JP2018098219A - Semiconductor device and manufacturing method of the same - Google Patents
Semiconductor device and manufacturing method of the same Download PDFInfo
- Publication number
- JP2018098219A JP2018098219A JP2015054154A JP2015054154A JP2018098219A JP 2018098219 A JP2018098219 A JP 2018098219A JP 2015054154 A JP2015054154 A JP 2015054154A JP 2015054154 A JP2015054154 A JP 2015054154A JP 2018098219 A JP2018098219 A JP 2018098219A
- Authority
- JP
- Japan
- Prior art keywords
- metal layer
- sintered metal
- semiconductor device
- semiconductor element
- bonding material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 118
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 8
- 229910052751 metal Inorganic materials 0.000 claims abstract description 117
- 239000002184 metal Substances 0.000 claims abstract description 117
- 239000000758 substrate Substances 0.000 claims abstract description 30
- 238000000034 method Methods 0.000 claims abstract description 26
- 229920005989 resin Polymers 0.000 claims abstract description 13
- 239000011347 resin Substances 0.000 claims abstract description 13
- 239000011521 glass Substances 0.000 claims abstract description 10
- 239000007769 metal material Substances 0.000 claims abstract description 7
- 239000000463 material Substances 0.000 claims description 71
- 239000002245 particle Substances 0.000 claims description 44
- 238000007789 sealing Methods 0.000 claims description 31
- NDVLTYZPCACLMA-UHFFFAOYSA-N silver oxide Chemical compound [O-2].[Ag+].[Ag+] NDVLTYZPCACLMA-UHFFFAOYSA-N 0.000 claims description 20
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 18
- QPLDLSVMHZLSFG-UHFFFAOYSA-N Copper oxide Chemical compound [Cu]=O QPLDLSVMHZLSFG-UHFFFAOYSA-N 0.000 claims description 17
- 229910052802 copper Inorganic materials 0.000 claims description 17
- 239000010949 copper Substances 0.000 claims description 17
- 239000005751 Copper oxide Substances 0.000 claims description 13
- 229910000431 copper oxide Inorganic materials 0.000 claims description 13
- 229910001923 silver oxide Inorganic materials 0.000 claims description 10
- 229910000679 solder Inorganic materials 0.000 claims description 10
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 8
- 229910052709 silver Inorganic materials 0.000 claims description 8
- 239000004332 silver Substances 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 claims description 7
- 238000005245 sintering Methods 0.000 claims description 4
- 239000002904 solvent Substances 0.000 description 14
- 229960004643 cupric oxide Drugs 0.000 description 13
- 239000002923 metal particle Substances 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 13
- 238000007254 oxidation reaction Methods 0.000 description 13
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 12
- 238000005304 joining Methods 0.000 description 9
- 239000003638 chemical reducing agent Substances 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 7
- 229910044991 metal oxide Inorganic materials 0.000 description 7
- 150000004706 metal oxides Chemical class 0.000 description 7
- MWKFXSUHUHTGQN-UHFFFAOYSA-N decan-1-ol Chemical compound CCCCCCCCCCO MWKFXSUHUHTGQN-UHFFFAOYSA-N 0.000 description 6
- 230000002093 peripheral effect Effects 0.000 description 6
- 150000001298 alcohols Chemical class 0.000 description 5
- -1 alkyl carboxylic acids Chemical class 0.000 description 5
- 238000009835 boiling Methods 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 230000001771 impaired effect Effects 0.000 description 5
- BBMCTIGTTCKYKF-UHFFFAOYSA-N 1-heptanol Chemical compound CCCCCCCO BBMCTIGTTCKYKF-UHFFFAOYSA-N 0.000 description 4
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 4
- 239000003822 epoxy resin Substances 0.000 description 4
- GOQYKNQRPGWPLP-UHFFFAOYSA-N heptadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCO GOQYKNQRPGWPLP-UHFFFAOYSA-N 0.000 description 4
- XGFDHKJUZCCPKQ-UHFFFAOYSA-N nonadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCCO XGFDHKJUZCCPKQ-UHFFFAOYSA-N 0.000 description 4
- ZWRUINPWMLAQRD-UHFFFAOYSA-N nonan-1-ol Chemical compound CCCCCCCCCO ZWRUINPWMLAQRD-UHFFFAOYSA-N 0.000 description 4
- REIUXOLGHVXAEO-UHFFFAOYSA-N pentadecan-1-ol Chemical compound CCCCCCCCCCCCCCCO REIUXOLGHVXAEO-UHFFFAOYSA-N 0.000 description 4
- 229920000647 polyepoxide Polymers 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- HLZKNKRTKFSKGZ-UHFFFAOYSA-N tetradecan-1-ol Chemical compound CCCCCCCCCCCCCCO HLZKNKRTKFSKGZ-UHFFFAOYSA-N 0.000 description 4
- 230000008646 thermal stress Effects 0.000 description 4
- KJIOQYGWTQBHNH-UHFFFAOYSA-N undecanol Chemical compound CCCCCCCCCCCO KJIOQYGWTQBHNH-UHFFFAOYSA-N 0.000 description 4
- 229910052782 aluminium Inorganic materials 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 239000011810 insulating material Substances 0.000 description 3
- 239000002082 metal nanoparticle Substances 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000003566 sealing material Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- ZIBGPFATKBEMQZ-UHFFFAOYSA-N triethylene glycol Chemical compound OCCOCCOCCO ZIBGPFATKBEMQZ-UHFFFAOYSA-N 0.000 description 3
- KBPLFHHGFOOTCA-UHFFFAOYSA-N 1-Octanol Chemical compound CCCCCCCCO KBPLFHHGFOOTCA-UHFFFAOYSA-N 0.000 description 2
- XFRVVPUIAFSTFO-UHFFFAOYSA-N 1-Tridecanol Chemical compound CCCCCCCCCCCCCO XFRVVPUIAFSTFO-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 239000004962 Polyamide-imide Substances 0.000 description 2
- 239000004642 Polyimide Substances 0.000 description 2
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 229910020816 Sn Pb Inorganic materials 0.000 description 2
- 229910020922 Sn-Pb Inorganic materials 0.000 description 2
- 229910008783 Sn—Pb Inorganic materials 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002270 dispersing agent Substances 0.000 description 2
- 239000000945 filler Substances 0.000 description 2
- 150000002334 glycols Chemical class 0.000 description 2
- BXWNKGSJHAJOGX-UHFFFAOYSA-N hexadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCO BXWNKGSJHAJOGX-UHFFFAOYSA-N 0.000 description 2
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920002312 polyamide-imide Polymers 0.000 description 2
- 229920001721 polyimide Polymers 0.000 description 2
- 150000003138 primary alcohols Chemical class 0.000 description 2
- 150000003333 secondary alcohols Chemical class 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- 150000003509 tertiary alcohols Chemical class 0.000 description 2
- 229940087291 tridecyl alcohol Drugs 0.000 description 2
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 2
- 229910052721 tungsten Inorganic materials 0.000 description 2
- 239000010937 tungsten Substances 0.000 description 2
- 229940057402 undecyl alcohol Drugs 0.000 description 2
- RRQYJINTUHWNHW-UHFFFAOYSA-N 1-ethoxy-2-(2-ethoxyethoxy)ethane Chemical compound CCOCCOCCOCC RRQYJINTUHWNHW-UHFFFAOYSA-N 0.000 description 1
- GZMAAYIALGURDQ-UHFFFAOYSA-N 2-(2-hexoxyethoxy)ethanol Chemical compound CCCCCCOCCOCCO GZMAAYIALGURDQ-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910017083 AlN Inorganic materials 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910020658 PbSn Inorganic materials 0.000 description 1
- 101150071746 Pbsn gene Proteins 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- 229910006913 SnSb Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- KZNMRPQBBZBTSW-UHFFFAOYSA-N [Au]=O Chemical compound [Au]=O KZNMRPQBBZBTSW-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004931 aggregating effect Effects 0.000 description 1
- 239000005456 alcohol based solvent Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 150000003973 alkyl amines Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011651 chromium Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 description 1
- 238000000280 densification Methods 0.000 description 1
- 229940019778 diethylene glycol diethyl ether Drugs 0.000 description 1
- 229940028356 diethylene glycol monobutyl ether Drugs 0.000 description 1
- 239000008393 encapsulating agent Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910001922 gold oxide Inorganic materials 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 238000009766 low-temperature sintering Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002736 metal compounds Chemical class 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 239000005416 organic matter Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- JCGNDDUYTRNOFT-UHFFFAOYSA-N oxolane-2,4-dione Chemical compound O=C1COC(=O)C1 JCGNDDUYTRNOFT-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- 239000010948 rhodium Substances 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- CQLFBEKRDQMJLZ-UHFFFAOYSA-M silver acetate Chemical compound [Ag+].CC([O-])=O CQLFBEKRDQMJLZ-UHFFFAOYSA-M 0.000 description 1
