表面に高精度にパターンを形成することができる。これら特許文献1および2では、流路と孔とを一体的に形成する技術は開示されていない上に、流路は剛性の高い材料で構成している。パイレックス(登録商標)ガラスの加工では、SF6プラズマを用いた異方性エッチングで孔加工が可能である。(非特許文献1) In Patent Document 2, a groove is provided for the purpose of providing a practical μTAS that is easy to manufacture, inexpensive, and suitable for mass production as compared to a conventional μTAS having a substrate such as silicon wafer, glass, or quartz. Discloses that a groove can be easily formed by stamping or injection molding of a plastic substrate having a surface having a channel-like shape. The plastic substrate uses PDMS (Polydimethylsiloxane), which is one of the photo-curing resins, and can transfer patterns on the sub-micron order onto the plastic substrate by embossing, etc. It is said that an excellent μTAS can be realized. When such a plastic substrate is made of PMMA, a pattern can be easily formed on the surface of the plastic substrate with photolithography. In these Patent Documents 1 and 2, a technique for integrally forming the flow path and the hole is not disclosed, and the flow path is made of a highly rigid material. In the processing of Pyrex (registered trademark) glass, holes can be formed by anisotropic etching using SF 6 plasma. (Non-Patent Document 1)
かかるμTASは液体を反応器へ輸送したり、所定の位置に液体を滴下する機能を実現しているが、実際に液体をμTASに流し込むためのホースとμTASの入口との接合は入口径が数100μm〜数mm程度と非常に小さく極めて難しく、かつ信頼性に乏しいものである。通常、機器の液体流入口とホースの接続においては、機器側にタケノコ状の継手を設け、その継手にホースの内側が接するようにホースを差し込み、バンド金具でホースを締め付ける方法が広く行われている。このような接続方法は確立されていない。 The μTAS realizes the function of transporting the liquid to the reactor or dropping the liquid at a predetermined position. However, the diameter of the joint between the hose for actually flowing the liquid into the μTAS and the inlet of the μTAS is several. It is very small, about 100 μm to several mm, and is extremely difficult and has poor reliability. Normally, when connecting the liquid inlet of the equipment and the hose, there is a wide range of methods in which a bamboo shoot-like joint is provided on the equipment side, the hose is inserted so that the inside of the hose is in contact with the joint, and the hose is tightened with a band fitting. Yes. Such a connection method has not been established.
かかるμTASによる細胞を含む液体の輸送方法は、流路内に細胞トラップのための構造物を設け、細胞を配置する方法が試みられていて、比較的短時間で配置可能であるが、高い細胞密度を必要とするため、単一細胞同士の本質的な挙動の評価が出来ないという欠点がある。また、誘電泳動を利用した細胞配置の方法も試みられているが、細胞懸濁液が電極に触れることにより変性が起こり、細胞にダメージが残る欠点がある。(非特許文献2) As a method for transporting a liquid containing cells by μTAS, a structure for arranging a cell trap in a flow path and arranging cells is tried, and it can be arranged in a relatively short time. Since density is required, there is a drawback that it is impossible to evaluate the essential behavior of single cells. In addition, attempts have been made to arrange cells using dielectrophoresis, but there is a drawback that denaturation occurs when a cell suspension touches an electrode, resulting in damage to the cells. (Non-Patent Document 2)
これまで単一細胞をノズルから吐出するインクジェット法(非特許文献3)による細胞パターニングが報告されている。この手法では、単一ノズルの内部を光学的に観察し、各ノズルには検出系と信号処理部を設けているため、構造が複雑である。ノズル数に対して、検出系と信号処理部数が比例するため、スループットの向上は困難である。細胞数を増やして組織レベルを高速に構築するには、複数ノズルをアレイ状に連結することになるが、検出系と信号処理部もノズル数に比例して用意する必要がある。細胞を所定な位置に滴下する簡易な方法として、細胞の存在を検出せずに、流路抵抗に基づく流体力学的な設計方法を用いて流路や細胞を突出させるノズルを設計し、その設計を忠実に実現する製造方法を用いてマイクロ流体輸送構造体を製作して、細胞を自動的に配置するものは実現していない。 Until now, cell patterning by an inkjet method (Non-patent Document 3) in which single cells are discharged from a nozzle has been reported. In this method, the inside of a single nozzle is optically observed, and each nozzle is provided with a detection system and a signal processing unit, so that the structure is complicated. Since the number of detection systems and the number of signal processing units are proportional to the number of nozzles, it is difficult to improve throughput. In order to increase the number of cells and build a tissue level at a high speed, a plurality of nozzles are connected in an array. However, it is necessary to prepare a detection system and a signal processing unit in proportion to the number of nozzles. As a simple method of dropping cells at a predetermined position, a nozzle that projects the flow channel and cells is designed using a hydrodynamic design method based on flow channel resistance without detecting the presence of the cell. However, it is not possible to manufacture a microfluidic transport structure using a manufacturing method that faithfully realizes the above and to automatically arrange cells.
しかしながら、かかるμTASに使う透明基板は一般的にはシリコン基板が利用され、基板厚さ400μm程度で貫通孔直径は60μm程度しかできず(非特許文献4)、流路抵抗を小さくして細胞サイズに適するような流路と貫通孔を形成することは難しかった。また、細胞を滴下するための貫通孔の径寸法に対する深さ寸法の割合(アスペクト比)の限界は5から7しか実現できない。基板の厚みを薄くすることで貫通孔の深さを小さくして流体抵抗を下げようとすれば、基板の剛性が低くなることから、ハンドリング時やウェットエッチング時の気液界面で簡単に破壊しやすくなる。ガラスをウェットエッチングで溶解した場合は、等方性のエッチングになることから、アスペクト比を1よりも小さくすることが難しい。また、孔直径が50 μmで深さ150 μmの孔を空けるのに10時間もの長時間を要しており、生産性が極めて悪く実用性に乏しい。 However, the transparent substrate used for such μTAS is generally a silicon substrate, and the substrate thickness is about 400 μm and the through-hole diameter is only about 60 μm (Non-Patent Document 4). It was difficult to form a flow path and a through-hole suitable for the above. In addition, the limit of the ratio of the depth dimension to the diameter dimension of the through hole for dropping cells (aspect ratio) can only be realized from 5 to 7. If you try to reduce the depth of the through hole by reducing the thickness of the substrate to lower the fluid resistance, the rigidity of the substrate will decrease, so it will be easily destroyed at the gas-liquid interface during handling and wet etching. It becomes easy. When glass is melted by wet etching, it becomes isotropic etching, so it is difficult to make the aspect ratio smaller than 1. Further, it takes a long time of 10 hours to form a hole having a hole diameter of 50 μm and a depth of 150 μm, and the productivity is extremely poor and the practicality is poor.
こうした生産性の悪さばかりか、単一細胞を滴下するのに最適な孔直径で流路抵抗の小さいノズルが実現されておらず、単一細胞を取扱うマイクロ流体輸送構造体がいまだ提供されていない。 In addition to such poor productivity, a nozzle with a small channel resistance and an optimum hole diameter for dropping single cells has not been realized, and a microfluidic transport structure that handles single cells has not yet been provided. .
また、かかるμTASを構成する流路を含む構造体が剛性の高い材料で作られており、ノズルからの液滴の突出を制御するには、複雑な機構が必要で小型化が実現できていない。 In addition, the structure including the flow path constituting the μTAS is made of a highly rigid material, and a complicated mechanism is required to control the protrusion of the droplet from the nozzle, and the miniaturization cannot be realized. .
本発明は上記問題点に鑑みてなされたものであって、その目的とするところは、マイクロ流体、例えば単一細胞等を含む液体を効率よく輸送する流路と滴下するのに適した直径と深さを有する貫通孔で構成されたマイクロ流体輸送構造体およびその製造方法を提供するところにある。 The present invention has been made in view of the above-mentioned problems, and the object of the present invention is to provide a channel for efficiently transporting a liquid containing a microfluid, such as a single cell, and a diameter suitable for dropping. It is an object of the present invention to provide a microfluidic transport structure including through holes having a depth and a method for manufacturing the same.
この目的を達成するために請求項1記載の下部構造体と上部構造体とを一体化してなるマイクロ流体輸送構造体であって、前記下部構造体は、液体輸送流路を形成するための側壁部と底面部を備え、該底面部に径寸法に対する深さ寸法の割合(アスペクト比)を1.0以下とする複数の貫通孔を設け、前記上部構造体は、前記下部構造体に積層され、前記液体輸送流路を形成するための上面部を有して構成されていることを特徴とするマイクロ流体輸送構造体である。 In order to achieve this object, a microfluidic transport structure obtained by integrating the lower structure and the upper structure according to claim 1, wherein the lower structure has a side wall for forming a liquid transport channel. A plurality of through-holes having a ratio of the depth dimension to the diameter dimension (aspect ratio) of 1.0 or less, and the upper structure is stacked on the lower structure. A microfluidic transport structure having an upper surface portion for forming the liquid transport channel.
