[go: up one dir, main page]

JP2018107865A - Rotating electric machine - Google Patents

Rotating electric machine Download PDF

Info

Publication number
JP2018107865A
JP2018107865A JP2016249970A JP2016249970A JP2018107865A JP 2018107865 A JP2018107865 A JP 2018107865A JP 2016249970 A JP2016249970 A JP 2016249970A JP 2016249970 A JP2016249970 A JP 2016249970A JP 2018107865 A JP2018107865 A JP 2018107865A
Authority
JP
Japan
Prior art keywords
cooling pipe
stator
temperature sensor
refrigerant
sealing member
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016249970A
Other languages
Japanese (ja)
Other versions
JP6711260B2 (en
Inventor
松本 隆志
Takashi Matsumoto
隆志 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016249970A priority Critical patent/JP6711260B2/en
Publication of JP2018107865A publication Critical patent/JP2018107865A/en
Application granted granted Critical
Publication of JP6711260B2 publication Critical patent/JP6711260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Motor Or Generator Cooling System (AREA)

Abstract

【課題】温度センサ通過後の冷媒温度と、ステータに供給される冷媒温度との差を小さくできる回転電機を提供すること。【解決手段】回転電機1が、ステータ5と、ステータ5に径方向に対向し、ステータ5に沿うように延在する冷却パイプ7であって、冷却パイプ7の軸方向の一方側に配設される端側貫通孔を含む1以上の貫通孔が、ステータ5に径方向に対向するように冷却パイプ7の側壁に設けられた冷却パイプ7と、冷却パイプ7の軸方向一方側の先端開口を封鎖する封鎖部材8と、封鎖部材8に取り付けられると共に、少なくとも一部が冷却パイプ7内に配置される温度センサ10と、冷媒を冷却パイプ7内部に供給し貫通孔からステータ5側に放出させるポンプ11と、を備えるようにする。【選択図】図1PROBLEM TO BE SOLVED: To provide a rotating electric machine capable of reducing a difference between a refrigerant temperature after passing through a temperature sensor and a refrigerant temperature supplied to a stator. A rotating electric machine (1) is a stator (5) and a cooling pipe (7) radially facing the stator (5) and extending along the stator (5), which is arranged on one side of the cooling pipe (7) in the axial direction. One or more through holes including the end side through hole provided on the side wall of the cooling pipe 7 so as to face the stator 5 in the radial direction, and the tip opening on one side in the axial direction of the cooling pipe 7. A sealing member 8 for closing the cooling pipe, a temperature sensor 10 attached to the sealing member 8 and at least a part of which is arranged in the cooling pipe 7, and a coolant is supplied into the cooling pipe 7 and discharged from the through hole to the stator 5 side. And a pump 11 for allowing the pump 11 to operate. [Selection diagram] Figure 1

Description

本発明は、回転電機に関する。   The present invention relates to a rotating electrical machine.

従来、回転電機としては、特許文献1に記載されているように、ステータ、ステータの内周側に配設されたロータ、ステータに径方向に対向するようにステータの外周側に配置される冷却パイプ、及び冷却パイプ内に冷媒を取り込むポンプが、ケース内に配設されたものがある。ステータは、ステータコアと、ステータコアのティースに巻回されたコイルとを含み、冷却パイプは、ステータに沿うようにステータの軸方向に延在する。また、冷却パイプには、その内部と外部とを連通すると共に、ステータに径方向に対向する開口を有する複数の貫通孔が設けられる。ポンプが駆動すると、ケース内の冷媒が、冷却パイプ内に取り込まれて、上記複数の貫通孔を介してステータに向けて放出される。回転電機では、ロータの回転時にコイルに電流が流れると、ステータコアやコイルが発熱する。係る発熱は、回転電機の内部を貫通する磁束に影響を与え、運転効率(回転効率、発電効率)を低下させる。この回転電機では、ステータコアやコイルに冷媒を放出することで、ステータコアやコイルを冷却し、運転効率の低下を抑制している。   Conventionally, as described in Patent Document 1, as a rotating electrical machine, a stator, a rotor disposed on the inner peripheral side of the stator, and cooling disposed on the outer peripheral side of the stator so as to face the stator in the radial direction Some pumps have a pipe and a pump that takes the refrigerant into the cooling pipe. The stator includes a stator core and a coil wound around the teeth of the stator core, and the cooling pipe extends in the axial direction of the stator along the stator. In addition, the cooling pipe is provided with a plurality of through-holes that communicate between the inside and the outside and have openings that are radially opposed to the stator. When the pump is driven, the refrigerant in the case is taken into the cooling pipe and discharged toward the stator through the plurality of through holes. In a rotating electrical machine, when a current flows through a coil when the rotor rotates, the stator core and the coil generate heat. Such heat generation affects the magnetic flux penetrating the inside of the rotating electrical machine, and decreases the operation efficiency (rotation efficiency, power generation efficiency). In this rotating electrical machine, the stator core and the coil are cooled by discharging the refrigerant to the stator core and the coil, thereby suppressing a decrease in operating efficiency.