- 229940071536 silver acetate Drugs 0.000 description 1
- RQZVTOHLJOBKCW-UHFFFAOYSA-M silver;7,7-dimethyloctanoate Chemical compound [Ag+].CC(C)(C)CCCCCC([O-])=O RQZVTOHLJOBKCW-UHFFFAOYSA-M 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000035882 stress Effects 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 229940116411 terpineol Drugs 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 description 1
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/48—Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L24/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L24/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L24/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/93—Batch processes
- H01L24/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L24/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/03—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes
- H01L25/04—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
- H01L25/07—Assemblies consisting of a plurality of semiconductor or other solid state devices all the devices being of a type provided for in a single subclass of subclasses H10B, H10F, H10H, H10K or H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group subclass H10D
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L25/00—Assemblies consisting of a plurality of semiconductor or other solid state devices
- H01L25/18—Assemblies consisting of a plurality of semiconductor or other solid state devices the devices being of the types provided for in two or more different main groups of the same subclass of H10B, H10D, H10F, H10H, H10K or H10N
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/3205—Shape
- H01L2224/32057—Shape in side view
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
- H01L2224/3301—Structure
- H01L2224/3303—Layer connectors having different sizes, e.g. different heights or widths
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/33—Structure, shape, material or disposition of the layer connectors after the connecting process of a plurality of layer connectors
- H01L2224/331—Disposition
- H01L2224/3318—Disposition being disposed on at least two different sides of the body, e.g. dual array
- H01L2224/33181—On opposite sides of the body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4911—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain
- H01L2224/49111—Disposition the connectors being bonded to at least one common bonding area, e.g. daisy chain the connectors connecting two common bonding areas, e.g. Litz or braid wires
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/49—Structure, shape, material or disposition of the wire connectors after the connecting process of a plurality of wire connectors
- H01L2224/491—Disposition
- H01L2224/4912—Layout
- H01L2224/49175—Parallel arrangements
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73265—Layer and wire connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/838—Bonding techniques
- H01L2224/8384—Sintering
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/93—Batch processes
- H01L2224/95—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips
- H01L2224/97—Batch processes at chip-level, i.e. with connecting carried out on a plurality of singulated devices, i.e. on diced chips the devices being connected to a common substrate, e.g. interposer, said common substrate being separable into individual assemblies after connecting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/19—Details of hybrid assemblies other than the semiconductor or other solid state devices to be connected
- H01L2924/191—Disposition
- H01L2924/19101—Disposition of discrete passive components
- H01L2924/19107—Disposition of discrete passive components off-chip wires
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Die Bonding (AREA)
Abstract
【課題】焼結金属層を有する、高温環境における信頼性が向上する半導体装置及びその製造方法を提供する。【解決手段】絶縁基板103上の配線層104と、第一の焼結金属層105を介して配線層104と接合された半導体素子101と、第二の焼結金属層106を介して半導体素子101と接合された導電板102と、第一の焼結金属層105及び第二の焼結金属層106の少なくともいずれかの端部を樹脂、ガラス、金属材料の少なくともいずれかで封止する封止部107と、を備える。第一の焼結金属層105は、第一の焼結金属層105と半導体素子101との積層方向に投影した場合、第一の焼結金属層105の射影部が半導体素子101の射影部に包含されるように形成する。【選択図】図3A semiconductor device having a sintered metal layer with improved reliability in a high temperature environment and a method for manufacturing the same are provided. A wiring layer 104 on an insulating substrate 103, a semiconductor element 101 joined to the wiring layer 104 via a first sintered metal layer 105, and a semiconductor element via a second sintered metal layer 106. 101 is sealed with at least one of resin, glass, and metal material at least one end of the conductive plate 102 joined to the first sintered metal layer 105 and the second sintered metal layer 106. A stop 107. When the first sintered metal layer 105 is projected in the stacking direction of the first sintered metal layer 105 and the semiconductor element 101, the projected portion of the first sintered metal layer 105 becomes the projected portion of the semiconductor element 101. Form to be included. [Selection] Figure 3
Description
本発明は、半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof.
インバータ等に用いられる半導体装置では、配線層が設けられた絶縁基板に半導体素子が搭載される。この半導体素子と配線層とを接合する際にはSn−Pb系はんだ付け材料などが用いられていた。しかし、近年半導体装置の小型化・高密度化の要求から、配線層や接合層には数アンペア以上の電流が流れ、特にスイッチングする半導体素子では大きな発熱が生じる。そこで、従来のSn−Pb系はんだ付け材料よりもより放熱性の良い材料や接合信頼性を向上させる材料が求められていた。 In a semiconductor device used for an inverter or the like, a semiconductor element is mounted on an insulating substrate provided with a wiring layer. An Sn-Pb soldering material or the like has been used when joining the semiconductor element and the wiring layer. However, in recent years, due to demands for miniaturization and higher density of semiconductor devices, a current of several amperes or more flows in the wiring layer and the junction layer, and particularly heat generation occurs in a semiconductor element that is switched. Therefore, there has been a demand for a material with better heat dissipation and a material that improves the bonding reliability than conventional Sn—Pb soldering materials.
一方で、高い放熱性と信頼性を有する材料として、粒子状金属合物を含む導電性組成物を用いた接合材料が知られている。特に、金属粒子の粒径を100nm以下のサイズまで小さくした金属ナノ粒子では、構成原子数が少なくなり、粒子の体積に対する表面積比が急激に増大する。その結果、融点や焼結温度がバルクの状態と比較して大幅に低下することが知られている。この低温焼結機能を利用して、有機物で表面が被覆された平均粒径100nm以下の金属粒子の有機物を加熱により分解させて金属粒子同士を焼結させる接合方法や、金属酸化物を接合材料として用いて被接合材同士を接合させる方法が知られている。 On the other hand, a bonding material using a conductive composition containing a particulate metal compound is known as a material having high heat dissipation and reliability. In particular, in the case of metal nanoparticles in which the particle size of the metal particles is reduced to a size of 100 nm or less, the number of constituent atoms decreases, and the surface area ratio with respect to the volume of the particles increases rapidly. As a result, it is known that the melting point and sintering temperature are significantly reduced compared to the bulk state. Utilizing this low-temperature sintering function, a joining method in which metal particles having an average particle diameter of 100 nm or less whose surface is coated with an organic matter is decomposed by heating to sinter the metal particles, or a metal oxide as a joining material There is known a method for joining materials to be joined together.
しかしながら、上述のような金属ナノ粒子、金属酸化物を接合材料として用いた焼結金属接合層は、150℃を超えるような高温環境下では、接合部の酸化や室温から150℃への加熱による温度サイクルによるクラック発生等により信頼性が低下する課題があった。そこで、特許文献1では、熱衝撃による熱応力を緩和するために、半導体素子と絶縁基板とを接合する接合層と同一材料で形成されたフィレット層を接合層の側壁部に配置することが開示されている。 However, the sintered metal bonding layer using the metal nanoparticles and metal oxide as the bonding material as described above is caused by oxidation of the bonding portion or heating from room temperature to 150 ° C. in a high temperature environment exceeding 150 ° C. There was a problem that the reliability was lowered due to the occurrence of cracks due to the temperature cycle. Therefore, Patent Document 1 discloses that a fillet layer formed of the same material as the bonding layer for bonding the semiconductor element and the insulating substrate is disposed on the side wall portion of the bonding layer in order to relieve thermal stress due to thermal shock. Has been.