請求項2記載の前記下部構造体は、光硬化性樹脂によって構成されるものであり、基板上に成膜された犠牲層の表面に形成され、かつ犠牲層を除去した残部によって構成されたものであることを特徴とする請求項1に記載のマイクロ流体輸送構造体である。 3. The lower structure according to claim 2, wherein the lower structure is made of a photocurable resin, is formed on a surface of a sacrificial layer formed on a substrate, and is formed by a remaining part from which the sacrificial layer is removed. The microfluidic transport structure according to claim 1, wherein:
請求項3記載の前記上部構造体は、上面部から適宜間隔を有する隔壁を備え、該隔壁と前記下部構造体との間に液体輸送流路が形成されるとともに、該隔壁と前記上面部との間に加圧空気を流入させる空圧用流路が形成されており、前記隔壁は、弾性材料によって形成された可動膜であり、前記可動膜は、可動領域と固定領域とに区分され、可動領域は、前記下部構造体の複数の貫通孔のそれぞれに対向する適宜範囲において変形可能であり、固定領域は、可動領域を除く範囲において前記上面部に支持されるものであることを特徴とする請求項1または2に記載のマイクロ流体輸送構造体である。 The upper structure according to claim 3 includes a partition wall that is appropriately spaced from an upper surface portion, and a liquid transport channel is formed between the partition wall and the lower structure, and the partition wall and the upper surface portion An air pressure flow channel for allowing pressurized air to flow in between is formed, the partition wall is a movable film formed of an elastic material, and the movable film is divided into a movable area and a fixed area, and is movable. The region is deformable in an appropriate range facing each of the plurality of through holes of the lower structure, and the fixed region is supported by the upper surface portion in a range excluding the movable region. A microfluidic transport structure according to claim 1 or 2.
請求項4記載の前記可動領域は、円形とする範囲に形成された円形領域であり、該円形領域は、前記下部構造体の複数の貫通孔の中心軸の延長線近傍を中心とする円形に形成されたものであることを特徴とする請求項3に記載のマクロ流体輸送構造体である。 The movable region according to claim 4 is a circular region formed in a circular range, and the circular region has a circular shape centering around an extension line of a central axis of a plurality of through holes of the lower structure. The macrofluid transport structure according to claim 3, wherein the macrofluid transport structure is formed.
請求項5記載の前記円形領域は、前記貫通孔の中心軸の延長線から偏った位置を中心とする円形で形成されたものである請求項4に記載のマイクロ流体輸送構造体である。 5. The microfluidic transport structure according to claim 4, wherein the circular region according to claim 5 is formed in a circular shape centering on a position deviated from an extension line of the central axis of the through hole.
請求項6記載の製造方法は、請求項1または2に記載のマイクロ流体輸送構造体の製造方法であって、上部構造体形成工程と、下部構造体形成工程と、一体化工程とを含み、前記上部構造体形成工程は、基板上に液体輸送流路予定領域に合致する形状を突起させたモールド型を形成するモールド型形成工程と、上部構成材料を前記モールド型に充填する上部構成材料充填工程と、該上部構成材料を硬化させた後に前記モールド型から離型する離型工程と、離型された成型物の一部を穿孔する穿孔工程とを含み、前記下部構造体形成工程は、基板上に犠牲層を成膜する犠牲層成膜工程と、前記犠牲膜の表面に前記貫通孔に相当する部分を除き、液体輸送流路形成領域に下部構成材料をパターニングする流路底面構成工程と、前記犠牲層を除去することによって基板と下部構成材料とを分離させる分離工程とを含み、前記一体化工程は、前記上部構造体形成工程によって形成された構造体と、前記下部構造体形成工程によって形成された構造体とを、それぞれの液体輸送流路予定領域と液体輸送流路形成領域とが合致する状態で貼り合わせる貼合わせ工程を含むものであることを特徴とするマイクロ流体輸送構造体の製造方法である。 The manufacturing method according to claim 6 is the manufacturing method of the microfluidic transport structure according to claim 1 or 2, and includes an upper structure forming step, a lower structure forming step, and an integration step, The upper structure forming step includes a mold forming step of forming a mold die having a shape that matches a liquid transport channel planned area on the substrate, and an upper constituent material filling that fills the mold die with the upper constituent material. A step of releasing the mold from the mold after curing the upper constituent material, and a step of punching a part of the molded product that has been released, and the lower structure forming step includes: A sacrificial layer forming step of forming a sacrificial layer on the substrate, and a channel bottom surface forming step of patterning a lower constituent material in the liquid transport channel forming region except for a portion corresponding to the through hole on the surface of the sacrificial film And removing the sacrificial layer A separation step of separating the substrate and the lower constituent material, and the integration step includes a structure formed by the upper structure forming step, and a structure formed by the lower structure forming step. Is a method of manufacturing a microfluidic transport structure, which includes a pasting step in which the respective liquid transport flow path scheduled regions and the liquid transport flow path formation regions are bonded together.
請求項7記載の製造方法は、請求項3〜5のいずれかに記載のマイクロ流体輸送構造体の製造方法であって、上部構造体形成工程と、下部構造体形成工程と、一体化工程とを含み、さらに、上部構造体形成工程は、空圧用流路形成工程と、可動膜形成工程と、積層工程と、液体供給孔形成工程とを含み、前記空圧用流路形成工程は、基板上に空圧用流路予定領域に合致する形状を突起させたモールド型を形成するモールド型形成工程と、上部構成材料を前記モールド型に充填する上部構成材料充填工程と、該上部構成材料を硬化させた後に前記モールド型から離型する離型工程と、離型された成型物の一部を穿孔する第1の穿孔工程とを含み、前記可動膜形成工程は、基板上に弾性材料により可動膜予定層を形成する弾性材料成膜工程を含み、前記積層工程は、前記弾性材料成膜工程により形成された可動膜予定層の表面に、前記空圧用流路形成工程によって形成された構造体を貼り合わせる第1の貼合わせ工程を含み、前記液体供給孔形成工程は、前記空圧用流路形成工程によって形成された構造体と前記可動膜予定層とが積層される領域の一部を穿孔する第2の穿孔工程を含み、前記下部構造体形成工程は、基板上に犠牲層を成膜する犠牲層成膜工程と、前記犠牲層の表面に前記貫通孔に相当する部分を除き、液体輸送流路形成領域に下部構成材料をパターニングする流路底面構成工程と、前記犠牲層を除去することによって基板と下部構成材料とを分離させる分離工程とを含み、前記一体化工程は、前記上部構造体形成工程によって形成された構造体と、前記下部構造体形成工程によって形成された構造体とを、それぞれの液体輸送流路予定領域と液体輸送流路形成領域とが合致する状態で貼り合わせる第2の貼合わせ工程を含むものであることを特徴とするマイクロ流体輸送構造体の製造方法である。 A manufacturing method according to claim 7 is the manufacturing method of the microfluidic transport structure according to any one of claims 3 to 5, wherein the upper structure forming step, the lower structure forming step, and the integrating step And the upper structure forming step includes an air pressure channel forming step, a movable film forming step, a laminating step, and a liquid supply hole forming step, and the air pressure channel forming step is performed on the substrate. A mold forming step for forming a mold having a shape that matches the planned flow area for air pressure, an upper constituent material filling step for filling the mold with the upper constituent material, and curing the upper constituent material A mold release step for releasing the mold from the mold, and a first punching step for punching a part of the molded product that has been released, wherein the movable film forming step is performed by using an elastic material on the substrate. Includes an elastic material film forming process to form a predetermined layer The laminating step includes a first laminating step of laminating the structure formed by the pneumatic flow path forming step on the surface of the movable film scheduled layer formed by the elastic material film forming step, and the liquid The supply hole forming step includes a second punching step of punching a part of a region where the structure formed by the pneumatic flow path forming step and the movable film planned layer are laminated, and forming the lower structure The process includes a sacrificial layer forming process for forming a sacrificial layer on the substrate, and a flow path for patterning the lower constituent material in the liquid transport flow path forming region except for a portion corresponding to the through hole on the surface of the sacrificial layer. And a separation step of separating the substrate and the lower constituent material by removing the sacrificial layer, and the integration step includes a structure formed by the upper structure forming step, and the lower portion Structure formation A microfluidic transport characterized in that it includes a second laminating step in which the structure formed by the process is pasted in a state where the respective liquid transport channel planned region and the liquid transport channel forming region match. It is a manufacturing method of a structure.
本発明のマイクロ流体輸送構造体は、マイクロ流体、例えば単一細胞などの固形粒子を含む液体を輸送できる流路と、径寸法と深さ寸法の割合を示すアスペクト比が1.0以下の貫通孔とで構成されるので、マイクロ液体を所定の位置に精度よく滴下できるという効果がある。 The microfluidic transport structure of the present invention has a flow path capable of transporting a microfluid, for example, a liquid containing solid particles such as a single cell, and a penetration having an aspect ratio of 1.0 or less indicating the ratio of the diameter dimension to the depth dimension. Since it is comprised with a hole, there exists an effect that a micro liquid can be dripped at a predetermined position accurately.
以下に本発明の実施形態について詳細に説明する。図1は、マイクロ流体輸送構造体1の基本断面模式図である。この図には流路の一部に3個の貫通孔31が設けてあるが、一例にすぎず、用途により適宜変更できることは言うまでもない。 Hereinafter, embodiments of the present invention will be described in detail. FIG. 1 is a basic cross-sectional schematic diagram of a microfluidic transport structure 1. Although three through holes 31 are provided in a part of the flow path in this figure, it is only an example, and it is needless to say that it can be appropriately changed depending on the application.