2015−089314号公報No. 2015-089314

上記ステータの冷却を実行する回転電機において、冷却性能を検知するために冷媒温度を測定する温度センサを設置したいという要請がある。しかし、温度センサの取り付け位置によっては、温度センサ通過後の冷媒温度とステータに供給される冷媒温度に乖離が生じ、適正なモータ保護制御を実行しにくい。   In the rotating electrical machine that performs cooling of the stator, there is a demand to install a temperature sensor that measures the refrigerant temperature in order to detect the cooling performance. However, depending on the mounting position of the temperature sensor, there is a difference between the refrigerant temperature after passing through the temperature sensor and the refrigerant temperature supplied to the stator, and it is difficult to perform proper motor protection control.

そこで、本発明の目的は、温度センサ通過後の冷媒温度と、ステータに供給される冷媒温度との差を小さくできる回転電機を提供することにある。   Therefore, an object of the present invention is to provide a rotating electrical machine that can reduce the difference between the refrigerant temperature after passing through the temperature sensor and the refrigerant temperature supplied to the stator.

本発明に係る回転電機は、環状のステータコアと、前記ステータコアのティースに巻回されるコイルとを含むステータと、前記ステータに前記ステータコアの径方向に対向し、前記ステータに沿うように延在する冷却パイプであって、前記冷却パイプの軸方向の一方側に配設される端側貫通孔を含む1以上の貫通孔が、前記ステータに前記径方向に対向するように前記冷却パイプの側壁に設けられた冷却パイプと、前記冷却パイプの前記軸方向の一方側の先端開口を封鎖する封鎖部材と、前記封鎖部材に取り付けられると共に、少なくとも一部が前記冷却パイプ内に配置される温度センサと、冷媒を前記冷却パイプの内部に供給し前記貫通孔から前記ステータ側に放出させる冷媒供給装置と、を備える。   A rotating electrical machine according to the present invention includes a stator including an annular stator core, a coil wound around the teeth of the stator core, and faces the stator in the radial direction of the stator core, and extends along the stator. One or more through holes including an end side through hole disposed on one side of the cooling pipe in the axial direction are provided on a side wall of the cooling pipe so as to face the stator in the radial direction. A cooling pipe provided; a sealing member that seals the opening on one end of the cooling pipe in the axial direction; and a temperature sensor that is attached to the sealing member and at least partially disposed in the cooling pipe; And a refrigerant supply device that supplies the refrigerant into the cooling pipe and discharges the refrigerant to the stator side from the through hole.

また、本発明において、前記封鎖部材には、中心部に前記軸方向に延在する凹部が形成されており、この凹部内に前記温度センサが配置され、前記温度センサの一端面が前記冷却パイプ内に露出することが好ましい。   In the present invention, the sealing member is formed with a concave portion extending in the axial direction at a central portion, the temperature sensor is disposed in the concave portion, and one end face of the temperature sensor is the cooling pipe. It is preferable to be exposed inside.

また、本発明において、前記温度センサからの配線は、前記封鎖部材内を通過して、前記冷却パイプの外部に導出されることが好ましい。   In the present invention, it is preferable that the wiring from the temperature sensor passes through the sealing member and is led out of the cooling pipe.

本発明に係る回転電機によれば、冷却パイプがステータに沿うように設けられ、冷媒供給装置が冷媒を冷却パイプ内から1以上の貫通孔を通過させてステータ側に放出させる。また、1以上の貫通孔が冷却パイプの軸方向一方側に配設される端側貫通孔を含み、温度センサは、冷却パイプの軸方向一方側を封鎖する封鎖部材に設けられ、少なくとも一部が冷却パイプ内に配置される。したがって、温度センサが端側貫通孔に近接する位置に配置されるので、温度センサが端側貫通孔を通過する直前の冷媒温度を測定可能になる。よって、温度センサ通過後の冷媒温度と、ステータに供給される冷媒温度との差を小さくでき、冷媒温度の推定精度が向上し、適正なモータ保護制御を実行できる。   According to the rotating electrical machine according to the present invention, the cooling pipe is provided along the stator, and the refrigerant supply device causes the refrigerant to pass through the one or more through holes from the inside of the cooling pipe and be discharged to the stator side. Further, the one or more through holes include an end side through hole disposed on one side in the axial direction of the cooling pipe, and the temperature sensor is provided in a sealing member that seals one side in the axial direction of the cooling pipe, and at least partly Is placed in the cooling pipe. Therefore, since the temperature sensor is disposed at a position close to the end side through hole, the refrigerant temperature immediately before the temperature sensor passes through the end side through hole can be measured. Therefore, the difference between the refrigerant temperature after passing through the temperature sensor and the refrigerant temperature supplied to the stator can be reduced, the refrigerant temperature estimation accuracy is improved, and appropriate motor protection control can be executed.

本発明の一実施形態に係る回転電機の軸方向の断面図である。It is sectional drawing of the axial direction of the rotary electric machine which concerns on one Embodiment of this invention. 上記回転電機における冷却パイプ周辺の拡大断面図であるIt is an expanded sectional view around a cooling pipe in the rotating electrical machine.

以下に、本発明に係る実施の形態について添付図面を参照しながら詳細に説明する。なお、以下において複数の実施形態や変形例などが含まれる場合、それらの特徴部分を適宜に組み合わせて新たな実施形態を構築することは当初から想定されている。また、以下の説明及び図面において、Z方向は、鉛直方向に一致し、図1及び図2において、紙面上側は、鉛直方向上方を示す。   Embodiments according to the present invention will be described below in detail with reference to the accompanying drawings. In the following, when a plurality of embodiments and modifications are included, it is assumed from the beginning that a new embodiment is constructed by appropriately combining those characteristic portions. In the following description and drawings, the Z direction coincides with the vertical direction, and in FIGS. 1 and 2, the upper side of the drawing indicates the upper side in the vertical direction.