また、上述のような金属ナノ粒子、金属酸化物を接合材料として用いた場合、被接合材を接合する際に、被接合材間にペースト(接合材料)を挟んで加圧しながら加圧接合することが必要である。このとき、ペーストが接合部からはみ出し、信頼性が低下することが課題となっていた。そこで、特許文献2には、接合部から接合材料のはみ出しを抑制するために、半導体素子に設けられた電極を取り囲むように、電極面に対して立体的に枠部を設けた半導体装置が開示されている。
Further, when metal nanoparticles and metal oxides as described above are used as bonding materials, when bonding the materials to be bonded, pressure bonding is performed while pressing the paste (bonding material) between the materials to be bonded. It is necessary. At this time, it has been a problem that the paste protrudes from the joint and the reliability decreases. Therefore,
特許文献1に開示された半導体装置は、フィレット層に焼結金属層と同一の材料を用いているため、フィレット層及び焼結金属層が酸化により劣化する虞があった。また、フィレット層を形成した際に無加圧で焼結された金属粒子が発生し、その無加圧の焼結金属粒子が半導体素子部分に飛散するために、信頼性が損なわれる課題もあった。 Since the semiconductor device disclosed in Patent Document 1 uses the same material as the sintered metal layer for the fillet layer, the fillet layer and the sintered metal layer may be deteriorated by oxidation. In addition, since metal particles sintered without pressure are generated when the fillet layer is formed, and the non-pressurized sintered metal particles are scattered on the semiconductor element portion, there is a problem that reliability is impaired. It was.
特許文献2に開示された半導体装置に係る枠部は、焼結金属層の周囲に配置されているが焼結金属層を封止するものではないので、焼結金属層の酸化による劣化を抑制することは困難である。特に、焼結金属層の最高温度150℃を超えるような、高温環境下では、接合部の信頼性が低下する課題があった。
Although the frame part which concerns on the semiconductor device disclosed by
本発明は上記課題に鑑み、高温環境下で高い信頼性を有する焼結金属層で形成された半導体装置を提供することにある。 In view of the above problems, the present invention is to provide a semiconductor device formed of a sintered metal layer having high reliability in a high temperature environment.
本発明に係る半導体装置は、絶縁基板上の金属配線と、第一の焼結金属層を介して金属配線と接合された半導体素子と、第二の焼結金属層を介して半導体素子と接合された導電板と、第一の焼結金属層及び第二の焼結金属層の少なくともいずれかの端部を樹脂、ガラス、金属材料の少なくともいずれかで封止する封止部と、を備え、第一の焼結金属層は、第一の焼結金属層と半導体素子との積層方向に投影した場合、第一の焼結金属層は半導体素子の射影部に包含されるように形成されていることを特徴とする。 The semiconductor device according to the present invention includes a metal wiring on an insulating substrate, a semiconductor element joined to the metal wiring via the first sintered metal layer, and a semiconductor element joined to the semiconductor element via the second sintered metal layer. And a sealing portion that seals at least one end portion of the first sintered metal layer and the second sintered metal layer with at least one of resin, glass, and a metal material. The first sintered metal layer is formed so as to be included in the projected portion of the semiconductor element when projected in the stacking direction of the first sintered metal layer and the semiconductor element. It is characterized by.
本発明により、焼結金属層を備える半導体装置の高温環境下における接合信頼性を向上することができる。 According to the present invention, it is possible to improve the bonding reliability of a semiconductor device including a sintered metal layer in a high temperature environment.
以下、本発明にかかる実施形態について具体的に説明する。図1は本発明の一実施形態に係る半導体装置の示す断面図である。図2は図1に係る半導体素子のAA´線における断面図である。半導体装置は、金属配線104を備える絶縁基板103と、半導体素子101と、導電板102と、を備える。導電板は配線部材により絶縁基板上の金属配線と電気的に接続される。絶縁基板は接合層を介して放熱基板等の支持部材に接合される。積層体の周囲は絶縁材で封止されている。
Embodiments according to the present invention will be specifically described below. FIG. 1 is a sectional view showing a semiconductor device according to an embodiment of the present invention. 2 is a cross-sectional view taken along the line AA ′ of the semiconductor element according to FIG. The semiconductor device includes an
図3は図1に係る半導体装置の素子周辺部の断面図である。図3に示すように、絶縁基板103と半導体素子101とは、第一の焼結金属層105を介して接合され、半導体素子と導電板102とは第二の焼結金属層106を介して接合されている。第一、第二の焼結金属層の端部には、樹脂、ガラス、金属の少なくともいずれかからなる封止部が設けられている。
FIG. 3 is a cross-sectional view of the periphery of the element of the semiconductor device according to FIG. As shown in FIG. 3, the
<半導体素子>
半導体素子としては、IGBT(絶縁ゲートバイポーラトランジスタ)チップ、MOSFET、サイリスタ、ゲートターンオフサイリスタ、トライアック等を用いることができる。半導体素子としてIGBTやMOSFETを用いた場合には、表面側には主電極となるエミッタ電極と制御電極であるゲート電極、裏面側には主電極となるコレクタ電極が設けられる。
<Semiconductor element>
As the semiconductor element, an IGBT (insulated gate bipolar transistor) chip, MOSFET, thyristor, gate turn-off thyristor, triac, or the like can be used. When an IGBT or MOSFET is used as the semiconductor element, an emitter electrode serving as a main electrode and a gate electrode serving as a control electrode are provided on the front surface side, and a collector electrode serving as a main electrode is provided on the back surface side.
<導電板>
導電板にはワイヤやリボンなどの配線部材が接続され、配線部材によって他の半導体素子や電極と接続される。導電板には、半導体素子と配線部材の熱膨張率差による熱応力を緩和する役割と、半導体素子からの熱を放熱する役割が求められる。導電板としては、半導体素子と配線部材の中間の熱膨張率を有し、熱伝導率が100W/mK以上の材料を用いることが好ましい。異なる熱伝導率を有する層を積層した材料を用いることもできる。
<Conductive plate>
A wiring member such as a wire or a ribbon is connected to the conductive plate, and is connected to other semiconductor elements or electrodes by the wiring member. The conductive plate is required to have a role of relieving thermal stress due to a difference in thermal expansion coefficient between the semiconductor element and the wiring member and a role of radiating heat from the semiconductor element. As the conductive plate, it is preferable to use a material having a thermal expansion coefficient intermediate between the semiconductor element and the wiring member and having a thermal conductivity of 100 W / mK or more. A material obtained by stacking layers having different thermal conductivities can also be used.
<絶縁基板>
絶縁基板には、絶縁耐圧が高い窒化アルミニウム、窒化珪素、アルミナ等が用いられる。特に、熱伝導率の高い窒化アルミニウムや窒化珪素が望ましい。絶縁基板の厚さは、パワー半導体モジュールに必要な絶縁特性にあわせ、0.1〜1.5mmの範囲に設定される。また、絶縁基板として樹脂をマトリックスし、アルミナや窒化ホウ素やイットリアや窒化アルミ等の高熱伝導フィラーを混合したシート状の構成を用いることも可能である。
<Insulating substrate>
For the insulating substrate, aluminum nitride, silicon nitride, alumina or the like having a high withstand voltage is used. In particular, aluminum nitride or silicon nitride having high thermal conductivity is desirable. The thickness of the insulating substrate is set in the range of 0.1 to 1.5 mm in accordance with the insulating characteristics necessary for the power semiconductor module. It is also possible to use a sheet-like configuration in which a resin is matrixed as an insulating substrate and a high thermal conductive filler such as alumina, boron nitride, yttria, or aluminum nitride is mixed.
<放熱基板>
放熱基板には、熱伝導率の高い銅やアルミニウム、またはそれらの合金を用いることが望ましい。また、放熱基板と絶縁基板との間に、低熱膨張で熱伝導率が高いモリブデンやタングステンやカーボン、またはそれらの材料と銅やアルミニウムとの複合材からなる中間層を設置してもよい。本実施形態においては、この中間層を省略した構造を採っている。
<Heat dissipation board>
It is desirable to use copper, aluminum, or an alloy thereof having high thermal conductivity for the heat dissipation board. Further, an intermediate layer made of molybdenum, tungsten, or carbon having a low thermal expansion and high thermal conductivity, or a composite material of these materials and copper or aluminum may be provided between the heat dissipation substrate and the insulating substrate. In the present embodiment, a structure in which the intermediate layer is omitted is employed.