本実施形態のマイクロ流体輸送構造体1は剛性の高い材料で構成された下部構造体3と上面部有してなる上部構造体2を接合した構造体である。下部構造体には所定の位置に溝32が設けられ、その下部構造体の溝の底部には、液体および細胞を滴下するための貫通孔31が複数個設けられている。上部構造体と下部構造体を接合することで下部構造体の溝の蓋となり、両端が解放された流路を構成することができ、形成した流路32の両端は液体の出入り口21である。弾性体で作られている出入り口21はホース先に取付けたタケノコ状の継手を差し込むことで液体の流入を行う。 The microfluidic transport structure 1 of this embodiment is a structure in which a lower structure 3 made of a highly rigid material and an upper structure 2 having an upper surface portion are joined. A groove 32 is provided at a predetermined position in the lower structure, and a plurality of through holes 31 for dropping liquid and cells are provided at the bottom of the groove of the lower structure. By joining the upper structure and the lower structure, it becomes a cover of the groove of the lower structure, and a flow path having both ends opened can be formed, and both ends of the formed flow path 32 are liquid inlets / outlets 21. The entrance / exit 21 made of an elastic body allows a liquid to flow in by inserting a bamboo shoot-like joint attached to the tip of the hose.
図2は、図1のマイクロ流体輸送構造体1の上部構造体2を部分的に変形した形態を示すものであり、この実施形態は、下部構造体3の貫通孔31の上部付近にあたる部分にバルブ機能を発現する隔壁24とその上部に空間23を配置した空圧用流路25を設けたものである。隔壁は一部または全部が弾性体で作られているため、可動膜として作用する。図2において、可動膜として機能する隔壁24の部分的領域は、貫通孔(円形孔)31に対し、その中心線上を中心とする円形としたものを例示として示すものであるが、この位置や範囲または形状等については適宜変更することができる。上部構造体に設けた空圧用流路には、片端に加圧空気の流入口22を設ける。この図には流路の一部に3個の貫通孔が設け、貫通孔の上部付近にバルブ機能を発現する可動膜と空間を配置した空圧用流路を設けた構造体であるが、一例にすぎず、用途により適宜変更できることは言うまでもない。 FIG. 2 shows a form in which the upper structure 2 of the microfluidic transport structure 1 of FIG. 1 is partially deformed. In this embodiment, a portion corresponding to the vicinity of the upper portion of the through hole 31 of the lower structure 3 is shown. A partition wall 24 that exhibits a valve function and an air pressure channel 25 having a space 23 disposed above the partition wall 24 are provided. Since the partition wall is partially or entirely made of an elastic body, it acts as a movable film. In FIG. 2, the partial region of the partition wall 24 functioning as a movable film is shown as an example of a circular shape centered on the center line with respect to the through hole (circular hole) 31. The range or shape can be changed as appropriate. The air flow path provided in the upper structure is provided with a pressurized air inlet 22 at one end. In this figure, there is a structure in which three through holes are provided in a part of the flow path, and a pneumatic film having a movable membrane and a space arranged near the upper part of the through hole is provided. Needless to say, it can be appropriately changed depending on the application.
図1と図2は、上部構造体の構成に違いがあるが、その他は同一構造であるため、はじめに共通となる部分について詳細に説明する。 Although FIG. 1 and FIG. 2 differ in the structure of an upper structure, since others are the same structures, the common part is demonstrated in detail first.
上部構造体2の弾性体は有機材料であり、具体的にはかかる弾性を有する有機材料はシリコーンエラストマー、PDMS(ポリジメチルシロキサン)、ポリウレタン、熱硬化性ポリエステル、シリコーンハイドロゲルなどが例示できる。液滴および細胞の動きを観察する場合には、透明材料であるPDMSが好適である。 The elastic body of the upper structure 2 is an organic material. Specifically, examples of the organic material having elasticity include silicone elastomer, PDMS (polydimethylsiloxane), polyurethane, thermosetting polyester, and silicone hydrogel. When observing the movement of droplets and cells, PDMS which is a transparent material is suitable.
下部構造体3は光硬化性樹脂で、光照射部分にパターンができるネガ型、感光していない部分にパターンができるポジ型の両方の光硬化性樹脂が使用でき、好ましくは、透明体で10μmオーダーの厚膜にも形成でき、上部にも多層で構造体を形成する性質を有するものである。具体的には かかる光硬化性樹脂は、エポキシ系の化学増感型で厚膜のネガレジスト、ポリイミド系レジスト、アクリル系レジスト、ノボラック系レジストなどのフォトレジストなどが例示できる。 The lower structure 3 is a photo-curing resin, and both a negative-type photo-curing resin capable of patterning on a light-irradiated portion and a positive-type photo-curing resin capable of patterning on an unexposed portion can be used. It can be formed on a thick film of the order, and has the property of forming a multilayer structure on the top. Specifically, examples of the photo-curable resin include epoxy-type chemically sensitized and thick-film negative resists, polyimide resists, acrylic resists, and novolak resists.
上部構造体と下部構造体を接合して作る流路の断面形状は矩形、三角形、台形、平行四辺形にしてもよい。流路の長さ、幅、高さは任意に決めることができ、これらの設計パラメータで単一細胞を流す際の流路抵抗が決まる。 The cross-sectional shape of the flow path formed by joining the upper structure and the lower structure may be a rectangle, a triangle, a trapezoid, or a parallelogram. The length, width, and height of the channel can be arbitrarily determined, and the channel resistance when a single cell flows is determined by these design parameters.
本実施形態のマイクロ流体輸送構造体の流路の寸法は流路に流すマイクロ流体に含まれる細胞などの固形粒子の種類によって設計するが、高さ5〜300μm、幅10〜1,000μmの範囲である。単一細胞をモノマーで被覆したものを含んだ溶液を流す場合には、単一細胞の寸法を考慮して高さは30 μm、幅は50 μmが好適である。細胞を効率よく流動させるためには、後述するノズルアレイの流路を各部の流路抵抗に基づき適切に設計する必要があり、ノズルから細胞を突出させるためには、ノズル部の流路抵抗はその他の流路の抵抗より低くする必要がある。ノズルを構成する貫通孔の流路抵抗は孔直径と孔部の下部構造体の肉厚で決まる。細胞を輸送する流路は細胞による閉塞を防ぐには大きくすることが望ましいが、一方では細胞の輸送の制御性を高めるためには、細胞の大きさに近く小さくすることが望ましく、モノマーで被覆した単一細胞の輸送には幅50 μm、高さ30 μm程度である。ノズルの貫通孔は、被覆した単一細胞を精度よく所定の位置に滴下するためには、直径を被覆細胞の大きさに適したサイズとしてデッドボリューム(輸送機能に関係のない空間)最小化することが良い。ノズルの流路抵抗をその他流路の流路抵抗より低くし、細胞を精度良く所定の位置に滴下するためには、ノズルの貫通孔のアスペクト比が1.0以下であり、孔の直径は、取扱う細胞にモノマーで被覆した粒子径よりわずかに大きいことが好適である。好ましくはアスペクト比が0.5で貫通孔部の直径を40μm、孔深さを20μmである。アスペクト比は1.0付近であれば、本実施形態の範囲内である。 The dimensions of the flow path of the microfluidic transport structure according to the present embodiment are designed according to the type of solid particles such as cells contained in the microfluid flowing in the flow path, but the range is 5 to 300 μm in height and 10 to 1,000 μm in width. It is. In the case of flowing a solution containing a single cell coated with a monomer, the height is preferably 30 μm and the width is preferably 50 μm in consideration of the size of the single cell. In order to allow cells to flow efficiently, it is necessary to design the flow path of the nozzle array, which will be described later, based on the flow resistance of each part, and in order to allow cells to protrude from the nozzle, the flow resistance of the nozzle part is It is necessary to make it lower than the resistance of other flow paths. The flow path resistance of the through holes constituting the nozzle is determined by the hole diameter and the thickness of the lower structure of the hole. The flow path for transporting cells is desirably large to prevent blockage by the cells, but on the other hand, in order to improve controllability of cell transport, it is desirable to make the flow path close to the size of the cells and coat with monomer. For transporting single cells, the width is about 50 μm and the height is about 30 μm. The nozzle's through-hole minimizes dead volume (space not related to the transport function) with a diameter suitable for the size of the coated cell in order to accurately drop the coated single cell at a predetermined position. That is good. In order to make the flow resistance of the nozzle lower than the flow resistance of the other flow paths and drop the cells to a predetermined position with high precision, the aspect ratio of the through hole of the nozzle is 1.0 or less, and the diameter of the hole is It is preferable that the particle size of the cell to be handled is slightly larger than the particle size coated with the monomer. Preferably, the aspect ratio is 0.5, the diameter of the through hole is 40 μm, and the hole depth is 20 μm. If the aspect ratio is around 1.0, it is within the range of the present embodiment.