図1は、本発明の一実施形態に係る回転電機1の断面図であり、図2は、回転電機1における冷却パイプ7周辺の拡大断面図である。図1に示すように、回転電機1は、ケース2と、ケース2内に配置される電機本体3を備える。ケース2は、ケース本体21と上側カバー22を有し、ケース本体21はZ方向上側が開口し、当該開口は上側カバー22で覆われる。上側カバー22は、ケース本体21の開口周縁にボルト23で固定される。一方、電機本体3は、ステータ5、ロータ6、冷却パイプ7、封鎖部材8、温度センサ10、及び冷媒供給装置の一例としてのポンプ11を含む。ステータ5は、環状のステータコア51と、ステータコイル52とを備える。ステータコア51は、Z方向に延在する。ステータコア51は、磁性体部品であり、例えば、複数の珪素鋼鈑(電磁鋼鈑)が積層されて構成されるが、樹脂バインダと磁性材粉末を加圧成形して構成してもよい。ステータコア51は、環状で外周側に配設されるヨーク53と、複数のティース54を有する。複数のティース54は、周方向に互いに間隔をおいて配設され、各ティース54は、ヨーク53から径方向の内方側に突出する。ステータコイル52は、U,V,Wの三相のコイルを含み、例えば、U,V,Wの三相のコイルをY結線して構成される。三相のコイルの夫々は、隣接するティース54の間の空間であるスロット(図示せず)に挿通され、ティース54に巻回される。   FIG. 1 is a cross-sectional view of a rotating electrical machine 1 according to an embodiment of the present invention, and FIG. 2 is an enlarged cross-sectional view around a cooling pipe 7 in the rotating electrical machine 1. As shown in FIG. 1, the rotary electric machine 1 includes a case 2 and an electric machine main body 3 disposed in the case 2. The case 2 includes a case main body 21 and an upper cover 22, and the case main body 21 is open on the upper side in the Z direction, and the opening is covered with the upper cover 22. The upper cover 22 is fixed to the opening periphery of the case body 21 with bolts 23. On the other hand, the electric machine main body 3 includes a stator 5, a rotor 6, a cooling pipe 7, a sealing member 8, a temperature sensor 10, and a pump 11 as an example of a refrigerant supply device. The stator 5 includes an annular stator core 51 and a stator coil 52. The stator core 51 extends in the Z direction. The stator core 51 is a magnetic component and is configured by, for example, laminating a plurality of silicon steel plates (electromagnetic steel plates), but may be configured by pressing a resin binder and magnetic material powder. The stator core 51 has an annular yoke 53 disposed on the outer peripheral side and a plurality of teeth 54. The plurality of teeth 54 are arranged at intervals in the circumferential direction, and each tooth 54 protrudes from the yoke 53 inward in the radial direction. The stator coil 52 includes three-phase coils of U, V, and W. For example, the stator coil 52 is configured by Y-connecting three-phase coils of U, V, and W. Each of the three-phase coils is inserted into a slot (not shown) that is a space between adjacent teeth 54 and wound around the teeth 54.

ロータ6は、ステータ5の内周側にステータ5に対して間隔をおいて配置され、ロータ6の中心は、ステータ5の中心と一致する。ロータ6は、環状のロータコア61と、ロータコア61の貫通孔に挿通固定されたシャフト62を含む。ロータコア61は、Z方向に延在する。ロータコア61は、磁性体部品であり、例えば、複数の円環状の珪素鋼鈑(電磁鋼鈑)が積層されて構成される。例えば、ロータコア61には、複数の永久磁石が周方向に互いに間隔をおいた状態で埋め込まれる。シャフト62は、Z方向に延在し、ケース2の内周面に軸受32a,32bを介して回転自在に取り付けられる。   The rotor 6 is disposed on the inner peripheral side of the stator 5 with a space from the stator 5, and the center of the rotor 6 coincides with the center of the stator 5. The rotor 6 includes an annular rotor core 61 and a shaft 62 inserted and fixed in a through hole of the rotor core 61. The rotor core 61 extends in the Z direction. The rotor core 61 is a magnetic part, and is configured by, for example, laminating a plurality of annular silicon steel plates (electromagnetic steel plates). For example, a plurality of permanent magnets are embedded in the rotor core 61 at intervals in the circumferential direction. The shaft 62 extends in the Z direction and is rotatably attached to the inner peripheral surface of the case 2 via bearings 32a and 32b.

冷却パイプ7は、中空のパイプであり、Z方向に延在する。冷却パイプ7は、ステータ5の外周側にステータコア51の径方向に対向し、ステータ5に沿うように配設される。冷却パイプ7は、上側端部71の先端開口が封鎖部材8で封鎖される一方、下側端部72の開口は、開放されてケース2に設けられた通路27に連通する。冷却パイプ7の下側端部72は、円板状のフランジ7aを有する。冷却パイプ7の下側端部72は、フランジ7aがケース2の壁面に当接するまでケース2に設けられた圧入孔2aに圧入され、ケース2に固定される。   The cooling pipe 7 is a hollow pipe and extends in the Z direction. The cooling pipe 7 is arranged on the outer peripheral side of the stator 5 so as to face the radial direction of the stator core 51 and along the stator 5. In the cooling pipe 7, the front end opening of the upper end portion 71 is blocked by the blocking member 8, while the opening of the lower end portion 72 is opened and communicates with the passage 27 provided in the case 2. The lower end 72 of the cooling pipe 7 has a disk-shaped flange 7a. The lower end 72 of the cooling pipe 7 is press-fitted into the press-fitting hole 2 a provided in the case 2 until the flange 7 a comes into contact with the wall surface of the case 2 and is fixed to the case 2.