<封止材>
半導体素子周囲の絶縁材としては、高分子材料であれば、何でもよく、エポキシ樹脂、ポリイミド、ポリアミド、ポリアミドイミド、シリコーンゲル等を用いることが可能である。また、樹脂に、SiO2、Al2O3、AlN、BN等のセラミックスやゲル、ゴム等のフィラーを含有させてもよい。熱膨張係数をIGBTチップやダイオードチップ等に近づけて、熱膨張係数の差を低減することができる。
<Encapsulant>
As the insulating material around the semiconductor element, any material can be used as long as it is a polymer material, and epoxy resin, polyimide, polyamide, polyamideimide, silicone gel, or the like can be used. Further, the resin may contain a filler such as ceramics such as SiO 2 , Al 2 O 3 , AlN, BN, gel, rubber, or the like. The difference in thermal expansion coefficient can be reduced by bringing the thermal expansion coefficient close to that of an IGBT chip or a diode chip.
<焼結金属層>
半導体素子と絶縁基板とを接合する第一の焼結金属層は、第一の焼結金属層と半導体素子との積層方向から投影した場合、第一の焼結金属層が半導体素子の射影部に包含されるように形成されていることが好ましい。また、半導体素子と導電板とを接合する第二の焼結金属層は、第二の焼結金属層と導電板との積層方向から投影した場合、第二の焼結金属層が導電板の射影部に包含されるように形成されていることが好ましい。
<Sintered metal layer>
When the first sintered metal layer for joining the semiconductor element and the insulating substrate is projected from the stacking direction of the first sintered metal layer and the semiconductor element, the first sintered metal layer is projected from the semiconductor element. It is preferable that it is formed so as to be included in. Further, when the second sintered metal layer joining the semiconductor element and the conductive plate is projected from the stacking direction of the second sintered metal layer and the conductive plate, the second sintered metal layer is formed of the conductive plate. It is preferably formed so as to be included in the projected portion.
焼結金属層を形成する際には、接合時の加圧工程において塗布したペーストが被接合材からはみ出し、無加圧で焼結された金属粉が、その後の工程において飛散してしまうことが課題となっていた。金属粉が半導体素子周囲に飛散すると、短絡が発生し信頼性が損なわれるおそれがある。そのため、被接合材からはみ出さないように焼結金属層を形成することにより、無加圧で焼結された金属粉の生成を抑制し、信頼性を向上することができる。 When forming the sintered metal layer, the paste applied in the pressurizing process at the time of joining may protrude from the material to be joined, and the metal powder sintered without pressure may be scattered in the subsequent process. It was an issue. If the metal powder is scattered around the semiconductor element, a short circuit may occur and reliability may be impaired. Therefore, by forming the sintered metal layer so as not to protrude from the material to be joined, the generation of metal powder sintered without pressure can be suppressed and the reliability can be improved.
焼結接合層を形成するための接合材料は、金属粒子、金属酸化物粒子、金属塩粒子のいずれかを含む。金属粒子として、例えば、銀、銅、金、白金、パラジウム、ロジウム、オスミウム、ルテニウム、イリジウム、鉄、錫、亜鉛、コバルト、ニッケル、クロム、チタン、タンタル、タングステン、インジウム、珪素、アルミニウム等の中から1種類の金属あるいは2種類以上の金属からなる合金を用いることが可能である。酸化物粒子としては酸化金、酸化第一銀、酸化第二銀、酸化第二銅を用いることが可能である。金属塩粒子としてはカルボン酸金属塩として酢酸銀、ネオデカン酸銀塩などをもちいることが可能である。 The bonding material for forming the sintered bonding layer includes any of metal particles, metal oxide particles, and metal salt particles. Examples of metal particles include silver, copper, gold, platinum, palladium, rhodium, osmium, ruthenium, iridium, iron, tin, zinc, cobalt, nickel, chromium, titanium, tantalum, tungsten, indium, silicon, and aluminum. It is possible to use an alloy composed of one kind of metal or two or more kinds of metals. As oxide particles, gold oxide, primary silver oxide, secondary silver oxide, and cupric oxide can be used. As the metal salt particles, silver acetate, silver neodecanoate or the like can be used as the carboxylic acid metal salt.
接合材料に銀粒子を含む場合、平均粒径が1nmより大きく10μm以下の銀粒子を用いることが好ましい。接合材料に銅粒子を含む場合、平均粒径が1nmより大きく20um以下の銅粒子を用いることが好ましい。また、粒子の凝集を防ぐために、これらの粒子を有機物の分散剤を被覆しておくことが好ましい。分散剤としてはアルキルカルボン酸、アルキルアミンが挙げられる。 When silver particles are included in the bonding material, it is preferable to use silver particles having an average particle size of more than 1 nm and 10 μm or less. When the bonding material contains copper particles, it is preferable to use copper particles having an average particle size of more than 1 nm and 20 μm or less. In order to prevent the particles from aggregating, it is preferable to coat these particles with an organic dispersant. Examples of the dispersant include alkyl carboxylic acids and alkyl amines.
接合材料をペーストとして用いる場合には、接合材料に沸点が350℃以下の溶媒を加えてもよい。溶媒としては例えばアルコール類等が挙げられる。溶媒の沸点は350℃以下でなくてもよいが、接合温度のターゲットが350℃以下であるため、沸点350℃以下の溶媒を用いることにより、溶媒が蒸発する際の時間を短縮することができる。溶媒として用いることができるアルコール類としては、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルルコール、ウンデシルアルコール、ドデシルアルコール、トリデシルアルコール、テトラデシルアルコール、ペンタデシルアルコール、ヘキサデシルアルコール、ヘプタデシルアルコール、オクタデシルアルコール、ノナデシルアルコール、イコシルアルコール、がある。また、ジエチレングリコール、エチレングリコール、トリエチレングリコール、ジエチレングリコールモノブチルエーテル、ジエチレングリコールモノヘキシルエーテル、ジエチレングリコールジエチルエーテルなどのグリコール系が挙げられる。さらには1級アルコール型に限らず、2級アルコール型、3級アルコール型、及びアルカンジオール、環状型の構造を有するアルコール化合物を用いることが可能である。それ以外にも、テルピネオール、エチレングリコール、トリエチレングリコールを用いてより。これらの中でもグリコール系の溶媒を用いることが好ましい。こグリコール系の溶媒は安価で、人体等に対する毒性も少ないからである。さらに、これらのアルコール系の溶媒は溶媒としてだけでなく、酸化銀に対する還元剤としても作用することが可能であるため、酸化銀粒子の量に対する還元剤として適度な量に調整して用いることができる。 When the bonding material is used as a paste, a solvent having a boiling point of 350 ° C. or lower may be added to the bonding material. Examples of the solvent include alcohols. The boiling point of the solvent may not be 350 ° C. or lower, but since the target of the bonding temperature is 350 ° C. or lower, the time when the solvent evaporates can be shortened by using a solvent having a boiling point of 350 ° C. or lower. . Alcohols that can be used as solvents include heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexadecyl alcohol, heptadecyl alcohol, octadecyl There are alcohol, nonadecyl alcohol, icosyl alcohol. Further, glycols such as diethylene glycol, ethylene glycol, triethylene glycol, diethylene glycol monobutyl ether, diethylene glycol monohexyl ether, and diethylene glycol diethyl ether can be used. Furthermore, not only the primary alcohol type, but also a secondary alcohol type, a tertiary alcohol type, an alkanediol, and an alcohol compound having a cyclic structure can be used. Besides, use terpineol, ethylene glycol, triethylene glycol and more. Among these, it is preferable to use a glycol-based solvent. This is because this glycol-based solvent is inexpensive and has little toxicity to the human body. Furthermore, since these alcohol-based solvents can act not only as a solvent but also as a reducing agent for silver oxide, they can be used by adjusting to an appropriate amount as a reducing agent for the amount of silver oxide particles. it can.
次に、接合材料に金属酸化物粒子を含む場合について説明する。酸化銀粒子を含む接合材料は、酸化銀粒子の他に、有機物からなる還元剤と、溶媒とを含む。酸化銅粒子を含む接合材料は酸化銅粒子の他に、ペースト用溶剤を含む。金属酸化物粒子は平均粒径1nm〜50μmであることが好ましい。 Next, the case where metal oxide particles are included in the bonding material will be described. The bonding material including silver oxide particles includes a reducing agent made of an organic substance and a solvent in addition to the silver oxide particles. The bonding material containing the copper oxide particles contains a paste solvent in addition to the copper oxide particles. The metal oxide particles preferably have an average particle size of 1 nm to 50 μm.