上部構造体の一部に設けたバルブ機能を有する構造を図2で説明する。下部構造体に設けた貫通孔31の上部付近の上部構造体の底面部分の隔壁24付近に空間23を設け、その空間に加圧空気を送り込むための空圧用流路25と空気の入口22を設ける。上部構造体に設けた空間23の底部の隔壁24は弾性体であり可動膜として機能し肉厚は所定の加圧空気によってバルブ機能を発現できるように変形しうる厚さである。可動膜24の厚さは上部構造体の空圧用流路の部分の厚さと同等でも良いが、好適にはより薄くして、可動応答性を高め、低い加圧で所定の膨らみが得られる厚さが好ましい。入口22から空気によって加圧した際に可動膜24は壁によって支えられた他の部分より変形するため、貫通孔に対するバルブとして機能させることができる。上部構造体の弾性率は構造体としての構造保持強度、バルブ動作のための膜としての動作性能によって、その用途に応じて適切に選定する。細胞を滴下する場合には、流路4の中を液体と共に細胞を貫通孔に向かって移動させるには、細胞を含んだ液体は流れている必要があるため、バルブは完全に閉状態ではなく、細胞を通さない程度に開口を維持し、液体が貫通孔31を通し外部へ流れるように可動膜の膨らみを制御する。バルブとして動作させたときの可動膜24の変形の最下点は下部構造体の貫通孔31の中心線と一致していても良いが、好適には細胞の滴下をせき止め、液体のみが流れる程度の開口になったときに可動膜24の膨らみが貫通孔の上部と接触するように、可動膜24の膨らみの最下点が貫通孔中心よりずれているほうが、可動膜24の変形によって膜が下部構造体にあたるため、制御しやすい。 A structure having a valve function provided in a part of the upper structure will be described with reference to FIG. A space 23 is provided in the vicinity of the partition wall 24 in the bottom portion of the upper structure near the upper portion of the through hole 31 provided in the lower structure, and an air pressure channel 25 and an air inlet 22 for sending pressurized air into the space are provided. Provide. The partition wall 24 at the bottom of the space 23 provided in the upper structure is an elastic body, functions as a movable film, and has a thickness that can be deformed so that a valve function can be exhibited by predetermined pressurized air. The thickness of the movable film 24 may be the same as the thickness of the pneumatic flow path portion of the upper structure, but it is preferably made thinner to increase the movable response and to obtain a predetermined bulge with low pressure. Is preferable. Since the movable film 24 is deformed from other portions supported by the wall when pressurized with air from the inlet 22, it can function as a valve for the through hole. The elastic modulus of the upper structure is appropriately selected according to the application depending on the structure holding strength as the structure and the operation performance as the film for the valve operation. When dripping cells, in order to move the cells along the flow path 4 along with the liquid toward the through hole, the liquid containing the cells needs to flow, so the valve is not completely closed. The opening of the movable membrane is controlled so as not to pass the cells, and the swelling of the movable membrane is controlled so that the liquid flows through the through hole 31 to the outside. The lowest point of deformation of the movable film 24 when operated as a valve may coincide with the center line of the through-hole 31 of the lower structure, but preferably prevents the cell from dripping and allows only liquid to flow. The lowermost point of the bulge of the movable film 24 is displaced from the center of the through hole so that the bulge of the movable film 24 comes into contact with the upper part of the through hole. Because it hits the lower structure, it is easy to control.
本実施形態のマイクロ流体輸送構造体を使った単一細胞プリンタの動作を詳細に説明する。 The operation of the single cell printer using the microfluidic transport structure of this embodiment will be described in detail.
図3は、マイクロ流体輸送構造体を使った単一細胞プリンタの被覆した単一細胞の突出動作の概念図である。単一細胞プリンタは単一細胞をモノマーで被覆する構造部と被覆した単一細胞を所定の時間にノズル部に移動させるためのバルブ機能を持った可動膜24を備えたバルブ部と細胞一個ずつを突出するための貫通孔31を備えたノズル部で構成した単位構造をアレイ状に配置したノズルアレイで構成する。ただし、図3には、単一細胞をモノマーで被覆する構造部は図示していない。 FIG. 3 is a conceptual diagram of a protruding operation of a single cell covered by a single cell printer using a microfluidic transport structure. The single cell printer has a structure part for coating a single cell with a monomer, a valve part having a movable membrane 24 having a valve function for moving the coated single cell to a nozzle part at a predetermined time, and one cell at a time. A unit structure constituted by a nozzle portion provided with a through-hole 31 for projecting is formed by a nozzle array arranged in an array. However, FIG. 3 does not show a structure for coating a single cell with a monomer.
まず単一細胞と光硬化性モノマーを混ぜた液体を流路に流し込み単一細胞を被覆する。次に図中のバルブ閉状態の図に示すように、被覆細胞は図中の左端に示した白抜き矢印のように上部構造体の可動膜24の膨張によって、細胞がトラップされる程度に閉塞したバルブまで液体の流れに従って移動し、細胞がトラップされる。図中には、白抜きの矢印で液体の流れを示している。その後、所定のタイミングで空間23の圧力が低下させて、可動膜24が元の位置にもどることでバルブとして開口し流路に設けた貫通孔31から外部へ被覆細胞が突出する。図示のように、可動膜24の中心は、貫通孔31の中心線から偏った位置に設けられており、その結果として、空間23の圧力を高くして、流路内に(貫通孔31へ向かって)膨出させた状態(バルブ『閉』状態)では、可動膜24の一部が貫通孔31の一部端縁に当接した状態においても、反対側の端縁との間に所定範囲のクリアランスを形成させることができる。これにより、バルブが『閉』状態であっても液体のみを貫通孔31から下方へ流下させることができる。なお、可動膜24の中心を貫通孔31の中心線上に設ける場合には、空間23の圧力を制御するものとし、貫通孔31の端縁との間に所定のクリアランスを形成させるように構成してもよい。 First, a liquid in which a single cell and a photocurable monomer are mixed is poured into the channel to cover the single cell. Next, as shown in the valve closed state in the figure, the coated cells are blocked to the extent that the cells are trapped by the expansion of the movable membrane 24 of the upper structure as indicated by the white arrow shown at the left end in the figure. It moves according to the flow of the liquid to the valve, and the cell is trapped. In the figure, the flow of liquid is indicated by white arrows. Thereafter, the pressure in the space 23 is reduced at a predetermined timing, and the movable membrane 24 returns to its original position, so that the coated cells protrude outside through the through holes 31 that are opened as valves and provided in the flow paths. As shown in the drawing, the center of the movable film 24 is provided at a position deviated from the center line of the through hole 31. As a result, the pressure of the space 23 is increased to enter the flow path (to the through hole 31). In a bulged state (valve “closed” state), even when a part of the movable film 24 is in contact with a part of the edge of the through hole 31, a predetermined gap is formed between the edge of the opposite side. A range of clearances can be formed. Thereby, even if the valve is in the “closed” state, only the liquid can flow downward from the through hole 31. When the center of the movable film 24 is provided on the center line of the through hole 31, the pressure of the space 23 is controlled, and a predetermined clearance is formed between the edge of the through hole 31. May be.
次に、ノズルアレイの流路の設計方法について詳細に説明する。図4は本実施形態のマイクロ流体輸送構造体の貫通孔31を4個直列にバイパス流路5で連結し1セットを構成し、それを4セット並列に接続しアレイ状に配置し、その一端6を液体の入口、他端7を出口としたノズルアレイである。液体は入口6から紙面の下方に向かって流れる。図5はこのアレイの斜視図である。図4の平面図上の破線囲った部分は、図6の流路モデルを等価回路に置き換えた範囲である。ただし、出口7に至る流路は省略した。図4と図5のアレイ構造は、一例にすぎず、用途により適宜変更できることは言うまでもない。 Next, a method for designing the flow path of the nozzle array will be described in detail. In FIG. 4, four through-holes 31 of the microfluidic transport structure of this embodiment are connected in series by a bypass channel 5 to form one set, and four sets are connected in parallel and arranged in an array. Nozzle array 6 has a liquid inlet and the other end 7 has an outlet. The liquid flows from the inlet 6 toward the lower side of the paper surface. FIG. 5 is a perspective view of this array. A portion surrounded by a broken line in the plan view of FIG. 4 is a range in which the flow channel model of FIG. 6 is replaced with an equivalent circuit. However, the flow path leading to the outlet 7 was omitted. The array structures in FIGS. 4 and 5 are merely examples, and it goes without saying that they can be changed as appropriate according to the application.
微小流路内の流量Q [m3/s]は数1にて求められる。 The flow rate Q [m 3 / s] in the microchannel is obtained by Equation 1.