封鎖部材8は、例えば、樹脂材料で構成される。図2に示すように、封鎖部材8は、円板状の蓋部81と円柱状の圧入部82を有する。蓋部81の中心軸は、圧入部82の中心軸と一致し、蓋部81の外径は、冷却パイプ7の上側端部の外径よりも大きい。圧入部82は、蓋部81の下面が冷却パイプ7の上側端面に当接するまで冷却パイプ7内に圧入され、係る圧入により封鎖部材8が冷却パイプ7に固定される。   The sealing member 8 is made of, for example, a resin material. As shown in FIG. 2, the sealing member 8 has a disk-shaped lid portion 81 and a columnar press-fit portion 82. The central axis of the lid portion 81 coincides with the central axis of the press-fit portion 82, and the outer diameter of the lid portion 81 is larger than the outer diameter of the upper end portion of the cooling pipe 7. The press-fit portion 82 is press-fitted into the cooling pipe 7 until the lower surface of the lid portion 81 contacts the upper end surface of the cooling pipe 7, and the sealing member 8 is fixed to the cooling pipe 7 by such press-fitting.

回転電機1は、円柱状のゴムブッシュ88を更に備える。また、封鎖部材8は、蓋部81から上側に突出する円柱部83を有する。ゴムブッシュ88は、その中心軸が冷却パイプ7の中心軸に略一致している状態で、例えば円柱部83の上面に接着剤等で取り付けられ、ケース2の上側カバー22の下面と、円柱部83の上面との間に配置される。冷却パイプ7、封鎖部材8及びゴムブッシュ88で構成される一体構造は、ケース2の上側カバー22とケース本体21の間で圧縮荷重を受けるように挟持される。その結果、ゴムブッシュ88の軸方向の全長が、ゴムブッシュ88の自然長よりも短くなり、当該一体構造がケース2に固定される。   The rotating electrical machine 1 further includes a cylindrical rubber bush 88. Further, the sealing member 8 has a cylindrical portion 83 that protrudes upward from the lid portion 81. The rubber bushing 88 is attached to the upper surface of the cylindrical portion 83 with an adhesive or the like, for example, with its central axis substantially coinciding with the central axis of the cooling pipe 7, and the lower surface of the upper cover 22 of the case 2 and the cylindrical portion. 83 is disposed between the upper surface of 83. The integral structure composed of the cooling pipe 7, the sealing member 8, and the rubber bush 88 is sandwiched between the upper cover 22 of the case 2 and the case body 21 so as to receive a compressive load. As a result, the overall length of the rubber bush 88 in the axial direction is shorter than the natural length of the rubber bush 88, and the integrated structure is fixed to the case 2.

冷却パイプ7には、Z方向に間隔をおいて複数の貫通孔77が設けられる。各貫通孔77における冷却パイプ外側の開口は、ステータ5に径方向(ステータコア51の径方向のこと)に対向し、より詳しくは、ステータコイル52のコイルエンド52aに径方向に対向する。複数の貫通孔77には、冷却パイプ7の軸方向の一方側(軸方向の上側)に配設される端側貫通孔77aが含まれる。封鎖部材8の圧入部82が冷却パイプ7の一方側の端部(軸方向の上側の端部)に圧入されているので、結果として、端側貫通孔77aは、圧入部82に近接して配置される。端側貫通孔77aは、圧入部82の下端よりも僅かにZ方向下側に設けられる。   The cooling pipe 7 is provided with a plurality of through holes 77 at intervals in the Z direction. The opening outside the cooling pipe in each through-hole 77 faces the stator 5 in the radial direction (the radial direction of the stator core 51), and more specifically, faces the coil end 52a of the stator coil 52 in the radial direction. The plurality of through-holes 77 include an end-side through-hole 77a disposed on one side (the upper side in the axial direction) of the cooling pipe 7 in the axial direction. Since the press-fit portion 82 of the sealing member 8 is press-fitted into one end portion (the upper end portion in the axial direction) of the cooling pipe 7, as a result, the end side through hole 77 a is close to the press-fit portion 82. Be placed. The end side through-hole 77 a is provided slightly below the Z direction from the lower end of the press-fit portion 82.