金属酸化物粒子の含有量としては、接合材料中における全質量部において50質量部超99質量部以下とすることが好ましい。接合材料中における金属含有量が多い方が低温での接合後に有機物残渣が少なくなり、低温で緻密な焼成層を形成でき、また、接合界面での金属結合の形成が可能となる。その結果、接合強度が向上し、さらには高放熱性、高耐熱性を有する接合層を形成することが可能となる。 As content of a metal oxide particle, it is preferable to set it as more than 50 mass parts and 99 mass parts or less in the total mass part in a joining material. When the metal content in the bonding material is high, organic residue is reduced after bonding at low temperature, a dense fired layer can be formed at low temperature, and metal bonds can be formed at the bonding interface. As a result, the bonding strength is improved, and further, a bonding layer having high heat dissipation and high heat resistance can be formed.
有機物からなる還元剤としては、例えば、アルコール類、カルボン酸類、アミン類のいずれかが好ましい。この中でも、環境負荷の小さいアルコール類が好ましい。利用可能なアルコール基を含む化合物としては、アルキルアルコールが挙げられる、例えば、ヘプチルアルコール,オクチルアルコール,ノニルアルコール,デシルルコール,ウンデシルアルコール,ドデシルアルコール,トリデシルアルコール,テトラデシルアルコール,ペンタデシルアルコール,ヘキサデシルアルコール,ヘプタデシルアルコール,オクタデシルアルコール,ノナデシルアルコール,イコシルアルコール、がある。さらには1級アルコール型に限らず、2級アルコール型,3級アルコール型、及びアルカンジオール,環状型の構造を有するアルコール化合物を用いることが可能である。それ以外にも、エチレングリコール,トリエチレングリコールなど多数のアルコール基を有する化合物を用いてもよい。 As the reducing agent composed of an organic substance, for example, any of alcohols, carboxylic acids, and amines is preferable. Among these, alcohols with a small environmental load are preferable. Examples of usable alcohol-containing compounds include alkyl alcohols, such as heptyl alcohol, octyl alcohol, nonyl alcohol, decyl alcohol, undecyl alcohol, dodecyl alcohol, tridecyl alcohol, tetradecyl alcohol, pentadecyl alcohol, hexa There are decyl alcohol, heptadecyl alcohol, octadecyl alcohol, nonadecyl alcohol, and icosyl alcohol. Furthermore, not only the primary alcohol type, but also alcohol compounds having secondary alcohol type, tertiary alcohol type, alkanediol, and cyclic type structures can be used. In addition, compounds having a large number of alcohol groups such as ethylene glycol and triethylene glycol may be used.
接合材料中の還元剤の含有量は酸化銀粒子の全重量に対して1質量部以上で50質量部以下の範囲であることが好ましい。還元剤の量が1質量部より少ないと接合材料における金属粒子前駆体を還元して金属粒子を作製するのに十分な量ではないためである。また、還元剤の量が50質量部を超えると接合後における残渣が多くなる。その結果、界面での金属接合と接合銀層中における緻密化が困難となる。接合材料中には比較的粒径の大きい平均粒径50μm〜100μmの金属粒子を混合して用いることも可能である。これは接合中において作製された100nm以下の金属粒子が、平均粒径50μm〜100μmの金属粒子同士を焼結させる役割を果たすからである。また、粒径が100nm以下の金属粒子を予め混合しておいてもよい。 The content of the reducing agent in the bonding material is preferably in the range of 1 to 50 parts by mass with respect to the total weight of the silver oxide particles. This is because if the amount of the reducing agent is less than 1 part by mass, the amount is not sufficient to reduce the metal particle precursor in the bonding material to produce metal particles. Moreover, when the quantity of a reducing agent exceeds 50 mass parts, the residue after joining will increase. As a result, metal bonding at the interface and densification in the bonding silver layer are difficult. It is also possible to mix and use metal particles having a relatively large average particle diameter of 50 μm to 100 μm in the bonding material. This is because the metal particles of 100 nm or less produced during bonding play a role of sintering metal particles having an average particle diameter of 50 μm to 100 μm. Further, metal particles having a particle size of 100 nm or less may be mixed in advance.
ペースト溶剤としては、銀粒子、銅粒子を用いた場合と同様に、沸点が350℃以下の溶媒を用いることができる。酸化銀粒子を含む接合材料を、ペースト状とする場合も沸点が350℃以下の溶媒を用いることができる。 As the paste solvent, a solvent having a boiling point of 350 ° C. or lower can be used as in the case of using silver particles and copper particles. A solvent having a boiling point of 350 ° C. or lower can also be used when the bonding material containing silver oxide particles is pasted.
<封止部>
封止部とは、焼結金属層の端部を金属、ガラス、樹脂の少なくともいずれかで封止する部分である。これらの材料で焼結金属層の端部を封止することで、接合部端部のひずみ量が減少する。その結果、高温環境下での使用に求められるような、熱サイクルに対しても接合寿命が向上し、高い信頼性を有することが可能となる。また、半導体素子の周囲には、接合により形成された焼結金属層から無加圧の焼結金属が飛散し、信頼性が損なわれるという課題があった。焼結金属層の端部を封止することにより、焼結金属の飛散を抑制できるため、信頼性を維持できる。また、焼結金属層の端部を封止することにより、焼結金属層への酸素等の侵入を抑制し、焼結金属の酸化を抑制できる。その結果、焼結金属の酸化による劣化を抑制でき、焼結金属層の寿命を飛躍的に向上できる。特に接合材料として銅系の材料を用いた場合に、有用である。
<Sealing part>
A sealing part is a part which seals the edge part of a sintered metal layer with at least any one of a metal, glass, and resin. By sealing the end of the sintered metal layer with these materials, the amount of strain at the end of the joint is reduced. As a result, the bonding life is improved even with respect to the thermal cycle required for use in a high temperature environment, and it is possible to have high reliability. In addition, there is a problem that non-pressurized sintered metal scatters around the semiconductor element from the sintered metal layer formed by bonding, and reliability is impaired. By sealing the end of the sintered metal layer, scattering of the sintered metal can be suppressed, so that reliability can be maintained. Further, by sealing the end portion of the sintered metal layer, it is possible to suppress the entry of oxygen or the like into the sintered metal layer and to suppress the oxidation of the sintered metal. As a result, deterioration due to oxidation of the sintered metal can be suppressed, and the life of the sintered metal layer can be dramatically improved. This is particularly useful when a copper-based material is used as the bonding material.
応力吸収、焼結金属の酸化劣化の観点から、導電板と半導体素子とを接合する第二の焼結金属層の端部を封止する封止部は、導電板の端面と半導体素子の上面に接していることが好ましい。また、半導体素子と絶縁基板とを接合する第一の焼結金属層の端部を封止する封止部は、半導体素子の端面と絶縁基板の上面に接していることが好ましい。 From the viewpoint of stress absorption and oxidative deterioration of the sintered metal, the sealing portion that seals the end of the second sintered metal layer that joins the conductive plate and the semiconductor element includes the end face of the conductive plate and the upper surface of the semiconductor element. It is preferable to touch. Moreover, it is preferable that the sealing part which seals the edge part of the 1st sintered metal layer which joins a semiconductor element and an insulated substrate is in contact with the end surface of a semiconductor element, and the upper surface of an insulated substrate.
封止部の形状としては、例えば、図4のような矩形形状、図5のように外周面が凸曲面となっている形状などが挙げられる。 Examples of the shape of the sealing portion include a rectangular shape as shown in FIG. 4 and a shape whose outer peripheral surface is a convex curved surface as shown in FIG.
図3に示すように、導電板と半導体素子の焼結金属層の端部を封止する封止部の外周面は、導電板の端面から半導体素子の上面に近接するに従って、焼結金属層から遠ざかる傾斜面であっても良い。同様に、半導体素子と導電板とを接合する焼結金属層の端部を封止する封止部の外周面は、半導体素子の端面から絶縁基板の上面に近接するにつれて焼結金属層から遠ざかる傾斜面であってもよい。封止部の形状は、例えば、封止部を形成する材料の粘度等を調整することにより制御することができる。 As shown in FIG. 3, the outer peripheral surface of the sealing portion that seals the conductive plate and the end portion of the sintered metal layer of the semiconductor element approaches the upper surface of the semiconductor element from the end surface of the conductive plate. It may be an inclined surface away from the surface. Similarly, the outer peripheral surface of the sealing portion that seals the end portion of the sintered metal layer that joins the semiconductor element and the conductive plate moves away from the sintered metal layer as it approaches the upper surface of the insulating substrate from the end surface of the semiconductor element. It may be an inclined surface. The shape of the sealing part can be controlled, for example, by adjusting the viscosity of the material forming the sealing part.