図6はノズルアレイの設計方法を説明するために用いた流路モデル等価回路平面図である。図6の等価回路流路モデルは、図4の平面図上の破線囲った部分8の等価回路である。図中のRは流路抵抗であり、それぞれに付記されている添え字の数字は流路の番号を示している。バルブを形成するダイアフラムに圧力をかけ、閉塞した状態のため流路が細胞直径未満の直径となった状態では、バルブを連結したバイパス流路5より出口7の方向への流速が早くなるように貫通孔31に至る枝分かれした流路を設計する。細胞を捕獲する手法は、流量比を制御してトラップする方法を採用した。流量比は、流路寸法のみによって定まる流路抵抗の比から設計する。ノズルの貫通孔への流量 は出口に向かう流量より大きくなるように、言い換えるとノズルの孔への流体抵抗は 出口への流体抵抗より小さくなるように設計する。 FIG. 6 is a plan view of a flow path model equivalent circuit used for explaining the nozzle array design method. The equivalent circuit channel model of FIG. 6 is an equivalent circuit of a portion 8 surrounded by a broken line on the plan view of FIG. In the figure, R is the channel resistance, and the subscript numerals attached to each indicate the channel number. When pressure is applied to the diaphragm forming the valve and the channel is closed due to the blockage, the flow rate in the direction of the outlet 7 is faster than the bypass channel 5 connected to the valve. A branched flow path reaching the through hole 31 is designed. As a method of capturing cells, a method of trapping by controlling the flow rate ratio was adopted. The flow rate ratio is designed from the ratio of flow path resistance determined only by the flow path dimensions. The flow rate to the nozzle through-hole is designed to be larger than the flow rate toward the outlet, in other words, the fluid resistance to the nozzle hole is smaller than the fluid resistance to the outlet.
次に同一の流路モデルを等価回路に置き換えて計算した。図6中に示したRは流路抵抗で、流路モデルの等価回路の通常時の流路内抵抗である。また、細胞がトラップされた場合の等価回路でRt1=Rt2=Rt3=0になると仮定している。図7はノズル付近の流路等価回路である。図中の白抜き矢印は流量である。ノズルの孔へ向かう流量Qt4は、バイパス流路の流量QBypassより大きくなるようにするため、ノズル孔へ向かう流路抵抗Rt4は、バイパス流路抵抗RBypassより小さくなるように流路設計を行う。 Next, the same flow path model was replaced with an equivalent circuit for calculation. R shown in FIG. 6 is a flow path resistance, which is a normal resistance in the flow path of the equivalent circuit of the flow path model. In addition, it is assumed that R t1 = R t2 = R t3 = 0 in an equivalent circuit when cells are trapped. FIG. 7 is a flow path equivalent circuit near the nozzle. The white arrow in the figure is the flow rate. Design the flow path so that the flow resistance R t4 going to the nozzle hole is smaller than the bypass flow resistance R Bypass so that the flow quantity Q t4 going to the nozzle hole is larger than the flow quantity Q Bypass of the bypass flow path. I do.
このことから、Lとrに添え字を付け、各流路の流路長、水力半径とすると、数5のように書き換えられる。
図8はバイパス流路からバルブの貫通孔31までの抵抗Rt4を細分化した等価回路であり、全体の流路抵抗は数6で表すことができる。最終的には数7を満たすように流路設計を行う。また、流路の長さと半径で表すと数8のように表される。 FIG. 8 is an equivalent circuit obtained by subdividing the resistance Rt4 from the bypass flow path to the through hole 31 of the valve, and the entire flow path resistance can be expressed by Equation 6. Finally, the flow path is designed to satisfy Equation 7. In addition, the flow path length and radius are expressed as shown in Equation 8.
図9はノズルアレイの作製工程を示す模式図である。図9に基づいて工程を詳細に説明する。なお、以下の実施形態は本発明を具体化した一例にすぎず、本発明の主旨を変更しない範囲で、本実施形態を適宜変更できることは言うまでもないことである。 FIG. 9 is a schematic view showing a nozzle array manufacturing process. The process will be described in detail with reference to FIG. In addition, the following embodiment is only an example which actualized this invention, and it cannot be overemphasized that this embodiment can be changed suitably in the range which does not change the main point of this invention.
工程1/上部構造体の作製工程:本実施形態のマイクロ流体輸送構造体の上部構造体2を作成するための基板10の表面をアセトンで洗浄し、続けてイソプロパノール(IPA)で置換・リンスする。基板は平坦で、工程中に変形・歪が起きなければどのような材料でも使うことができる。具体的にはかかる基板はSiウェハー、ガラスウェハー、石英ウェハー、SiC(シリコンカーバイド)ウェハー、サファイアウェハー、化合物半導体ウェハーとしてGaP(リン化ガリウム)ウェハー、GaAs(ヒ化ガリウム)ウェハー、InP(リン化インジウム)ウェハー、GaN(窒化ガリウム)ウェハーが使用できる。また、連続生産するためにフィルム基板を使うこともでき、具体的にはポリイミドやPETなどの耐熱性フィルムが使用できる。更に基板として、表面に金属や有機材料の薄膜を有したものも同様に使用できる。 Step 1 / Upper Structure Manufacturing Process: The surface of the substrate 10 for forming the upper structure 2 of the microfluidic transport structure according to the present embodiment is washed with acetone, and subsequently replaced and rinsed with isopropanol (IPA). . The substrate is flat and any material can be used as long as no deformation or distortion occurs during the process. Specifically, such substrates include Si wafers, glass wafers, quartz wafers, SiC (silicon carbide) wafers, sapphire wafers, compound semiconductor wafers such as GaP (gallium phosphide) wafers, GaAs (gallium arsenide) wafers, and InP (phosphorization). Indium) wafers and GaN (gallium nitride) wafers can be used. Further, a film substrate can be used for continuous production, and specifically, a heat-resistant film such as polyimide or PET can be used. Further, a substrate having a metal or organic material thin film on its surface can be used as well.
つぎにフォトレジストをスピンコート法などの手法で基板表面に均一な膜厚に塗布する。その後、半導体製造工程で用いるマスクに所定の流路や構造物を形成し、フォトリソグラフィによりフォトレジスト膜を必要な形状にパターニングし、上部構造体のモールド型12とする。フォトレジスト膜をフォトリソグラフィによってパターニングする以外に機械加工によってモールド型を作製することもできる。 Next, a photoresist is applied to the substrate surface with a uniform film thickness by a technique such as spin coating. Thereafter, predetermined flow paths and structures are formed on a mask used in the semiconductor manufacturing process, and a photoresist film is patterned into a necessary shape by photolithography to form a mold 12 for the upper structure. In addition to patterning the photoresist film by photolithography, a mold can be produced by machining.
次に、上部構造体を作るため、有機材料の主剤と硬化剤を所定の割合で計量し、真空撹拌脱泡ミキサーによって液中の気泡を除去しながら撹拌混合する。主剤と硬化剤の比率は架橋の割合を変えるために選択することができる。撹拌した有機材料を流路モールド型に流し込み、更に真空チャンバに入れ樹脂材料中の気泡を除去する。その後、有機材料の硬化条件に合わせた温度と時間で硬化する。硬化後、上部構造体をモールド型から取り外し、必要に応じ入口に相当する所定の位置にパンチを用いて所定の穴をあけ、上部構造体の一部品2aを完成する。 Next, in order to make an upper structure, the main component and the curing agent of the organic material are weighed at a predetermined ratio, and stirred and mixed while removing bubbles in the liquid with a vacuum stirring and defoaming mixer. The ratio of base agent to curing agent can be selected to change the rate of crosslinking. The stirred organic material is poured into a flow path mold, and further put into a vacuum chamber to remove bubbles in the resin material. Then, it hardens | cures at the temperature and time matched with the hardening conditions of the organic material. After curing, the upper structure is removed from the mold and, if necessary, a predetermined hole is made at a predetermined position corresponding to the inlet using a punch, thereby completing one part 2a of the upper structure.
工程2/バルブの製作工程:本実施形態の工程2は空圧用流路とバルブを設ける上部構造体を作製する工程である。本実施形態の上部構造体にバルブが無い場合はこの工程は省略される。工程1の製作時と同様に同一の有機材料の主剤と硬化剤を所定の割合で真空脱泡しながら混合し、その後、スピンコーターで基板10上にコートする。ここで用いる基板は上部構造体に使う有機材料に対して容易に離型できるものを用い、好適にはSiウェハー基板を用いる。その後、所定の硬化条件で硬化させ膜2bを得る。図10は一例として有機材料としてPDMSを用いたときにスピンコーターの60秒印加時で、回転数を変えた場合のPDMS膜厚変化である。膜厚を変えることで可動性能が変化し、バルブ動作の圧力や応答性を変えることができる。 Process 2 / Valve Manufacturing Process: Process 2 of the present embodiment is a process of manufacturing an upper structure provided with a pneumatic flow path and a valve. This step is omitted when the upper structure of the present embodiment has no valve. As in the production of step 1, the same organic material main component and curing agent are mixed at a predetermined ratio while vacuum degassing, and then coated on the substrate 10 with a spin coater. The substrate used here is one that can be easily released from the organic material used for the upper structure, and preferably a Si wafer substrate. Thereafter, the film 2b is obtained by curing under predetermined curing conditions. FIG. 10 shows, as an example, changes in the PDMS film thickness when the rotational speed is changed when a spin coater is applied for 60 seconds when PDMS is used as the organic material. Moving performance changes by changing the film thickness, and the pressure and responsiveness of valve operation can be changed.