温度センサ10は、温度によって電気抵抗が変化するサーミスタ素子14で構成され、当該サーミスタ素子14は、樹脂製の圧入部82内に封入され、冷却パイプ7内に配置される。詳しくは、封鎖部材8の圧入部82には、中心部に軸方向に延在する凹部19が形成され、サーミスタ素子14は、凹部19内に配置される。サーミスタ素子14は圧入部82から露出する露出部14aを有し、露出部14aは冷却パイプ7内の冷媒収容室79に面する。露出部14aは、サーミスタ素子14の一端面(下側端面)で構成される。なお、サーミスタ素子が封鎖部材から下側に突出し、露出部がサーミスタ素子の側面を含んでもよい。サーミスタ素子14は、配線であるリード線18を介してケース外にある制御部(図示せず)と電気的に接続される。より詳しくは、リード線18は、封鎖部材8内を通過した後、ケース2も通過し、当該制御部と電気的に接続される。ケース2内には、冷媒の一例としてのATF(Automatic Transmission Fluid;図示せず)が封入されている。後述するが、サーミスタ素子14の露出部14aは、ATFに接触する。サーミスタ素子14の温度が、ATFの温度に応じて変化すると、サーミスタ素子14の抵抗値が変化してリード線18を流れる電流が変化する。制御部は、リード線を流れる電流を測定することでサーミスタ素子14に接触するATF温度を検出する。   The temperature sensor 10 includes a thermistor element 14 whose electric resistance varies depending on temperature. The thermistor element 14 is enclosed in a resin press-fit portion 82 and disposed in the cooling pipe 7. Specifically, the press-fit portion 82 of the sealing member 8 is formed with a concave portion 19 extending in the axial direction at the center portion, and the thermistor element 14 is disposed in the concave portion 19. The thermistor element 14 has an exposed portion 14 a exposed from the press-fit portion 82, and the exposed portion 14 a faces the refrigerant accommodating chamber 79 in the cooling pipe 7. The exposed portion 14 a is configured by one end face (lower end face) of the thermistor element 14. The thermistor element may protrude downward from the sealing member, and the exposed portion may include the side surface of the thermistor element. The thermistor element 14 is electrically connected to a control unit (not shown) outside the case via a lead wire 18 that is a wiring. More specifically, after passing through the sealing member 8, the lead wire 18 also passes through the case 2 and is electrically connected to the control unit. In the case 2, ATF (Automatic Transmission Fluid; not shown) as an example of a refrigerant is sealed. As will be described later, the exposed portion 14a of the thermistor element 14 contacts the ATF. When the temperature of the thermistor element 14 changes according to the temperature of the ATF, the resistance value of the thermistor element 14 changes and the current flowing through the lead wire 18 changes. The control unit detects the ATF temperature in contact with the thermistor element 14 by measuring the current flowing through the lead wire.

再度図1を参照して、ポンプ11は、ケース下方側にあるポンプ収容室2b内に収容される。ポンプ収容室2bは、ステータ5が収容されるステータ収容室2cと、下方側の軸受32bの内外輪間に生じるスペースを介して連通し、ATFは、重力によってステータ収容室2cからポンプ収容室2b側に流動可能になっている。冷却パイプ7において閉鎖されていない下方側の開口は、通路27を介してポンプ収容室2bに連通する。   Referring to FIG. 1 again, the pump 11 is housed in the pump housing chamber 2b on the lower side of the case. The pump housing chamber 2b communicates with the stator housing chamber 2c in which the stator 5 is housed through a space formed between the inner and outer rings of the lower bearing 32b, and the ATF is separated from the stator housing chamber 2c by the gravity. It is possible to flow to the side. The opening on the lower side which is not closed in the cooling pipe 7 communicates with the pump housing chamber 2b through the passage 27.

上記構成において、回転動力を出力する際には、例えば、図示しないバッテリからの直流電流が図示しないインバータを介して三相交流電流に変換された後、三相交流電流が、上述のU,V,Wの三相のコイルに供給される。係るU,V,Wの三相のコイルに対する三相交流電流の供給によって、ティース54が磁化されて磁極となり、磁極の位置がステータ5の周方向に沿って移動する回転磁界が生じる。そして、ロータ6がその回転磁界に基づいて回動し、回転動力が生成される。他方、電力を回生する際には、ロータ6が、外部からの動力によって回動すると、ロータ6に埋め込まれた永久磁石がロータ中心軸の回りを回転する。すると、U,V,Wの三相のコイルに電磁誘導の法則に基づく誘導起電力が誘起され、交流の誘導電流がU,V,Wの三相のコイルを流れる。そして、係る誘導電流に基づくU,V,Wの三相のコイルからの交流電力が、インバータで直流電力に変換された後、バッテリに供給される。   In the above configuration, when rotating power is output, for example, after a direct current from a battery (not shown) is converted into a three-phase alternating current via an inverter (not shown), the three-phase alternating current is converted into the above-described U, V , W are supplied to a three-phase coil. By supplying the three-phase alternating current to the three-phase coils of U, V, and W, the teeth 54 are magnetized to become magnetic poles, and a rotating magnetic field is generated in which the position of the magnetic poles moves along the circumferential direction of the stator 5. Then, the rotor 6 rotates based on the rotating magnetic field, and rotational power is generated. On the other hand, when regenerating electric power, when the rotor 6 is rotated by external power, the permanent magnet embedded in the rotor 6 rotates around the rotor central axis. Then, an induced electromotive force based on the law of electromagnetic induction is induced in the three-phase coil of U, V, and W, and an alternating induction current flows through the three-phase coil of U, V, and W. Then, AC power from the three-phase coils of U, V, and W based on the induced current is converted into DC power by the inverter, and then supplied to the battery.