封止部は、金属材料、ガラス、樹脂の少なくともいずれかで構成される。酸化劣化抑制の観点からは、酸素の透過率が低い金属が好ましい。信頼性向上の観点からは、焼結金属層と反応することのない樹脂が好ましい。高温で使用した際に信頼性が高いのは、ガラス材料である。 The sealing portion is made of at least one of a metal material, glass, and resin. From the viewpoint of suppressing oxidative degradation, a metal having a low oxygen permeability is preferable. From the viewpoint of improving reliability, a resin that does not react with the sintered metal layer is preferable. Glass materials are highly reliable when used at high temperatures.
金属材料としては、半導体装置の製造プロセスの上限の温度である400℃以下で接合できる材料が好ましい。例えば、PbSn,ZnZl,SnSb,SnSu,SnAgCu等のはんだ材料が挙げられる。本願明細書において、はんだとは、450℃未満の低い融点を持つろう接用溶加材を示す。樹脂としては、エポキシ樹脂、ポリアミドイミド、ポリイミド、シリコン樹脂等が挙げられる。ガラスとしては、バナジウムガラス等が挙げられる。これらの材料は、1種類のみであってもいいが、2種類以上用いることが可能である。 The metal material is preferably a material that can be bonded at 400 ° C. or lower, which is the upper limit temperature of the semiconductor device manufacturing process. For example, solder materials, such as PbSn, ZnZl, SnSb, SnSu, SnAgCu, are mentioned. In the present specification, the solder indicates a brazing filler metal having a low melting point of less than 450 ° C. Examples of the resin include epoxy resin, polyamideimide, polyimide, silicon resin and the like. Examples of the glass include vanadium glass. These materials may be only one type, but two or more types can be used.
<半導体装置の製造方法>
半導体装置は、公知の方法を用いて製造することができるが、焼結金属層は以下に説明する方法で形成することが好ましい。
<Method for Manufacturing Semiconductor Device>
Although a semiconductor device can be manufactured using a well-known method, it is preferable to form a sintered metal layer by the method demonstrated below.
図5に本発明に係る接合プロセスの一実施例を示す。本発明に係る接合プロセスは、一方の被接合材(絶縁基板、半導体素子)の表面に接合材料を塗布する接合材料塗布工程(a)と、塗布された接合材料の上に他方の被接合材料(半導体素子、導電板)を搭載する搭載工程(b)と、搭載工程により形成された積層体を加熱・加圧により接合する接合工程(c)と、接合工程により形成された焼結金属層の端部に封止材料を塗布する封止材塗布工程(d)と、封止材を硬化する硬化工程(e)と、を備える。 FIG. 5 shows an embodiment of the joining process according to the present invention. The bonding process according to the present invention includes a bonding material application step (a) for applying a bonding material to the surface of one bonded material (insulating substrate, semiconductor element), and the other bonded material on the applied bonding material. A mounting step (b) for mounting (semiconductor element, conductive plate), a bonding step (c) for bonding the laminate formed by the mounting step by heating and pressing, and a sintered metal layer formed by the bonding step The sealing material application process (d) which apply | coats a sealing material to the edge part of this, and the hardening process (e) which hardens a sealing material are provided.
絶縁基板と半導体素子とを接合する際は、絶縁基板と半導体素子との積層方向に投影した場合、接合材料の塗布領域が半導体素子の射影部に包含されるように接合材料を塗布することが好ましい。また、接合材料塗布領域の面積Bが、半導体素子の表面の面積C1より小さく(B1<C1と)なるように接合材を塗布することが好ましい。焼結金属材料ペーストの塗布領域がチップの外周よりも内側となるため、焼結金属接合後にも、無加圧の焼結部分が出来なくなるため、その後の半導体工程においても、従来のように、無加圧の焼結粉が発生して、信頼性を損なうことを抑制できる。 When bonding the insulating substrate and the semiconductor element, the bonding material may be applied so that the application region of the bonding material is included in the projected portion of the semiconductor element when projected in the stacking direction of the insulating substrate and the semiconductor element. preferable. Moreover, it is preferable to apply the bonding material so that the area B of the bonding material application region is smaller than the area C 1 of the surface of the semiconductor element (B 1 <C 1 ). Since the application area of the sintered metal material paste is on the inner side of the outer periphery of the chip, even after sintered metal bonding, no pressureless sintered part can be made, so in the subsequent semiconductor process, as in the past, It can be suppressed that pressureless sintered powder is generated and reliability is impaired.
また、B1≧C1/2であることが好ましい。B1<C1/2とすると、接合面積がチップサイズに比べて非常に小さくなり、接合部の熱抵抗が悪化し、半導体素子の信頼性が大きく損なわれるからである。 Moreover, it is preferable that B 1 ≧ C 1/2 . This is because if B 1 <C 1/2 , the bonding area becomes very small compared to the chip size, the thermal resistance of the bonding portion deteriorates, and the reliability of the semiconductor element is greatly impaired.
接合工程(c)における雰囲気は、接合材料として銀粒子、酸化銀粒子を用いた場合には大気中、窒素中、還元雰囲気中のいずれでもよい。一方、接合材料として銅粒子、酸化銅粒子を用いた場合には、水素や蟻酸などの還元雰囲気や窒素中等で行う必要がある。 これは、銅粒子を大気中で加熱すると、酸化してしまうためである。また、酸化銅粒子は大気中では、有機物還元剤等により、一度は銅に還元できたとしてもその後、酸化してしまうためである。このような理由から、接合には、還元雰囲気や窒素雰囲気を用いることが必要である。 接合工程(c)における加圧条件は、0MPa超30MPa以下が好ましい。加圧をしない(0MPa)場合、焼結金属の接合層が緻密化されないため、接合層の信頼性が大きく低下する。また、30MPaよりも大きくなると、半導体素子へのダメージが生じる。加熱・加圧時間は、1秒超180分未満が好ましい。 The atmosphere in the bonding step (c) may be any of air, nitrogen, and reducing atmosphere when silver particles and silver oxide particles are used as the bonding material. On the other hand, when copper particles or copper oxide particles are used as the bonding material, it is necessary to carry out in a reducing atmosphere such as hydrogen or formic acid or in nitrogen. This is because the copper particles are oxidized when heated in the atmosphere. Further, the copper oxide particles are oxidized in the atmosphere even if they can be reduced to copper once by an organic reducing agent or the like. For these reasons, it is necessary to use a reducing atmosphere or a nitrogen atmosphere for bonding. The pressurizing condition in the joining step (c) is preferably more than 0 MPa and not more than 30 MPa. When no pressure is applied (0 MPa), the bonding layer of the sintered metal is not densified, and the reliability of the bonding layer is greatly reduced. Moreover, when it becomes larger than 30 MPa, the damage to a semiconductor element will arise. The heating / pressurizing time is preferably more than 1 second and less than 180 minutes.
以下、具体例を示して本発明の実施形態を記す。 Hereinafter, embodiments of the present invention will be described with specific examples.
焼結金属層を形成する接合材料に酸化銅粒子を用い、SnAgCuはんだからなる封止部を備える半導体装置の例を示す。 An example of a semiconductor device including a sealing portion made of SnAgCu solder using copper oxide particles as a bonding material for forming a sintered metal layer is shown.
実施例1に係る半導体装置は、図に示した接合プロセスにより作製した。焼結金属層を形成する接合材料としては、酸化銅ペーストを用いた。酸化銅ペーストは、和光純薬から購入した酸化銅粒子(CuO)とエチレングリコールモノブチルエーテルをそれぞれ重量比において、9:1で混合することにより作製した。この酸化銅ペーストを、表面に銅配線層131を備える絶縁基板に、10mmの幅で塗布した(a工程)。その後、長辺が13mmの半導体素子を酸化銅ペースト上に搭載した(b工程)。工程bにより得られた積層体を350℃の接合温度で1.0MPaに加圧して5分間保持することにより絶縁基板と半導体素子とを接合した(c工程)。このとき、酸化銅ペーストの塗布領域を半導体素子よりも小さくすることにより、その後の加熱加圧時にペーストが広がって、半導体素子からはみ出し、無加圧で焼結した銅粉がその後の工程で飛散することを防ぐことができた。 The semiconductor device according to Example 1 was manufactured by the bonding process shown in the drawing. A copper oxide paste was used as a bonding material for forming the sintered metal layer. The copper oxide paste was prepared by mixing copper oxide particles (CuO) purchased from Wako Pure Chemicals and ethylene glycol monobutyl ether in a weight ratio of 9: 1. This copper oxide paste was applied to an insulating substrate having a copper wiring layer 131 on the surface with a width of 10 mm (step a). Thereafter, a semiconductor element having a long side of 13 mm was mounted on the copper oxide paste (step b). The laminated body obtained in the step b was pressurized to 1.0 MPa at a bonding temperature of 350 ° C. and held for 5 minutes to bond the insulating substrate and the semiconductor element (step c). At this time, by making the coating area of the copper oxide paste smaller than the semiconductor element, the paste spreads during the subsequent heating and pressing, and the copper powder that protrudes from the semiconductor element and is sintered without pressure is scattered in the subsequent process. I was able to prevent it.
次に、SnAgCuからなるはんだ材料をc工程により形成された焼結金属層の端部に塗布し(d工程)、290℃で1分間リフローすることにより硬化させた(e工程)。このとき、はんだ材料を、半導体素子の端面及び絶縁基板の上面と接触するように塗布、硬化させた。 Next, a solder material made of SnAgCu was applied to the end of the sintered metal layer formed by the c process (d process), and cured by reflowing at 290 ° C. for 1 minute (e process). At this time, the solder material was applied and cured so as to be in contact with the end surface of the semiconductor element and the upper surface of the insulating substrate.
以上の方法により、焼結金属層の端部には、SnAgCuはんだからなる封止部(フィレット)を形成させた。この焼結金属層の端部に形成された封止部により、温度サイクルにおいて、端部の熱応力が分散され、接合寿命を向上させることが可能となる。 By the above method, the sealing part (fillet) which consists of SnAgCu solder was formed in the edge part of a sintered metal layer. By the sealing portion formed at the end portion of the sintered metal layer, the thermal stress at the end portion is dispersed in the temperature cycle, and the joining life can be improved.
焼結金属層を形成する接合材料に酸化銅粒子を用い、樹脂からなる封止部を備える半導体装置の例を示す。d工程においてはんだ材料をエポキシ樹脂に変え、e工程において加熱により硬化させたこと以外は実施例1と同様に半導体装置を作製した。以上の方法により、焼結金属層の端部に、エポキシ樹脂からなる封止部を備え半導体装置を作製hした。この接合層端部のフィレットにより、温度サイクルでの端部に対する熱応力が分散されて、接合寿命を向上させることが可能となる。 An example of a semiconductor device using copper oxide particles as a bonding material for forming a sintered metal layer and having a sealing portion made of resin is shown. A semiconductor device was fabricated in the same manner as in Example 1 except that the solder material was changed to an epoxy resin in the d process and was cured by heating in the e process. By the above method, a semiconductor device was prepared by providing a sealing portion made of an epoxy resin at the end of the sintered metal layer. By this fillet at the end of the bonding layer, the thermal stress on the end in the temperature cycle is dispersed, and the bonding life can be improved.
<比較例1>
比較例1では、焼結金属層の端部に封止部を備えない半導体装置を作製した。比較例に係る半導体装置は、d工程、e工程を行わなかったこと以外、実施例1と同様に作製した。
<Comparative Example 1>
In Comparative Example 1, a semiconductor device having no sealing portion at the end of the sintered metal layer was produced. The semiconductor device according to the comparative example was manufactured in the same manner as in Example 1 except that the d process and the e process were not performed.
<耐酸化性の評価>
実施例1及び比較例1で作製した半導体装置の高温での耐酸化性を調べた。これら2つの半導体装置に対して、−40から200℃まで温度を変化させ、20、50、100、200、500、1000の各サイクルでサンプルを取り出し、端部からの焼結銅の酸化距離を測定した。測定結果を図6に示す。実施例1に係る半導体装置ではサイクルに伴う酸化進展距離の変化がほぼない。一方、比較例1に係る半導体装置では、20サイクル以上になると酸化進展距離が大幅に増加した。これは、焼結銅の端部を封止することで焼結銅の酸化が大幅に抑制できたことを示している。焼結金属層の端部をはんだで覆うことで、大気中の酸素は、焼結金属層に達するにははんだ内を拡散する必要があるため、焼結銅層に到達しにくくなったためであると考えられる。このように、焼結金属層の酸化を抑制すると、高温環境下での信頼性を向上することができる。
<Evaluation of oxidation resistance>
The high temperature oxidation resistance of the semiconductor devices manufactured in Example 1 and Comparative Example 1 was examined. For these two semiconductor devices, the temperature was changed from −40 to 200 ° C., samples were taken in each cycle of 20, 50, 100, 200, 500, and 1000, and the oxidation distance of the sintered copper from the end was determined. It was measured. The measurement results are shown in FIG. In the semiconductor device according to Example 1, there is almost no change in the oxidation progress distance associated with the cycle. On the other hand, in the semiconductor device according to Comparative Example 1, the oxidation progress distance significantly increased when the number of cycles was 20 cycles or more. This has shown that the oxidation of sintered copper could be suppressed significantly by sealing the edge part of sintered copper. By covering the end of the sintered metal layer with solder, oxygen in the atmosphere needs to diffuse in the solder to reach the sintered metal layer, making it difficult to reach the sintered copper layer it is conceivable that. Thus, if the oxidation of the sintered metal layer is suppressed, the reliability in a high temperature environment can be improved.
101…半導体素子、102…導電板、103…絶縁基板、104…配線層、105…第一の焼結金属層、106…第二の焼結金属層、107…封止部、108…配線部材、109…絶縁材、110…支持部材、111…接合層、112…ケース
DESCRIPTION OF
Claims (11)
第一の焼結金属層を介して前記金属配線と接合された半導体素子と、
第二の焼結金属層を介して前記半導体素子と接合された導電板と、
前記第一の焼結金属層及び前記第二の焼結金属層の少なくともいずれかの端部を樹脂、ガラス、金属材料の少なくともいずれかで封止する封止部と、を備え、
前記第一の焼結金属層は、前記第一の焼結金属層と前記半導体素子との積層方向から投影した場合、前記第一の焼結金属層が前記半導体素子の射影部に包含されるように形成されていることを特徴とする半導体装置。 Metal wiring on an insulating substrate;
A semiconductor element joined to the metal wiring via a first sintered metal layer;
A conductive plate joined to the semiconductor element via a second sintered metal layer;
A sealing portion that seals at least one end of the first sintered metal layer and the second sintered metal layer with at least one of resin, glass, and metal material, and
When the first sintered metal layer is projected from the stacking direction of the first sintered metal layer and the semiconductor element, the first sintered metal layer is included in the projected portion of the semiconductor element. The semiconductor device is formed as described above.
前記第二の焼結金属層は、前記第二の焼結金属層と前記導電板との積層方向から投影した場合、前記第ニの焼結金属層が前記導電板の射影部に包含されるように形成されていることを特徴とする半導体装置。 The semiconductor device according to claim 1,
When the second sintered metal layer is projected from the stacking direction of the second sintered metal layer and the conductive plate, the second sintered metal layer is included in the projected portion of the conductive plate. The semiconductor device is formed as described above.
前記第一の焼結金属層の端部を封止する封止部は、前記半導体素子の端面と、前記絶縁基板の上面と接することを特徴とする半導体装置。 The semiconductor device according to claim 1,
A sealing device for sealing an end portion of the first sintered metal layer is in contact with an end surface of the semiconductor element and an upper surface of the insulating substrate.
前記第二の焼結金属層の端部を封止する封止部は、前記導電板の端面と、前記半導体素子の上面と接することを特徴とする半導体装置。 The semiconductor device according to claim 1,
A sealing device for sealing an end portion of the second sintered metal layer is in contact with an end surface of the conductive plate and an upper surface of the semiconductor element.
前記封止部は、はんだからなることを特徴とする半導体モジュール。 The semiconductor device according to claim 1,
The semiconductor module is characterized in that the sealing portion is made of solder.
前記第一の焼結金属層及び前記第二の焼結金属層を形成する接合材料と、前記封止部を形成する材料は異なることを特徴とする半導装置 The semiconductor device according to claim 1,
A semiconductor device characterized in that a bonding material forming the first sintered metal layer and the second sintered metal layer is different from a material forming the sealing portion.
前記第一の焼結金属層及び前記第二の焼結金属層は、銀及び銅の少なくともいずれかを含むことを特徴とする半導体装置。 The semiconductor device according to claim 1,
The first sintered metal layer and the second sintered metal layer include at least one of silver and copper.
前記第一の焼結金属層及び前記第二の焼結金属層が、銀粒子、酸化銀粒子の少なくともいずれかを含む接合材料が焼結したものであることを特徴とする半導体装置。 The semiconductor device according to claim 1, wherein
The semiconductor device, wherein the first sintered metal layer and the second sintered metal layer are obtained by sintering a bonding material containing at least one of silver particles and silver oxide particles.
前記第一の焼結金属層及び前記第二の焼結金属層が、銅粒子、酸化銅粒子の少なくともいずれかを含む接合材料が焼結したものであることを特徴とする半導体装置。 The semiconductor device according to claim 1, wherein
The semiconductor device, wherein the first sintered metal layer and the second sintered metal layer are obtained by sintering a bonding material containing at least one of copper particles and copper oxide particles.
第一の焼結金属層を介して前記金属配線と接合された半導体素子と、
第二の焼結金属層を介して前記半導体素子と接合された導電板と、
前記第一の焼結金属層及び前記第二の焼結金属層の少なくともいずれかの端部を樹脂、ガラス、金属材料の少なくともいずれかで封止する封止部と、を備える半導体装置の製造方法であって、
前記絶縁基板の表面に接合材料を塗布する接合材料塗布工程と、
塗布された接合材料の上に前記半導体素子を搭載する搭載工程と、
前記搭載工程により形成された積層体を大気中又は還元雰囲気中100℃〜500℃で加熱する工程と、を備えることを特徴とする半導体装置の製造方法。 Metal wiring on an insulating substrate;
A semiconductor element joined to the metal wiring via a first sintered metal layer;
A conductive plate joined to the semiconductor element via a second sintered metal layer;
A semiconductor device comprising: a sealing portion that seals at least one of the first sintered metal layer and the second sintered metal layer with at least one of resin, glass, and a metal material. A method,
A bonding material application step of applying a bonding material to the surface of the insulating substrate;
A mounting step of mounting the semiconductor element on the applied bonding material;
Heating the laminated body formed by the mounting step in air or in a reducing atmosphere at 100 ° C. to 500 ° C., and a method for manufacturing a semiconductor device.
前記接合材料塗布工程において、積層方向に投影した場合、前記接合材料の塗布領域が前記半導体素子射影部に包含されるように前記接合材料を塗布することを特徴とする半導体装置の製造方法。 A method of manufacturing a semiconductor device according to claim 10,
In the bonding material application step, the bonding material is applied so that an application region of the bonding material is included in the semiconductor element projection portion when projected in the stacking direction.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015054154A JP2018098219A (en) | 2015-03-18 | 2015-03-18 | Semiconductor device and manufacturing method of the same |
PCT/JP2016/053440 WO2016147736A1 (en) | 2015-03-18 | 2016-02-05 | Semiconductor device, and method for manufacturing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015054154A JP2018098219A (en) | 2015-03-18 | 2015-03-18 | Semiconductor device and manufacturing method of the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018098219A true JP2018098219A (en) | 2018-06-21 |
Family
ID=56918770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015054154A Pending JP2018098219A (en) | 2015-03-18 | 2015-03-18 | Semiconductor device and manufacturing method of the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2018098219A (en) |
WO (1) | WO2016147736A1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053501A (en) * | 2018-09-26 | 2020-04-02 | 株式会社ケーヒン | Power module |
WO2023175854A1 (en) * | 2022-03-17 | 2023-09-21 | 三菱電機株式会社 | Semiconductor device, power converter, and method for manufacturing semiconductor device |
US11923270B2 (en) | 2020-09-24 | 2024-03-05 | Kabushiki Kaisha Toshiba | Semiconductor device |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4904767B2 (en) * | 2005-10-17 | 2012-03-28 | 富士電機株式会社 | Semiconductor device |
JP2012069640A (en) * | 2010-09-22 | 2012-04-05 | Toshiba Corp | Semiconductor device and power semiconductor device |
JP5557698B2 (en) * | 2010-11-04 | 2014-07-23 | 株式会社日立製作所 | Sintered bonding agent, manufacturing method thereof and bonding method using the same |
JP2012138470A (en) * | 2010-12-27 | 2012-07-19 | Mitsubishi Electric Corp | Semiconductor element, semiconductor device and semiconductor device manufacturing method |
JP5968046B2 (en) * | 2012-04-26 | 2016-08-10 | 三菱電機株式会社 | Semiconductor device and manufacturing method of semiconductor device |
JP6066952B2 (en) * | 2014-03-20 | 2017-01-25 | 三菱電機株式会社 | Manufacturing method of semiconductor module |
-
2015
- 2015-03-18 JP JP2015054154A patent/JP2018098219A/en active Pending
-
2016
- 2016-02-05 WO PCT/JP2016/053440 patent/WO2016147736A1/en active Application Filing
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020053501A (en) * | 2018-09-26 | 2020-04-02 | 株式会社ケーヒン | Power module |
JP6991950B2 (en) | 2018-09-26 | 2022-01-13 | 日立Astemo株式会社 | Power module |
US11923270B2 (en) | 2020-09-24 | 2024-03-05 | Kabushiki Kaisha Toshiba | Semiconductor device |
WO2023175854A1 (en) * | 2022-03-17 | 2023-09-21 | 三菱電機株式会社 | Semiconductor device, power converter, and method for manufacturing semiconductor device |
Also Published As
Publication number | Publication date |
---|---|
WO2016147736A1 (en) | 2016-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5525335B2 (en) | Sintered silver paste material and semiconductor chip bonding method | |
JP5664625B2 (en) | Semiconductor device, ceramic circuit board, and semiconductor device manufacturing method | |
CN111360270B (en) | Joint body and semiconductor device | |
JP6319643B2 (en) | Ceramics-copper bonded body and method for manufacturing the same | |
JP2010171271A (en) | Semiconductor device and method of manufacturing the same | |
JP2012178513A (en) | Power module unit and manufacturing method of the same | |
CN101593709B (en) | Modules with sintered joints | |
JP2015095540A (en) | Semiconductor device and manufacturing method of the same | |
JP6907546B2 (en) | Power module | |
JP2019087607A (en) | Substrate for power module with heat sink and manufacturing method of substrate for power module with heat sink | |
TWI642154B (en) | Power module substrate, and method of producing the same; and power module | |
WO2016147736A1 (en) | Semiconductor device, and method for manufacturing same | |
JP5866075B2 (en) | Bonding material manufacturing method, bonding method, and power semiconductor device | |
JP2011198674A (en) | Conductive bonding material, semiconductor device using this, and manufacturing method of semiconductor device | |
JP5863323B2 (en) | Semiconductor device and manufacturing method of semiconductor device | |
JP6170045B2 (en) | Bonding substrate and manufacturing method thereof, semiconductor module using bonding substrate, and manufacturing method thereof | |
JP2012015557A (en) | Insulation sheet and semiconductor device | |
US11426793B2 (en) | Method of fabricating high-power module | |
JP2016100424A (en) | Power module | |
JP6619661B2 (en) | Semiconductor device and method for manufacturing semiconductor device | |
KR102151690B1 (en) | Composition for bonding material and method for preparing the same | |
CN108701659B (en) | Bonded body, substrate for power module, method for manufacturing bonded body, and method for manufacturing substrate for power module | |
JP5677685B2 (en) | Circuit board and semiconductor device using the same | |
TWI745572B (en) | Electronic parts installation module | |
CN111276410B (en) | Preparation method of high-power module |