次に、工程1で作製した上部構造体の一部品2aと基板上にスピンコートにより成膜し、その後、硬化した膜2bをプラズマ処理装置内に置き空気雰囲気中でプラズマ処理する。上部構造体はシリコーン系樹脂材料を使用でき、大気圧プラズマ、真空紫外光照射装置でも表面が励起できる。その後、両構造体を貼り合わせ、加熱することで接合する。その後、基板を機械的に取り外すことで空圧用流路と可動膜を備えた上部構造体2ができる。貼り合わせは、接着剤などの他の接合方法を適宜使用することもできる。 Next, a film is formed by spin coating on the part 2a and the substrate of the upper structure produced in step 1, and then the cured film 2b is placed in a plasma processing apparatus and subjected to plasma processing in an air atmosphere. A silicone resin material can be used for the upper structure, and the surface can be excited even by an atmospheric pressure plasma or vacuum ultraviolet light irradiation apparatus. Then, both structures are bonded together and joined by heating. Then, the upper structure 2 provided with the air flow path and the movable film is obtained by mechanically removing the substrate. For the bonding, other bonding methods such as an adhesive can be used as appropriate.
工程3/下部構造体の作製工程:上部構造体と同様に下部構造体の製作時には同様の基板10を用いる。基板から製作後の下部構造体を何らの機械的ストレスを与えることなく離型するため、あらかじめ基板の上に犠牲層11を形成する。基板に直接下部構造体を作製して機械的に引き剥がすと20μm程度の厚さしかない底部は損傷してしまうため、底部は機械的な強度が必要となり肉厚の限界がある。本実施形態では機械的ストレスを与えることなく下部構造体を基板から分離するため、溶剤に溶ける犠牲層をあらかじめ基板上に形成する。溶剤は下部構造体に化学的に反応することなく犠牲層のみを溶かすものである。本実施形態の下部構造体の有機材料に対応した、かかる犠牲層の材料の選択において、感光性樹脂、ポリビニルアルコール、でんぷん、デキストリン、アミロース、ゼラチン、寒天、カラギーナン、ペクチン又はローガストビーンガムから選択される一以上の有機材料を用いることができる。かかる犠牲層としては、アルカリ溶液に溶解するPolyaliphatic imide copolymerやPolydimethylglutarimideからなるリフトオフレジストも利用できる。かかる犠牲層は、これらの溶液をプラズマ処理した基板表面にスピンコート法で成膜することができる。かかる犠牲層は、基板上に製膜した二酸化珪素、スピン・オン・ガラス、金属(アルミニウムやクロム、金、銀など)の薄膜も利用することもできる。このときの製膜方法は、薄膜の材料に応じて、スピンコーターやスリットコーター、吹き付け等による塗布、又は物理蒸着(PVD)や化学蒸着(CVD)による蒸着などの従来公知の手法によって行うことができる。薄膜の製膜厚さは、作製する流路形状により適宜設定される。 Step 3 / Process for Producing Lower Structure: Similar to the upper structure, the same substrate 10 is used when producing the lower structure. In order to release the fabricated lower structure from the substrate without applying any mechanical stress, the sacrificial layer 11 is formed on the substrate in advance. If the lower structure is fabricated directly on the substrate and mechanically peeled off, the bottom having a thickness of only about 20 μm is damaged, so that the bottom needs mechanical strength and has a limit on the thickness. In this embodiment, in order to separate the lower structure from the substrate without applying mechanical stress, a sacrificial layer that dissolves in a solvent is formed on the substrate in advance. The solvent dissolves only the sacrificial layer without chemically reacting with the lower structure. In the selection of the material of the sacrificial layer corresponding to the organic material of the substructure of the present embodiment, selected from photosensitive resin, polyvinyl alcohol, starch, dextrin, amylose, gelatin, agar, carrageenan, pectin, or roast bean gum. One or more organic materials can be used. As such a sacrificial layer, a lift-off resist made of polyaliphatic imide copolymer or polydimethylglutarimide which can be dissolved in an alkaline solution can also be used. Such a sacrificial layer can be formed by spin coating on a substrate surface obtained by plasma treatment of these solutions. As the sacrificial layer, a thin film of silicon dioxide, spin-on-glass, or metal (aluminum, chromium, gold, silver, etc.) formed on the substrate can also be used. The film forming method at this time may be performed by a conventionally known method such as coating by spin coater, slit coater, spraying or the like, or vapor deposition by physical vapor deposition (PVD) or chemical vapor deposition (CVD) depending on the material of the thin film. it can. The film thickness of the thin film is appropriately set depending on the shape of the flow path to be produced.
成膜した犠牲層11上にフォトレジストをスピンコート法で塗布し、貫通孔形状をパターニングしたマスクによりフォトリソグラフィによりフォトレジスト層に貫通孔を形成する。次に、この層の上に同様の工程を繰り返し、流路形状をパターニングしたマスクによりフォトリソグラフィによりフォトレジスト層に流路の底部と壁を形成する。流路の深さや構造はフォトレジストの塗布条件と回数を変えることでコントロールできる。 A photoresist is applied onto the deposited sacrificial layer 11 by a spin coat method, and through holes are formed in the photoresist layer by photolithography using a mask having a pattern of through holes. Next, the same process is repeated on this layer, and the bottom and walls of the flow path are formed in the photoresist layer by photolithography using a mask having a patterned flow path shape. The depth and structure of the flow path can be controlled by changing the photoresist application conditions and the number of times.
工程4/上部構造体と下部構造体の接合:作製した上部構造体2および下部構造体3をプラズマ処理装置に置きN2プラズマ処理を施す。プラズマ処理装置は直流、交流、高周波の 3 種類の放電形態でも同様の結果が得られる。また、上部構造体の材料としてPDMSを用いる場合には、その表面処理には、アミノ基で修飾するシランカップリング剤を利用しても同様の効果が得られる。光硬化性の材料を変えた場合は、アミノ基で修飾するシランカップリング剤を利用することで、シリコーン系樹脂材料と強固な接合が得られる。その後、実体顕微鏡を用いて部品の接合位置をアライメントし、上部構造体と下部構造体を貼り合わせた後、加熱することで接合する。加熱は時間を短縮するために使用されるが、材料が軟化しない温度範囲である常温〜300℃にて接合が実現できる。かかる上部構造体と下部構造体の接合方法は、材料の選定によって異なることは言うまでもないことである。 Step 4: Joining of the upper structure and the lower structure: The prepared upper structure 2 and lower structure 3 are placed in a plasma processing apparatus and subjected to N 2 plasma treatment. Similar results can be obtained with the plasma processing equipment in three types of discharge: direct current, alternating current, and high frequency. In addition, when PDMS is used as the material of the upper structure, the same effect can be obtained even if a silane coupling agent modified with an amino group is used for the surface treatment. When the photo-curable material is changed, a strong bonding with the silicone resin material can be obtained by using a silane coupling agent that is modified with an amino group. Thereafter, the joining positions of the components are aligned using a stereomicroscope, the upper structure and the lower structure are bonded together, and then joined by heating. Heating is used to shorten the time, but bonding can be realized at room temperature to 300 ° C., which is a temperature range in which the material does not soften. It goes without saying that the method of joining the upper structure and the lower structure differs depending on the selection of the material.
工程5/基板の取り外し: 犠牲層11の溶剤に浸漬し、犠牲層を溶解することで基板から接合体を分離しマイクロ流体輸送構造体1を得る。前述の犠牲層を、有機材料又を用いて形成した場合は、この剥離工程において、再溶解可能な温度とした溶媒を用いて溶解させて基板から剥離してマイクロ流体輸送構造体1を得る。本実施例以外では犠牲層の材料に応じて、溶媒を選択して溶解して構造を基板から剥離できる。また、超音波や溶液撹拌を行うことで、溶液の接触量を増やすことができ犠牲層の溶解を促進でき、短時間で剥離することができる。 Step 5 / Removal of Substrate: The microfluid transport structure 1 is obtained by immersing in the solvent of the sacrificial layer 11 and dissolving the sacrificial layer to separate the joined body from the substrate. When the above-described sacrificial layer is formed using an organic material, the microfluidic transport structure 1 is obtained by dissolving using a solvent having a re-dissolvable temperature and peeling from the substrate in this peeling step. Except for this embodiment, the solvent can be selected and dissolved in accordance with the material of the sacrificial layer to peel the structure from the substrate. In addition, by performing ultrasonic waves or solution agitation, the contact amount of the solution can be increased, dissolution of the sacrificial layer can be promoted, and peeling can be performed in a short time.
上記マイクロ流体輸送構造体の製造方法に関しても本発明の範囲内である。 The manufacturing method of the microfluidic transport structure is also within the scope of the present invention.
以下、本発明の製造方法による効果を検証するための実験例を説明する。 Hereinafter, experimental examples for verifying the effects of the manufacturing method of the present invention will be described.
実験で作製したノズルアレイの設計値を表1のように設定した。数7の右辺を計算した結果、0.55となり、数7を満たす設計を行うことができた。
本実施形態の製造方法に基づいて作製したノズルアレイの作製条件を工程ごとに説明する。 The manufacturing conditions of the nozzle array manufactured based on the manufacturing method of this embodiment will be described for each process.
工程1/上部構造体の作製工程:基板として用いるSiウェハー(3インチ)表面をアセトンで洗浄し、続けてイソプロパノール(IPA)で置換・リンスした。つぎにフォトレジストSU-8 3050をスピンコート法で基板表面に均一な膜厚に塗布した。その後、フォトマスクに所定の流路を形成し、フォトリソグラフィによりフォトレジスト膜を流路形状にエッチングし、流路のモールド型を作製した。表2は詳細なプロセス条件である。
次に、上部構造体の材料としてPDMS(東レダウゴーニング社製 Silpot 184)を使い、主剤と硬化剤を10:1の割合で計量し、真空撹拌脱泡ミキサーによって液中の気泡を除去しながら撹拌混合した。撹拌後PDMSを流路モールド型に流し込み、更に真空チャンバに入れPDMS中の気泡を除去した。その後、常温にて24時間静置して硬化させる。硬化後PDMSを流路のモールド型から取り外し、入口に相当する所定の位置にパンチを用いて直径0.5 mmの穴をあけた。 Next, PDMS (Silpot 184, manufactured by Toray Dow Goning Co., Ltd.) is used as the material of the upper structure, the main agent and the curing agent are weighed at a ratio of 10: 1, and bubbles in the liquid are removed by a vacuum stirring deaerator mixer. While stirring, the mixture was mixed. After stirring, PDMS was poured into a flow path mold, and further put in a vacuum chamber to remove bubbles in PDMS. Thereafter, it is allowed to stand at room temperature for 24 hours to be cured. After curing, the PDMS was removed from the mold of the flow path, and a hole with a diameter of 0.5 mm was formed using a punch at a predetermined position corresponding to the inlet.
工程2/バルブの製作工程:工程1の製作時と同様にPDMSの主剤と硬化剤を10:1の割合で真空脱泡しながら混合し、その後、スピンコーターでSiウェハー上にPDMSをコートする。スピンコーターの動作条件は、slope(5s)→500rpm(20s)→slope(5s)→3000rpm(60s)→slope(10s))とした。その後、ホットプレートにて80℃、40 min加熱し硬化させた。 Step 2 / Manufacturing process of the valve: As in the manufacture of Step 1, the main component of PDMS and the curing agent are mixed at a ratio of 10: 1 while vacuum degassing, and then PDMS is coated on the Si wafer with a spin coater. . The operating condition of the spin coater was set to slope (5 s) → 500 rpm (20 s) → slope (5 s) → 3000 rpm (60 s) → slope (10 s)). Thereafter, it was cured by heating at 80 ° C. for 40 min on a hot plate.
Siウェハー上にPDMS膜に工程1で作製した部品を接合する。これらをプラズマ処理装置内に配置して、酸素を含む空気のプラズマにて45秒間処理して表面を活性化する。その後、両者を貼り合わせ、ホットプレートにて80℃、15分加熱することで接合した。 The parts produced in step 1 are joined to the PDMS film on the Si wafer. These are placed in a plasma processing apparatus and treated with an air plasma containing oxygen for 45 seconds to activate the surface. Then, both were bonded together and joined by heating at 80 ° C. for 15 minutes on a hot plate.
工程3/下部構造体の製作工程:犠牲層の材料にはデキストラン(和光純薬工業社製Dextran 分子量60,000)を選択し、これを純水中に10 w/v%の割合で混合し、デキストラン水溶液を調製した。本溶液をプラズマ処理したシリコンウェハー表面にスピンコート法で塗布した。 Step 3 / Substructure manufacturing step: Dextran (Dextran molecular weight 60,000 manufactured by Wako Pure Chemical Industries, Ltd.) is selected as the material for the sacrificial layer, and this is mixed in pure water at a rate of 10 w / v%. A dextran aqueous solution was prepared. This solution was applied to the surface of a silicon wafer subjected to plasma treatment by a spin coat method.
成膜したデキストラン膜の上にフォトレジスト(SU-8 3050)をスピンコート法で塗布し、貫通孔と流路形状をそれぞれパターニングしたマスクによりフォトリソグラフィにより貫通孔と流路形状を形成した。表3はこのフォトリソグラフィプロセス条件である。
工程4/上部構造体と下部構造体の接合:上部構造体のPDMS可動膜にプラズマ処理装置(株式会社真空デバイス PIB-20B)にて、N2プラズマ処理(ガス流量10 sccm、雰囲気圧50 Pa、電流値20 mA、処理時間2 min30 s)を施した。その後、実体顕微鏡を用いて上部構造体と下部構造体の接合位置をアライメントし、貼り合わせた後、ホットプレートにて120℃、15分間加熱することで接合した。加熱は時間を短縮するために使用されるが、材料が軟化しない温度範囲である常温〜300℃にて接合が実現できる。 Step 4 / junction of the upper structure and the lower structure: the PDMS movable membrane of the upper structure by a plasma processing apparatus (manufactured by Vacuum Device PIB-20B), N 2 plasma treatment (gas flow 10 sccm, the ambient pressure 50 Pa , Current value 20 mA, treatment time 2 min30 s). Thereafter, the joining positions of the upper structure and the lower structure were aligned using a stereomicroscope and bonded together, and then joined by heating at 120 ° C. for 15 minutes on a hot plate. Heating is used to shorten the time, but bonding can be realized at room temperature to 300 ° C., which is a temperature range in which the material does not soften.
工程5/基板の取り外し:50℃の純水中に浸漬し、犠牲層であるデキストランを溶解して、シリコン基板からマイクロ流体輸送構造体デバイスを分離した。 Step 5 / Removal of Substrate: The microfluidic transport structure device was separated from the silicon substrate by immersing in pure water at 50 ° C. to dissolve the sacrificial layer of dextran.
以上のように製造方法の実施形態によってマイクロ流体輸送構造体を製造することができる。 As described above, the microfluidic transport structure can be manufactured by the embodiment of the manufacturing method.
図11は、実施例で作製したノズルアレイを底部から倒立顕微鏡(株式会社ニコン、ECLIPSE Ti)で観察した像である。観察像には、流体を流すための『細胞用流路』と貫通孔となっている『開口』およびバルブ機能を発現するための空圧用流路が形成されていることが見える。上部構造体(SU-8層)と下部構造体(PDMS層)接合面のアライメントのズレは5μm以内に収まった。このことから、可動膜を所定の貫通孔上部に設置できていて、可動膜はバルブ機能を発現するように変形させるのに必要な精度であった。 FIG. 11 is an image obtained by observing the nozzle array produced in the example from the bottom with an inverted microscope (Nikon Corporation, ECLIPSE Ti). In the observed image, it can be seen that a “cell channel” for flowing a fluid, an “opening” serving as a through hole, and a pneumatic channel for expressing a valve function are formed. The misalignment of the upper structure (SU-8 layer) and lower structure (PDMS layer) interface was within 5 μm. From this, the movable film could be installed on the upper part of the predetermined through hole, and the movable film had the accuracy necessary to be deformed so as to exhibit the valve function.
図12は図11のA-A’断面でカットし、観察した顕微鏡像である。空圧流路部分の流路高さは51.4±0.4μm(n=4)である。また、細胞捕獲用流路の開口部(SU-8 1st)の高さは18.4±0.4μm(n=4)、流路部(SU-8 2nd)の高さが27.4±0.5μm(n=4)であった。ノズルの貫通孔の開口径は39.0±1.4μm(n=16)で、そのアスペクト比は0.46程度であった。ここでのn数は、測定した数を表す。 FIG. 12 is a microscopic image observed by cutting along the A-A ′ cross section of FIG. 11. The flow path height of the pneumatic flow path portion is 51.4 ± 0.4 μm (n = 4). In addition, the height of the opening (SU-8 1st) of the cell capture channel is 18.4 ± 0.4 μm (n = 4), and the height of the channel (SU-8 2nd) is 27.4 ±. It was 0.5 μm (n = 4). The opening diameter of the nozzle through-hole was 39.0 ± 1.4 μm (n = 16), and the aspect ratio was about 0.46. The n number here represents the measured number.
細胞捕獲時のPDMS製バルブ部分はダイアフラム構造となっており、空圧を変化させることで操作できる。ダイアフラム構造を作っているPDMS製の上部構造体の膜厚を変えたデバイスを用意しコンプレッサでゲージ圧190 kPaまでの空圧を印加した。膜厚を3条件で変化させたの各マイクロ流体輸送構造体において190 kPaまでの空圧印加を行うと、バルブの動作を確認できた。実験後のバルブの損傷は見られなかった。この際、バルブは計算上空圧印加により最大20μm程度の変形しており、細胞を捕獲できる変形である。空圧の印加は、真空圧から破損しないゲージ圧300kPaまで印加して、バルブを変形することができる。 The PDMS valve part at the time of cell capture has a diaphragm structure and can be operated by changing the air pressure. A device in which the film thickness of the PDMS superstructure forming the diaphragm structure was changed was prepared, and an air pressure up to a gauge pressure of 190 kPa was applied with a compressor. When air pressure was applied up to 190 kPa in each microfluidic transport structure with the film thickness changed under three conditions, the operation of the valve could be confirmed. No damage to the valve was observed after the experiment. At this time, the valve is deformed to a maximum of about 20 μm by calculation by applying air pressure, and is a deformation that can capture cells. The air pressure can be applied from a vacuum pressure to a gauge pressure of 300 kPa, which is not damaged, and the valve can be deformed.
図13はPDMS製可動膜厚が17.3μmのバルブアレイで、空圧印加前後を比較した顕微鏡像である。PDMSで作製した空圧流路が変形し、拡大しているが、30秒間程度の空圧印加に問題なく耐えた。 FIG. 13 is a microscopic image comparing a before and after application of air pressure in a valve array having a PDMS movable film thickness of 17.3 μm. Although the pneumatic flow path produced by PDMS was deformed and expanded, it withstood air pressure for about 30 seconds without any problem.