また、図1を参照して、ポンプ11が駆動すると、ケース下方のポンプ収容室2bに溜まったATFが、ポンプ11によって通路27を介して冷却パイプ7内に矢印Aで示す方向に下側から圧送される。冷却パイプ7内に圧送されたATFは、矢印Bで示す方向に貫通孔77からステータ5のコイルエンド52aに向けて放出される。その際、冷却パイプ7の上側に圧送されたATFは、露出部14a(図2参照)に接触した後、端側貫通孔77aを介して上側のコイルエンド52aに向けて放出される。上側のコイルエンド52aに吹き付けられたATFは、重力によって矢印Cで示す方向にステータコイル52やステータコア51を伝って、それらの部材51,52から熱を奪いながら下側に移動し、下側の軸受32bの転動体配置スペース(外輪と内輪との間のスペース)を通過して、ケース下側のポンプ収容室2bまで移動する。ポンプ収容室2bを画定する壁面部2dは、例えば放熱性に優れる金属で構成される。ATFは、ステータ5に接触してステータ5から熱を奪って温度上昇した後、ポンプ収容室2bで壁面部2dに熱を放出して冷やされる。冷やされたATFは、ポンプ11によって再度冷却パイプ7内に圧送される。係るATFの循環で、冷えたATFが冷却パイプ7からステータ5に向けて随時放出されることにより、ステータ5が冷却される。   Referring to FIG. 1, when the pump 11 is driven, the ATF accumulated in the pump storage chamber 2b below the case is passed from the lower side in the direction indicated by the arrow A into the cooling pipe 7 through the passage 27 by the pump 11. Pumped. The ATF pumped into the cooling pipe 7 is discharged from the through hole 77 toward the coil end 52 a of the stator 5 in the direction indicated by the arrow B. At that time, the ATF pumped to the upper side of the cooling pipe 7 comes into contact with the exposed portion 14a (see FIG. 2), and then is discharged toward the upper coil end 52a through the end side through hole 77a. The ATF blown to the upper coil end 52a travels down the stator coil 52 and the stator core 51 in the direction indicated by the arrow C due to gravity and moves downward while taking heat away from the members 51 and 52. It passes through the rolling element arrangement space (the space between the outer ring and the inner ring) of the bearing 32b and moves to the pump storage chamber 2b below the case. The wall surface portion 2d that defines the pump housing chamber 2b is made of, for example, a metal having excellent heat dissipation. The ATF comes into contact with the stator 5 and takes heat from the stator 5 and rises in temperature. Then, the ATF is cooled by releasing heat to the wall surface portion 2d in the pump housing chamber 2b. The cooled ATF is pumped again into the cooling pipe 7 by the pump 11. As the ATF is circulated, the cooled ATF is discharged from the cooling pipe 7 toward the stator 5 as needed, so that the stator 5 is cooled.

上記実施形態によれば、冷却パイプ7がステータ5に沿うように設けられ、ポンプ11がATFを冷却パイプ7内から1以上の貫通孔77を通過させてステータ5側に放出させる。また、1以上の貫通孔77が冷却パイプ7の軸方向一方側に配設される端側貫通孔77aを含み、温度センサ10は、冷却パイプ7の軸方向一方側を封鎖する封鎖部材8に設けられ、少なくとも一部が冷却パイプ7内に配置される。したがって、温度センサ10が端側貫通孔77aに近接する位置に配置されるので、温度センサ10が端側貫通孔77aを通過する直前のATFの温度を測定可能になる。よって、温度センサ10通過後のATF温度と、ステータ5に供給されるATF温度との差を小さくでき、ATF温度の推定精度が向上し、適正なモータ保護制御を実行できる。   According to the above embodiment, the cooling pipe 7 is provided along the stator 5, and the pump 11 causes the ATF to be discharged from the cooling pipe 7 through the one or more through holes 77 to the stator 5 side. One or more through-holes 77 include an end-side through-hole 77 a disposed on one side in the axial direction of the cooling pipe 7, and the temperature sensor 10 is attached to the sealing member 8 that seals one side in the axial direction of the cooling pipe 7. Provided, and at least a part thereof is disposed in the cooling pipe 7. Therefore, since the temperature sensor 10 is disposed at a position close to the end side through hole 77a, the temperature of the ATF immediately before the temperature sensor 10 passes through the end side through hole 77a can be measured. Therefore, the difference between the ATF temperature after passing through the temperature sensor 10 and the ATF temperature supplied to the stator 5 can be reduced, the estimation accuracy of the ATF temperature is improved, and appropriate motor protection control can be executed.

また、温度センサ10が、冷却パイプ7をケース2に取り付ける封鎖部材8に組み込まれるので、温度センサ10をATF周辺に配置するための温度センサ取付用の専用部品(例えば、センサブラケット(特開2014−178258号公報参照))を省略できる。したがって、回転電機1の製造コストを低減できる。   Further, since the temperature sensor 10 is incorporated in the sealing member 8 for attaching the cooling pipe 7 to the case 2, a dedicated part for mounting the temperature sensor for disposing the temperature sensor 10 around the ATF (for example, a sensor bracket (Japanese Patent Laid-Open No. 2014) -178258))) can be omitted. Therefore, the manufacturing cost of the rotary electric machine 1 can be reduced.

更には、温度センサ取付用の専用部品が必要でないだけでなく、温度センサ10が冷却パイプ7先端側のデットスペースに搭載される。したがって、温度センサ10を搭載しても、回転電機1が殆ど大型化することがない。よって、温度センサ10を備える回転電機1をコンパクトに構成でき、温度センサ10を備えた回転電機1の車両等への搭載性を向上できる。   Furthermore, not only a dedicated part for attaching the temperature sensor is not necessary, but also the temperature sensor 10 is mounted in the dead space on the tip side of the cooling pipe 7. Therefore, even if the temperature sensor 10 is mounted, the rotating electrical machine 1 is hardly increased in size. Therefore, the rotary electric machine 1 including the temperature sensor 10 can be configured in a compact manner, and the mountability of the rotary electric machine 1 including the temperature sensor 10 on a vehicle or the like can be improved.

尚、本発明は、上記実施形態およびその変形例に限定されるものではなく、本願の特許請求の範囲に記載された事項およびその均等な範囲において種々の改良や変更が可能である。   The present invention is not limited to the above-described embodiment and its modifications, and various improvements and modifications can be made within the matters described in the claims of the present application and their equivalent ranges.

例えば、上記実施形態では、冷却パイプ7が、ステータコア51の軸方向に平行に延在する場合について説明したが、冷却パイプは、ステータコアの軸方向に傾斜する方向に延在してもよい。また、冷却パイプ7が、コイルエンド52aにステータコア51の径方向に対向する貫通孔77しか有さない場合について説明した。しかし、冷却パイプは、コイルエンドにステータコアの径方向に対向する1以上の貫通孔に加えて、ステータコアに径方向に対向する1以上の貫通孔を有してもよい。又は、冷却パイプは、コイルエンドにステータコアの径方向に対向する貫通孔を有さずに、ステータコアに径方向に対向する1以上の貫通孔のみを有してもよい。また、温度センサ10のサーミスタ素子14の全てが、冷却パイプ7内に配設される場合について説明したが、温度センサのサーミスタ素子の一部のみが冷却パイプ内に配設されてもよい。また、温度センサ10を構成するサーミスタ素子14が、冷却パイプ7内に露出する露出部14aを有して、露出部14aがATFに直接接触する場合について説明した。しかし、サーミスタ素子の全てが封鎖部材内に配置されて、サーミスタ素子が、冷却パイプ内に露出する露出部を有さず、サーミスタ素子が、ATFからの熱を封鎖部材を介して間接的に受ける構成でもよい。また、冷媒が、ATFである場合について説明したが、冷媒は、各種潤滑油であってもよく、洗浄液等で構成されてもよい。また、冷媒供給装置が、ポンプ11である場合について説明したが、冷媒供給装置は、冷媒をかき上げて流動させるリングギア等で構成されてもよい。   For example, in the above-described embodiment, the case where the cooling pipe 7 extends in parallel to the axial direction of the stator core 51 has been described. However, the cooling pipe may extend in a direction inclined in the axial direction of the stator core. Further, the case where the cooling pipe 7 has only the through hole 77 facing the coil end 52a in the radial direction of the stator core 51 has been described. However, the cooling pipe may have one or more through holes opposed to the stator core in the radial direction in addition to one or more through holes opposed to the coil end in the radial direction of the stator core. Alternatively, the cooling pipe may have only one or more through holes opposed to the stator core in the radial direction without having a through hole opposed to the coil end in the radial direction of the stator core. Moreover, although the case where all the thermistor elements 14 of the temperature sensor 10 are disposed in the cooling pipe 7 has been described, only a part of the thermistor elements of the temperature sensor may be disposed in the cooling pipe. Further, the case where the thermistor element 14 constituting the temperature sensor 10 has the exposed portion 14a exposed in the cooling pipe 7 and the exposed portion 14a directly contacts the ATF has been described. However, all of the thermistor elements are disposed in the sealing member, and the thermistor element does not have an exposed portion exposed in the cooling pipe, and the thermistor element indirectly receives heat from the ATF via the sealing member. It may be configured. Moreover, although the case where a refrigerant | coolant was ATF was demonstrated, various refrigerant | coolants may be sufficient as a refrigerant | coolant, and it may be comprised with a washing | cleaning liquid etc. Further, although the case where the refrigerant supply device is the pump 11 has been described, the refrigerant supply device may be configured by a ring gear or the like that scoops up and flows the refrigerant.

1 回転電機、 5 ステータ、 7 冷却パイプ、 8 封鎖部材、 10 温度センサ、 11 ポンプ、 51 ステータコア、 52 ステータコイル、 54 ティース、 77 貫通孔、 77a 端側貫通孔。   DESCRIPTION OF SYMBOLS 1 Rotating electrical machine, 5 Stator, 7 Cooling pipe, 8 Sealing member, 10 Temperature sensor, 11 Pump, 51 Stator core, 52 Stator coil, 54 Teeth, 77 Through-hole, 77a End side through-hole

Claims (1)

環状のステータコアと、前記ステータコアのティースに巻回されるコイルとを含むステータと、
前記ステータに前記ステータコアの径方向に対向し、前記ステータに沿うように延在する冷却パイプであって、前記冷却パイプの軸方向の一方側に配設される端側貫通孔を含む1以上の貫通孔が、前記ステータに前記径方向に対向するように前記冷却パイプの側壁に設けられた冷却パイプと、
前記冷却パイプの前記軸方向の一方側の先端開口を封鎖する封鎖部材と、
前記封鎖部材に取り付けられると共に、少なくとも一部が前記冷却パイプ内に配置される温度センサと、
冷媒を前記冷却パイプの内部に供給し前記貫通孔から前記ステータ側に放出させる冷媒供給装置と、
を備える回転電機。
A stator including an annular stator core and a coil wound around the teeth of the stator core;
One or more cooling pipes facing the stator in the radial direction of the stator core and extending along the stator, including an end-side through-hole disposed on one side in the axial direction of the cooling pipe A cooling pipe provided on a side wall of the cooling pipe so that a through-hole faces the stator in the radial direction;
A sealing member for sealing a tip opening on one side of the cooling pipe in the axial direction;
A temperature sensor attached to the sealing member and at least partially disposed within the cooling pipe;
A refrigerant supply device for supplying a refrigerant into the cooling pipe and discharging the refrigerant to the stator side from the through hole;
A rotating electrical machine.
JP2016249970A 2016-12-22 2016-12-22 Rotating electric machine Expired - Fee Related JP6711260B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016249970A JP6711260B2 (en) 2016-12-22 2016-12-22 Rotating electric machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016249970A JP6711260B2 (en) 2016-12-22 2016-12-22 Rotating electric machine