1 マイクロ流体輸送構造体
2 上部構造体
2a 上部構造体の一部品
2b 成膜・硬化した膜
3 下部構造体
4 溝
5 バイパス流路
6 流路の一端(入口)
7 流路の他端(出口)
8 等価回路の設定した範囲
10 基板
11 犠牲層
12 モールド型
21 出入り口
22 流入口
23 空間
24 隔壁
31 貫通孔
32 流路
DESCRIPTION OF SYMBOLS 1 Microfluid transport structure 2 Upper structure 2a One part 2b of upper structure Film formed and hardened film 3 Lower structure 4 Groove 5 Bypass flow path 6 One end (inlet) of flow path
7 The other end (outlet) of the flow path
8 Range set by equivalent circuit 10 Substrate 11 Sacrificial layer 12 Mold 21 Entrance / exit 22 Inlet 23 Space 24 Partition 31 Through-hole 32 Channel
Claims (7)
A method for manufacturing a microfluidic transport structure according to any one of claims 3 to 5, comprising an upper structure formation step, a lower structure formation step, and an integration step, and further comprising an upper structure formation The process includes an air pressure flow path forming process, a movable film forming process, a stacking process, and a liquid supply hole forming process, and the air pressure flow path forming process matches the planned air pressure flow path area on the substrate. A mold forming step for forming a mold having a protruding shape, an upper constituent material filling step for filling the mold with the upper constituent material, and releasing the mold from the mold after the upper constituent material is cured. An elastic material film forming step including forming a movable film pre-determined layer with an elastic material on a substrate, including a mold releasing step and a first hole punching step of punching a part of the mold that has been released; Including the step, the laminating step, the elasticity Including a first laminating step of laminating the structure formed by the pneumatic flow path forming step to the surface of the movable film planned layer formed by the material film forming step, the liquid supply hole forming step, Including a second perforating step for perforating a part of a region where the structure formed by the pneumatic flow path forming step and the movable film planned layer is laminated, and the lower structure forming step is sacrificed on the substrate A sacrificial layer forming step of forming a layer, a flow path bottom surface forming step of patterning a lower constituent material in a liquid transport flow path forming region except for a portion corresponding to the through hole on the surface of the sacrificial layer, and the sacrificial layer A separation step of separating the substrate and the lower constituent material by removing the layer, and the integration step is formed by the structure formed by the upper structure formation step and the lower structure formation step. Structure Preparative method of the microfluidic transport structure, characterized in that in which each of the liquid transport channel scheduled region and the liquid transport channel formation region comprises a second lamination step of laminating a state matching.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017026311A JP6925016B2 (en) | 2017-02-15 | 2017-02-15 | Microfluidic transport structure with integrated through hole and flow path and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017026311A JP6925016B2 (en) | 2017-02-15 | 2017-02-15 | Microfluidic transport structure with integrated through hole and flow path and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018130676A true JP2018130676A (en) | 2018-08-23 |
JP6925016B2 JP6925016B2 (en) | 2021-08-25 |
Family
ID=63249228
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017026311A Expired - Fee Related JP6925016B2 (en) | 2017-02-15 | 2017-02-15 | Microfluidic transport structure with integrated through hole and flow path and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6925016B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115204100A (en) * | 2022-07-22 | 2022-10-18 | 福州大学 | Micro-fluidic biochip mapping method under distributed channel storage |
CN115703985A (en) * | 2021-08-06 | 2023-02-17 | 来富可得生物科技股份有限公司 | Microfluidic chip and method of use thereof |
WO2024218855A1 (en) * | 2023-04-18 | 2024-10-24 | 日本電信電話株式会社 | Method for producing laminate and laminate |
WO2024225351A1 (en) * | 2023-04-28 | 2024-10-31 | キヤノン株式会社 | Cell discharge device, cell discharge method, device for producing cultured meat, method for producing cultured meat, device for producing tissue or organ, and method for producing tissue or organ |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003275999A (en) * | 2002-03-22 | 2003-09-30 | Olympus Optical Co Ltd | Microvalve and manufacturing method of the same |
JP2008008880A (en) * | 2006-06-02 | 2008-01-17 | Sumitomo Bakelite Co Ltd | Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same |
JP2009076550A (en) * | 2007-09-19 | 2009-04-09 | Toppan Printing Co Ltd | Imprint mold, imprint mold manufacturing method |
JP2009192421A (en) * | 2008-02-15 | 2009-08-27 | Konica Minolta Opto Inc | Method of manufacturing microchip and microchip |
JP2012166125A (en) * | 2011-02-10 | 2012-09-06 | Tokyo Institute Of Technology | Method and device for producing dichroic minute droplet |
-
2017
- 2017-02-15 JP JP2017026311A patent/JP6925016B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003275999A (en) * | 2002-03-22 | 2003-09-30 | Olympus Optical Co Ltd | Microvalve and manufacturing method of the same |
JP2008008880A (en) * | 2006-06-02 | 2008-01-17 | Sumitomo Bakelite Co Ltd | Microchip made from plastic, manufacturing method therefor, and biochip or microanalytical chip using the same |
JP2009076550A (en) * | 2007-09-19 | 2009-04-09 | Toppan Printing Co Ltd | Imprint mold, imprint mold manufacturing method |
JP2009192421A (en) * | 2008-02-15 | 2009-08-27 | Konica Minolta Opto Inc | Method of manufacturing microchip and microchip |
JP2012166125A (en) * | 2011-02-10 | 2012-09-06 | Tokyo Institute Of Technology | Method and device for producing dichroic minute droplet |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115703985A (en) * | 2021-08-06 | 2023-02-17 | 来富可得生物科技股份有限公司 | Microfluidic chip and method of use thereof |
CN115204100A (en) * | 2022-07-22 | 2022-10-18 | 福州大学 | Micro-fluidic biochip mapping method under distributed channel storage |
WO2024218855A1 (en) * | 2023-04-18 | 2024-10-24 | 日本電信電話株式会社 | Method for producing laminate and laminate |
WO2024225351A1 (en) * | 2023-04-28 | 2024-10-31 | キヤノン株式会社 | Cell discharge device, cell discharge method, device for producing cultured meat, method for producing cultured meat, device for producing tissue or organ, and method for producing tissue or organ |
Also Published As
Publication number | Publication date |
---|---|
JP6925016B2 (en) | 2021-08-25 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Li et al. | Microfluidic devices for biomedical applications | |
Jeong et al. | Kilo-scale droplet generation in three-dimensional monolithic elastomer device (3D MED) | |
Agirregabiria et al. | Fabrication of SU-8 multilayer microstructures based on successive CMOS compatible adhesive bonding and releasing steps | |
Sato et al. | An all SU-8 microfluidic chip with built-in 3D fine microstructures | |
CN102247786B (en) | Microfluid control device and method for manufacturing the same | |
Abgrall et al. | A novel fabrication method of flexible and monolithic 3D microfluidic structures using lamination of SU-8 films | |
EP2179279B1 (en) | Device for controlling fluid motion into micro/nanochannels by means of surface acoustic waves | |
Gale et al. | Fabrication and packaging: Low-cost MEMS technologies | |
US20070012891A1 (en) | Prototyping methods and devices for microfluidic components | |
JP6925016B2 (en) | Microfluidic transport structure with integrated through hole and flow path and its manufacturing method | |
JP5065803B2 (en) | Micro liquid weighing apparatus, microchip having the same, and liquid measuring method | |
US8343425B1 (en) | Multi-layer micro/nanofluid devices with bio-nanovalves | |
KR20120030130A (en) | Fluidic devices with diaphragm valves | |
Han et al. | Multi-layer plastic/glass microfluidic systems containing electrical and mechanical functionality | |
CN105277724B (en) | A kind of micro flow control chip device and preparation method thereof | |
CN100447467C (en) | Microvalve integrated in flow channel | |
Abgrall et al. | Low-stress fabrication of 3D polymer free standing structures using lamination of photosensitive films | |
JP3905074B2 (en) | Microfluidic control mechanism and microchip having the mechanism | |
JP2004290968A (en) | Microchannel structure, member for manufacturing the same, and manufacturing method | |
Peng et al. | CMOS compatible integration of three-dimensional microfluidic systems based on low-temperature transfer of SU-8 films | |
Steigert et al. | A versatile and flexible low-temperature full-wafer bonding process of monolithic 3D microfluidic structures in SU-8 | |
Jung et al. | Toward a disposable low-cost LOC device: heterogeneous polymer micro valve and pump fabricated by UV/ozone-assisted thermal fusion bonding | |
Kim et al. | Thermoset polyester droplet-based microfluidic devices for high frequency generation | |
KR101053772B1 (en) | Molding module for manufacturing a microfluidic chip mold, a method for manufacturing a microfluidic chip mold using the same, and a microfluidic chip mold manufactured thereby | |
TWI269776B (en) | Microfluidic driving apparatus and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200212 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201216 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201222 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210209 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210714 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210727 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6925016 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
LAPS | Cancellation because of no payment of annual fees |