Publications (2)

Publication Number Publication Date
JP2018107865A true JP2018107865A (en) 2018-07-05
JP6711260B2 JP6711260B2 (en) 2020-06-17

Family

ID=62787591

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016249970A Expired - Fee Related JP6711260B2 (en) 2016-12-22 2016-12-22 Rotating electric machine

Country Status (1)

Country Link
JP (1) JP6711260B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022287A1 (en) * 2018-07-25 2020-01-30 株式会社デンソー Dynamo-electric machine
JP2020025448A (en) * 2018-07-25 2020-02-13 株式会社デンソー Rotary electric machine
JP2022162569A (en) * 2021-04-13 2022-10-25 西芝電機株式会社 Rotating electric machine and method for cleaning rotating electric machine
CN116111779A (en) * 2023-04-13 2023-05-12 东莞市春草研磨科技有限公司 Motor cooling system and control method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102718864B1 (en) * 2022-12-23 2024-10-16 주식회사 현대케피코 Electric motor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294913A (en) * 1998-04-16 1999-10-29 Hoshizaki Electric Co Ltd Water temperature detector
JP2007215311A (en) * 2006-02-09 2007-08-23 Nissan Motor Co Ltd In-wheel motor cooling device, its cooling method, and vehicle with the cooling device
JP2011193642A (en) * 2010-03-15 2011-09-29 Toyota Motor Corp Cooling structure of rotary electric machine

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11294913A (en) * 1998-04-16 1999-10-29 Hoshizaki Electric Co Ltd Water temperature detector
JP2007215311A (en) * 2006-02-09 2007-08-23 Nissan Motor Co Ltd In-wheel motor cooling device, its cooling method, and vehicle with the cooling device
JP2011193642A (en) * 2010-03-15 2011-09-29 Toyota Motor Corp Cooling structure of rotary electric machine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020022287A1 (en) * 2018-07-25 2020-01-30 株式会社デンソー Dynamo-electric machine
JP2020025448A (en) * 2018-07-25 2020-02-13 株式会社デンソー Rotary electric machine
JP7151647B2 (en) 2018-07-25 2022-10-12 株式会社デンソー Rotating electric machine
JP2022162569A (en) * 2021-04-13 2022-10-25 西芝電機株式会社 Rotating electric machine and method for cleaning rotating electric machine
JP7187603B2 (en) 2021-04-13 2022-12-12 西芝電機株式会社 Rotating electric machine and method for cleaning rotating electric machine
CN116111779A (en) * 2023-04-13 2023-05-12 东莞市春草研磨科技有限公司 Motor cooling system and control method thereof
CN116111779B (en) * 2023-04-13 2023-06-16 东莞市春草研磨科技有限公司 Motor cooling system and control method thereof

Also Published As

Publication number Publication date
JP6711260B2 (en) 2020-06-17

Similar Documents

Publication Publication Date Title
JP6711260B2 (en) Rotating electric machine
JP5880842B2 (en) Electric oil pump device
CN104285361A (en) Electric motor with rotor for cooling the electric motor
US8841809B2 (en) Synchronous brushless multipolar machine having immobile armature and field windings
CN105576927B (en) The disc-type electric motor that stator immersion oil radiates and rotor is built-in
JP2005529268A (en) Drive motor, especially drive motor for pump
JP2011142788A (en) Cooling structure for electric motor
US8653706B2 (en) Method of operating an electric machine having an integrated coolant level sensor
US20120181967A1 (en) Permanent magnet electric machine having an integrated magnetic flux sensor
JPWO2012011273A1 (en) Brushless motor for washing machine, drum-type washing machine including the same, and method for manufacturing brushless motor for washing machine
US20140125166A1 (en) Rotating electrical machine
JP2014196733A (en) Electric oil pump and hydraulic pressure supply device
JP2014064433A (en) Rotor shaft of rotary electric machine
JP2010004598A (en) Controller integrated dynamo-electric machine
JP5968127B2 (en) Brushless motor
JP6255861B2 (en) Rotor and electric motor
JP2017093255A (en) Rotor of rotary electric machine
JP2015132242A (en) motor pump
JP2013217237A (en) Electric oil pump device
JP6081824B2 (en) Electric pump
JP2007016780A (en) Pump with polar anisotropic magnetic ring
JP6234603B2 (en) Rotating electric machine for vehicles
CN111989848A (en) Synchronous machine
JP6995163B2 (en) Generator motor
JP2019022404A (en) Rotor for rotary electric machine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190122

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191112

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20191210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200511

R151 Written notification of patent or utility model registration

Ref document number: 6711260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees