JP2018091844A - METHOD FOR DETECTING α-SYNUCLEIN - Google Patents
METHOD FOR DETECTING α-SYNUCLEIN Download PDFInfo
- Publication number
- JP2018091844A JP2018091844A JP2017228820A JP2017228820A JP2018091844A JP 2018091844 A JP2018091844 A JP 2018091844A JP 2017228820 A JP2017228820 A JP 2017228820A JP 2017228820 A JP2017228820 A JP 2017228820A JP 2018091844 A JP2018091844 A JP 2018091844A
- Authority
- JP
- Japan
- Prior art keywords
- synuclein
- αsyn
- dlb
- aggregate
- biological sample
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 102000003802 alpha-Synuclein Human genes 0.000 title claims abstract description 152
- 108090000185 alpha-Synuclein Proteins 0.000 title claims abstract description 152
- 238000000034 method Methods 0.000 title claims abstract description 105
- 208000032859 Synucleinopathies Diseases 0.000 claims abstract description 68
- 239000012472 biological sample Substances 0.000 claims abstract description 50
- 239000011541 reaction mixture Substances 0.000 claims abstract description 32
- 230000002159 abnormal effect Effects 0.000 claims abstract description 28
- 238000003745 diagnosis Methods 0.000 claims abstract description 13
- 238000002156 mixing Methods 0.000 claims abstract description 13
- 230000004069 differentiation Effects 0.000 claims abstract description 8
- 201000002832 Lewy body dementia Diseases 0.000 claims description 91
- 208000009829 Lewy Body Disease Diseases 0.000 claims description 40
- 230000015572 biosynthetic process Effects 0.000 claims description 33
- JADVWWSKYZXRGX-UHFFFAOYSA-M thioflavine T Chemical compound [Cl-].C1=CC(N(C)C)=CC=C1C1=[N+](C)C2=CC=C(C)C=C2S1 JADVWWSKYZXRGX-UHFFFAOYSA-M 0.000 claims description 24
- 238000001514 detection method Methods 0.000 claims description 23
- 210000001175 cerebrospinal fluid Anatomy 0.000 claims description 20
- 239000000523 sample Substances 0.000 claims description 18
- 210000005013 brain tissue Anatomy 0.000 claims description 16
- 238000001262 western blot Methods 0.000 claims description 15
- 239000007853 buffer solution Substances 0.000 claims description 14
- 208000018737 Parkinson disease Diseases 0.000 claims description 13
- 210000004369 blood Anatomy 0.000 claims description 11
- 239000008280 blood Substances 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- 239000000243 solution Substances 0.000 claims description 10
- 201000010099 disease Diseases 0.000 claims description 8
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 claims description 7
- 239000007995 HEPES buffer Substances 0.000 claims description 6
- 208000001089 Multiple system atrophy Diseases 0.000 claims description 6
- 208000010877 cognitive disease Diseases 0.000 claims description 6
- 230000008569 process Effects 0.000 claims description 6
- 238000001506 fluorescence spectroscopy Methods 0.000 claims description 4
- 210000000265 leukocyte Anatomy 0.000 claims description 4
- 230000001423 neocortical effect Effects 0.000 claims description 4
- 208000028698 Cognitive impairment Diseases 0.000 claims description 3
- 210000002381 plasma Anatomy 0.000 claims description 3
- 210000002966 serum Anatomy 0.000 claims description 3
- 239000000872 buffer Substances 0.000 abstract description 17
- 206010012289 Dementia Diseases 0.000 abstract description 16
- 238000010586 diagram Methods 0.000 abstract description 12
- 102000052052 Casein Kinase II Human genes 0.000 description 76
- 108010010919 Casein Kinase II Proteins 0.000 description 76
- 238000006243 chemical reaction Methods 0.000 description 69
- 206010067889 Dementia with Lewy bodies Diseases 0.000 description 51
- 210000004556 brain Anatomy 0.000 description 46
- 238000010790 dilution Methods 0.000 description 40
- 239000012895 dilution Substances 0.000 description 40
- 238000010899 nucleation Methods 0.000 description 32
- 108090000623 proteins and genes Proteins 0.000 description 28
- 102000004169 proteins and genes Human genes 0.000 description 28
- 235000018102 proteins Nutrition 0.000 description 27
- 208000024827 Alzheimer disease Diseases 0.000 description 24
- 230000000694 effects Effects 0.000 description 21
- 239000012528 membrane Substances 0.000 description 21
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 18
- 238000011534 incubation Methods 0.000 description 17
- 239000012071 phase Substances 0.000 description 17
- 238000004458 analytical method Methods 0.000 description 16
- 208000020406 Creutzfeldt Jacob disease Diseases 0.000 description 14
- 208000003407 Creutzfeldt-Jakob Syndrome Diseases 0.000 description 14
- 208000010859 Creutzfeldt-Jakob disease Diseases 0.000 description 14
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 14
- 230000026731 phosphorylation Effects 0.000 description 14
- 238000006366 phosphorylation reaction Methods 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 13
- 108091000054 Prion Proteins 0.000 description 13
- 102000029797 Prion Human genes 0.000 description 13
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 13
- 208000002704 Sporadic Creutzfeldt-Jakob disease Diseases 0.000 description 12
- 238000003556 assay Methods 0.000 description 12
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 12
- 208000024891 symptom Diseases 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 10
- 238000003119 immunoblot Methods 0.000 description 10
- 239000011324 bead Substances 0.000 description 9
- 239000000835 fiber Substances 0.000 description 9
- 239000013642 negative control Substances 0.000 description 9
- 239000011780 sodium chloride Substances 0.000 description 9
- 241000894007 species Species 0.000 description 9
- 210000003000 inclusion body Anatomy 0.000 description 8
- 239000011535 reaction buffer Substances 0.000 description 8
- 239000000758 substrate Substances 0.000 description 8
- 241000699670 Mus sp. Species 0.000 description 7
- 208000024777 Prion disease Diseases 0.000 description 7
- 239000006180 TBST buffer Substances 0.000 description 7
- 239000003550 marker Substances 0.000 description 7
- 239000013641 positive control Substances 0.000 description 7
- 230000004044 response Effects 0.000 description 7
- 201000000980 schizophrenia Diseases 0.000 description 7
- 210000003523 substantia nigra Anatomy 0.000 description 7
- 238000004627 transmission electron microscopy Methods 0.000 description 7
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 125000003275 alpha amino acid group Chemical group 0.000 description 6
- 238000011888 autopsy Methods 0.000 description 6
- 230000003176 fibrotic effect Effects 0.000 description 6
- 210000004558 lewy body Anatomy 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 208000015122 neurodegenerative disease Diseases 0.000 description 6
- 210000002569 neuron Anatomy 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 6
- 102000001049 Amyloid Human genes 0.000 description 5
- 108010094108 Amyloid Proteins 0.000 description 5
- 108020004705 Codon Proteins 0.000 description 5
- 241000588724 Escherichia coli Species 0.000 description 5
- 101000834898 Homo sapiens Alpha-synuclein Proteins 0.000 description 5
- 238000002983 circular dichroism Methods 0.000 description 5
- 230000003902 lesion Effects 0.000 description 5
- 239000007788 liquid Substances 0.000 description 5
- 230000001575 pathological effect Effects 0.000 description 5
- 239000002953 phosphate buffered saline Substances 0.000 description 5
- 238000006116 polymerization reaction Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 230000035945 sensitivity Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- WZUVPPKBWHMQCE-UHFFFAOYSA-N Haematoxylin Chemical compound C12=CC(O)=C(O)C=C2CC2(O)C1C1=CC=C(O)C(O)=C1OC2 WZUVPPKBWHMQCE-UHFFFAOYSA-N 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 238000004220 aggregation Methods 0.000 description 4
- 235000001014 amino acid Nutrition 0.000 description 4
- 150000001413 amino acids Chemical class 0.000 description 4
- 238000007405 data analysis Methods 0.000 description 4
- 238000003748 differential diagnosis Methods 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 239000007850 fluorescent dye Substances 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 238000003018 immunoassay Methods 0.000 description 4
- 238000011532 immunohistochemical staining Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 230000002197 limbic effect Effects 0.000 description 4
- 239000012160 loading buffer Substances 0.000 description 4
- 238000001325 log-rank test Methods 0.000 description 4
- YIXJRHPUWRPCBB-UHFFFAOYSA-N magnesium nitrate Chemical compound [Mg+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O YIXJRHPUWRPCBB-UHFFFAOYSA-N 0.000 description 4
- 210000001577 neostriatum Anatomy 0.000 description 4
- 230000004770 neurodegeneration Effects 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 238000001543 one-way ANOVA Methods 0.000 description 4
- 229920002401 polyacrylamide Polymers 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 102200036626 rs104893877 Human genes 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000001228 spectrum Methods 0.000 description 4
- 238000010186 staining Methods 0.000 description 4
- FWMNVWWHGCHHJJ-SKKKGAJSSA-N 4-amino-1-[(2r)-6-amino-2-[[(2r)-2-[[(2r)-2-[[(2r)-2-amino-3-phenylpropanoyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoyl]amino]hexanoyl]piperidine-4-carboxylic acid Chemical compound C([C@H](C(=O)N[C@H](CC(C)C)C(=O)N[C@H](CCCCN)C(=O)N1CCC(N)(CC1)C(O)=O)NC(=O)[C@H](N)CC=1C=CC=CC=1)C1=CC=CC=C1 FWMNVWWHGCHHJJ-SKKKGAJSSA-N 0.000 description 3
- 101100167345 Arabidopsis thaliana CJD1 gene Proteins 0.000 description 3
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 241000255581 Drosophila <fruit fly, genus> Species 0.000 description 3
- 238000002965 ELISA Methods 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- OWXMKDGYPWMGEB-UHFFFAOYSA-N HEPPS Chemical compound OCCN1CCN(CCCS(O)(=O)=O)CC1 OWXMKDGYPWMGEB-UHFFFAOYSA-N 0.000 description 3
- 208000027089 Parkinsonian disease Diseases 0.000 description 3
- 206010034010 Parkinsonism Diseases 0.000 description 3
- 229920001213 Polysorbate 20 Polymers 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- 230000005540 biological transmission Effects 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 238000001142 circular dichroism spectrum Methods 0.000 description 3
- 230000001054 cortical effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 208000035475 disorder Diseases 0.000 description 3
- 210000005064 dopaminergic neuron Anatomy 0.000 description 3
- 238000001378 electrochemiluminescence detection Methods 0.000 description 3
- 238000001962 electrophoresis Methods 0.000 description 3
- 235000013861 fat-free Nutrition 0.000 description 3
- 210000001652 frontal lobe Anatomy 0.000 description 3
- 230000014509 gene expression Effects 0.000 description 3
- 238000010353 genetic engineering Methods 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 210000001259 mesencephalon Anatomy 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 235000013336 milk Nutrition 0.000 description 3
- 239000008267 milk Substances 0.000 description 3
- 210000004080 milk Anatomy 0.000 description 3
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 3
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 3
- 229920001184 polypeptide Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 108090000765 processed proteins & peptides Proteins 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 150000003839 salts Chemical class 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 2
- LVQFQZZGTZFUNF-UHFFFAOYSA-N 2-hydroxy-3-[4-(2-hydroxy-3-sulfonatopropyl)piperazine-1,4-diium-1-yl]propane-1-sulfonate Chemical compound OS(=O)(=O)CC(O)CN1CCN(CC(O)CS(O)(=O)=O)CC1 LVQFQZZGTZFUNF-UHFFFAOYSA-N 0.000 description 2
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 2
- 102000013455 Amyloid beta-Peptides Human genes 0.000 description 2
- 108010090849 Amyloid beta-Peptides Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 206010006187 Breast cancer Diseases 0.000 description 2
- 208000026310 Breast neoplasm Diseases 0.000 description 2
- 206010061818 Disease progression Diseases 0.000 description 2
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 2
- 102000004190 Enzymes Human genes 0.000 description 2
- 108090000790 Enzymes Proteins 0.000 description 2
- 206010016654 Fibrosis Diseases 0.000 description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 2
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 2
- 208000004547 Hallucinations Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 102100025818 Major prion protein Human genes 0.000 description 2
- 101710138751 Major prion protein Proteins 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- XUMBMVFBXHLACL-UHFFFAOYSA-N Melanin Chemical compound O=C1C(=O)C(C2=CNC3=C(C(C(=O)C4=C32)=O)C)=C2C4=CNC2=C1C XUMBMVFBXHLACL-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- JOCBASBOOFNAJA-UHFFFAOYSA-N N-tris(hydroxymethyl)methyl-2-aminoethanesulfonic acid Chemical compound OCC(CO)(CO)NCCS(O)(=O)=O JOCBASBOOFNAJA-UHFFFAOYSA-N 0.000 description 2
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 2
- 206010029350 Neurotoxicity Diseases 0.000 description 2
- 102000003992 Peroxidases Human genes 0.000 description 2
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 2
- ODHCTXKNWHHXJC-GSVOUGTGSA-N Pyroglutamic acid Natural products OC(=O)[C@H]1CCC(=O)N1 ODHCTXKNWHHXJC-GSVOUGTGSA-N 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 206010044221 Toxic encephalopathy Diseases 0.000 description 2
- ODHCTXKNWHHXJC-UHFFFAOYSA-N acide pyroglutamique Natural products OC(=O)C1CCC(=O)N1 ODHCTXKNWHHXJC-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000003941 amyloidogenesis Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- AFYNADDZULBEJA-UHFFFAOYSA-N bicinchoninic acid Chemical compound C1=CC=CC2=NC(C=3C=C(C4=CC=CC=C4N=3)C(=O)O)=CC(C(O)=O)=C21 AFYNADDZULBEJA-UHFFFAOYSA-N 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 210000001124 body fluid Anatomy 0.000 description 2
- 239000010839 body fluid Substances 0.000 description 2
- UDSAIICHUKSCKT-UHFFFAOYSA-N bromophenol blue Chemical compound C1=C(Br)C(O)=C(Br)C=C1C1(C=2C=C(Br)C(O)=C(Br)C=2)C2=CC=CC=C2S(=O)(=O)O1 UDSAIICHUKSCKT-UHFFFAOYSA-N 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000003759 clinical diagnosis Methods 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000003412 degenerative effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 239000000539 dimer Substances 0.000 description 2
- 230000005750 disease progression Effects 0.000 description 2
- ADEBPBSSDYVVLD-UHFFFAOYSA-N donepezil Chemical compound O=C1C=2C=C(OC)C(OC)=CC=2CC1CC(CC1)CCN1CC1=CC=CC=C1 ADEBPBSSDYVVLD-UHFFFAOYSA-N 0.000 description 2
- VYFYYTLLBUKUHU-UHFFFAOYSA-N dopamine Chemical compound NCCC1=CC=C(O)C(O)=C1 VYFYYTLLBUKUHU-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940088598 enzyme Drugs 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 230000004761 fibrosis Effects 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 210000005153 frontal cortex Anatomy 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- 238000007490 hematoxylin and eosin (H&E) staining Methods 0.000 description 2
- 230000001744 histochemical effect Effects 0.000 description 2
- 238000002372 labelling Methods 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 235000019341 magnesium sulphate Nutrition 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 230000001537 neural effect Effects 0.000 description 2
- 230000007135 neurotoxicity Effects 0.000 description 2
- 231100000228 neurotoxicity Toxicity 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001717 pathogenic effect Effects 0.000 description 2
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 2
- 108040007629 peroxidase activity proteins Proteins 0.000 description 2
- 108091033319 polynucleotide Proteins 0.000 description 2
- 102000040430 polynucleotide Human genes 0.000 description 2
- 239000002157 polynucleotide Substances 0.000 description 2
- 238000002600 positron emission tomography Methods 0.000 description 2
- 210000002243 primary neuron Anatomy 0.000 description 2
- 230000000750 progressive effect Effects 0.000 description 2
- 238000003127 radioimmunoassay Methods 0.000 description 2
- 238000011552 rat model Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 239000012488 sample solution Substances 0.000 description 2
- VWDWKYIASSYTQR-UHFFFAOYSA-N sodium nitrate Chemical compound [Na+].[O-][N+]([O-])=O VWDWKYIASSYTQR-UHFFFAOYSA-N 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 238000011895 specific detection Methods 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 239000011701 zinc Substances 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 description 1
- PDWUPXJEEYOOTR-UHFFFAOYSA-N 2-[(3-iodophenyl)methyl]guanidine Chemical compound NC(=N)NCC1=CC=CC(I)=C1 PDWUPXJEEYOOTR-UHFFFAOYSA-N 0.000 description 1
- ZVECSLHUCRIBDY-WMWQKROPSA-N 5-[(e)-2-[3-bromo-4-[(e)-2-(3-carboxy-4-hydroxyphenyl)ethenyl]phenyl]ethenyl]-2-hydroxybenzoic acid Chemical compound C1=C(O)C(C(=O)O)=CC(\C=C\C=2C=C(Br)C(\C=C\C=3C=C(C(O)=CC=3)C(O)=O)=CC=2)=C1 ZVECSLHUCRIBDY-WMWQKROPSA-N 0.000 description 1
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 1
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 1
- 102100034452 Alternative prion protein Human genes 0.000 description 1
- 208000037259 Amyloid Plaque Diseases 0.000 description 1
- 206010003591 Ataxia Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 244000063299 Bacillus subtilis Species 0.000 description 1
- 235000014469 Bacillus subtilis Nutrition 0.000 description 1
- 102000015081 Blood Coagulation Factors Human genes 0.000 description 1
- 108010039209 Blood Coagulation Factors Proteins 0.000 description 1
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 1
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 102000003902 Cathepsin C Human genes 0.000 description 1
- 108090000267 Cathepsin C Proteins 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 241000282693 Cercopithecidae Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 206010012239 Delusion Diseases 0.000 description 1
- 241000702421 Dependoparvovirus Species 0.000 description 1
- 208000012661 Dyskinesia Diseases 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 206010070246 Executive dysfunction Diseases 0.000 description 1
- 102000018389 Exopeptidases Human genes 0.000 description 1
- 108010091443 Exopeptidases Proteins 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 241001272178 Glires Species 0.000 description 1
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 1
- 239000007996 HEPPS buffer Substances 0.000 description 1
- GIZQLVPDAOBAFN-UHFFFAOYSA-N HEPPSO Chemical compound OCCN1CCN(CC(O)CS(O)(=O)=O)CC1 GIZQLVPDAOBAFN-UHFFFAOYSA-N 0.000 description 1
- 108091006054 His-tagged proteins Proteins 0.000 description 1
- 101000924727 Homo sapiens Alternative prion protein Proteins 0.000 description 1
- 101000573901 Homo sapiens Major prion protein Proteins 0.000 description 1
- 101001129465 Homo sapiens Pyroglutamyl-peptidase 1 Proteins 0.000 description 1
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- 241000282567 Macaca fascicularis Species 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 102000014171 Milk Proteins Human genes 0.000 description 1
- 108010011756 Milk Proteins Proteins 0.000 description 1
- 208000016285 Movement disease Diseases 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 208000002740 Muscle Rigidity Diseases 0.000 description 1
- 101710135898 Myc proto-oncogene protein Proteins 0.000 description 1
- 102100038895 Myc proto-oncogene protein Human genes 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 238000011887 Necropsy Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- 240000007817 Olea europaea Species 0.000 description 1
- 101150044568 PRNP gene Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091005804 Peptidases Proteins 0.000 description 1
- 102000035195 Peptidases Human genes 0.000 description 1
- 108091000080 Phosphotransferase Proteins 0.000 description 1
- 241000282405 Pongo abelii Species 0.000 description 1
- 241000288906 Primates Species 0.000 description 1
- 102000004245 Proteasome Endopeptidase Complex Human genes 0.000 description 1
- 108090000708 Proteasome Endopeptidase Complex Proteins 0.000 description 1
- 206010037180 Psychiatric symptoms Diseases 0.000 description 1
- 102100031108 Pyroglutamyl-peptidase 1 Human genes 0.000 description 1
- 241000700159 Rattus Species 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 206010071390 Resting tremor Diseases 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 108010034546 Serratia marcescens nuclease Proteins 0.000 description 1
- 108010090804 Streptavidin Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 102000019355 Synuclein Human genes 0.000 description 1
- 108050006783 Synuclein Proteins 0.000 description 1
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 1
- 101710150448 Transcriptional regulator Myc Proteins 0.000 description 1
- 206010044565 Tremor Diseases 0.000 description 1
- 239000007997 Tricine buffer Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- ABUBSBSOTTXVPV-UHFFFAOYSA-H [U+6].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O Chemical compound [U+6].CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O.CC([O-])=O ABUBSBSOTTXVPV-UHFFFAOYSA-H 0.000 description 1
- 230000001594 aberrant effect Effects 0.000 description 1
- 230000005856 abnormality Effects 0.000 description 1
- 239000008351 acetate buffer Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 230000004520 agglutination Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000006933 amyloid-beta aggregation Effects 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 238000005102 attenuated total reflection Methods 0.000 description 1
- 238000005844 autocatalytic reaction Methods 0.000 description 1
- 210000003050 axon Anatomy 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 238000001574 biopsy Methods 0.000 description 1
- 235000020958 biotin Nutrition 0.000 description 1
- 238000007413 biotinylation Methods 0.000 description 1
- 230000006287 biotinylation Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 239000003114 blood coagulation factor Substances 0.000 description 1
- 210000001772 blood platelet Anatomy 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 210000000133 brain stem Anatomy 0.000 description 1
- 210000004899 c-terminal region Anatomy 0.000 description 1
- DGJPPCSCQOIWCP-UHFFFAOYSA-N cadmium mercury Chemical compound [Cd].[Hg] DGJPPCSCQOIWCP-UHFFFAOYSA-N 0.000 description 1
- 239000001110 calcium chloride Substances 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- MKJXYGKVIBWPFZ-UHFFFAOYSA-L calcium lactate Chemical compound [Ca+2].CC(O)C([O-])=O.CC(O)C([O-])=O MKJXYGKVIBWPFZ-UHFFFAOYSA-L 0.000 description 1
- 239000001527 calcium lactate Substances 0.000 description 1
- 235000011086 calcium lactate Nutrition 0.000 description 1
- 229960002401 calcium lactate Drugs 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 210000003850 cellular structure Anatomy 0.000 description 1
- 210000003198 cerebellar cortex Anatomy 0.000 description 1
- 230000003727 cerebral blood flow Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000013522 chelant Substances 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000007979 citrate buffer Substances 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 230000001112 coagulating effect Effects 0.000 description 1
- GVPFVAHMJGGAJG-UHFFFAOYSA-L cobalt dichloride Chemical compound [Cl-].[Cl-].[Co+2] GVPFVAHMJGGAJG-UHFFFAOYSA-L 0.000 description 1
- 230000003920 cognitive function Effects 0.000 description 1
- 239000000084 colloidal system Substances 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 238000012258 culturing Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 230000001120 cytoprotective effect Effects 0.000 description 1
- 230000001086 cytosolic effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 230000007850 degeneration Effects 0.000 description 1
- 231100000868 delusion Toxicity 0.000 description 1
- 229960003964 deoxycholic acid Drugs 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 1
- 239000012470 diluted sample Substances 0.000 description 1
- 238000007865 diluting Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 235000021186 dishes Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 229960003530 donepezil Drugs 0.000 description 1
- 229960003638 dopamine Drugs 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 230000004064 dysfunction Effects 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 238000001493 electron microscopy Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- YQGOJNYOYNNSMM-UHFFFAOYSA-N eosin Chemical compound [Na+].OC(=O)C1=CC=CC=C1C1=C2C=C(Br)C(=O)C(Br)=C2OC2=C(Br)C(O)=C(Br)C=C21 YQGOJNYOYNNSMM-UHFFFAOYSA-N 0.000 description 1
- 230000002327 eosinophilic effect Effects 0.000 description 1
- 210000003743 erythrocyte Anatomy 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000013604 expression vector Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000001605 fetal effect Effects 0.000 description 1
- 230000003352 fibrogenic effect Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 238000000684 flow cytometry Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 238000000799 fluorescence microscopy Methods 0.000 description 1
- 102000034287 fluorescent proteins Human genes 0.000 description 1
- 108091006047 fluorescent proteins Proteins 0.000 description 1
- 238000013467 fragmentation Methods 0.000 description 1
- 238000006062 fragmentation reaction Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000002518 glial effect Effects 0.000 description 1
- 125000000404 glutamine group Chemical group N[C@@H](CCC(N)=O)C(=O)* 0.000 description 1
- 102000003642 glutaminyl-peptide cyclotransferase Human genes 0.000 description 1
- 108010081484 glutaminyl-peptide cyclotransferase Proteins 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 210000002288 golgi apparatus Anatomy 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 1
- 208000010544 human prion disease Diseases 0.000 description 1
- 238000003317 immunochromatography Methods 0.000 description 1
- 230000002163 immunogen Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000003834 intracellular effect Effects 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- FBAFATDZDUQKNH-UHFFFAOYSA-M iron chloride Chemical compound [Cl-].[Fe] FBAFATDZDUQKNH-UHFFFAOYSA-M 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 210000003715 limbic system Anatomy 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 210000000627 locus coeruleus Anatomy 0.000 description 1
- 238000009593 lumbar puncture Methods 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000006166 lysate Substances 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 241001515942 marmosets Species 0.000 description 1
- 238000000691 measurement method Methods 0.000 description 1
- 230000001404 mediated effect Effects 0.000 description 1
- 206010027175 memory impairment Diseases 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 235000021239 milk protein Nutrition 0.000 description 1
- 230000004065 mitochondrial dysfunction Effects 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000002107 myocardial effect Effects 0.000 description 1
- 210000000478 neocortex Anatomy 0.000 description 1
- 230000010004 neural pathway Effects 0.000 description 1
- 210000002682 neurofibrillary tangle Anatomy 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000016273 neuron death Effects 0.000 description 1
- 230000006764 neuronal dysfunction Effects 0.000 description 1
- 230000002981 neuropathic effect Effects 0.000 description 1
- 230000000324 neuroprotective effect Effects 0.000 description 1
- 239000002858 neurotransmitter agent Substances 0.000 description 1
- 238000006396 nitration reaction Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 210000000956 olfactory bulb Anatomy 0.000 description 1
- 210000004248 oligodendroglia Anatomy 0.000 description 1
- 230000002018 overexpression Effects 0.000 description 1
- 230000036542 oxidative stress Effects 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000003950 pathogenic mechanism Effects 0.000 description 1
- 230000007170 pathology Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000008055 phosphate buffer solution Substances 0.000 description 1
- 102000020233 phosphotransferase Human genes 0.000 description 1
- 230000001766 physiological effect Effects 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000002731 protein assay Methods 0.000 description 1
- 229940024999 proteolytic enzymes for treatment of wounds and ulcers Drugs 0.000 description 1
- 208000007153 proteostasis deficiencies Diseases 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 239000000941 radioactive substance Substances 0.000 description 1
- 230000011514 reflex Effects 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- 230000000698 schizophrenic effect Effects 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 235000020183 skimmed milk Nutrition 0.000 description 1
- 235000017557 sodium bicarbonate Nutrition 0.000 description 1
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 1
- 229910000029 sodium carbonate Inorganic materials 0.000 description 1
- 239000004317 sodium nitrate Substances 0.000 description 1
- 235000010344 sodium nitrate Nutrition 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000012064 sodium phosphate buffer Substances 0.000 description 1
- YCLWMUYXEGEIGD-UHFFFAOYSA-M sodium;2-hydroxy-3-[4-(2-hydroxyethyl)piperazin-1-yl]propane-1-sulfonate Chemical compound [Na+].OCCN1CCN(CC(O)CS([O-])(=O)=O)CC1 YCLWMUYXEGEIGD-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000012192 staining solution Substances 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 229910001631 strontium chloride Inorganic materials 0.000 description 1
- AHBGXTDRMVNFER-UHFFFAOYSA-L strontium dichloride Chemical compound [Cl-].[Cl-].[Sr+2] AHBGXTDRMVNFER-UHFFFAOYSA-L 0.000 description 1
- 238000012916 structural analysis Methods 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000004083 survival effect Effects 0.000 description 1
- 230000000946 synaptic effect Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 102000013498 tau Proteins Human genes 0.000 description 1
- 108010026424 tau Proteins Proteins 0.000 description 1
- 229910052714 tellurium Inorganic materials 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 239000003053 toxin Substances 0.000 description 1
- 231100000765 toxin Toxicity 0.000 description 1
- 108700012359 toxins Proteins 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 238000002054 transplantation Methods 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000010798 ubiquitination Methods 0.000 description 1
- 230000034512 ubiquitination Effects 0.000 description 1
- 238000000108 ultra-filtration Methods 0.000 description 1
- 239000013598 vector Substances 0.000 description 1
- 230000002861 ventricular Effects 0.000 description 1
- 230000028973 vesicle-mediated transport Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Landscapes
- Peptides Or Proteins (AREA)
Abstract
【課題】α−シヌクレイノパチーと他の認知症等との鑑別及び鑑別の補助に有用なα−シヌクレインの検出方法、及びα−シヌクレイノパチーの診断を補助及び診断を補助する方法を提供すること。【解決手段】(1)緩衝液中で、生体試料と正常α−シヌクレインとを混合し、反応混合液を得る工程;(2)反応混合液をインキュベーションして、生体試料中の異常α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び(3)形成されたα−シヌクレインの凝集体を検出する工程、を含む、生体試料中の異常α−シヌクレインを検出する方法。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for detecting α-synuclein useful for differentiating and assisting the differentiation between α-synucleinopathy and other dementia, and a method for assisting and assisting the diagnosis of α-synucleinopathy. To provide. SOLUTION: (1) A step of mixing a biological sample and a normal α-synuclein in a buffer to obtain a reaction mixture; (2) Incubating the reaction mixture to obtain an abnormal α-synuclein in the biological sample. A method for detecting abnormal α-synuclein in a biological sample, which comprises a step of forming an agglomerate of α-synuclein seeded with the above; and (3) a step of detecting an agglomerate of the formed α-synuclein. [Selection diagram] None
Description
本発明は、α−シヌクレインの検出方法、特に線維化したα−シヌクレインの凝集体を検出する方法、レビー小体病等のα−シヌクレイノパチーの診断を補助するための方法に関する。 The present invention relates to a method for detecting α-synuclein, particularly to a method for detecting aggregates of fibrotic α-synuclein, and a method for assisting in the diagnosis of α-synucleinopathies such as Lewy body disease.
脳における大量のミスフォールドタンパク質の蓄積は、大抵の神経変性疾患の決定的な特徴である。レビー小体型認知症(DLB)及びパーキンソン病(PD)等のレビー小体病(LBD)は、主に凝集したα−シヌクレイン(αSyn)で構成され、細胞質の線維状封入体であるレビー小体(LB)の存在を特徴とする。病原性のメカニズムは完全に解明されていないが、LBDはニューロンにおけるLB、即ち凝集したαSyn蓄積によって起こると考えられる。 Accumulation of large amounts of misfolded proteins in the brain is a critical feature of most neurodegenerative diseases. Lewy body diseases (LBD) such as dementia with Lewy bodies (DLB) and Parkinson's disease (PD) are mainly composed of aggregated α-synuclein (αSyn) and are Lewy bodies which are cytoplasmic fibrous inclusions. It is characterized by the presence of (LB). Although the pathogenic mechanism has not been fully elucidated, LBD is thought to be caused by accumulation of LB in neurons, ie aggregated αSyn.
LB中のα−Syn凝集体の大部分は、セリン129(Ser129)でリン酸化されるが、正常な脳中のαSynは殆どリン酸化されない。Ser129におけるリン酸化はLBDの病理学的特徴であり、LB形成及びLBDの発症に極めて重要な可能性がある。報告では、Ser129のリン酸化により組換えαSyn(r−αSyn)の重合が促進された(Fujiwara et al.,2002(非特許文献1))。野生型(WT)r−αSynの過剰発現により、培養細胞内でLB様封入体の著しい蓄積が誘導されたが、Ser129をアラニンに置換した(S129A)リン酸化不能な変異体ではそうならなかった(Smith et al.,2005(非特許文献2))。Ser129リン酸化によってr−αSyn線維化が阻害され(Paleologou et al.,2008(非特許文献3))、S129Aの変異によりショウジョウバエモデルにおいて封入体形成が増加する(Chen and Feany,2005(非特許文献4))ことが、他のグループにより証明された。ショウジョウバエを用いた研究により、封入体数が、ドーパミン作動性ニューロンへの毒性と逆相関することも明らかになったが、このことにより封入体が神経毒性を予防することが示される(Chen and Feany,2005(非特許文献4))。しかし、WT αSyn及び変異体αSynを過剰発現するために組換えアデノ随伴ウイルス(rAAV)を用いたラットモデルにおける研究により、非リン酸化αSynが、リン酸化型よりも、ドーパミン作動性ニューロンに対する重篤な毒性に関連すること(Azeredo da Silveira et al.,2009(非特許文献5);Gorbatyuk et al.,2008(非特許文献6))、両型間で神経毒性には有意差がないこと(McFarland et al.,2009(非特許文献7))が示された。従って、LBD発症におけるαSynのSer129リン酸化の重要性は殆ど理解されていないままである。 Most of the α-Syn aggregates in LB are phosphorylated by serine 129 (Ser129), whereas αSyn in normal brain is hardly phosphorylated. Phosphorylation at Ser129 is a pathological feature of LBD and may be crucial for LB formation and development of LBD. In the report, polymerization of recombinant αSyn (r-αSyn) was promoted by phosphorylation of Ser129 (Fujiwara et al., 2002 (Non-patent Document 1)). Overexpression of wild-type (WT) r-αSyn induced significant accumulation of LB-like inclusion bodies in cultured cells, but not with non-phosphorylated mutants in which Ser129 was replaced with alanine (S129A). (Smith et al., 2005 (non-patent document 2)). Ser129 phosphorylation inhibits r-αSyn fibrosis (Paleologou et al., 2008 (Non-Patent Document 3)), and mutation of S129A increases inclusion body formation in the Drosophila model (Chen and Feany, 2005 (Non-patent Document) 4)) was proved by other groups. Studies with Drosophila have also shown that the number of inclusion bodies is inversely correlated with toxicity to dopaminergic neurons, indicating that inclusion bodies prevent neurotoxicity (Chen and Feany). 2005 (Non-Patent Document 4)). However, studies in rat models using recombinant adeno-associated virus (rAAV) to overexpress WT αSyn and mutant αSyn have shown that non-phosphorylated αSyn is more severe for dopaminergic neurons than phosphorylated. (Azeredo da Silveira et al., 2009 (Non-Patent Document 5); Gorbatyuk et al., 2008 (Non-Patent Document 6)), and there is no significant difference in neurotoxicity between the two types ( McFarland et al., 2009 (Non-Patent Document 7)). Therefore, the importance of Ser129 phosphorylation of αSyn in the development of LBD remains largely unknown.
Braak及び共同研究者による死後研究により、LBの病変は最初は延髄及び嗅球に生じ、次いで中脳及び大脳辺縁系領域に拡張し、その後PDにおいては新皮質領域に広がることが示された(Braak et al.,2003(非特許文献8))。更に、該病理学的段階は病変の進行及び臨床症状に密接に結びつくようである(Braak et al.,2005(非特許文献9))。脳におけるLBの広がりにより、病的なαSynがプリオンのように伝播する能力を保持することが示唆される。移植研究により、PD患者の線条体に移植された胎児中脳の正常なニューロンにLBが存在する証拠がもたらされたが、このことにより、病変が、宿主脳から、移植された健康な脳へと伝播し得ることが示される(Kordower et al.,2008(非特許文献10);Li et al.,2008(非特許文献11))。その上、運動異常を示すヒトαSynのA53T変異体トランスジェニック(Tg)マウス由来の病変脳ホモジネートの、WT(Luk et al.,2012b(非特許文献12))及びA53T Tgマウス(Luk et al.,2012b(非特許文献12);Mougenot et al.,2012(非特許文献13);Watts et al.,2013(非特許文献14))への接種により、内在性αSyn由来LB様凝集体及び細胞間の拡散がもたらされ、A53T Tgマウスが示す生存期間が減少した(Luk et al.,2012b(非特許文献12))。DLB患者由来の脳抽出物を接種したWTマウス(Masuda−Suzukake et al.,2013(非特許文献15))及び多系統萎縮症(MSA)患者由来の脳ホモジネートを接種したA53T Tgマウス(Watts et al.,2013(非特許文献14))においても、同様のプリオン様現象が誘導された。更に、人工的に形成された線維化r−αSynの導入により、初代ニューロン(Volpicelli−Daley et al.,2011(非特許文献16))及びWTマウス(Luk et al.,2012a(非特許文献17))において、病変αSynの細胞間伝達が誘発され、運動障害をもたらすドーパミンニューロン喪失が発症した。これらの報告により、αSynがプリオンのように挙動することが示唆された。 Postmortem studies by Braak and co-workers have shown that LB lesions first occur in the medulla and olfactory bulb, then extend to the midbrain and limbic regions, and then spread to the neocortical regions in PD ( Braak et al., 2003 (Non-Patent Document 8)). Furthermore, the pathological stage seems to be closely linked to lesion progression and clinical symptoms (Braak et al., 2005). The spread of LB in the brain suggests that pathological αSyn retains the ability to propagate like a prion. Transplantation studies have provided evidence that LB is present in normal neurons of the fetal mesencephalon transplanted into the striatum of PD patients, which led to healthy healthy transplanted lesions from the host brain. It is shown that it can propagate to the brain (Kordower et al., 2008 (Non-Patent Document 10); Li et al., 2008 (Non-Patent Document 11)). In addition, WT (Luk et al., 2012b (Non-patent Document 12)) and A53T Tg mice (Luk et al.) Of lesion brain homogenates derived from A53T mutant transgenic (Tg) mice of human αSyn showing abnormal movements. , 2012b (Non-patent document 12); Mougenot et al., 2012 (Non-patent document 13); Watts et al., 2013 (Non-patent document 14)), and inoculation with endogenous αSyn-derived LB-like aggregates and cells. Diffusion occurred, reducing the survival time exhibited by A53T Tg mice (Luk et al., 2012b). WT mice inoculated with brain extracts from DLB patients (Masuda-Suzukike et al., 2013) and A53T Tg mice inoculated with brain homogenates from multiple system atrophy (MSA) patients (Watts et al., 2013 (Non-Patent Document 14)), a similar prion-like phenomenon was induced. Furthermore, by introducing artificially formed fibrotic r-αSyn, primary neurons (Volpicelli-Dalley et al., 2011 (Non-patent Document 16)) and WT mice (Luk et al., 2012a (Non-patent Document 17) )), Cell-to-cell transmission of the lesion αSyn was induced and dopamine neuron loss resulting in movement disorders developed. These reports suggested that αSyn behaves like a prion.
本発明者らは以前、「シード依存的異常凝集タンパク高感度増幅法(real−time quaking−induced conversion(RT−QUIC))」と命名した、組織及び体液におけるプリオン検出のためのin vitro増幅技術を開発した。このアッセイにおいて、シードとしての異常型プリオンタンパク質と基質としての組換えプリオンタンパク質を混和後、撹拌による連続的な反応を行うことでアミロイド形成が誘発され、プリオンの伝播のメカニズムと考えられる核依存的な自己触媒反応を経時的に観察することが可能となった(Atarashi et al.,2011(非特許文献18))。 We have previously named “Real-time quaking-induced conversion (RT-QUIIC)”, an in vitro amplification technique for prion detection in tissues and body fluids. Developed. In this assay, the abnormal prion protein as a seed and the recombinant prion protein as a substrate are mixed, and then a continuous reaction by stirring is performed to induce amyloid formation, which is considered to be a mechanism of prion propagation. It became possible to observe the autocatalytic reaction over time (Atarashi et al., 2011 (Non-patent Document 18)).
最近、r−αSynのプリオン様構造変換を検出するためにRT−QUICアッセイを用いる方法が報告された(Fairfoul,G.et al.,2016(非特許文献19))が、当該方法では検出に少なくとも48時間程度を要し、より迅速な検出が求められているのが現状である。 Recently, a method using an RT-QUIIC assay to detect the prion-like structural transformation of r-αSyn has been reported (Fairfoul, G. et al., 2016 (Non-patent Document 19)). Currently, at least 48 hours are required, and more rapid detection is required.
アルツハイマー病の場合、症状の発症前でも、髄液の検査や、陽電子放射断層撮影(PET)によってアミロイドが検出できる可能性がある。アルツハイマー病ではアミロイド凝集が早期に起こるためにPET検査の有用性が知られている。これに対して、レビー小体型認知症等のα−シヌクレイノパチーは、現在、症状等から他の疾患と鑑別する方法は開発が進んでいるが、症状発症前に迅速に鑑別することは困難である。本発明は、早期に、且つ迅速に、レビー小体病等のα−シヌクレイノパチーを診断することを可能にする、被験体からのα−シヌクレイン、特に重合もしくは、線維化した異常凝集するα−シヌクレインを検出する方法を提供することを課題とする。 In the case of Alzheimer's disease, amyloid may be detected by examination of cerebrospinal fluid or positron emission tomography (PET) even before the onset of symptoms. In Alzheimer's disease, amyloid aggregation occurs early, so the usefulness of PET examination is known. On the other hand, α-synucleinopathies such as dementia with Lewy bodies are currently being developed to differentiate from other diseases based on symptoms, but it is not possible to differentiate quickly before the onset of symptoms. Have difficulty. The present invention enables early and rapid diagnosis of α-synucleinopathies such as Lewy body disease, α-synuclein from a subject, particularly polymerized or fibrotic abnormal aggregation It is an object of the present invention to provide a method for detecting α-synuclein.
本発明者らは、上記課題を解決すべく鋭意検討し、RT−QUICアッセイを用いて、r−αSynのプリオン様構造変換が、DLB患者由来の脳組織によって誘導されるか否かを調べるために研究を行った。更に、本発明者らは、基質αSynのSer129リン酸化が、凝集体の形成に関与するか検証した。そして、特定条件下の溶液中で被験体の生体試料とr−αSynとを混合し、線維形成された基質r−αSynを検出することがレビー小体病等のα−シヌクレイノパチーの診断に有用であることを見出した。αSynの線維形成は、レビー小体病に罹患した被験体の生体試料を用いた場合のみ特異的に検出され、これらの鑑別に有用であることを見出し、本発明を完成するに到った。 In order to solve the above-mentioned problems, the present inventors have conducted intensive studies and investigated whether prion-like structural transformation of r-αSyn is induced by brain tissue derived from a DLB patient using an RT-QUIIC assay. Researched. Furthermore, the present inventors verified whether Ser129 phosphorylation of the substrate αSyn is involved in the formation of aggregates. Then, the biological sample of the subject and r-αSyn are mixed in a solution under specific conditions, and the fibrogenic substrate r-αSyn is detected to diagnose α-synucleinopathies such as Lewy body disease Found useful. αSyn fibril formation was specifically detected only when a biological sample of a subject suffering from Lewy body disease was used, and it was found that the fiber was useful for differentiation. Thus, the present invention was completed.
即ち、本発明は以下のとおりである。
[1] (1)緩衝液中で、生体試料と正常α−シヌクレインとを混合し、反応混合液を得る工程;
(2)反応混合液をインキュベーションして、生体試料中の異常α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び
(3)形成されたα−シヌクレインの凝集体を検出する工程、
を含む、生体試料中の異常α−シヌクレインを検出する方法。
[2] (1)緩衝液中で、生体試料と正常α−シヌクレインとを混合し、反応混合液を得る工程;
(2)反応混合液をインキュベーションして、生体試料中の異常α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び
(3)形成されたα−シヌクレインの凝集体を検出する工程、
を含む、α−シヌクレイノパチーの診断を補助する方法。
[3] 正常α−シヌクレインが組換えα−シヌクレイン、又は精製α−シヌクレインである、[1]又は[2]の方法。
[4] 生体試料が脳組織サンプルである、[1]〜[3]のいずれかの方法。
[5] 生体試料が血液、血漿、血清、白血球又は脳脊髄液サンプルである、[1]〜[3]のいずれかの方法。
[6] 反応混合液中の正常α−シヌクレインの濃度が、120μg/mL〜150μg/mLである、[1]〜[5]のいずれかの方法。
[7] 緩衝液がpH7.2〜7.8の緩衝液である、[1]〜[6]のいずれかの方法。
[8] 緩衝液がHEPES緩衝液である、[1]〜[7]のいずれかの方法。
[9] 工程(2)において、反応混合液を震盪することを特徴とする、[1]〜[8]のいずれかの方法。
[10] α−シヌクレインの凝集体の形成が、震盪期間及び無震盪期間のサイクルで行われる、[9]の方法。
[11] サイクルが、全体で3分間である、[10]の方法。
[12] α−シヌクレインの凝集体が、抗体を用いて検出される、[1]〜[11]のいずれかの方法。
[13] 抗体が抗α−シヌクレインポリクローナル抗体、抗α−シヌクレインモノクローナル抗体若しくは抗Ser129リン酸化α−シヌクレインモノクローナル抗体である、[12]の方法。
[14] (3)の工程が、形成されたα−シヌクレインの凝集体を定量することを含む、[1]〜[13]のいずれかの方法。
[15] (3)の工程が、ウェスタンブロット法を含む、[1]〜[14]のいずれかの方法。
[16] (3)の工程が、蛍光分光法を含む、[1]〜[15]のいずれかの方法。
[17] α−シヌクレインの凝集体を検出する工程がチオフラビンT(ThT)の使用を含む、[16]の方法。
[18] 検出が、10分毎に行われる、[16]又は[17]の方法。
[19] α−シヌクレイノパチーと、他の認知障害を伴う疾患との鑑別を補助するための方法である、[2]〜[18]のいずれかの方法。
[20] α−シヌクレイノパチーが、レビー小体病、又は多系統萎縮症である、[2]〜[19]のいずれかの方法。
[21] レビー小体病が、レビー小体型認知症、パーキンソン病、若しくはびまん性新皮質型レビー小体型認知症である、[20]の方法。
That is, the present invention is as follows.
[1] (1) A step of mixing a biological sample and normal α-synuclein in a buffer solution to obtain a reaction mixture;
(2) Incubating the reaction mixture to form an α-synuclein aggregate using abnormal α-synuclein in a biological sample as a seed; and (3) detecting the formed α-synuclein aggregate. Process,
A method for detecting abnormal α-synuclein in a biological sample, comprising:
[2] (1) A step of mixing a biological sample and normal α-synuclein in a buffer solution to obtain a reaction mixture;
(2) Incubating the reaction mixture to form an α-synuclein aggregate using abnormal α-synuclein in a biological sample as a seed; and (3) detecting the formed α-synuclein aggregate. Process,
A method for assisting diagnosis of α-synucleinopathy, comprising:
[3] The method according to [1] or [2], wherein the normal α-synuclein is recombinant α-synuclein or purified α-synuclein.
[4] The method according to any one of [1] to [3], wherein the biological sample is a brain tissue sample.
[5] The method according to any one of [1] to [3], wherein the biological sample is blood, plasma, serum, leukocyte, or cerebrospinal fluid sample.
[6] The method according to any one of [1] to [5], wherein the concentration of normal α-synuclein in the reaction mixture is 120 μg / mL to 150 μg / mL.
[7] The method according to any one of [1] to [6], wherein the buffer solution is a buffer solution having a pH of 7.2 to 7.8.
[8] The method according to any one of [1] to [7], wherein the buffer is a HEPES buffer.
[9] The method according to any one of [1] to [8], wherein in the step (2), the reaction mixture is shaken.
[10] The method according to [9], wherein the formation of α-synuclein aggregates is carried out in a cycle of a shaking period and a shaking period.
[11] The method according to [10], wherein the cycle is 3 minutes in total.
[12] The method according to any one of [1] to [11], wherein an α-synuclein aggregate is detected using an antibody.
[13] The method according to [12], wherein the antibody is an anti-α-synuclein polyclonal antibody, an anti-α-synuclein monoclonal antibody, or an anti-Ser129 phosphorylated α-synuclein monoclonal antibody.
[14] The method according to any one of [1] to [13], wherein the step (3) comprises quantifying the formed α-synuclein aggregate.
[15] The method according to any one of [1] to [14], wherein the step (3) includes Western blotting.
[16] The method according to any one of [1] to [15], wherein the step (3) includes fluorescence spectroscopy.
[17] The method according to [16], wherein the step of detecting an α-synuclein aggregate comprises the use of thioflavin T (ThT).
[18] The method of [16] or [17], wherein the detection is performed every 10 minutes.
[19] The method according to any one of [2] to [18], which is a method for assisting in differentiation between α-synucleinopathy and other diseases associated with cognitive impairment.
[20] The method according to any one of [2] to [19], wherein the α-synucleinopathy is Lewy body disease or multiple system atrophy.
[21] The method according to [20], wherein the Lewy body disease is Lewy body dementia, Parkinson's disease, or diffuse neocortical Lewy body dementia.
本発明によれば、被験体の生体試料から、異常α−シヌクレインを高感度且つ迅速に検出することができる。本発明によれば、症状発症前に異常α−シヌクレインを患者から検出することが可能となり、従って、より早期に被験体がα−シヌクレイノパチーに罹患しているか否かの診断が可能になる。一般に認知症はそのタイプによって治療方針が異なるが、本発明を用いて早期にα−シヌクレイノパチーを鑑別することにより、より適切な治療を早期から受けることが可能となる。 According to the present invention, abnormal α-synuclein can be detected with high sensitivity and speed from a biological sample of a subject. According to the present invention, it is possible to detect abnormal α-synuclein from a patient before the onset of symptoms, and thus it is possible to diagnose whether or not a subject suffers from α-synucleinopathy earlier. Become. In general, dementia has a different treatment policy depending on its type, but by using the present invention to differentiate α-synucleinopathy at an early stage, it becomes possible to receive more appropriate treatment from an early stage.
以下、本発明を詳細に説明する。
本発明において、α−シヌクレイノパチー(α−synucleinopathy)とは、脳組織中の特定の細胞内に、シナプス蛋白質の1種であるα−シヌクレインが凝集した、好酸性の細胞封入体が観察されることを特徴とする脳の疾患を指す。正常機能を有するα−シヌクレインは、神経細胞において、ゴルジ体の機能や小胞輸送の機能に関与し、脳では軸索末端に局在し、タンパク質分解酵素で容易に可溶化されることが知られている。
本発明におけるα−シヌクレイノパチーとしては、レビー小体病及び多系統萎縮症が挙げられる。レビー小体病には、パーキンソン病及びレビー小体型認知症が含まれる。レビー小体病では、この細胞封入体はレビー小体(Lewy Body)と呼ばれる。レビー小体は、パーキンソン病では脳幹に属する中脳の黒質及び青斑核の神経細胞中にみられるが、レビー小体病では大脳辺縁系や大脳皮質の神経細胞中にも多数みられる。多系統萎縮症では、細胞封入体はグリア細胞内封入体(Glial Cytoplasmic Inclusion)と呼ばれ、線条体の他、黒質、小脳皮質、橋核、オリーブ核、大脳皮質運動野等のオリゴデンドログリア細胞中、神経細胞質中に見られる。
Hereinafter, the present invention will be described in detail.
In the present invention, α-synucleinopathy refers to an eosinophilic cell inclusion body in which α-synuclein, which is a kind of synaptic protein, is aggregated in specific cells in brain tissue. It refers to a disease of the brain characterized by being. It is known that α-synuclein having a normal function is involved in the function of the Golgi apparatus and the function of vesicle transport in neurons, and is localized at the axon end in the brain and easily solubilized by proteolytic enzymes. It has been.
Examples of α-synucleinopathies in the present invention include Lewy body disease and multiple system atrophy. Lewy body diseases include Parkinson's disease and Lewy body dementia. In Lewy body disease, this cell inclusion body is called Lewy Body. Lewy bodies are found in neurons in the substantia nigra and the locus coeruleus, which are part of the brain stem in Parkinson's disease, but are also found in neurons in the limbic system and cortex in Lewy bodies . In multiple system atrophy, the inclusion bodies are called glial intracellular inclusions (Gial Cytoplasmic Inclusion), and in addition to the striatum, oligodendrocytes such as the substantia nigra, cerebellar cortex, pontine nucleus, olive nucleus, cerebral cortical motor area, etc. It is found in glial cells and in neuronal cytoplasm.
本発明において、パーキンソン病とは、安静時振戦,筋固縮,無動,姿勢反射障害の4症候を呈する錐体外路系の進行性変性疾患である。中脳黒質から線条体へ投射されるドーパミン作動性ニューロンの変性によって、錐体外路系の機能不全が生じる。
日本人の患者数は、10万人あたり約50〜100人、(65歳以上は人口10万人あたり約200人)程度である。
In the present invention, Parkinson's disease is a progressive degenerative disease of the extrapyramidal system that presents four symptoms: resting tremor, muscle rigidity, ataxia, and posture reflex disorder. Degeneration of dopaminergic neurons that project from the midbrain substantia nigra to the striatum results in malfunction of the extrapyramidal system.
The number of Japanese patients is about 50 to 100 per 100,000 (approximately 200 per 65 years for a population of 65 and over).
本発明において、レビー小体型認知症とは,主として初老期ないし老年期に発症し、進行性の認知機能障害に加えて、パーキンソニズム(パーキンソン病の上記4症候のうちの、一般に2つ以上を示している状態を“パーキンソニズム”という)と特有の精神症状を示す変性疾患を指す。典型的には60歳超で発症し、日本における患者数は50万人ほどと考えられ、アルツハイマー病に次いで2番目に多い認知症であることが知られている。レビー小体型認知症では、神経伝達物質の濃度、及び線条体から新皮質までのニューロン経路が異常となる。レビー小体型認知症の必須症状としては、社会、日常生活機能に障害をもたらす認知機能障害が挙げられ、認知機能障害としては記憶障害、注意障害や視空間障害、実行機能障害等が挙げられる。レビー小体型認知症の中核症状としては、認知機能の動揺、幻視、パーキンソン症候群が挙げられる。レビー小体型認知症には病理学的亜型が存在し、レビー小体の分布により、びまん性皮質型DLB(DN−DLB)及び大脳辺縁系型DLB(Li−DLB)等に分けられる。 In the present invention, Lewy body dementia mainly occurs in early age or old age, and in addition to progressive cognitive dysfunction, Parkinsonism (generally two or more of the above four symptoms of Parkinson's disease). It refers to a degenerative disease that shows a specific psychiatric condition (called “parkinsonism”). It typically develops when over 60 years old, and the number of patients in Japan is considered to be about 500,000. It is known to be the second most common dementia after Alzheimer's disease. In Lewy body dementia, neurotransmitter concentrations and neuronal pathways from the striatum to the neocortex become abnormal. The essential symptoms of Lewy body dementia include cognitive dysfunction that impairs social and daily life functions. Examples of cognitive dysfunction include memory impairment, attention disorder, visuospatial disorder, and executive dysfunction. Core symptoms of Lewy body dementia include perturbed cognitive function, hallucinations, and Parkinsonism. There are pathological subtypes in dementia with Lewy bodies, which are classified into diffuse cortical DLB (DN-DLB), limbic DLB (Li-DLB), etc., depending on the distribution of Lewy bodies.
また、レビー小体型認知症は、アルツハイマー病と比較して、初期の段階から幻視、妄想、うつ等の精神症状、パーキンソン病様の運動症状のような特徴が見られる。また、アルツハイマー病の治療薬でもあるドネペジルはレビー小体型痴呆症にも少量で有効であることがあることが知られている。 Moreover, compared with Alzheimer's disease, Lewy body dementia has characteristics such as psychiatric symptoms such as hallucinations, delusions, depression, and motor symptoms such as Parkinson's disease from an early stage. In addition, it is known that donepezil, which is a therapeutic agent for Alzheimer's disease, may be effective in a small amount for Lewy body dementia.
アルツハイマー病の場合、症状の発症前でも、髄液の検査や、陽電子放射断層撮影(PET)によってアミロイドが検出できる可能性がある。これに対して、レビー小体型認知症では、症状発症前に迅速に鑑別することは困難であった。 In the case of Alzheimer's disease, amyloid may be detected by examination of cerebrospinal fluid or positron emission tomography (PET) even before the onset of symptoms. On the other hand, in Lewy body dementia, it was difficult to quickly differentiate before the onset of symptoms.
本発明は、α−シヌクレイノパチーの診断に有効な生体試料中の異常α−シヌクレインを迅速に検出する方法、具体的には、(1)緩衝液中で、生体試料と正常α−シヌクレインとを混合し、反応混合液を得る工程;
(2)反応混合液をインキュベーションして、生体試料中の重合及び線維化α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び
(3)形成されたα−シヌクレインの凝集体を検出する工程、
を含む、生体試料中の重合及び線維化α−シヌクレインを検出する方法を提供する。
The present invention relates to a method for rapidly detecting abnormal α-synuclein in a biological sample effective for diagnosis of α-synucleinopathies. Specifically, (1) a biological sample and normal α-synuclein in a buffer solution. And obtaining a reaction mixture;
(2) a step of incubating the reaction mixture to form an α-synuclein aggregate using the polymerized and fibrotic α-synuclein as a seed in a biological sample; and (3) the formed α-synuclein aggregate. Detecting step,
A method for detecting polymerized and fibrotic α-synuclein in a biological sample is provided.
本発明において、α−シヌクレインは、α−シヌクレイノパチーに関連して、正常α−シヌクレイン及び異常α−シヌクレインに分類される。正常α−シヌクレインは、重合核(本明細書中、シードとも称する)の存在下、異常α−シヌクレインとなり、凝集体を形成することが可能である。正常α−シヌクレイン自体は凝集体形成においてシーディング活性を有しない、α−シヌクレインの単量体を指す(図11)。 In the present invention, α-synuclein is classified into normal α-synuclein and abnormal α-synuclein in relation to α-synucleinopathy. Normal α-synuclein becomes abnormal α-synuclein in the presence of a polymerization nucleus (also referred to as a seed in the present specification), and can form an aggregate. Normal α-synuclein itself refers to a monomer of α-synuclein that does not have seeding activity in aggregate formation (FIG. 11).
異常α−シヌクレインは、レビー小体で検出される凝集α−シヌクレインであり、α−シヌクレインの凝集体形成においてシーディング活性を有する。正常α−シヌクレインとは異なるβシート様の立体構造をとり、凝集して安定なオリゴマー(重合)様の顆粒状形態となり、一態様では、さらに高分子量の線維化となる(図11)。本明細書中、重合及び線維化α−シヌクレインのことを「異常α−シヌクレイン」と呼ぶ場合がある。 Abnormal α-synuclein is an aggregated α-synuclein detected in Lewy bodies and has a seeding activity in the formation of α-synuclein aggregates. It takes a β-sheet-like three-dimensional structure different from normal α-synuclein and aggregates to form a stable oligomer (polymerization) -like granular form, and in one embodiment, it becomes a higher molecular weight fibrosis (FIG. 11). In the present specification, polymerized and fibrotic α-synuclein may be referred to as “abnormal α-synuclein”.
本発明の方法において、α−シヌクレインの凝集体は、生体試料中に存在する異常α−シヌクレインがシードとなり、基質となる正常α−シヌクレインが構造変換し、重合することによって形成される。1つの態様において、凝集体は高分子の線維状構造体を形成する。1つの態様において、凝集体は不溶性である。本明細書中、α−シヌクレインの凝集体のことを単に「凝集体」と称することがある。 In the method of the present invention, α-synuclein aggregates are formed by abnormal α-synuclein present in a biological sample as a seed, normal α-synuclein serving as a substrate undergoes structural conversion and polymerization. In one embodiment, the aggregates form a polymeric fibrous structure. In one embodiment, the aggregate is insoluble. In the present specification, an aggregate of α-synuclein is sometimes simply referred to as “aggregate”.
本発明で用いる正常α−シヌクレインには、各種のタンパク質データベースにおいてα−シヌクレインとアノテーションされているタンパク質が含まれる。具体的には、配列番号2で表されるヒトα−シヌクレインアミノ酸配列(Genbank Accession No.EAX06035.1)を含むタンパク質及びそのスプライシングバリアント(例えば、配列番号3(Genbank Accession No.AAA98493.1)及び4(Genbank Accession No.AAA98487.1))が挙げられるが、シードの存在下、凝集して構造変換することが可能な限り、これらの構成アミノ酸残基が変異したものであってもよいし、配列番号2で表されるアミノ酸配列において、アミノ酸が欠失、置換若しくは付加されたアミノ酸配列を含むタンパク質であってもよい。本発明におけるα−シヌクレインのアミノ酸配列は、好ましくは、配列番号2で表されるアミノ酸配列である。 The normal α-synuclein used in the present invention includes proteins annotated as α-synuclein in various protein databases. Specifically, a protein containing a human α-synuclein amino acid sequence (Genbank Accession No. EAX06035.1) represented by SEQ ID NO: 2 and a splicing variant thereof (for example, SEQ ID NO: 3 (Genbank Accession No. AAA98493. 1) and 4 (Genbank Accession No. AAA98487.1)), these constituent amino acid residues may be mutated as long as they can be aggregated and structurally transformed in the presence of a seed, In the amino acid sequence represented by SEQ ID NO: 2, it may be a protein comprising an amino acid sequence in which amino acids are deleted, substituted or added. The amino acid sequence of α-synuclein in the present invention is preferably the amino acid sequence represented by SEQ ID NO: 2.
本発明における正常α−シヌクレインは、シードの存在下、凝集して構造変換するものである限り、構成アミノ酸が修飾を受けたものであってもよい。修飾は、天然に存在するものでも、人工的なものであってもよい。修飾としては、グリコシル化、ユビキチン化、チロシンニトロ化、ビオチン化等が挙げられる。 The normal α-synuclein in the present invention may be one in which constituent amino acids have been modified as long as they aggregate and undergo structural conversion in the presence of seeds. The modification may be naturally occurring or artificial. Examples of modifications include glycosylation, ubiquitination, tyrosine nitration, biotinylation and the like.
正常α−シヌクレインは、細菌組織、又は哺乳動物組織から単離及び精製されたものでも、化学的に合成されたものでもよい。正常α−シヌクレインは、自体公知の方法に従って、それをコードする核酸を含有する形質転換体を培養し、得られる培養物からα−シヌクレインを単離精製することによって遺伝子工学的に製造される組換えα−シヌクレインであってもよい。安定的に供給され得るという点から、組換えα−シヌクレインを用いることが好ましい。 Normal α-synuclein may be isolated and purified from bacterial tissue or mammalian tissue, or may be chemically synthesized. Normal α-synuclein is produced by genetic engineering according to a method known per se, by culturing a transformant containing a nucleic acid encoding the same and isolating and purifying α-synuclein from the resulting culture. Alternative α-synuclein may be used. Recombinant α-synuclein is preferably used because it can be stably supplied.
本発明に用いられる正常α−シヌクレインは単離又は精製されていることが好ましい。「単離又は精製」とは、天然にある状態から目的とする成分以外の成分を除去する操作が施されていることを意味する。単離又は精製されたα−シヌクレインの純度(全タンパク質重量に対する、α−シヌクレインを特異的に認識する抗体の重量の割合)は、通常50%以上、好ましくは70%以上、より好ましくは90%以上、最も好ましくは95%以上(例えば実質的に100%)である。 The normal α-synuclein used in the present invention is preferably isolated or purified. “Isolated or purified” means that an operation for removing components other than the target component from a natural state has been performed. The purity of the isolated or purified α-synuclein (the ratio of the weight of the antibody that specifically recognizes α-synuclein to the total protein weight) is usually 50% or more, preferably 70% or more, more preferably 90%. Above, most preferably 95% or more (for example, substantially 100%).
正常α−シヌクレインとして組換えα−シヌクレインを用いる場合、組換えα−シヌクレインは、例えば以下の方法で作製することができる。α−シヌクレインアミノ酸配列をコードするポリヌクレオチド(例えば、ヒトα−シヌクレインの場合には、配列番号1で表されるヌクレオチド配列(Genbank Accession No.EAX06035.1のCDS)を含むポリヌクレオチド)を適切な発現ベクターに組み込み、これを適切な宿主に挿入して形質転換し、この形質転換細胞の破砕物から目的とする組換えα−シヌクレインを得ることができる。上記宿主細胞は特に限定されず、従来から遺伝子工学的手法で用いられている各種の宿主細胞、例えば大腸菌、枯草菌、酵母、植物又は動物細胞などを用いることができる。 When recombinant α-synuclein is used as normal α-synuclein, recombinant α-synuclein can be prepared, for example, by the following method. a polynucleotide encoding an α-synuclein amino acid sequence (for example, in the case of human α-synuclein, a polynucleotide comprising the nucleotide sequence represented by SEQ ID NO: 1 (Genbank Accession No. EAX06035.1 CDS)) It is incorporated into an expression vector, inserted into an appropriate host, and transformed, and the desired recombinant α-synuclein can be obtained from the disrupted product of the transformed cell. The host cell is not particularly limited, and various host cells conventionally used in genetic engineering techniques such as Escherichia coli, Bacillus subtilis, yeast, plant or animal cells can be used.
遺伝子工学的に製造される場合は、合成後の精製を容易にするために、α−シヌクレインポリペプチドにタグ配列を付加してもよい。タグとしては、Flagタグ、ヒスチジンタグ、c−Mycタグ、HAタグ、AU1タグ、GSTタグ、MBPタグ、蛍光タンパク質タグ(例えばGFP、YFP、RFP、CFP、BFP等)、イムノグロブリンFcタグ等を例示することが出来る。タグ配列が付加される位置は、好ましくは、α−シヌクレインポリペプチドのN末端又はC末端である。また、これらのタグ配列を有するα−シヌクレインポリペプチドは、本発明の方法にそのまま用いられてもよいし、その前に、当該タグが除去されてもよい。 When produced by genetic engineering, a tag sequence may be added to the α-synuclein polypeptide in order to facilitate purification after synthesis. As tags, Flag tag, histidine tag, c-Myc tag, HA tag, AU1 tag, GST tag, MBP tag, fluorescent protein tag (for example, GFP, YFP, RFP, CFP, BFP, etc.), immunoglobulin Fc tag, etc. It can be illustrated. The position where the tag sequence is added is preferably the N-terminus or C-terminus of the α-synuclein polypeptide. Moreover, the α-synuclein polypeptide having these tag sequences may be used as it is in the method of the present invention, or the tag may be removed before that.
本発明の方法において用いることのできる生体試料としては、血液、脳組織、脳脊髄液等のサンプルが挙げられるが、α−シヌクレイノパチーに伴うα−シヌクレインの線維形成のためのシーディング活性を検出できる限り、特に限定されない。脳組織(例えば、前頭葉領域の脳組織、黒質の脳組織)は、適切な緩衝液中で破砕するなどし、ホモジネートの状態にして本発明の方法に供されることが好ましい。「血液」としては、いかなる組織由来の血液も想定することができるが、採取の容易から、通常は末梢血が用いられる。血液の採取方法としては、自体公知の方法が適用できる。また採取した血液はそのまま本工程に用いてもよいが、自体公知の方法、例えば遠心分離、濾過などを利用して細胞成分(赤血球、白血球、血小板など)と分離した液体成分(血漿)として本工程に用いることが好ましい。また血液を凝固させて血小板や凝固因子を分離した液体成分(血清)として本工程に用いることも好ましい。白血球を生体試料として用いることもまた好ましい。脳脊髄液は、脳組織を満たし、循環しており、脳の状態を反映していると考えられる。脳脊髄液は腰椎穿刺法、後頭下穿刺法、脳室穿刺法等の方法により採取され、本発明の方法に供されることが好ましい。 Examples of biological samples that can be used in the method of the present invention include blood, brain tissue, cerebrospinal fluid, and the like. Seeding activity for α-synuclein fibril formation associated with α-synucleinopathy As long as it can be detected, there is no particular limitation. Brain tissue (for example, brain tissue in the frontal lobe region, substantia nigra) is preferably used in the method of the present invention in the form of a homogenate by crushing in an appropriate buffer solution. As blood, blood derived from any tissue can be assumed, but peripheral blood is usually used because of easy collection. As a blood collection method, a method known per se can be applied. The collected blood may be used in this step as it is, but it may be used as a liquid component (plasma) separated from cell components (erythrocytes, leukocytes, platelets, etc.) using methods known per se, such as centrifugation, filtration, etc. It is preferable to use in the process. It is also preferable to use in this step as a liquid component (serum) obtained by coagulating blood to separate platelets and coagulation factors. It is also preferable to use leukocytes as a biological sample. Cerebrospinal fluid fills and circulates brain tissue and is thought to reflect the state of the brain. Cerebrospinal fluid is preferably collected by a method such as lumbar puncture method, suboccipital puncture method, ventricular puncture method, and the like, and is preferably used in the method of the present invention.
生体試料は、被験体から採取される。「被験体」は、「α−シヌクレイノパチーに罹患していることが疑われる被験体」である。本明細書中、「α−シヌクレイノパチーに罹患していることが疑われる被験体」とは、α−シヌクレイノパチーに罹患していることが疑われる症状を示している被験体であって、他の認知障害を伴う疾患(伝染性海綿状脳症(TSE又はプリオン病)(ヒトでのクロイツフェルト・ヤコブ病(CJD)及びその亜種(孤発性クロイツフェルト・ヤコブ病(sCJD)等)、ゲルストマン・ストロイスラー・シャインカー症候群(GSS))、統合失調症及びアルツハイマー病等;本明細書中、「α−シヌクレイノパチー以外の認知症等」と称する場合がある)との鑑別が求められる哺乳動物、好ましくはヒトを指す。 The biological sample is taken from the subject. A “subject” is a “subject suspected of suffering from α-synucleinopathy”. In the present specification, the “subject suspected of suffering from α-synucleinopathy” refers to a subject exhibiting symptoms suspected of suffering from α-synucleinopathy. Other diseases with cognitive impairment (infectious spongiform encephalopathy (TSE or prion disease) (Kreuzfeld-Jakob disease (CJD) in humans and its variants (spontaneous Creutzfeldt-Jakob disease (sCJD)) Etc.), Gerstmann-Streisler-Scheinker syndrome (GSS)), schizophrenia and Alzheimer's disease, etc .; may be referred to as “dementia other than α-synucleinopathy” in this specification) It refers to mammals, preferably humans, for which discrimination is sought.
更なる局面において、「被験体」は、「α−シヌクレイノパチーに罹患している被験体」であり得る。具体的には、α−シヌクレイノパチーであることを定義づける臨床所見を認めた被験体であって、該被験体からの生体試料は、本発明においてポジティブコントロールとして用いることができる。 In a further aspect, the “subject” can be a “subject suffering from α-synucleinopathy”. Specifically, it is a subject that has recognized clinical findings defining that it is α-synucleinopathy, and a biological sample from the subject can be used as a positive control in the present invention.
別の態様においては、「被験体」は、「α−シヌクレイノパチーに罹患していない被験体」であり得る。具体的には、α−シヌクレイノパチーであることを定義づける臨床所見を認めない被験体であって、該被験体からの生体試料は、本発明においてネガティブコントロールとして用いることができる。当該被験体としては、健常者の他、α−シヌクレイノパチー以外の認知症等に罹患している被験体が挙げられる。 In another aspect, a “subject” can be a “subject not afflicted with α-synucleinopathy”. Specifically, a subject who does not recognize clinical findings that define α-synucleinopathy, and a biological sample from the subject can be used as a negative control in the present invention. Examples of the subject include healthy subjects and subjects suffering from dementia other than α-synucleinopathy.
本発明において、「哺乳動物」としては、マウス、ラット、ハムスター、モルモット等のげっ歯類やウサギ等の実験動物、ブタ、ウシ、ヤギ、ウマ、ヒツジ等の家畜、イヌ、ネコ等のペット、ヒト、サル、カニクイザル、アカゲザル、マーモセット、オランウータン、チンパンジーなどの霊長類が好ましく、特にヒトが好ましい。 In the present invention, the “mammal” includes laboratory animals such as rodents and rabbits such as mice, rats, hamsters, and guinea pigs, domestic animals such as pigs, cows, goats, horses, sheep, pets such as dogs and cats, Primates such as humans, monkeys, cynomolgus monkeys, rhesus monkeys, marmosets, orangutans and chimpanzees are preferred, and humans are particularly preferred.
生体試料と正常α−シヌクレインとの混合に使用される容器としては、例えば、フラスコ、ディッシュ、ペトリデッシュ、マルチディッシュ、マイクロプレート、マイクロウエルプレート、マルチプレート、マルチウエルプレート(6、12、24、48又は96穴マルチウェルプレート)、シャーレ、チューブ、トレイが挙げられる。 As a container used for mixing a biological sample and normal α-synuclein, for example, flask, dish, petri dish, multi-dish, microplate, microwell plate, multiplate, multiwell plate (6, 12, 24, 48 or 96-well multi-well plate), petri dishes, tubes, and trays.
生体試料と混合する正常α−シヌクレインは、通常生体試料に存在するであろうシードとなる異常α−シヌクレインに対して過剰量で用いられ、濃度としては、限定されないが、例えば、1μg/ml〜10mg/ml、好ましくは10μg/ml〜1mg/ml、より好ましくは10μg/ml〜500μg/ml、さらにより好ましくは80μg/ml〜250μg/ml、より一層好ましくは100μg/ml〜200μg/ml、最も好ましくは120μg/ml〜150μg/mlである。 Normal α-synuclein to be mixed with a biological sample is used in an excessive amount with respect to abnormal α-synuclein, which is a seed that would normally be present in the biological sample, and the concentration is not limited, but for example, 1 μg / ml to 10 mg / ml, preferably 10 μg / ml to 1 mg / ml, more preferably 10 μg / ml to 500 μg / ml, even more preferably 80 μg / ml to 250 μg / ml, even more preferably 100 μg / ml to 200 μg / ml, most Preferably, it is 120 μg / ml to 150 μg / ml.
生体試料の濃度は、例えば、生体試料を適切な緩衝液で希釈することにより、希釈系列を作製し、それぞれに本発明の方法を実施して、異常α−シヌクレインを適切に検出、又は定量できる。 As for the concentration of the biological sample, for example, a dilution series is prepared by diluting the biological sample with an appropriate buffer, and the method of the present invention is performed on each of them to appropriately detect or quantify abnormal α-synuclein. .
生体試料として脳脊髄液を用いる場合、反応混合液中の脳脊髄液の濃度は、(脳脊髄液の原液に換算して)例えば、全反応混合液中の1%(v/v)〜30(v/v)%、5%(v/v)〜20(v/v)%、7(v/v)%〜25(v/v)%、10(v/v)%〜15(v/v)%である。 When cerebrospinal fluid is used as the biological sample, the concentration of cerebrospinal fluid in the reaction mixture is, for example, 1% (v / v) to 30% in the total reaction mixture (converted to the stock solution of cerebrospinal fluid). (V / v)%, 5% (v / v) to 20 (v / v)%, 7 (v / v)% to 25 (v / v)%, 10 (v / v)% to 15 (v / V)%.
生体試料と正常α−シヌクレインとの混合に用いられる緩衝液は、一定範囲のpHを維持できるものであれば特に限定されず、各種緩衝液(例えば、リン酸緩衝液、リン酸緩衝生理食塩水、トリス塩酸緩衝液、ホウ酸緩衝液、クエン酸緩衝液、酢酸緩衝液等)であってよい。緩衝液は、HEPPSO(N−(2−ヒドロキシエチル)ピペラジン−N’−(2−ヒドロキシプロパンスルホン酸))、POPSO(ピペラジン−1,4−ビス−(2−ヒドロキシ−プロパン−スルホン酸)無水物)、HEPES(4−(2−ヒドロキシエチル)ピペラジン−1−エタンスルホン酸)、HEPPS(EPPS)(4−(2−ヒドロキシエチル)ピペラジン−1−プロパンスルホン酸)、TES(N−[トリス(ヒドロキシメチル)メチル]−2−アミノエタンスルホン酸)及びその組合せによるものであってもよい。好ましくは、HEPESが用いられる。 The buffer solution used for mixing the biological sample and normal α-synuclein is not particularly limited as long as it can maintain a certain range of pH, and various buffers (eg, phosphate buffer solution, phosphate buffered saline). , Tris-HCl buffer, borate buffer, citrate buffer, acetate buffer, etc.). Buffers are HEPPSO (N- (2-hydroxyethyl) piperazine-N ′-(2-hydroxypropanesulfonic acid)), POPSO (piperazine-1,4-bis- (2-hydroxy-propane-sulfonic acid) anhydrous Product), HEPES (4- (2-hydroxyethyl) piperazine-1-ethanesulfonic acid), HEPPS (EPPS) (4- (2-hydroxyethyl) piperazine-1-propanesulfonic acid), TES (N- [Tris (Hydroxymethyl) methyl] -2-aminoethanesulfonic acid) and combinations thereof. Preferably, HEPES is used.
上記における緩衝液中のpHとしては、通常6.5〜8.5、好ましくは7.0〜8.0、より好ましくは7.2〜7.8、更により好ましくは7.3〜7.7、一層好ましくは7.4〜7.6、最も好ましくは7.5である。pHが6.5未満であるか、又は8.5を超えると、生体内に存在するα−シヌクレインの周囲の環境のpHから乖離する可能性がある。 The pH in the above buffer is usually 6.5 to 8.5, preferably 7.0 to 8.0, more preferably 7.2 to 7.8, and even more preferably 7.3 to 7. 7, more preferably 7.4 to 7.6, most preferably 7.5. If the pH is less than 6.5 or more than 8.5, there is a possibility of deviating from the pH of the environment around α-synuclein present in the living body.
本発明の方法において、生体試料と正常α−シヌクレインとの混合は上記反応混合液中にジルコニウム/シリカ ビーズ等のビーズを加えて実施しても、また加えずに実施してもよい。好ましくはビーズを加えずに混合する。 In the method of the present invention, mixing of the biological sample and normal α-synuclein may be performed with or without adding beads such as zirconium / silica beads to the reaction mixture. Preferably, mixing is performed without adding beads.
本発明の方法において、反応混合液には塩を含めてもよい。かかる塩としては、例えば、塩化ナトリウム、塩化マグネシウム、塩化カルシウム、塩化カリウム、塩化アルミニウム、塩化リチウム、塩化ストロンチウム、塩化コバルト、塩化亜鉛、塩化鉄、塩化銅、硫酸マグネシウム、硫酸ナトリウム、硫酸マグネシウム、硫酸アンモニウム、硝酸マグネシウム、硝酸ナトリウム、硝酸マグネシウム、硝酸アンモニウム、炭酸ナトリウム、炭酸マグネシウム、炭酸水素ナトリウム、リン酸一水素ナトリウム、乳酸カルシウム等が挙げられる。 In the method of the present invention, the reaction mixture may contain a salt. Examples of such salts include sodium chloride, magnesium chloride, calcium chloride, potassium chloride, aluminum chloride, lithium chloride, strontium chloride, cobalt chloride, zinc chloride, iron chloride, copper chloride, magnesium sulfate, sodium sulfate, magnesium sulfate, and ammonium sulfate. , Magnesium nitrate, sodium nitrate, magnesium nitrate, ammonium nitrate, sodium carbonate, magnesium carbonate, sodium hydrogen carbonate, sodium monohydrogen phosphate, calcium lactate and the like.
上記塩の混合液中の濃度としては、例えば、1μM〜1M、100μM〜800mM、1mM〜600mM、10mM〜500mM、100mM〜500mM、200mM〜400mM、250mM〜350mMが挙げられる。 As a density | concentration in the liquid mixture of the said salt, 1 micromol-1M, 100 micromol-800 mM, 1 mM-600 mM, 10 mM-500 mM, 100 mM-500 mM, 200 mM-400 mM, 250 mM-350 mM are mentioned, for example.
凝集体を形成する工程(2)は、上記反応混合液をインキュベーションすることによって行われる。インキュベーションの温度としては、例えば32℃〜50℃、好ましくは35〜45℃、より好ましくは38℃〜42℃、最も好ましくは40℃である。32℃未満では、凝集体形成において正常α−シヌクレイン分子の立体構造変化を抑制してしまう可能性があり、50℃を超えると凝集体形成に非依存的な正常α−シヌクレイン分子の立体構造変化を誘発してしまう可能性がある。 The step (2) of forming an aggregate is performed by incubating the reaction mixture. The incubation temperature is, for example, 32 ° C to 50 ° C, preferably 35 ° C to 45 ° C, more preferably 38 ° C to 42 ° C, and most preferably 40 ° C. If the temperature is lower than 32 ° C., there is a possibility that the change in the three-dimensional structure of the normal α-synuclein molecule is suppressed in the formation of the aggregate, and if it exceeds 50 ° C., the change in the three-dimensional structure of the normal α-synuclein molecule independent of the formation of the aggregate. May be triggered.
インキュベーションの時間は、検出される程度に凝集体が形成されれば特に限定されないが、例えば5時間以上、10時間以上、12時間以上、14時間以上、16時間以上、20時間以上、24時間以上、48時間以上である。また、長時間インキュベーションしても形成される凝集体の量が一定となり、また、迅速な測定という目的に鑑みれば、通常、インキュベーションは96時間以下、72時間以下、48時間以下で行われる。 The incubation time is not particularly limited as long as an aggregate is formed to the extent that it can be detected, but for example, 5 hours or more, 10 hours or more, 12 hours or more, 14 hours or more, 16 hours or more, 20 hours or more, 24 hours or more. 48 hours or more. In addition, the amount of aggregate formed even after a long incubation is constant, and in view of the purpose of rapid measurement, the incubation is usually performed for 96 hours or less, 72 hours or less, or 48 hours or less.
凝集体の形成を促進する工程(2)においては、上記反応混合液を震盪してもよい。震盪は、例えば、市販の震盪培養器等を用い、例えば、200rpm〜1,000rpm、300rpm〜800rpm、400rpm〜500rpm、500rpm〜800rpm、800rpm〜1,200rpm、好ましくは420rpm〜480rpm、最も好ましくは432rpmで行う。 In the step (2) for promoting the formation of aggregates, the reaction mixture may be shaken. The shaking is performed using, for example, a commercially available shaking incubator, for example, 200 rpm to 1,000 rpm, 300 rpm to 800 rpm, 400 rpm to 500 rpm, 500 rpm to 800 rpm, 800 rpm to 1,200 rpm, preferably 420 rpm to 480 rpm, most preferably 432 rpm. To do.
工程(2)には、一定の震盪期間及び一定の無震盪期間が繰り返されるサイクルが含まれ得る。例えば、工程(2)では60秒間の震盪期間及び60秒間の無震盪期間のサイクルが含まれる。別の例では、工程(2)には30秒間の震盪期間及び30秒間の無震盪期間のサイクルが含まれる。45秒間の震盪期間及び45秒間の無震盪期間又は70秒間の震盪期間及び70秒間の無震盪期間など、期間は変えられてもよい。他の態様において、震盪期間及び無震盪期間のサイクルは、例えば、サイクル全体で長さが1分間、2分間、好ましくは3分間である。工程(2)にはサイクル全体の長さによって震盪期間及び無震盪期間を変えてもよい。 Step (2) may include a cycle in which a constant shaking period and a constant shaking period are repeated. For example, step (2) includes a 60 second shaking period and a 60 second no shaking period cycle. In another example, step (2) includes a 30 second shaking period and a 30 second no shaking period cycle. The period may be varied, such as a 45 second shaking period and a 45 second no shaking period or a 70 second shaking period and a 70 second shaking period. In other embodiments, the cycle of the shaking period and no shaking period is, for example, 1 minute, 2 minutes, preferably 3 minutes in length throughout the cycle. In step (2), the shaking period and the non-shaking period may be changed depending on the length of the entire cycle.
上記震盪期間/無震盪期間のサイクルを繰り返す時間は、検出される程度に凝集体が形成されれば特に限定されないが、その合計が、例えば10時間以上、12時間以上、14時間以上、16時間以上、20時間以上、24時間以上、48時間以上である。また、長時間実施しても形成される凝集体の量が一定となり、また、迅速な測定という目的に鑑みれば、通常、サイクルは96時間以下、72時間以下、48時間以下繰り返される。 The time for repeating the cycle of the shaking period / no shaking period is not particularly limited as long as aggregates are formed to the extent that they are detected, but the total is, for example, 10 hours or more, 12 hours or more, 14 hours or more, 16 hours. These are 20 hours or more, 24 hours or more, 48 hours or more. In addition, the amount of aggregates formed is constant even when carried out for a long time, and in view of the purpose of rapid measurement, the cycle is usually repeated for 96 hours or less, 72 hours or less, or 48 hours or less.
本発明の方法において形成された凝集体は高分子であり、検出のために凝集体を含む反応混合液をそのまま用いてもよいが、高分子画分を部分的に精製して用いてもよい。検出される凝集体の分子量は、例えば、200kDa以上、好ましくは250kDa以上、より好ましくは280kDa以上である。部分的な精製は、例えば、各種クロマトグラフィー又は限外濾過等により行うことができる。 The aggregate formed in the method of the present invention is a polymer, and the reaction mixture containing the aggregate may be used as it is for detection, or the polymer fraction may be partially purified and used. . The molecular weight of the aggregate to be detected is, for example, 200 kDa or more, preferably 250 kDa or more, more preferably 280 kDa or more. Partial purification can be performed, for example, by various types of chromatography or ultrafiltration.
本発明における検出方法としては、例えば、酵素免疫測定法(EIA法)、イムノクロマト法、ラテックス凝集法、放射免疫測定法(RIA法)、蛍光免疫測定法(FIA法)、ルミネッセンス免疫測定法、表面プラズモン共鳴測定法(SPR法)ウェスタンブロット法、電子顕微鏡法、蛍光顕微鏡法、蛍光分光法などを利用することができる。これらの中でも、ウェスタンブロット法、蛍光分光法が操作の容易性及び迅速性の観点からして好適である。 Examples of the detection method in the present invention include enzyme immunoassay (EIA method), immunochromatography, latex agglutination, radioimmunoassay (RIA), fluorescence immunoassay (FIA), luminescence immunoassay, surface A plasmon resonance measurement method (SPR method), Western blotting, electron microscopy, fluorescence microscopy, fluorescence spectroscopy, and the like can be used. Among these, Western blotting and fluorescence spectroscopy are preferable from the viewpoint of ease of operation and rapidity.
検出が抗体を用いて行われる場合、抗体は、α−シヌクレインの凝集体に特異的に結合する能力があればよく、ポリクローナル抗体、モノクローナル抗体のいずれでもよい。当該抗体としては、キメラ抗体、単鎖抗体又は抗体分子のF(ab’)2、Fab’、或いはFab画分などの結合性フラグメントも含む。これらの抗体としては、免疫原としてα−シヌクレインを用いて自体公知の方法により調製した抗体を用いることができるし、市販の抗体を用いることもできる。 When the detection is performed using an antibody, the antibody may be any antibody that is capable of specifically binding to an α-synuclein aggregate, and may be a polyclonal antibody or a monoclonal antibody. Such antibodies also include binding fragments such as chimeric antibodies, single chain antibodies, or F (ab ') 2, Fab', or Fab fractions of antibody molecules. As these antibodies, antibodies prepared by a method known per se using α-synuclein as an immunogen can be used, and commercially available antibodies can also be used.
市販の抗α−シヌクレイン抗体としては、抗α−シヌクレイン(α−Syn)ポリクローナル抗体D119(Bioworld Technology,Inc.)、129番目のセリンがリン酸化されたα−シヌクレインに対する抗pSer129−αSynモノクローナル抗体、及び抗Ser87リン酸化α−Synポリクローナル抗体等が挙げられるが、抗α−Synポリクローナル抗体D119、抗pSer129−αSyn(抗Ser129リン酸化α−シヌクレイン)モノクローナル抗体が好ましい。 Examples of commercially available anti-α-synuclein antibodies include anti-α-synuclein (α-Syn) polyclonal antibody D119 (Bioworld Technology, Inc.), anti-pSer129-αSyn monoclonal antibody against α-synuclein phosphorylated at the 129th serine, And anti-Ser87 phosphorylated α-Syn polyclonal antibody and the like, and anti-α-Syn polyclonal antibody D119 and anti-pSer129-αSyn (anti-Ser129 phosphorylated α-synuclein) monoclonal antibody are preferable.
前記抗体は、直接的又は間接的に標識物質により標識されていてもよい。標識物質としては、蛍光物質(例、FITC、ローダミン)、放射性物質(例、14C、3H、125I)、酵素(例、アルカリホスファターゼ、ペルオキシダーゼ)、着色粒子(例、金属コロイド粒子、着色ラテックス)、ビオチン等が挙げられる。 The antibody may be directly or indirectly labeled with a labeling substance. Labeling substances include fluorescent substances (eg, FITC, rhodamine), radioactive substances (eg, 14 C, 3 H, 125 I), enzymes (eg, alkaline phosphatase, peroxidase), colored particles (eg, metal colloid particles, colored) Latex), biotin and the like.
このような抗体であれば、本工程において1種のみの抗体を用いてもよいし、2種以上を用いてもよい。 If it is such an antibody, only 1 type of antibody may be used in this process, and 2 or more types may be used.
上記「α−シヌクレインを特異的に認識する抗体」は、水溶液の状態で用いることが可能である。その場合、α−シヌクレインの凝集体は固相に結合させてもよい。かかる「固相」としては、プレート(例、マイクロウェルプレート)、チューブ、ビーズ(例、プラスチックビーズ、磁気ビーズ)、クロマトグラフィー用担体(例、Sepharose(商標))、メンブレン(例、ニトロセルロースメンブレン、PVDF膜)、ゲル(例、ポリアクリルアミドゲル)、金属膜(例、金膜)などが挙げられる。なかでも、プレート、ビーズ、メンブレン及び金属膜が好ましく用いられ、取り扱いの簡便性からメンブレンが最も好ましく用いられる。更に、非特異的吸着や非特異的反応を抑制するために、緩衝溶液を固相と接触させ、抗体によってコートされなかった固相表面部分を前記BSAや牛ミルクタンパク等でブロッキングすることが一般に行われる。 The “antibody specifically recognizing α-synuclein” can be used in the form of an aqueous solution. In this case, α-synuclein aggregates may be bound to a solid phase. Such “solid phases” include plates (eg, microwell plates), tubes, beads (eg, plastic beads, magnetic beads), chromatographic carriers (eg, Sepharose ™), membranes (eg, nitrocellulose membrane) , PVDF film), gel (eg, polyacrylamide gel), metal film (eg, gold film) and the like. Of these, plates, beads, membranes and metal membranes are preferably used, and membranes are most preferably used because of easy handling. Furthermore, in order to suppress non-specific adsorption and non-specific reaction, it is general to bring a buffer solution into contact with the solid phase and block the solid phase surface portion not coated with the antibody with the BSA or bovine milk protein. Done.
検出における「α−シヌクレインを特異的に認識する抗体」と、「α−シヌクレインの凝集体」との接触は、反応容器中において、α−シヌクレインの凝集体と、α−シヌクレインを特異的に認識する抗体とを混合することでこれらが相互作用できる方法であれば、態様、順序、具体的方法などは特に限定されない。接触は、上記抗体を水溶液の状態で用いる場合、例えば凝集体が固相化されたメンブレンが浸漬された反応液中に抗体を添加することでなされる。 The contact between “an antibody specifically recognizing α-synuclein” and “α-synuclein aggregate” in the detection specifically recognizes α-synuclein aggregate and α-synuclein in the reaction vessel. There are no particular limitations on the embodiment, the order, the specific method, and the like as long as they can interact with each other by mixing the antibodies. When the antibody is used in the form of an aqueous solution, the contact is performed, for example, by adding the antibody to a reaction solution in which a membrane on which an aggregate is immobilized is immersed.
なお、かかる接触を保つ時間は、前記α−シヌクレインを特異的に認識する抗体と、α−シヌクレインの凝集体とが結合して複合体を形成するのに十分な時間であれば特に限定されないが、通常、数秒〜十数時間であり、速やかにα−シヌクレイノパチーであるか否かを判定する観点から、好ましくは1分〜2時間であり、最も好ましくは2分〜30分である。また、接触を行なう温度条件としては、通常4℃〜50℃であり、4℃〜37℃が好ましく、15℃〜30℃程度の室温が最も好ましい。さらに、反応を行なうpH条件は、5.0〜9.0が好ましく、特に6.0〜8.0の中性域が好ましい。 The time for maintaining such contact is not particularly limited as long as the antibody specifically recognizes α-synuclein and an aggregate of α-synuclein are combined to form a complex. In general, it is several seconds to several tens of hours, and from the viewpoint of promptly determining whether or not it is α-synucleinopathy, it is preferably 1 minute to 2 hours, and most preferably 2 minutes to 30 minutes. . Moreover, as temperature conditions which perform a contact, it is 4 to 50 degreeC normally, 4 to 37 degreeC is preferable and the room temperature of about 15 to 30 degreeC is the most preferable. Furthermore, the pH condition for carrying out the reaction is preferably 5.0 to 9.0, particularly preferably the neutral range of 6.0 to 8.0.
検出方法としてウェスタンブロット法を選択した場合は、例えば形成されたα−シヌクレインの凝集体を、SDS充填緩衝液と混合して煮沸し、変性させ、試料液を調製する。当該試料液をSDSポリアクリルアミド電気泳動により分離し、ニトロセルロースメンブレン又はポリビニリデンジフルオリド(PVDF)メンブレン等のメンブレンに転写し、固相化する。当該メンブレンを適切な反応液(例、5%スキムミルク含有TBST)中に浸漬し、ブロッキングを行った後、適切な反応液(例、TBST)中で一次抗体(抗α−シヌクレイン抗体)と反応させる。かかる反応に要する時間は、迅速な測定が必要である観点から、好ましくは1分〜2時間であり、より好ましくは2分〜30分である。次にメンブレンを洗浄し、適切な反応液(例、TBST)中で二次抗体(例、西洋ワサビペルオキシダーゼ結合二次抗体)と反応させる。かかる反応に要する時間は、迅速な測定が必要である観点から、好ましくは1分〜2時間であり、より好ましくは2分〜30分である。再びメンブレンを洗浄し、ハイブリバッグ等の適切な容器中にメンブレンを検出緩衝液と共に含有させて、適切な検出システムにより検出する。 When Western blotting is selected as the detection method, for example, the formed α-synuclein aggregate is mixed with an SDS loading buffer, boiled, denatured, and a sample solution is prepared. The sample solution is separated by SDS polyacrylamide electrophoresis, transferred to a membrane such as a nitrocellulose membrane or a polyvinylidene difluoride (PVDF) membrane, and solidified. The membrane is immersed in an appropriate reaction solution (eg, TBST containing 5% skim milk), blocked, and then reacted with a primary antibody (anti-α-synuclein antibody) in an appropriate reaction solution (eg, TBST). . The time required for the reaction is preferably 1 minute to 2 hours, more preferably 2 minutes to 30 minutes, from the viewpoint that rapid measurement is required. Next, the membrane is washed and reacted with a secondary antibody (eg, horseradish peroxidase-conjugated secondary antibody) in an appropriate reaction solution (eg, TBST). The time required for the reaction is preferably 1 minute to 2 hours, more preferably 2 minutes to 30 minutes, from the viewpoint that rapid measurement is required. The membrane is washed again, and the membrane is contained together with a detection buffer in an appropriate container such as a hybrid bag, and detected by an appropriate detection system.
検出方法として分光光度計を選択した場合は、生体試料と正常α−シヌクレインとを混合した反応混合液にアミロイド線維と結合して蛍光を発するようになる蛍光色素を添加し、凝集体を形成する上記の反応を行う。形成された線維状の凝集体に蛍光色素が結合し、蛍光を発するので、反応混合液に適切な波長の励起光を照射し、蛍光を分光光度計等で検出する。 When a spectrophotometer is selected as the detection method, a fluorescent dye that binds to amyloid fibrils and emits fluorescence is added to a reaction mixture obtained by mixing a biological sample and normal α-synuclein to form an aggregate. Perform the above reaction. Since the fluorescent dye binds to the formed fibrous aggregate and emits fluorescence, the reaction mixture is irradiated with excitation light having an appropriate wavelength, and the fluorescence is detected with a spectrophotometer or the like.
アミロイド線維と結合して蛍光を発するようになる蛍光色素としては、チオフラビンT(ThT)、1−Bromo−2,5−bis(3−carboxy−4−hydroxystyryl)benzene、1−Fluoro−2,5−bis(3−carboxy−4−hydroxystyryl)benzene、ProteoStat(登録商標)アミロイド検出試薬等が挙げられる。 Examples of fluorescent dyes that emit fluorescence by binding to amyloid fibrils include Thioflavin T (ThT), 1-Bromo-2,5-bis (3-carboxy-4-hydroxystyryl) benzene, 1-Fluoro-2,5 -Bis (3-carbyl-4-hydroxystyryl) benzene, ProteoStat (registered trademark) amyloid detection reagent, and the like.
一態様において、(3)の工程は、異常α−シヌクレインをシードとして形成されたα−シヌクレインの凝集体を定量することを含む。例えば、検出方法としてウェスタンブロット法を選択した場合は、検出した(スメア)バンドの濃さをイメージアナライザー等で測定して凝集体の量を定量することができる。検出方法として分光光度計を選択した場合は、凝集体に結合した蛍光色素による蛍光強度を測定することにより、凝集体の量を定量することができる。 In one embodiment, the step (3) includes quantifying α-synuclein aggregates formed using abnormal α-synuclein as a seed. For example, when Western blotting is selected as the detection method, the amount of aggregate can be quantified by measuring the intensity of the detected (smear) band with an image analyzer or the like. When a spectrophotometer is selected as the detection method, the amount of aggregate can be quantified by measuring the fluorescence intensity of the fluorescent dye bound to the aggregate.
一態様においては、工程(3)の検出は凝集体の形成が進行している間に行われ、その後に更に凝集体を形成する工程が継続する。一態様においては、工程(3)の検出は凝集体の形成が進行している間に断続的に複数回行われる。例えば、工程(3)の検出は工程(2)の震盪期間/無震盪期間の1サイクルの直後に行われる。ただし、検出は各サイクル毎に実施される必要はなく例えば16分に1回、好ましくは10分に1回の頻度、例えば5サイクル毎、好ましくは3サイクル毎で行われる。 In one embodiment, the detection in the step (3) is performed while the formation of the aggregate is in progress, and then the step of further forming the aggregate continues. In one embodiment, the detection in step (3) is intermittently performed a plurality of times while the formation of aggregates proceeds. For example, the detection in step (3) is performed immediately after one cycle of the shaking period / no shaking period in step (2). However, the detection need not be performed every cycle, for example, once every 16 minutes, preferably once every 10 minutes, for example, every 5 cycles, preferably every 3 cycles.
本発明の方法は、(2)の後に以下の工程を続けて含んでもよい。
(3)緩衝液中で、形成されたα−シヌクレインの凝集体の一部と正常α−シヌクレインとを混合し、更なる反応混合液を得る工程;
(4)更なる反応混合液をインキュベーションして、異常α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び
(5)所望により(3)〜(4)を繰り返す工程。
The method of the present invention may include the following steps after (2).
(3) A step of mixing a part of the formed α-synuclein aggregate and normal α-synuclein in a buffer solution to obtain a further reaction mixture;
(4) Incubating a further reaction mixture to form an α-synuclein aggregate using abnormal α-synuclein as a seed; and (5) Repeating steps (3) to (4) as required.
工程(1)〜(2)により形成された凝集体は、その一部と、正常α−シヌクレインとを混合して更なる混合溶液を得、インキュベーションすることにより、更に凝集体を形成することができる。生体試料中の異常α−シヌクレインの量が少なく、工程(1)〜(2)によって生体試料から直接形成されるα−シヌクレインの凝集体の量が少ない場合でも、工程(3)〜(4)又は工程(3)〜(5)を含むことにより、形成されるα−シヌクレインの凝集体の量を増幅することができる。その結果として、生体試料中の異常α−シヌクレイン検出感度を高めることができる。 The aggregate formed by the steps (1) to (2) may be further formed by mixing a part thereof with normal α-synuclein to obtain a further mixed solution and incubation. it can. Even if the amount of abnormal α-synuclein in the biological sample is small and the amount of α-synuclein aggregate formed directly from the biological sample by steps (1) to (2) is small, steps (3) to (4) Alternatively, by including the steps (3) to (5), the amount of α-synuclein aggregate formed can be amplified. As a result, abnormal α-synuclein detection sensitivity in a biological sample can be increased.
本発明は、また、本発明の異常α−シヌクレインの検出方法を用いて、α−シヌクレイノパチーを診断補助するための方法を提供する。 The present invention also provides a method for assisting diagnosis of α-synucleinopathy using the method for detecting abnormal α-synuclein of the present invention.
本発明の診断の補助方法によれば、判定は、例えば以下のように行われる。健常者又はα−シヌクレイノパチー以外の認知症等の患者(ネガティブコントロール)、及びα−シヌクレイノパチーの患者(ポジティブコントロール)から生体試料(例、脳脊髄液)を採取し、被験体から採取した生体試料によって形成されたα−シヌクレインの凝集体の有無をポジティブコントロール及びネガティブコントロールについて確認する。 According to the diagnosis assisting method of the present invention, the determination is performed as follows, for example. A biological sample (eg, cerebrospinal fluid) is collected from a healthy subject or a patient with dementia other than α-synucleinopathy (negative control) and a patient with α-synucleinopathy (positive control), and the subject. The presence or absence of α-synuclein aggregates formed by the biological sample collected from the positive control and negative control is confirmed.
そして、確認結果より、被験体由来の生体試料を用いた場合に凝集体が検出された場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。逆に、凝集体が検出できない場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が相対的に低いと判定することができる。また、本発明の方法を用いて、α−シヌクレイノパチーとα−シヌクレイノパチー以外の認知症等とを鑑別する場合、凝集体が検出される場合には、該被験体は、α−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。逆に、凝集体が検出されない場合には、該被験体はα−シヌクレイノパチーではない可能性が高いと判定することができる。 And from the confirmation result, when an aggregate is detected when a biological sample derived from the subject is used, the subject is relatively likely to have α-synucleinopathy. Can be determined. Conversely, if aggregates are not detectable, it can be determined that the subject is relatively unlikely to suffer from α-synucleinopathy. Further, when using the method of the present invention to differentiate between α-synucleinopathy and dementia other than α-synucleinopathy, when an aggregate is detected, the subject is α -It can be determined that the possibility of suffering from synucleinopathy is relatively high. Conversely, if no aggregate is detected, it can be determined that the subject is likely not α-synucleinopathic.
別の態様においては、例えば、健常者又はα−シヌクレイノパチー以外の認知症等の患者(ネガティブコントロール)、及びα−シヌクレイノパチーの患者(ポジティブコントロール)から生体試料(例、脳脊髄液)を採取し、被験体から採取した生体試料によって形成されたα−シヌクレインの凝集体の量をポジティブコントロール及びネガティブコントロールのそれと比較する。 In another embodiment, for example, a biological sample (eg, cerebrospinal cord) from a healthy person or a patient with dementia other than α-synucleinopathy (negative control) and a patient with α-synucleinopathy (positive control). The amount of α-synuclein aggregates formed by the biological sample collected from the subject is compared with that of the positive control and the negative control.
そして、α−シヌクレインの凝集体の量の比較結果より、被験体由来の生体試料から形成された凝集体の量が相対的に多い場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。逆に、凝集体の量が相対的に少ない場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が相対的に低いと判定することができる。また、本発明の方法を用いて、α−シヌクレイノパチーとα−シヌクレイノパチー以外の認知症等とを鑑別する場合、凝集体の量が相対的に多い場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。逆に、凝集体の量が相対的に少ない場合には、該被験体はα−シヌクレイノパチーではない可能性が高いと判定することができる。 If the amount of aggregates formed from the biological sample derived from the subject is relatively large based on the comparison result of the amount of α-synuclein aggregates, the subject suffers from α-synucleinopathy. It is possible to determine that there is a relatively high possibility. Conversely, when the amount of aggregate is relatively small, it can be determined that the subject is relatively unlikely to suffer from α-synucleinopathy. In addition, when using the method of the present invention to differentiate between α-synucleinopathy and dementia other than α-synucleinopathy, when the amount of aggregate is relatively large, the subject Can be determined to be relatively likely to have α-synucleinopathies. On the contrary, when the amount of aggregate is relatively small, it can be determined that the subject is not likely to be α-synucleinopathy.
或いは、反応混合液におけるα−シヌクレインの凝集体の量のカットオフ値をあらかじめ設定しておき、測定されたα−シヌクレインの凝集体の量とこのカットオフ値とを比較することによって行うこともできる。例えば凝集体の量が前記カットオフ値以上である場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が高いと判定することができる。逆に、凝集体の量がカットオフ値を下回る場合には、該被験体がα−シヌクレイノパチーに罹患している可能性は低いと判定することができる。また、本発明の方法を用いて、α−シヌクレイノパチーとα−シヌクレイノパチー以外の認知症等とを鑑別する場合、凝集体の量が前記カットオフ値以上である場合には、該被験体は、α−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。逆に、凝集体の量がカットオフ値を下回る場合には、該被験体はα−シヌクレイノパチーではない可能性が高いと判定することができる。 Alternatively, a cut-off value of the amount of α-synuclein aggregates in the reaction mixture may be set in advance, and the measured amount of α-synuclein aggregates may be compared with this cut-off value. it can. For example, when the amount of aggregate is not less than the cut-off value, it can be determined that the subject is highly likely to suffer from α-synucleinopathy. Conversely, if the amount of aggregate is below the cut-off value, it can be determined that the subject is unlikely to suffer from α-synucleinopathy. In addition, when using the method of the present invention to differentiate between α-synucleinopathy and dementia other than α-synucleinopathy, when the amount of aggregate is not less than the cutoff value, It can be determined that the subject is relatively likely to have α-synucleinopathy. Conversely, if the amount of aggregate is below the cut-off value, it can be determined that the subject is likely not α-synucleinopathic.
また別の態様においては、例えば、健常者又はα−シヌクレイノパチー以外の認知症等の患者(ネガティブコントロール)、及びα−シヌクレイノパチーの患者(ポジティブコントロール)から生体試料(例、脳脊髄液)を採取し、被験体から採取した生体試料を用いて形成されるα−シヌクレインの凝集体の量を連続的に(例、リアルタイムで)測定し、反応開始からα−シヌクレインの凝集体が(一定レベルで)検出されるまでの時間を、ポジティブコントロール及びネガティブコントロールのそれと比較する。 In another embodiment, for example, a biological sample (eg, brain) from a healthy subject or a patient with dementia other than α-synucleinopathy (negative control) and a patient with α-synucleinopathy (positive control). Spinal fluid) is collected, and the amount of α-synuclein aggregate formed using a biological sample collected from the subject is measured continuously (eg, in real time), and α-synuclein aggregate is measured from the start of the reaction. Is compared to that of the positive and negative controls.
そして、比較結果より、凝集体が形成されるまで時間が相対的に短い場合には、該被験体は異常α−シヌクレインの量が相対的に多量と判定することができる。逆に、凝集体が形成されるまでの時間が相対的に長い場合には、該被験体は異常α−シヌクレインの量が相対的に少量と判定することができる。また、本発明の方法を用いて、α−シヌクレイノパチーとα−シヌクレイノパチー以外の認知症等とを鑑別する場合、ネガティブコントロールが陰性である時、凝集体が形成されるまでの時間が相対的に長い、短いに関係なく、該被験体は、α−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。 From the comparison result, when the time until the aggregate is formed is relatively short, the subject can determine that the amount of abnormal α-synuclein is relatively large. On the other hand, when the time until an aggregate is formed is relatively long, the subject can determine that the amount of abnormal α-synuclein is relatively small. In addition, when differentiating α-synucleinopathy and dementia other than α-synucleinopathy using the method of the present invention, when the negative control is negative, an aggregate is formed. Regardless of whether the time is relatively long or short, it can be determined that the subject is relatively likely to have α-synucleinopathies.
或いは、さらに別の態様では、反応混合液におけるα−シヌクレインの凝集体が形成されるまでの時間についてカットオフ値をあらかじめ設定しておき、測定されたα−シヌクレインの凝集体が形成されるまでの時間とこのカットオフ値とを比較することによって行うこともできる。例えば、凝集体が形成されるまでの時間が前記カットオフ値よりも短い場合には、該被験体はα−シヌクレイノパチーに罹患している可能性が高いと判定することができる。逆に、凝集体が形成されるまでの時間が前記カットオフ値と同じか、より長い場合には、該被験体がα−シヌクレイノパチーに罹患している可能性は低いと判定することができる。また、本発明の方法を用いて、α−シヌクレイノパチーとα−シヌクレイノパチー以外の認知症等とを鑑別する場合、凝集体が形成されるまでの時間が前記カットオフ値よりも短い場合には、該被験体は、α−シヌクレイノパチーに罹患している可能性が相対的に高いと判定することができる。逆に、凝集体が形成されるまでの時間がカットオフ値と同じか、より長い場合には、該被験体はα−シヌクレイノパチーではない可能性が高いと判定することができる。 Alternatively, in yet another aspect, a cutoff value is set in advance for the time until the α-synuclein aggregate is formed in the reaction mixture, and the measured α-synuclein aggregate is formed. This time can also be compared with this cut-off value. For example, when the time until an aggregate is formed is shorter than the cut-off value, it can be determined that the subject is highly likely to suffer from α-synucleinopathy. Conversely, if the time until the formation of the aggregate is the same as or longer than the cutoff value, it is determined that the subject is unlikely to have α-synucleinopathy. Can do. When using the method of the present invention to differentiate between α-synucleinopathy and dementia other than α-synucleinopathy, the time until an aggregate is formed is less than the cutoff value. If short, it can be determined that the subject is relatively likely to have α-synucleinopathy. On the contrary, when the time until an aggregate is formed is equal to or longer than the cutoff value, it can be determined that the subject is not likely to be α-synucleinopathy.
「カットオフ値」は、その値を基準として疾患や状態の判定をした場合に、高い診断感度(有病正診率)及び高い診断特異度(無病正診率)の両方を満足できる値である。例えば、α−シヌクレイノパチーの患者で高い陽性率を示し、かつ、健常人又はα−シヌクレイノパチー以外の認知症等の患者で高い陰性率を示す、α−シヌクレインの凝集体の量又はα−シヌクレインの凝集体形成までの時間をカットオフ値として設定することが出来る。カットオフ値は、個々の被験体における検出や定量の結果に基づく診断の感度と特異度の関係を表した受信者操作特性曲線(ROC曲線)を作成することで求めることができる。 The “cut-off value” is a value that can satisfy both high diagnostic sensitivity (prevalence of prevalence of disease) and high specificity of diagnosis (prevalence of nondiagnosticity) when determining the disease or condition based on that value. is there. For example, the amount of α-synuclein aggregates showing a high positive rate in patients with α-synucleinopathy and a high negative rate in patients with dementia other than healthy subjects or α-synucleinopathies Alternatively, the time until formation of α-synuclein aggregates can be set as a cutoff value. The cut-off value can be obtained by creating a receiver operating characteristic curve (ROC curve) that represents the relationship between the sensitivity and specificity of diagnosis based on the detection and quantification results in individual subjects.
以下、実施例により本発明をより詳細に説明するが、本発明はこれらの実施例により何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited at all by these Examples.
材料及び方法
患者
DLBの脳組織を、臨床診断を組織病理学的に確認した患者7名からの剖検で得た。ブラーク病期分類によると、これらの被験者のうち、6名はびまん性皮質型DLB(DN−DLB)に罹っていると分類され、残り1症例は大脳辺縁系型DLB(Li−DNB)であった。プリオン病の脳組織は、3名の孤発性CJD(sCJD)患者及び1名の、PRNPのコドン102におけるProからLeuへの変異に関連する、GSS患者からの剖検で得た。sCJDのサブタイプは、PRNP遺伝子のコドン129における遺伝子型及び異常プリオンタンパク質(PrPSc)の生理学的特性に従って診断した。彼らは1型、コドン129MM(MM1)の2症例、2型、コドン129MM(MM2)の1症例を含んでいた。ADの脳組織は、神経原線維変化及び老人斑の存在という神経病理学的診断を受けていた患者2名からの剖検で得た。脳標本は、LBDの共存を殆ど又は全く伴わない純粋型のADであった。脳における組織病理学的変化が無い、統合失調症及び乳癌の患者由来の脳組織を、非変性的症例として用いた。本研究に加わることについての、書面のインフォームドコンセントを患者の家族から受け取った。研究プロトコールは長崎大学病院の倫理委員会により承認され(ID:10042823)、大学病院医療情報ネットワークに登録された(ID:UMIN000003301)。
Materials and Methods Patients DLB brain tissue was obtained at necropsy from 7 patients whose clinical diagnosis was confirmed histopathologically. According to the Bragg staging, 6 of these subjects were classified as having diffuse cortical DLB (DN-DLB) and the remaining 1 case was limbic DLB (Li-DNB) there were. Prion disease brain tissue was obtained from autopsy from 3 sporadic CJD (sCJD) patients and 1 GSS patient associated with a Pro to Leu mutation at codon 102 of PRNP. The sCJD subtype was diagnosed according to the genotype at codon 129 of the PRNP gene and the physiological properties of the aberrant prion protein (PrP Sc ). They included two cases of type 1, codon 129MM (MM1), type 2, one case of codon 129MM (MM2). AD brain tissue was obtained at autopsy from two patients who had undergone neuropathological diagnosis of neurofibrillary tangles and the presence of senile plaques. The brain specimens were pure AD with little or no LBD coexistence. Brain tissue from patients with schizophrenia and breast cancer without histopathological changes in the brain was used as a non-degenerative case. Written informed consent was received from the patient's family about joining the study. The study protocol was approved by the Nagasaki University Hospital Ethics Committee (ID: 10049823) and registered with the University Hospital Medical Information Network (ID: UMIN000010001).
組換えヒトα−シヌクレインの発現及び精製
Hisタグ付き野生型ヒトαSynのN末端残基1〜140をコードするDNA配列を、ヒトcDNA(Toyobo)から、フォワードプライマー(5’−ggaattccatatgaaacatcatcatcatcatcaccagatggatgtattcatgaaagg−3’(配列番号5))及びリバースプライマー(5’−ctagctagctagttaggcttcaggttcgtagtctt−3’(配列番号6))により増幅した。S129A変異体は、フォワードプライマー(5’−ggaattccatatgaaacatcatcatcatcatcaccagatggatgtattcatgaaagg−3’(配列番号7))及びリバースプライマー(5’−ctagctagctagttaggcttcaggttcgtagtcttgatacccttcctcagcaggc−3’(配列番号8))により増幅した。N末端Hisタグを消化するジペプチジルペプチダーゼIのための終止点を、発現コンストラクトにグルタミンコドンを挿入することにより、タンパク質配列に導入した。増幅したPCR断片を、pET11aベクター(Novagen)のNdeI及びNheI部位に挿入し、配列決定解析により確認した。プラスミドを、B21 DE3 E.coliコンピテントセル(BioDynamics Laboratory)に形質転換後、MagicMedia E.coli Expression Medium(Invitrogen)を用いて、組換えタンパク質を発現させた。細胞ペレットを、リゾチーム(Wako)及びベンゾナーゼヌクレアーゼ(Novagen)の存在下、CelLytic B(Sigma−Aldrich)に懸濁した。溶解物を3000rpmで15分間遠心分離し、上清をNi−NTA Superflow resin(Qiagen)と室温で30分間インキュベーションした。タンパク質を300mM NaCl,50mM Tris−HCl(pH8.0),250mMイミダゾールを含有する緩衝液で溶出させ、10mMリン酸緩衝液(pH7.0)に対して透析した。図1A及び1Bに示す通り、N末端Hisタグ付ヒトα−シヌクレインからのタグの除去を、TAGZyme system(Qiagen)を用いて行った。精製His−r−Synは、N末端側エキソペプチダーゼのDAPase(Qiagen)のためのグルタミンの終止点を、Hisタグ配列とαSynの最初のアミノ酸との間に含有する。グルタミンシクロトランスフェラーゼのQcyclase(Qiagen)存在下、DAPaseによりタグを切断し、生成物をNi−NTA resin(Qiagen)にアプライして未切断のHisタグ付タンパク質を除去した。Qcyclase存在下、グルタミン残基は、DAPase分解に対する終止点として作用するピログルタミン酸に変換される。ピログルタミルアミノペプチダーゼのpGAPase(Qiagen)の作用により、ピログルタミン酸を除去することによってヒトαSynを得た。DAPase、Qcyclase、及びpGAPaseは、そのC末端にHisタグを有するので、Ni−NTA resin用いて除去した。最終タンパク質を10mMリン酸ナトリウム緩衝液(pH7.0)に対して透析し、2.0μmシリンジフィルターで濾過した。タンパク質試料の純度を、SDS−PAGE及びイムノブロット法により、98%>と見積もった。円二色性(CD)及びフーリエ変換赤外分光(FTIR)による解析によって、r−αSynの変性構造が示された(図1C及び1D)。精製後、タンパク質の等分割量を、使用するまで−80℃で保存した。
Expression and Purification of Recombinant Human α-Synuclein A DNA sequence encoding N-terminal residues 1 to 140 of His-tagged wild type human αSyn was obtained from a human cDNA (Toyobo) by using a forward primer (5′-ggaattccatgacatata SEQ ID NO: 5)) and reverse primer (5′-ctagcttagctagtaggtctcaggttcgttagcttt-3 ′ (SEQ ID NO: 6)). The S129A mutant is composed of a forward primer (5′-ggaattccatgacatacatcatcatcatcaccataggagtgtattcatgaagagg-3 ′ (SEQ ID NO: 7)) and a reverse primer (5′-ctagctaggctcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtcgtgtgt A termination point for dipeptidyl peptidase I that digests the N-terminal His tag was introduced into the protein sequence by inserting a glutamine codon into the expression construct. The amplified PCR fragment was inserted into the NdeI and NheI sites of the pET11a vector (Novagen) and confirmed by sequencing analysis. The plasmid was transformed into B21 DE3 E. coli. After transformation into E. coli competent cells (BioDynamics Laboratory), MagicMedia E. coli. The recombinant protein was expressed using E. coli Expression Medium (Invitrogen). The cell pellet was suspended in CelLytic B (Sigma-Aldrich) in the presence of lysozyme (Wako) and benzonase nuclease (Novagen). The lysate was centrifuged at 3000 rpm for 15 minutes and the supernatant was incubated with Ni-NTA Superflow resin (Qiagen) for 30 minutes at room temperature. The protein was eluted with a buffer containing 300 mM NaCl, 50 mM Tris-HCl (pH 8.0), 250 mM imidazole and dialyzed against 10 mM phosphate buffer (pH 7.0). As shown in FIGS. 1A and 1B, tag removal from N-terminal His-tagged human α-synuclein was performed using TAGZyme system (Qiagen). Purified His-r-Syn contains a glutamine termination point for the N-terminal exopeptidase DAPase (Qiagen) between the His tag sequence and the first amino acid of αSyn. The tag was cleaved with DAPase in the presence of the glutamine cyclotransferase Qcyclase (Qiagen), and the product was applied to Ni-NTA resin (Qiagen) to remove the uncleaved His-tagged protein. In the presence of Qcyclase, glutamine residues are converted to pyroglutamic acid, which acts as a termination point for DAPase degradation. Human αSyn was obtained by removing pyroglutamic acid by the action of the pyroglutamyl aminopeptidase pGAPase (Qiagen). Since DAPase, Qcyclase, and pGAPase have a His tag at their C-terminal, they were removed using Ni-NTA resin. The final protein was dialyzed against 10 mM sodium phosphate buffer (pH 7.0) and filtered through a 2.0 μm syringe filter. The purity of the protein sample was estimated to be 98% > by SDS-PAGE and immunoblotting. Analysis by circular dichroism (CD) and Fourier transform infrared spectroscopy (FTIR) showed the modified structure of r-αSyn (FIGS. 1C and 1D). After purification, equal aliquots of protein were stored at −80 ° C. until use.
RT−QUIC実験
我々は、黒色の96ウェル蛍光用プレート(Nunc)中に、最終全体積100μlの反応混合物を調製した。混入を防ぐため、我々は、物質をすべて生物学的安全キャビネットの内側で調製し、エアロゾル耐性チップを用いた。反応緩衝液成分の最終濃度は50mM HEPES(pH7.5)及び10μMチオフラビンT(ThT)であった。r−αSynの濃度は100μg/ml〜150μg/mlで、解凍したてのr−αSynのみを用いた。我々は、r−αSynのロット間で至適r−αSyn濃度(100μg/ml〜150μg/ml)に軽度のばらつきを認めたが、最終感度は概ね同一であった。マルチビーズショッカーを用い、タンパク質分解酵素阻害剤混合物(Roche)を添加した氷冷PBS中、10%で脳組織(前頭葉領域)をホモジェナイズした。2000×gで2分間遠心分離後、上清を採取し、使用するまで−80℃に凍結した。脳ホモジネートは、反応前にPBSで希釈した。96ウェルプレートを密封テープ(Nunc)で覆い、プレートリーダー(Infinite M200 fluorescence plate reader;TECAN)中で断続的に震盪(円形状の震盪を最大速度で40秒、20秒間震盪無し、次いで蛍光測定のため2分休止から成る)して40℃でインキュベーションした。励起光及び蛍光の波長をそれぞれ440nm及び485nmとした単色光分光器を用いて、プレート底部の蛍光強度を10分毎に読み取り、アミロイド形成の動態をモニターした。各希釈脳ホモジネート試料を6レプリケート測定した。不溶性凝集体及びr−αSynオリゴマーの各希釈試料を、それぞれ、3〜4レプリケート及び3〜6レプリケートアッセイした。我々は、120任意単位超の蛍光強度を有する反応を陽性反応とし、レプリケート反応の50%において陽性反応を示したシード用量(SD50)を、スピアマン−ケルバー方法を以前(Wilham et al.,2010)記載された通りに用いて算出した。
RT-QUIIC Experiment We prepared a final total volume of 100 μl of reaction mixture in black 96 well fluorescent plates (Nunc). To prevent contamination, we prepared all materials inside the biological safety cabinet and used aerosol resistant chips. The final concentration of reaction buffer components was 50 mM HEPES (pH 7.5) and 10 μM Thioflavin T (ThT). The concentration of r-αSyn was 100 μg / ml to 150 μg / ml, and only freshly thawed r-αSyn was used. We observed slight variations in the optimal r-αSyn concentration (100 μg / ml to 150 μg / ml) among r-αSyn lots, but the final sensitivity was generally the same. Using a multi-bead shocker, brain tissue (frontal lobe region) was homogenized with 10% in ice-cold PBS supplemented with a protease inhibitor mixture (Roche). After centrifugation at 2000 × g for 2 minutes, the supernatant was collected and frozen at −80 ° C. until use. Brain homogenate was diluted with PBS prior to reaction. Cover 96-well plate with sealing tape (Nunc) and shake intermittently in plate reader (Infinite M200 fluorescence plate reader; TECAN) (circular shaking at maximum speed for 40 seconds, no shaking for 20 seconds, then fluorescence measurement For 2 minutes) and incubated at 40 ° C. Using a monochromator with excitation light and fluorescence wavelengths of 440 nm and 485 nm, respectively, the fluorescence intensity at the bottom of the plate was read every 10 minutes to monitor the kinetics of amyloid formation. Each replicate brain homogenate sample was measured in 6 replicates. Each diluted sample of insoluble aggregates and r-αSyn oligomer was subjected to 3-4 replicate and 3-6 replicate assays, respectively. We determined that the reaction with a fluorescence intensity of more than 120 arbitrary units was a positive reaction, the seed dose (SD 50 ) that showed a positive reaction in 50% of the replicate reactions, the Spearman-Kelver method (Wilham et al., 2010) ) Calculated using as described.
ウェスタンブロット法
脳組織(前頭葉領域)を、Triton−デオキシコール酸(DOC)溶解緩衝液(50mM Tris−HCl,pH7.5(150mM NaCl,0.5%Triton X−100,0.5%デオキシコール酸ナトリウム,2mM EDTA,及びタンパク質分解酵素阻害剤を含有))により、4℃で30分間溶解させた。2000×gで2分間遠心分離後、上清を採取し、ビシンコニン酸(BCA)タンパク質アッセイキット(Pierce)を用いて全タンパク質濃度を測定した。試料を、ドデシル硫酸ナトリウム(SDS)充填緩衝液(62.5mM Tris−HCl,PH6.8(5% 2−メルカプトエタノール,2%SDS,5%ショ糖,及び0.005%ブロモフェノールブルー含有))と共に95℃で5分間煮沸し、SDSポリアクリルアミドゲル電気泳動法(SDS−PAGE)に供した。タンパク質を、15%メタノールを含有する転写緩衝液中、Immobilon−P membrane(Millipore)に300mAで2時間転写し;膜を、TBST(10mM Tris−HCl,pH7.8,100mM NaCl,0.1% Tween 20)中5%脱脂粉乳で4℃で2時間ブロッキングし、希釈した一次抗体と反応させた。免疫反応したバンドを、増強化学発光システム(GE healthcare Life Sciences)を用いて、HRP−結合二次抗体により可視化した。
Western blotting Brain tissue (frontal lobe region) was washed with Triton-deoxycholic acid (DOC) lysis buffer (50 mM Tris-HCl, pH 7.5 (150 mM NaCl, 0.5% Triton X-100, 0.5% deoxychol). Sodium sulfate, 2 mM EDTA, and a protease inhibitor) were dissolved at 4 ° C. for 30 minutes. After centrifugation at 2000 × g for 2 minutes, the supernatant was collected and the total protein concentration was measured using a bicinchoninic acid (BCA) protein assay kit (Pierce). Samples were loaded with sodium dodecyl sulfate (SDS) loading buffer (62.5 mM Tris-HCl, PH 6.8 (containing 5% 2-mercaptoethanol, 2% SDS, 5% sucrose, and 0.005% bromophenol blue). And boiled at 95 ° C. for 5 minutes, and subjected to SDS polyacrylamide gel electrophoresis (SDS-PAGE). Protein was transferred to Immobilon-P membrane (Millipore) at 300 mA for 2 hours in transcription buffer containing 15% methanol; membranes were TBST (10 mM Tris-HCl, pH 7.8, 100 mM NaCl, 0.1% Blocked with 5% nonfat dry milk in Tween 20) at 4 ° C. for 2 hours and reacted with diluted primary antibody. The immunoreacted band was visualized with HRP-conjugated secondary antibody using an enhanced chemiluminescence system (GE healthcare Life Sciences).
透過型電子顕微鏡法
カーボン支持膜グリッド(染色前にグロー放電した)上でネガティブ染色を行った。試料の5μl等分割量をグリッド上に吸着させ、残液を濾紙で吸収した。グリッドを、新たに濾過した染色液(2%酢酸ウラン)5μlで染色した。乾燥した時点で、透過型電子顕微鏡(JEM−1400PLUS;JEOL)で試料を観察した。
Transmission Electron Microscopy Negative staining was performed on a carbon support membrane grid (glow discharge before staining). A 5 μl aliquot of the sample was adsorbed onto the grid, and the remaining liquid was absorbed with filter paper. The grid was stained with 5 μl of freshly filtered staining solution (2% uranium acetate). When dried, the sample was observed with a transmission electron microscope (JEM-1400PLUS; JEOL).
CD
円二色性(CD)スペクトルを、石英セルを用い、JASCO J−820分光偏光計(JASCO)により、1mmの経路長で測定した。195nm〜250nmの波長範囲での4回のスキャンを平均することにより、CDスペクトルを得た。r−αSynは20mMリン酸ナトリウム(pH6.5)及び150mM NaClの緩衝液中に溶解させた。r−αSynの濃度は300μg/mlであった。
CD
Circular dichroism (CD) spectra were measured with a JASCO J-820 spectropolarimeter (JASCO) using a quartz cell with a path length of 1 mm. CD spectra were obtained by averaging four scans in the wavelength range of 195 nm to 250 nm. r-αSyn was dissolved in a buffer of 20 mM sodium phosphate (pH 6.5) and 150 mM NaCl. The concentration of r-αSyn was 300 μg / ml.
FTIR
フーリエ変換赤外分光(FTIR)スペクトルは、液体窒素で冷却した水銀カドミウムテルル(MCT)検出器を備えたBruker Tensor 27 FTIR instrument(Bruker Optics)により測定した。試料の20μl等分割量を、BioATRcell II減衰全反射型反射ユニットに装填した。4cm−1分解能における、全128スキャンを、一定の窒素パージの下、各試料について収集し、水蒸気に関して補正し、緩衝液の背景スペクトルを差し引いた。
FTIR
Fourier Transform Infrared Spectroscopy (FTIR) spectra were measured with a Bruker Sensor 27 FTIR instrument (Bruker Optics) equipped with a mercury cadmium tellurium (MCT) detector cooled with liquid nitrogen. A 20 μl aliquot of the sample was loaded into a BioATRcell II attenuated total reflection type reflection unit. All 128 scans at 4 cm −1 resolution were collected for each sample under a constant nitrogen purge, corrected for water vapor, and the buffer background spectrum subtracted.
組織病理学及び免疫組織化学的染色
脳組織を20%中性緩衝ホルマリン中で固定し、ミクロトームで、スライドグラス上に8μmのパラフィン切片を作製した。脱パラフィン及び再水和後、組織切片をヘマトキシリン及びエオジンでの染色、並びに抗Ser129リン酸化α−Syn抗体(1:3000希釈;Wako)を用いた免疫組織化学的染色に供した。免疫原性を増進するため、一次抗体とインキュベーションする前に、98℃で40分間加熱することにより切片を作製した。一次抗体の結合は、標識ストレプトアビジン−ビオチン法(DAKO)により検出した。ペルオキシダーゼ結合ストレプトアビジンを、3’3−ジアミノベンジジン(Wako)を発色原として可視化した。免疫染色した切片を、マイヤーのヘマトキシリンで軽く対比染色した。
Histopathology and immunohistochemical staining Brain tissue was fixed in 20% neutral buffered formalin and 8 μm paraffin sections were prepared on a slide glass with a microtome. After deparaffinization and rehydration, tissue sections were subjected to staining with hematoxylin and eosin and immunohistochemical staining using anti-Ser129 phosphorylated α-Syn antibody (1: 3000 dilution; Wako). To enhance immunogenicity, sections were prepared by heating at 98 ° C. for 40 minutes prior to incubation with the primary antibody. The binding of the primary antibody was detected by a labeled streptavidin-biotin method (DAKO). Peroxidase-conjugated streptavidin was visualized using 3'3-diaminobenzidine (Wako) as a chromogen. Immunostained sections were lightly counterstained with Mayer's hematoxylin.
統計解析
最大蛍光強度についてのデータは一元配置分散分析、続いてテューキー−クレーマー検定で解析した。遅滞期についてのデータ解析は、ログランク検定及びテューキー−クレーマー検定に供した。統計学的有意を示すため、P<0.05又はP<0.01を用いた。
Statistical analysis Data for maximum fluorescence intensity were analyzed by one-way analysis of variance followed by Tukey-Kramer test. Data analysis for the lag phase was subjected to log rank test and Tukey-Kramer test. P <0.05 or P <0.01 was used to show statistical significance.
補足的な実験手順
組換えα−シヌクレインのin vitroリン酸化
r−αSyn(3μg)を、20μlの反応緩衝液(20mM Tris−HCl,pH7.5,50mM KCl,及び10mM MgCl2)中で、カゼインキナーゼ2(New England Biolabs)及び200μM ATP(Sigma)と37℃で5時間インキュベーションした。95℃で10分間煮沸することにより反応を停止した。
Supplemental Experimental Procedure In Vitro Phosphorylation of Recombinant α-Synuclein r-αSyn (3 μg) was added to 20 μl of reaction buffer (20 mM Tris-HCl, pH 7.5, 50 mM KCl, and 10 mM MgCl 2 ). Incubation with kinase 2 (New England Biolabs) and 200 μM ATP (Sigma) at 37 ° C. for 5 hours. The reaction was stopped by boiling at 95 ° C. for 10 minutes.
Phos−tag SDS−PAGE及びウェスタンブロット法
tricine−SDS−PAGE法に基づいてPhos−tag SDS−PAGEを行った。ポリアクリルアミドの分離ゲルには1M Tris−HCl(pH8.45),0.1%SDS,13.3%グリセロール,100μM Phos−tag,及び400μM ZnCl2を含めた。陽極緩衝液成分の濃度は、200mM Tris−HCl(pH8.9)とした。陰極緩衝液成分の濃度は、100mM Tris,100mM Tricine,及び0.1%SDSとした。SDS充填緩衝液(5% 2−メルカプトエタノール,2%SDS,5%ショ糖,及び0.005%ブロモフェノールブルーを含有する62.5mM Tris−HCl,pH6.8)と共に、試料を95℃で5分間煮沸し、Phos−tag SDS−ポリアクリルアミド電気泳動法に供した。電気泳動後、ゲルを、Zn2+イオンをキレートするための10mM EDTAを含有する転写緩衝液で洗浄した。タンパク質を、15%メタノールを含有する転写緩衝液中、300mAで2時間、Immobilon−P membrane(Millipore)上に転写した。膜をTBST(10mM Tris−HCl,pH7.8,100mM NaCl,0.1% Tween20)中5%脱脂粉乳で、4℃で2時間ブロッキングし、希釈した一次抗体と反応させた。増強化学発光システム(Amersham)を用いて、免疫反応性のバンドを、HRP結合二次抗体で可視化した。ImageJ 1.41を用いて、バンドの強度を測定した。
Phos-tag SDS-PAGE and Western blotting Phos-tag SDS-PAGE was performed based on the tricine-SDS-PAGE method. The polyacrylamide separation gel contained 1 M Tris-HCl (pH 8.45), 0.1% SDS, 13.3% glycerol, 100 μM Phos-tag, and 400 μM ZnCl 2 . The concentration of the anode buffer component was 200 mM Tris-HCl (pH 8.9). The concentration of the cathode buffer component was 100 mM Tris, 100 mM Tricine, and 0.1% SDS. With SDS loading buffer (62.5 mM Tris-HCl, pH 6.8 containing 5% 2-mercaptoethanol, 2% SDS, 5% sucrose, and 0.005% bromophenol blue) at 95 ° C. It was boiled for 5 minutes and subjected to Phos-tag SDS-polyacrylamide electrophoresis. After electrophoresis, the gel was washed with a transfer buffer containing 10 mM EDTA to chelate Zn 2+ ions. The protein was transferred onto Immobilon-P membrane (Millipore) at 300 mA for 2 hours in transcription buffer containing 15% methanol. The membrane was blocked with 5% non-fat dry milk in TBST (10 mM Tris-HCl, pH 7.8, 100 mM NaCl, 0.1% Tween 20) for 2 hours at 4 ° C. and reacted with diluted primary antibody. Immunoreactive bands were visualized with HRP-conjugated secondary antibody using an enhanced chemiluminescence system (Amersham). The intensity of the band was measured using ImageJ 1.41.
ドットブロット
BH及びr−αSynを、SDS充填緩衝液(5% 2−メルカプトエタノール及び2%SDSを含有する62.5mM Tris−HCl,pH6.8)と共に95℃で10分間煮沸した。bio−blot(Bio−Rad,Hercules,CA,USA)を用いて、試料を、穏やかな減圧促進条件下でニトロセルロース膜上にブロットした。TBST(10mM Tris−HCl,pH7.8,100mM NaCl,0.1% Tween20)で洗浄及びTBST中5%脱脂粉乳で2時間ブロッキング後、希釈した一次抗体で膜をプローブした。増強化学発光システム(Amersham)を用いて、免疫反応性のバンドを、HRP結合二次抗体で可視化した。ImageJ 1.41を用いて、ドットの強度を測定した。
Dot blot BH and r-αSyn were boiled at 95 ° C. for 10 minutes with SDS loading buffer (62.5 mM Tris-HCl, pH 6.8 containing 5% 2-mercaptoethanol and 2% SDS). Samples were blotted onto nitrocellulose membranes under mild vacuum-enhanced conditions using bio-blots (Bio-Rad, Hercules, CA, USA). After washing with TBST (10 mM Tris-HCl, pH 7.8, 100 mM NaCl, 0.1% Tween 20) and blocking with 5% nonfat dry milk in TBST for 2 hours, the membrane was probed with diluted primary antibody. Immunoreactive bands were visualized with HRP-conjugated secondary antibody using an enhanced chemiluminescence system (Amersham). The intensity of the dots was measured using ImageJ 1.41.
結果
Ser129がリン酸化されたα−シヌクレインはレビー小体型認知症由来の脳中に多量にある。
まず、我々は、DLB患者の脳中にLB及びSer129でリン酸化されたαSyn(pSer129−αSyn)が存在することを、それぞれヘマトキシリン・エオジン染色及び免疫組織化学的染色により確認した(図2A)。びまん性新皮質型DLB(DN−DLB)患者2名及び大脳辺縁系型DLB(Li−DLB)患者1名由来の剖検で得られた黒質及び前頭葉の皮質の切片において、LB及びpSer129−αSynの両方が観察された。pSer129−αSynは、LB中に存在するように見えた。皮質中では、DN−DLBにおける、pSer129−αSynを含有するLBは、Li−LDBにおけるそれよりも明らかに大きかった。対照的に、組織化学的解析により、非DLB症例の脳では、病理学的異常が明らかではなかった。Tannickal et al.(2007)による以前の報告と整合して、黒質中の、メラニン顆粒を含有する細胞は、通常、DN−DLB及びLi−DLB患者では恐らく神経変性のため喪失していたが、非DLBではそうではなかった。
Results α-synuclein phosphorylated at Ser129 is abundant in the brain derived from dementia with Lewy bodies.
First, we confirmed the presence of αSyn (pSer129-αSyn) phosphorylated by LB and Ser129 in the brains of DLB patients by hematoxylin and eosin staining and immunohistochemical staining, respectively (FIG. 2A). In sections of the substantia nigra and frontal cortex obtained at autopsy from two diffuse neocortical DLB (DN-DLB) patients and one limbic DLB (Li-DLB) patient, LB and pSer129- Both αSyn were observed. pSer129-αSyn appeared to be present in LB. In the cortex, LB containing pSer129-αSyn in DN-DLB was clearly larger than that in Li-LDB. In contrast, histochemical analysis revealed no pathological abnormalities in the brains of non-DLB cases. Tannickal et al. Consistent with previous reports by (2007), cells containing melanin granules in the substantia nigra were usually lost due to neurodegeneration in DN-DLB and Li-DLB patients, but in non-DLB It wasn't.
次に、我々は、抗αSyn抗体D119を用いたウェスタンブロット法により、DLB患者由来の脳ホモジネート(BH)中のαSynの生化学的特性を検証し、非DLB症例由来のそれらの結果と比較した(図2B)。全患者由来試料イムノブロット解析により、18kDaにおける天然のαSynのバンド、36kDaの二量体型、又は両方が示された。DN−DLBの2症例及びLi−DLBの1症例は、>250kDaの分子量範囲の、顕著に嵩張った多量体型αSynを含有していた。不溶性多量体はLi−DLBよりも、DN−DLBにおいてより豊富であったが、このことにより、αSyn多量体形成が、疾患進行に極めて重要であることが示された。このバンドは非DLB症例では観察されなかったが、GSSにおいて、比較的少量の重合体が観察された。すべての症例で、約50kDa〜250kDaの分子量範囲に、様々な大きさのバンドが示された。これらのバンドは、恐らくオリゴマーのαSyn及び/又はユビキチン化αSynに起因し、症例間で大きく異なってはいなかった。pSer129−αSynに対する抗体は、DN−DLBの2症例において、高分子量(>250kDa)の見かけ上のバンドを検出した(図2C)。同様の大きさのバンドが、Li−DLBの1症例で観察されたが、免疫反応性の強度はDN−DLBのよりもずっと弱かった。対照的に、非DLB症例では、pSer129−αSynに対する抗体への免疫反応性は示されなかった。これらの観察により、DLBの脳中、>250kDaの、(多くがSer129でリン酸化された)αSynの不溶性多量体の存在が示された。更に、我々はPhos−tag SDS−PAGEに続く定量的ドットブロットイムノアッセイにより、DLB症例の脳におけるpSer129−αSynのレベルを見積もった(図7)。DN−DLB症例#1及び#2におけるpSer129−αSynのレベルは、それぞれ13.5±0.4mg/g脳及び3.7±0.2mg/g脳であり、Li−DLBにおけるレベルは0.06±0.02mg/g脳であった。DN−DLBにおける全αSynに対するpSer129−αSynの割合は、Li−DLBにおけるそれよりも高かった:DN−DLB症例#1(57.9%±1.5%)、DN−DLB#2(22.6%±1.2%)、及びLi−DLB(6.1%±1.7%)。これらの結果により、pSer129−αSynが疾患の進行に関連することが示唆される。以前の研究により、LBD脳において、Ser87でリン酸化されたαSynのレベルも上昇することが示された(Paleologou et al.,2010)。しかし、Ser87リン酸化αSynに対する抗体では36kDaの二量体バンドが検出され、Ser87リン酸化型のレベルにおける、症例間での顕著な差はなかった(図2D)。 Next, we verified the biochemical properties of αSyn in brain homogenates (BH) from DLB patients by Western blotting using anti-αSyn antibody D119 and compared them with those from non-DLB cases (FIG. 2B). Sample immunoblot analysis from all patients showed a natural αSyn band at 18 kDa, a 36 kDa dimer form, or both. Two cases of DN-DLB and one case of Li-DLB contained significantly bulky multimeric αSyn with a molecular weight range of> 250 kDa. Insoluble multimers were more abundant in DN-DLB than Li-DLB, indicating that αSyn multimer formation is crucial for disease progression. This band was not observed in non-DLB cases, but a relatively small amount of polymer was observed in GSS. In all cases, bands of various sizes were shown in the molecular weight range of about 50 kDa to 250 kDa. These bands were not significantly different between cases, presumably due to oligomeric αSyn and / or ubiquitinated αSyn. The antibody against pSer129-αSyn detected an apparent band of high molecular weight (> 250 kDa) in two cases of DN-DLB (FIG. 2C). A similar sized band was observed in one case of Li-DLB, but the intensity of immunoreactivity was much weaker than that of DN-DLB. In contrast, non-DLB cases did not show immunoreactivity to antibodies against pSer129-αSyn. These observations indicated the presence of insoluble multimers of αSyn (mostly phosphorylated with Ser129) in DLB brain,> 250 kDa. Furthermore, we estimated the level of pSer129-αSyn in the brains of DLB cases by quantitative dot blot immunoassay following Phos-tag SDS-PAGE (FIG. 7). The levels of pSer129-αSyn in DN-DLB cases # 1 and # 2 are 13.5 ± 0.4 mg / g brain and 3.7 ± 0.2 mg / g brain, respectively, and the level in Li-DLB is 0. 06 ± 0.02 mg / g brain. The ratio of pSer129-αSyn to total αSyn in DN-DLB was higher than that in Li-DLB: DN-DLB case # 1 (57.9% ± 1.5%), DN-DLB # 2 (22. 6% ± 1.2%), and Li-DLB (6.1% ± 1.7%). These results suggest that pSer129-αSyn is associated with disease progression. Previous studies have shown that the level of αSyn phosphorylated at Ser87 is also increased in the LBD brain (Paleologou et al., 2010). However, the antibody against Ser87 phosphorylated αSyn detected a 36 kDa dimer band, and there was no significant difference between cases in the level of Ser87 phosphorylated form (FIG. 2D).
RT−QUICによる、可溶型の組換えヒトα−シヌクレインのアミロイド線維への転換
我々は、次に、DLB患者由来のBHを反応液に添加した場合に、RT−QUICにおいてr−αSyn線維形成が誘導され得るかどうかを、ThT蛍光レベルをモニタリングすることによって検証した(図3A及び図3B)。5×10−5及び5×10−6希釈の、DN−DLBの2症例由来BHを添加した場合、早くて24時間、すべての反応液では96時間以内にThT蛍光陽性が示された。5×10−7希釈では、症例#1の6レプリケートウェルのうちの4、症例#2の6ウェルのうち3で、アッセイが陽性であった。5×10−8希釈では、症例#1についての6反応のうち2で陽性であったが、症例#2では蛍光の増大は観察されなかった。5×10−9希釈の反応では、症例#1ですべて陰性であった。Li−DLB症例については、5×10−5希釈での6反応のうち2で陽性反応が示されたが、より薄い希釈では反応が観察されなかった。我々はLi−DLBについての5×10−4希釈の効果も検証したが、蛍光の増大は観察されなかった(データ示さず)。陰性反応は、おそらく、反応においてr−αSyn線維形成を阻害する、BH中の多様な成分のレベルが高いことに起因すると思われた。対照的に、シード無しの対照及び統合失調症のBHの5×10−5及び5×10−6希釈による反応では、96時間超でレスポンスがもたらされなかった。最大蛍光強度は、シード無しの対照に比べて、DN−DLB症例#1の5×10−5及び5×10−6希釈、DN−DLB症例#2の5×10−5〜5×10−7の範囲の希釈、及びLi−DLBの5×10−5希釈での反応で有意に強かった(図3B)。遅滞期は、シード無しの対照に比べて、DN−DLBの2症例由来の5×10−5希釈での反応で有意に短かった(図3B)。DN−DLB症例#1及び#2のSD50/g脳の値は、それぞれ107.8及び107.3であった。我々はLi−DLBのシーディング用量を正確に算出できなかったが、その値は、5×10−4希釈で100%陽性が示されるとの仮定に基づいて、5.1(logSD50/g脳)未満と見積もられた。組換えヒトプリオンタンパク質を基質とする反応又はタンパク質無しの反応においては、DLBの特異的検出は認められなかった(図8)が、このことにより、DLB症例由来BHの、r−Synをシーディングする能力が証明されたが、他のタンパク質をシーディングする能力に関しては証明されなかった。他のタンパク質ミスフォールディング疾患及び変性の疾患の、RT−QUICに対する影響を更に評価するために、我々はアルツハイマー病(AD)、孤発性クロイツフェルト−ヤコブ病(sCJD)1型及び2型、並びにGSSの患者由来のBHをアッセイに適用した。AD、sCJD(1型及び2型)並びにGSSにおいては、5×10−5及び5×10−6希釈の反応すべてで、96時間以内に陰性のレスポンスがもたらされた(図3A及び3B)。これらの観察により、RT−QUICがDLB症例由来のBHの存在下のみで、r−αSyn線維の形成を誘導すること、及びDN−DLBのシーディング活性はLi−DLBのそれよりも高いことが示された。これらの知見により、r−αSynは、プリオン様の機構によりアミロイド線維に転換され得ることが示唆された。
Conversion of soluble recombinant human α-synuclein to amyloid fibrils by RT-QUIIC We next formed r-αSyn fibril formation in RT-QUIIC when BH from DLB patients was added to the reaction. Was able to be induced by monitoring the ThT fluorescence level (FIGS. 3A and 3B). When BH derived from 2 cases of DN-DLB diluted at 5 × 10 −5 and 5 × 10 −6 was added, ThT fluorescence was positive within 24 hours at the earliest and within 96 hours in all the reaction solutions. At 5 × 10 −7 dilution, the assay was positive in 4 out of 6 replicate wells in case # 1 and 3 out of 6 wells in case # 2. At 5 × 10 −8 dilution, 2 out of 6 responses for case # 1 were positive, but no increase in fluorescence was observed in case # 2. The reaction at 5 × 10 −9 dilution was all negative in case # 1. For Li-DLB cases, 2 out of 6 reactions at 5 × 10 −5 dilution showed a positive reaction, but no reaction was observed at thinner dilutions. We also verified the effect of 5 × 10 −4 dilution on Li-DLB, but no increase in fluorescence was observed (data not shown). The negative response was probably due to high levels of various components in BH that inhibit r-αSyn fibril formation in the reaction. In contrast, reactions with unseeded controls and 5 × 10 −5 and 5 × 10 −6 dilutions of schizophrenic BH did not produce a response over 96 hours. Maximum fluorescence intensity, as compared to the control without seed, DN-DLB patients # 5 × 10 -5 and 5 × 10 -6 dilution of 1, DN-DLB patients # 2 of 5 × 10 -5 ~5 × 10 - Significantly stronger with reactions in the range of 7 and with 5 × 10 −5 dilution of Li-DLB (FIG. 3B). The lag phase was significantly shorter in the response at 5 × 10 −5 dilution from 2 cases of DN-DLB compared to the seedless control (FIG. 3B). The values of SD 50 / g brain for DN-DLB cases # 1 and # 2 were 10 7.8 and 10 7.3 , respectively. We were unable to accurately calculate the seeding dose of Li-DLB, but the value was 5.1 (log SD 50 / g based on the assumption that 5 × 10 −4 dilution showed 100% positive. Estimated to be less than (brain). In the reaction using the recombinant human prion protein as a substrate or in the reaction without the protein, specific detection of DLB was not observed (FIG. 8), but this led to seeding of r-Syn in BH derived from DLB cases. But the ability to seed other proteins has not been proven. To further evaluate the impact of other protein misfolding and degenerative diseases on RT-QUIIC, we have Alzheimer's disease (AD), sporadic Creutzfeldt-Jakob disease (sCJD) types 1 and 2, and BH from patients with GSS was applied to the assay. In AD, sCJD (types 1 and 2) and GSS, all 5 × 10 −5 and 5 × 10 −6 dilution reactions resulted in a negative response within 96 hours (FIGS. 3A and 3B). . These observations indicate that RT-QUIIC induces the formation of r-αSyn fibrils only in the presence of BH from DLB cases and that the seeding activity of DN-DLB is higher than that of Li-DLB. Indicated. These findings suggest that r-αSyn can be converted to amyloid fibrils by a prion-like mechanism.
r−αSynの線維構造を特性解析するために、試料をネガティブ染色透過型電子顕微鏡法(TEM)により検証した。DN−DLB症例#1でシーディングしたr−αSyn線維の電子顕微鏡写真により、長く、細く、且つ分岐した線維束が明らかにされたが、シーディング無しの陰性対照反応においては、線維が観察されなかった(図3C)。フーリエ変換赤外分光(FTIR)により、DLBと非DLBの症例との間で、変性構造に帰属する、1650cm−1における最も顕著なバンドにほぼ差がないことが示された(図3D)。該結果により、DLB BHでシーディングされた反応においては、少量のr−αSyn線維のみが生成したことが示唆される。RT−QUICの確実性を更に確認するため、我々は、更に4名のDN−DLB患者由来のBH試料を解析した(図4B及び4C)。DN−DLB症例#1及び#2と同様に、すべての患者由来試料のイムノブロット解析により、>250kDaの不溶性αSyn多量体が示された。pSer129−αSynは、多量体の大きさでのみ検出された(図4A)。これらの症例の5×10−6及び5×10−7希釈を添加した場合、RT−QUIC反応ですべて陽性が示された。症例#5及び#6の5×10−8希釈での反応も、すべて陽性であった。症例#3及び#4については、5×10−8希釈での6反応のうちの5で、陽性レスポンスが示された。5×10−9希釈では、症例#4については6ウェルのうち4で、症例#5については全ウェルで、症例#6については6ウェルのうちの4でアッセイが陽性であり、症例#3のウェルはすべて陰性であった。5×10−10希釈では、症例#4、#5及び#6での反応はすべて陰性であった。最大蛍光強度は、シーディング無しの対照と比較して、症例#3、#4及び#6の5×10−5〜5×10−8の範囲、及び症例#5の5×10−6〜5×10−9の範囲の希釈での反応において有意に強かった(図4C)。遅滞期は、シーディング無しの対照と比較して、症例#3及び#4の5×10−6〜5×10−8及び症例#5及び#6の5×10−6〜5×10−9の範囲の希釈での反応において、有意に短かった(図4C)。SD50/g脳の値は、以下の通りであった:108.6(症例#3)109.3(症例#4)109.8(症例#5)及び109.5(症例#6)。従って、我々は、他のDN−DLB患者由来の脳のシーディング活性を検出できた。 To characterize the fiber structure of r-αSyn, samples were verified by negative staining transmission electron microscopy (TEM). Electron micrographs of r-αSyn fibers seeded in DN-DLB case # 1 revealed long, thin and branched fiber bundles, but fibers were observed in the negative control reaction without seeding. There was no (Figure 3C). Fourier Transform Infrared Spectroscopy (FTIR) showed that there was almost no difference in the most prominent band at 1650 cm −1 attributed to the denatured structure between DLB and non-DLB cases (FIG. 3D). The results suggest that only a small amount of r-αSyn fibers were produced in the reaction seeded with DLB BH. To further confirm the authenticity of RT-QUIIC, we further analyzed BH samples from 4 DN-DLB patients (FIGS. 4B and 4C). Similar to DN-DLB cases # 1 and # 2, immunoblot analysis of all patient-derived samples showed> 250 kDa insoluble αSyn multimers. pSer129-αSyn was detected only in multimeric size (FIG. 4A). When 5 × 10 −6 and 5 × 10 −7 dilutions of these cases were added, the RT-QUIIC reaction all showed positive. Cases # 5 and # 6 were all positive at 5 × 10 −8 dilution. Cases # 3 and # 4 showed a positive response in 5 out of 6 reactions at 5 × 10 −8 dilution. At 5 × 10 −9 dilution, the assay was positive in 4 out of 6 wells for case # 4, all wells for case # 5, and 4 out of 6 wells for case # 6, and case # 3 All of the wells were negative. At 5 × 10 −10 dilution, all reactions in cases # 4, # 5 and # 6 were negative. Maximum fluorescence intensity ranges from 5 × 10 −5 to 5 × 10 −8 for case # 3, # 4 and # 6 and 5 × 10 −6 to case # 5 compared to the control without seeding. It was significantly stronger in reactions with dilutions in the range of 5 × 10 −9 (FIG. 4C). Lag phase, as compared to the control without seeding, case # 3 and # 4 of 5 × 10 -6 ~5 × 10 -8 and case # 5 and # 6 5 × 10 -6 ~5 × 10 the - It was significantly shorter in reactions with a range of 9 dilutions (Figure 4C). The SD 50 / g brain values were as follows: 10 8.6 (case # 3) 10 9.3 (case # 4) 10 9.8 (case # 5) and 10 9.5 (case) # 6). Thus, we were able to detect brain seeding activity from other DN-DLB patients.
α−シヌクレインの不溶性凝集体は、シーディング活性を殆ど又は全く有しない
次に、我々は、Ser129でリン酸化されたr−αSyn(pSer129−r−αSyn)を用いて、Ser129リン酸化が、プリオン様機構によるαSyn線維形成に極めて重要なのかどうかを検証した。WT r−αSynは、カゼインキナーゼ2(CK2)及びATPの両方の存在下でのインキュベーションによってのみSer129でリン酸化されたが、S129A変異体は同一条件下でリン酸化されなかった(図5A)。DLB BHでの場合と同様に、不溶性pSer129−r−αSynは、72及び264時間のインキュベーション後の>250kDaの分子量範囲にのみ観察された。ATP非存在下(WTCK2)又は存在下(WTCK2+ATP)、CK2とインキュベーションしたWT r−αSynとCK2及びATPとインキュベーションしたS129A r−αSyn(S129ACK2+ATP)との間でThT蛍光レベルの増大に有意差はなかったが(図5B)、72時間インキュベーション後、pSer129−r−αSynの凝集体形成は、非リン酸化r−αSynのそれよりも効率的に誘導された(図5A)。これらの結果により、Ser129リン酸化によってr−Synの重合が促進されることが示唆された。以前の報告(Vlad et al.,2011)と整合して、72時間インキュベーション後の試料すべてにおいて、全長r−αSynよりも低分子量の、13kDaのバンドが観察されたが、このことにより、r−αSyn凝集体形成はr−αSynの切断及び/又は分解に仲介されることが示された。CK2及びATPと264時間インキュベーションしたWT(WT−264h)及び変異体r−αSyn(S129A−264h)のFTIRスペクトルにより、インキュベーション前(WT−0h及びS129A−0h)と比較して、わずかに低い波数へのシフトが示されたが、このことにより、βシート含有量の小幅な増加(1630〜1610cm−1)が示された(図5C)。インキュベーションの前後で、WTと変異体r−αSynとの間には、赤外線スペクトルに差が殆ど無かった(図5C)。TEM解析により、WT−264h及びS129A−264hが、専ら非晶質の凝集体から成ることが示された(図5D)。我々は、次に、RT−QUICにおいて、非晶質のr−αSyn凝集体の存在下で、r−αSynが新たにアミロイド線維に転換され得るかどうかを検証した。意外にも、WT−264h又はS129A−264hとの反応はすべて、2×10−2及び2×10−4希釈で、RT−QUICアッセイにおいて否定的な結果をもたらした(図5E)。従って、r−αSynの不溶性凝集体は、それらがSer129でリン酸化されていようがいまいがに関係なく、プリオン様のシーディング活性を有しなかった。
Insoluble aggregates of α-synuclein have little or no seeding activity. Next, we used Ser129 phosphorylated r-αSyn (pSer129-r-αSyn), and Ser129 phosphorylation was a prion. It was examined whether it is extremely important for αSyn fibril formation by a similar mechanism. WT r-αSyn was phosphorylated at Ser129 only by incubation in the presence of both casein kinase 2 (CK2) and ATP, whereas the S129A mutant was not phosphorylated under the same conditions (FIG. 5A). As with DLB BH, insoluble pSer129-r-αSyn was only observed in the molecular weight range of> 250 kDa after 72 and 264 hours of incubation. Significantly increased ThT fluorescence levels between WT r-αSyn and CK2 incubated with CK2 and S129A r-αSyn (S129A CK2 + ATP ) incubated with CK2 in the absence (WT CK2 ) or presence (WT CK2 + ATP ) in the presence or absence of ATP Although there was no difference (FIG. 5B), after 72 hours incubation, aggregate formation of pSer129-r-αSyn was induced more efficiently than that of unphosphorylated r-αSyn (FIG. 5A). These results suggested that Ser129 phosphorylation promotes the polymerization of r-Syn. Consistent with previous reports (Vlad et al., 2011), a 13 kDa band of lower molecular weight than full-length r-αSyn was observed in all samples after 72 hours incubation, which resulted in r- It has been shown that αSyn aggregate formation is mediated by cleavage and / or degradation of r-αSyn. FTIR spectra of WT (WT-264h) and mutant r-αSyn (S129A-264h) incubated with CK2 and ATP for 264 hours show slightly lower wavenumbers compared to before incubation (WT-0h and S129A-0h) This showed a modest increase in β-sheet content (1630-1610 cm −1 ) (FIG. 5C). There was little difference in the infrared spectrum between WT and mutant r-αSyn before and after incubation (FIG. 5C). TEM analysis showed that WT-264h and S129A-264h consist exclusively of amorphous aggregates (FIG. 5D). We next examined in RT-QUIIC whether r-αSyn could be newly converted to amyloid fibrils in the presence of amorphous r-αSyn aggregates. Surprisingly, all reactions with WT-264h or S129A-264h produced negative results in the RT-QUIIC assay at 2 × 10 −2 and 2 × 10 −4 dilutions (FIG. 5E). Therefore, the insoluble aggregates of r-αSyn did not have prion-like seeding activity, regardless of whether they were phosphorylated with Ser129.
α−シヌクレインのオリゴマー様形態は、プリオン様伝播を惹起する
WT r−αSynを用いたRT−QUICにより、ATP存在下(WTCK2+ATP)でのCK2との反応において、その非存在下(WTCK2)においてよりも蛍光強度の迅速な増加及び高いレベルの蛍光強度がもたらされたが、2条件(S129ACK2及びS129ACK2+ATP)の間でS129A r−αSynのThT結合動態に差は無かった(図6A)。pSer129−αSynに対する抗体により、WTCK2+ATPにのみ、16kDaにおける支配的なバンド及び>250kDaの分子量範囲における薄いバンドが検出された(図6B)。これらの結果により、Ser129リン酸化によって、RT−QUICKにおいてr−αSynの線維形成が促進されることが示唆される。震盪なしで生成された不溶性凝集体とは異なり、図5Aに示す通り、反応のすべてで、16kDaにおいて単量体αSynの支配的なバンドが示された。更に、250kDa超の重合体は、WTCK2+ATP及びWTCK2に辛うじて検出された。r−αSynの凝集サイズにおける、図5Aとの差は、恐らく、線維の断片化を惹起し得る震盪に起因すると思われる。FTIR解析により、すべての反応間で、変性構造に帰属する1650cm−1における支配的なバンドには殆ど差が無いことが示された(図6C)。WTCK2+ATP及びS129ACK2+ATPのTEM解析により、r−αSynのオリゴマー様の顆粒状形態が明らかとなった(図6D)。これらのオリゴマー様分子種がシーディング活性を示すかどうかを検証するために、我々はRT−QUIC試料の2代目継代を行った(図6E及び6F)。2×10−4及び2×10−5希釈のWTCK2+ATP、WTCK2、及びS129ACK2+ATPにより、すべての反応で100%陽性が示された。2×10−6希釈では、WTCK2+ATPについては6ウェルのうち5で、WTCK2については6ウェルのうち2で、S129ACK2+ATPについては6ウェルのうち5で、アッセイが陽性であった。2×10−7希釈では、WTCK2+ATP及びWTCK2での反応ですべて陰性であったが、この濃度で、S129ACK2+ATPでの6反応のうちの3で陽性であった。5×10−8希釈では、これらの3試料でのすべてのウェルで陰性の結果が示された。リン酸化オリゴマー様分子種により104.9/μg r−αSyn(WTCK2+ATP)のSD50値がもたらされ、非リン酸化オリゴマー様分子種により、104.4/μg r−αSyn(WTCK2)及び105.4/μg r−αSyn(S129ACK2+ATP)のSD50値が示された。対照的に、我々は、WTCK2+ATPと同一成分を含有し、アッセイ直前に震盪せずに調製したモック試料(WT−mock)の2×10−4〜2×10−8の範囲の希釈での、あらゆる反応で蛍光の増加を観察しなかった。最大蛍光強度は、2×10−5希釈でのWTCK2+ATP及びWTCK2との反応及び2×10−4〜2×10−6の範囲の希釈のS129ACK2+ATPとの反応で、WT−mockと比較して有意に強かった(図6F)。遅滞期は、2×10−4〜2×10−6の範囲の希釈のWTCK2+ATP及びS129ACK2+ATPとの反応並びに2×10−4及び2×10−5の範囲の希釈のWTCK2との反応で、WT−mockと比較して有意に短かった(図6F)。我々の結果により、r−αSynのオリゴマー様分子種により、Ser129でのリン酸化有り又は無しで、シーディング活性が表されることが示された。
oligomer-like form of α- synuclein by WT r-αSyn RT-QUIC with eliciting a prion-like propagation, in the reaction with CK2 in the presence of ATP (WT CK2 + ATP), in its absence (WT CK2) Resulted in a rapid increase in fluorescence intensity and a higher level of fluorescence intensity than in FIG. 6, but there was no difference in the ThT binding kinetics of S129A r-αSyn between the two conditions (S129A CK2 and S129A CK2 + ATP ) (FIG. 6A). ). The antibody against pSer129-αSyn detected a dominant band at 16 kDa and a thin band in the molecular weight range> 250 kDa only in WT CK2 + ATP (FIG. 6B). These results suggest that Ser129 phosphorylation promotes r-αSyn fibril formation in RT-QUICK. Unlike the insoluble aggregates produced without shaking, as shown in FIG. 5A, all of the reactions showed a dominant band of monomeric αSyn at 16 kDa. Furthermore, polymers over 250 kDa were barely detected in WT CK2 + ATP and WT CK2 . The difference in r-αSyn aggregate size from FIG. 5A is probably due to agitation that can cause fiber fragmentation. FTIR analysis showed that there was almost no difference in the dominant band at 1650 cm −1 attributable to the denatured structure between all reactions (FIG. 6C). TEM analysis of WT CK2 + ATP and S129A CK2 + ATP revealed an oligomeric granular form of r-αSyn (FIG. 6D). To verify whether these oligomeric species showed seeding activity, we performed a second passage of RT-QUIIC samples (FIGS. 6E and 6F). WT CK2 + ATP , WT CK2 and S129A CK2 + ATP diluted 2 × 10 −4 and 2 × 10 −5 showed 100% positive in all reactions. The 2 × 10 -6 dilution, in 5 out of 6 wells for WT CK2 + ATP, with 2 out of 6 wells for WT CK2, for S129a CK2 + ATP in 5 out of 6 wells, assay were positive. At the 2 × 10 −7 dilution, all reactions with WT CK2 + ATP and WT CK2 were negative, but at this concentration, 3 out of 6 reactions with S129A CK2 + ATP were positive. The 5 × 10 −8 dilution showed a negative result in all wells with these three samples. The phosphorylated oligomer-like molecular species resulted in an SD 50 value of 10 4.9 / μg r-αSyn (WT CK2 + ATP ), and the non-phosphorylated oligomer-like molecular species yielded 10 4.4 / μg r-αSyn (WT CK2). ) And 10 5.4 / μg r-αSyn (S129A CK2 + ATP ) showed SD 50 values. In contrast, we contained mock samples (WT-mock) containing the same components as WT CK2 + ATP and prepared without shaking just prior to the assay at dilutions ranging from 2 × 10 −4 to 2 × 10 −8 . No increase in fluorescence was observed in any reaction. Maximum fluorescence intensity is compared to WT-mock for reactions with WT CK2 + ATP and WT CK2 at 2 × 10 −5 dilution and with S129A CK2 + ATP for dilutions ranging from 2 × 10 −4 to 2 × 10 −6 It was significantly stronger (FIG. 6F). Lag phase, reaction with WT CK2 dilution range of reactions and 2 × 10 -4 and 2 × 10 -5 and 2 × 10 -4 to 2 × dilution range of 10 -6 WT CK2 + ATP and S129a CK2 + ATP Therefore, it was significantly shorter than WT-mock (FIG. 6F). Our results showed that r-αSyn oligomeric species show seeding activity with or without phosphorylation at Ser129.
更に、2×10−4及び2×10−5希釈でのS129ACK2+ATPとの反応の最大蛍光強度は、WTCK2+ATPのそれよりも有意に強かった(図6F)。その上、2×10−5希釈のS129ACK2+ATPとの反応の遅滞期は、WTCK2+ATPのそれよりも有意に短かった(図6F)。従って、S129ACK2+ATPを含有するRT−QUIC反応液は、WTCK2+ATP又はWTCK2を含有するものよりも高いシーディング能を有することが示された。これらの差についての正確な理由はまだ知られていないが、WT r−αSynとS129A r−αSynとの間の構造の微妙な差が関連する可能性が高い。 Furthermore, the maximum fluorescence intensity of the reaction with S129A CK2 + ATP at 2 × 10 −4 and 2 × 10 −5 dilutions was significantly stronger than that of WT CK2 + ATP (FIG. 6F). Moreover, the lag phase of the reaction with 2 × 10 −5 dilution of S129A CK2 + ATP was significantly shorter than that of WT CK2 + ATP (FIG. 6F). Therefore, it was shown that the RT-QUIIC reaction liquid containing S129A CK2 + ATP has higher seeding ability than those containing WT CK2 + ATP or WT CK2 . The exact reason for these differences is not yet known, but it is likely that subtle structural differences between WT r-αSyn and S129A r-αSyn are related.
考察
本研究の結果により、r−αSyn線維の形成が、DLB患者由来のBHの存在下でのみ、可溶性r−αSynを用いたRT−QUICにより誘導されることが初めて証明された(図3A及び3B)。DLB症例においてのみ検出される、250kDaよりも大きな、ドデシル硫酸ナトリウム(SDS)不溶性凝集体は、Ser129で特異的にリン酸化されており(図2C)、従って我々は、pSer129−αSynの不溶性凝集体が、プリオン様のシーディング活性を付与すると仮定した。しかし、意外にも、βシート構造の増加を伴ったr−αSynの不溶性凝集体は、リン酸化状態及び非リン酸化状態で共にシーディング活性を殆ど有しなかった(図5E)。その代わりに、r−αSynの前線維オリゴマーが、リン酸化有り又は無しで、共に、シーディング活性を発揮した(図6E及び6F)。我々の知見により、可溶性オリゴマーであるが、完全に線維性でないαSynが、in vitroのシーディング分子種であることが示唆される。以前の研究により、r−αSynのオリゴマー分子種が、初代ニューロン又はニューロン細胞株によって内在化され、内生αSynの凝集を誘導することが示されている(Danzer et al.,2007;Danzer et al.,2009)。更に、オリゴマー形態のαSynがニューロン細胞死及び神経変性の原因であることを示唆する証拠が相当にある(Brown,2010;Vekrellis.,2011)。死後研究においては、DLB患者の脳における可溶性αSynオリゴマーのレベルが、AD患者及び対照よりも有意に高かった一方、該3群間において、全αSynレベルに有意差は無かった(Paleologou et al.,2009)。これらの報告により、成熟線維又は非晶質凝集体よりも、むしろ前線維αSynオリゴマーが、LBDにおける、プリオン用挙動を伴う病原性分子種に相当するという示唆が支持される。単量体アミロイドβ(Aβ)を用いた同様のアプローチにより、タンパク質ミスフォールディング環状増幅(PMCA)アッセイによって、AD患者由来のCSF中に存在するAβオリゴマーに関連するシーディング活性が検出され得ることが示された(Salvadores at al.,2014)。DN−DLB由来脳組織は、症例#1及び#2において、それぞれ、103.4/μg全αSyn及び103.1/μg全αSynのSD50値を有しており、Li−LDBにおいては102.1/μg全αSynであった(図3A及び3B)。その一方、RT−QUICによって生成されたWT r−αSynオリゴマーの値は104.4μg/r−αSyn〜104.9μg/r−αSynであった(図6E及び6F)。RT−QUIC反応において、全てのr−αSynがオリゴマー形態で存在するかどうかは明らかではないが、もしそうなら、DN−DLB症例#1及び#2の脳において、それぞれ全αSynの3.2%〜10%及び1.6%〜5.0%が、Li−LDBの脳では0.2%〜0.5%がオリゴマーと見積もられる。不溶性LB凝集体の正確な役割は不明なままであるが、細胞保護的及び神経保護的な役割が、細胞株(Tanaka et al.,2004)及びショウジョウバエ(Chen and Feany, 2005)を用いた研究で報告されている。S129Aオリゴマーのシーディング活性は、リン酸化状態に関係なく、WTオリゴマーのそれよりも高く(図6F)、ウェスタンブロット解析において、WTオリゴマーを含有する反応液中に少量の不溶性凝集体が検出されたが、S129Aオリゴマーを含有する反応液中ではそうではなかった(図6B)。これらの結果により、不溶性凝集体によってαSynのプリオン様伝播からの防御がもたらされることが示唆される。Ser129リン酸化型と非リン酸化型との間でr−αSynオリゴマーのシーディング活性に顕著な差はなかったが、我々はr−αSynのリン酸化により、自己凝集が促進されることを見出した(図5A及び6A)。このことは、以前の報告(Fujiwara et al.,2002)と整合する。以前の研究により、pSer129−αSynレベルの上昇は、LBD患者の脳におけるLBの出現に先行すること(Lue et al.,2012)、及びLBDの病理で観察される酸化ストレス、ミトコンドリア機能不全(Perfeito at al.,2014)、及びプロテアソーム阻害(Chau et al.,2009)によって誘導されることが示された。更に、pSer129−αSynは、神経機能不全に対する防御効果を有することが報告されている(Gorbatyuk et al.,2008;Kuwahara et al.,2012)。これらの結果により、pSer129−αSynは、神経機能不全に対する防御機構に起因することが示唆される。pSer129−αSynは、その後前線維オリゴマー及び成熟線維への自己凝集の開始を促進すると思われる。
Discussion The results of this study demonstrated for the first time that the formation of r-αSyn fibrils is induced by RT-QUIIC with soluble r-αSyn only in the presence of BH from DLB patients (FIGS. 3A and 3). 3B). Sodium dodecyl sulfate (SDS) insoluble aggregates larger than 250 kDa, detected only in DLB cases, are specifically phosphorylated at Ser129 (FIG. 2C), so we have insoluble aggregates of pSer129-αSyn. Was assumed to give prion-like seeding activity. However, surprisingly, insoluble aggregates of r-αSyn accompanied by an increase in β-sheet structure had little seeding activity in both phosphorylated and non-phosphorylated states (FIG. 5E). Instead, r-αSyn profibril oligomers exhibited seeding activity, both with and without phosphorylation (FIGS. 6E and 6F). Our findings suggest that αSyn, which is a soluble oligomer but not completely fibrillar, is an in vitro seeding species. Previous studies have shown that oligomeric molecular species of r-αSyn are internalized by primary neurons or neuronal cell lines and induce aggregation of endogenous αSyn (Danzer et al., 2007; Danzer et al. , 2009). Furthermore, there is considerable evidence to suggest that the oligomeric form of αSyn is responsible for neuronal cell death and neurodegeneration (Brown, 2010; Vekrellis., 2011). In postmortem studies, soluble αSyn oligomer levels in the brains of DLB patients were significantly higher than AD patients and controls, while there was no significant difference in total αSyn levels between the three groups (Paleogouou et al.,). 2009). These reports support the suggestion that profibrillar αSyn oligomers rather than mature fibrils or amorphous aggregates represent pathogenic molecular species with prion behavior in LBD. A similar approach using monomeric amyloid β (Aβ) allows the protein misfolding circular amplification (PMCA) assay to detect seeding activity associated with Aβ oligomers present in CSF from AD patients. (Salvadores at al., 2014). DN-DLB from brain tissue, in cases # 1 and # 2, respectively, have a 10 3.4 / [mu] g total aSyn and 10 3.1 / μg SD 50 values of all aSyn, in Li-LDB is 10 2.1 / μg total αSyn (FIGS. 3A and 3B). Meanwhile, the value of the WT r-aSyn oligomers generated by RT-QUIC was 10 4.4 μg / r-αSyn~10 4.9 μg / r-αSyn ( FIGS. 6E and 6F). In the RT-QUIIC reaction, it is not clear whether all r-αSyn is present in oligomeric form, but if so, in the brains of DN-DLB cases # 1 and # 2, 3.2% of total αSyn, respectively. It is estimated that 10% and 1.6% to 5.0% are oligomers and 0.2% to 0.5% are oligomers in the Li-LDB brain. Although the exact role of insoluble LB aggregates remains unclear, cytoprotective and neuroprotective roles have been studied using cell lines (Tanaka et al., 2004) and Drosophila (Chen and Feany, 2005). It is reported in. The seeding activity of the S129A oligomer was higher than that of the WT oligomer regardless of the phosphorylation state (FIG. 6F), and a small amount of insoluble aggregates was detected in the reaction solution containing the WT oligomer in Western blot analysis. However, this was not the case in the reaction solution containing the S129A oligomer (FIG. 6B). These results suggest that insoluble aggregates provide protection from prion-like propagation of αSyn. Although there was no significant difference in the seeding activity of the r-αSyn oligomer between the Ser129 phosphorylated and non-phosphorylated forms, we found that phosphorylation of r-αSyn promoted self-aggregation. (FIGS. 5A and 6A). This is consistent with previous reports (Fujiwara et al., 2002). According to previous studies, elevated pSer129-αSyn levels precede the appearance of LB in the brains of LBD patients (Lue et al., 2012), and oxidative stress, mitochondrial dysfunction (Perfeitoto) observed in the pathology of LBD. at al., 2014) and proteasome inhibition (Chau et al., 2009). Furthermore, pSer129-αSyn has been reported to have a protective effect against neuronal dysfunction (Gorbatyuk et al., 2008; Kuwahara et al., 2012). These results suggest that pSer129-αSyn is due to a defense mechanism against neural dysfunction. pSer129-αSyn appears to facilitate the initiation of self-aggregation into pre-fiber oligomers and mature fibers thereafter.
RT−QUICにより、DLBの、AD病及びプリオン病等の他の変性疾患並びに非変性症例からの鑑別が可能となったが、このことにより、r−αSynは、他のミスフォールドタンパク質、即ち、アミロイドβ、タウ及びPrPScの、異種交差シーディングを誘導する能力による影響をほぼ受けないことが示唆される。in vitro及びin vivoで、αSynと他のミスフォールドタンパク質との間の交差シーディング相互作用の報告(Morales et al.,2013)があるが、RT−QUIC反応に対する影響は殆ど無いように思える。DLBの、他の変性疾患からの鑑別で、RT−QUICを用いた特異的検出を、鑑別的な診断に応用する可能性が生じる。DN−DLB患者由来の脳は、SD50値が107〜10/g脳であり、Li−DLB患者由来の脳はSD50値がおおよそ105.1/g脳であると見積もられた。従って、RT−QUICは、ウェスタンブロット法又はELISAを用いたpSer129−αSynについての試験と比較して、DLBに対して検出感度が高く、より正確な脳の生検又は剖検の診断がもたらされることが示唆された。ELISA又はビーズベースのフローサイトメトリーアッセイを用いたいくつかの研究により、DLB及び他のシヌクレイノパチーの患者のCSF及び血液中の全αSynレベルが調査されたが、結果は結論が出ないもので、且つ矛盾している(Kasuga et al.,2012)。その一方、DLB及びPDのCSF及び血液では、可溶性αSynオリゴマーレベルが、AD及び対照のそれらと比較して上昇することが、ELISAで示された(Hansson et al.,2014;Tokuda et al., 2010)。これらの報告により、オリゴマー型のαSynが、LBD診断のための重要かつ有望な標的であるという示唆が支持され、LBD患者のCSF及び血液由来オリゴマーのシーディングによるRT−QUICの、診断の潜在力が示唆される。従って、αSynオリゴマーに特異的な既存のELISAと共にRT−QUICを用いることが、LBDの鑑別診断に特に有利だと考えられる。RT−QUICが、種々のタイプのLBD間の鑑別に役立つかどうか、及びこのアッセイが体液又は他の組織と共に用い得るかどうかを決定するためには、更なる研究が必要である。 RT-QUIIC made it possible to differentiate DLB from other degenerative diseases such as AD and prion diseases and non-degenerative cases, which allowed r-αSyn to be differentiated from other misfolded proteins: It is suggested that amyloid β, tau and PrP Sc are almost unaffected by the ability to induce heterologous cross seeding. There are reports of cross-seeding interactions between αSyn and other misfolded proteins in vitro and in vivo (Morales et al., 2013), but seems to have little effect on RT-QUIIC responses. In the differentiation of DLB from other degenerative diseases, the possibility of applying specific detection using RT-QUIIC to differential diagnosis arises. The brain from DN-DLB patients was estimated to have an SD 50 value of 10 7 to 10 / g brain, and the brain from Li-DLB patients was estimated to have an SD 50 value of approximately 10 5.1 / g brain. . Thus, RT-QUIIC is more sensitive to detection of DLB compared to tests for pSer129-αSyn using Western blot or ELISA, resulting in more accurate brain biopsy or autopsy diagnosis Was suggested. Several studies using ELISA or bead-based flow cytometry assays investigated CSF and blood total αSyn levels in patients with DLB and other synucleinopathies, but the results are inconclusive And contradictory (Kasuga et al., 2012). On the other hand, in the CSF and blood of DLB and PD, soluble αSyn oligomer levels were shown to be increased compared to those of AD and control (Hansson et al., 2014; Tokuda et al.,). 2010). These reports support the suggestion that oligomeric αSyn is an important and promising target for LBD diagnosis, and the diagnostic potential of RT-QUIIC by seeding CSF and blood-derived oligomers in LBD patients Is suggested. Therefore, using RT-QUIIC together with an existing ELISA specific for αSyn oligomers is considered to be particularly advantageous for differential diagnosis of LBD. Further studies are needed to determine whether RT-QUIIC can be used to differentiate between different types of LBD and whether this assay can be used with body fluids or other tissues.
本研究において、我々は、αSynのシーディング分子種の候補を、実験室で検出するために、RT−QUICを用いることの実行可能性を証明した。我々のデータにより、オリゴマー型のαSynが、プリオン様伝播を惹起し、LBDの発症に重要な役割を果たす病原性分子種であるという示唆に、更なる支持がもたらされる。我々は、この新たな方法が、臨床診断、薬剤候補のスクリーニング、及び我々の、LBDにおけるプリオン様タンパク質としてのαSynの役割の理解の進展のための、確固たるツールになると考えている。 In this study, we have demonstrated the feasibility of using RT-QUIIC to detect a candidate αSyn seeding species in the laboratory. Our data provide further support for the suggestion that the oligomeric form of αSyn is a pathogenic molecular species that triggers prion-like transmission and plays an important role in the development of LBD. We believe this new method will be a solid tool for clinical diagnosis, drug candidate screening, and our understanding of the role of αSyn as a prion-like protein in LBD.
追加実験
脳脊髄液サンプルによるα−シヌクレイノパチーと他の認知症等との鑑別
剖検により、レビー小体型認知症(DLB)及び弧発性クロイツフェルト・ヤコブ病(CJD)であることが確認されている患者の脳脊髄液サンプルを採取し、それぞれに対してα−シヌクレイノパチーのためのRT−QUICを行った(図12)。尚、反応混合液には、300mM NaClを含めた。DLBについて5例(症例#1〜5)、CJDについて1例(症例CJD#1)の結果を、図12に示す。剖検例(確実例)におけるDLB患者のサンプルのみで特異的にシグナルを検出した。CJD患者のサンプル及びシード無しのコントロール(PBS)では、シグナルを検出しなかった。
Differentiation between α-synucleinopathy and other dementias using additional experimental cerebrospinal fluid samples. Autopsy confirms dementia with Lewy bodies (DLB) and arcuate Creutzfeldt-Jakob disease (CJD). Cerebrospinal fluid samples of patients who had been treated were collected, and RT-QUIIC for α-synucleinopathy was performed on each (FIG. 12). The reaction mixture contained 300 mM NaCl. FIG. 12 shows the results of 5 cases (cases # 1 to 5) for DLB and 1 case (case CJD # 1) for CJD. Signals were detected specifically only in samples of DLB patients in autopsy cases (certain cases). No signal was detected in samples of CJD patients and unseeded controls (PBS).
鑑別診断補助検査(プリオン病vs DLB)
プリオン病(CJD)とDLBの診断が難しい症例において、採取した髄液に対する、RT−QUIC検査を行ったところ、シヌクレイン/QUIC法で陽性を示した(図13;シード無しのコントロール(PBS)では、シグナルを検出せず、CJDのためのRT−QUIC検査(非特許文献18)では陰性であった)。本実験においては、反応混合液にNaClは含めなかった。その後の検査で、MIBG心筋シンチと脳血流シンチの結果からDLBと診断され、RT−QUIC法の結果と一致した。
Differential diagnosis support test (prion disease vs DLB)
In cases where it was difficult to diagnose prion disease (CJD) and DLB, RT-QUIC test was performed on the collected cerebrospinal fluid, and it was positive by the synuclein / QUIC method (FIG. 13; control without seed (PBS)) No signal was detected, and the RT-QUIIC test for CJD (Non-patent Document 18) was negative). In this experiment, NaCl was not included in the reaction mixture. In subsequent examinations, DLB was diagnosed from the results of MIBG myocardial scintigraphy and cerebral blood flow scintigraphy, which was consistent with the results of RT-QUIIC method.
参考文献
Atarashi,R.,Satoh,K.,Sano,K.,Fuse,T.,Yamaguchi,N.,Ishibashi,D.,Matsubara,T.,Nakagaki,T.,Yamanaka,H.,Shirabe,S.,et. al.(2011).Ultrasensitive human prion detection in cerebrospinal fluid by real−time quaking−induced conversion.Nature medicine
17,175−178.
Azeredo da Silveira, S.,Schneider,B.L.,Cifuentes−Diaz,C.,Sage,D.,Abbas−Terki,T.,Iwatsubo,T.,Unser,M.,and Aebischer,P.(2009).Phosphorylation does not prompt,nor prevent, the formation of alpha−synuclein toxic species in a rat model of Parkinson’s disease. Human molecular genetics 18, 872−887.
Braak,H.,Del Tredici,K.,Rub,U.,de Vos,R.A.,Jansen Steur,E.N.,and Braak,E.(2003).Staging of brain pathology related to sporadic Parkinson’s disease.Neurobiology of aging 24,197−211.
Braak,H.,Rub,U.,Jansen Steur,E.N.,Del Tredici,K.,and de Vos,R.A.(2005).Cognitive status correlates with neuropathologic stage in Parkinson disease.Neurology 64,1401−1410.
Brown,D.R.(2010).Oligomeric alpha−synuclein and its role in neuronal death.IUBMB life 62,334−339.
Chau,K.Y.,Ching,H.L.,Schapira,A.H.,and Cooper,J.M.(2009).Relationship between alpha synuclein phosphorylation, proteasomal inhibition and cell death:relevance to Parkinson’s disease pathogenesis.Journal of neurochemistry 110,1005−1013.
Chen,L.,and Feany,M.B.(2005).Alpha−synuclein phosphorylation controls neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease.Nature neuroscience 8,657−663.
Danzer,K.M.,Haasen,D.,Karow,A.R.,Moussaud,S.,Habeck,M.,Giese,A.,Kretzschmar, H.,Hengerer, B.,and Kostka,M.(2007).Different species of alpha−synuclein oligomers induce calcium influx and seeding.The Journal of neuroscience:the official journal of the Society for Neuroscience 27,9220−9232.
Danzer,K.M.,Krebs,S.K.,Wolff,M.,Birk,G.,and Hengerer,B.(2009).Seeding induced by alpha−synuclein oligomers provides evidence for spreading of alpha−synuclein pathology.Journal of neurochemistry 111,192−203.
Fujiwara,H.,Hasegawa,M.,Dohmae,N.,Kawashima,A.,Masliah,E.,Goldberg,M.S.,Shen,J.,Takio,K.,and Iwatsubo,T.(2002).alpha−Synuclein is phosphorylated in synucleinopathy lesions.Nature cell biology 4,160−164.
Gorbatyuk.O.S.,Li,S.,Sullivan,L.F.,Chen,W.,Kondrikova,G.,Manfredsson,F.P.,Mandel,R.J.,and Muzyczka,N.(2008).The phosphorylation state of Ser−129 in human alpha−synuclein determines neurodegeneration in a rat model of Parkinson disease.Proceedings of the National Academy of Sciences of the United States of America 105,763−768.
Hansson,O.,Hall,S.,Ohrfelt,A.,Zetterberg,H.,Blennow,K.,Minthon,L.,Nagga,K.,Londos,E.,Varghese,S.,Majbour,N.K.,et al.(2014).Levels of cerebrospinal fluid alpha−synuclein oligomers are increased in Parkinson’s disease with dementia and dementia with Lewy bodies compared to Alzheimer’s disease.Alzheimer’s research & therapy 6,25.
Kasuga,K.,Nishizawa,M.,and Ikeuchi,T.(2012).alpha−Synuclein as CSF and Blood Biomarker of Dementia with Lewy Bodies.International journal of Alzheimer’s disease 2012,437025.
Kordower,J.H.,Chu,Y.,Hauser,R.A.,Freeman,T.B.,and Olanow, C.W.(2008).Lewy body−like pathology in long−term embryonic nigral transplants in Parkinson’s disease.Nature medicine 14,504−506.
Kuwahara,T.,Tonegawa,R.,Ito,G.,Mitani,S.,and Iwatsubo,T.(2012).Phosphorylation of alpha−synuclein protein at Ser−129 reduces neuronal dysfunction by lowering its membrane binding property in Caenorhabditis elegans.The Journal of biological chemistry 287,7098−7109.
Li,J.Y.,Englund,E.,Holton,J.L.,Soulet,D.,Hagell,P.,Lees,A.J.,Lashley,T.,Quinn,N.P.,Rehncrona,S.,Bjorklund,A.,et al.(2008).Lewy bodies in grafted neurons in subjects with Parkinson’s disease suggest host−to−graft disease propagation.Nature medicine 14,501−503.
Lue,L.F.,Walker,D.G.,Adler,C.H.,Shill,H.,Tran,H.,Akiyama,H.,Sue,L.I.,Caviness, J.,Sabbagh,M.N.,and Beach,T.G.(2012).Biochemical increase in phosphorylated alpha−synuclein precedes histopathology of Lewy−type synucleinopathies.Brain pathology(Zurich,Switzerland)22,745−756.
Luk,K.C.,Kehm,V.,Carroll,J.,Zhang,B.,O’Brien,P.,Trojanowski,J.Q.,and Lee,V.M.(2012a).Pathological alpha−synuclein transmission initiates Parkinson−like neurodegeneration in nontransgenic mice,Science(New York,NY)338,949−953.
Luk,K.C.,Kehm,V.M.,Zhang,B.,O’Brien,P.,Trojanowski,J.Q.,and Lee,V.M.(2012b).Intracerebral inoculation of pathological alpha−synuclein initiates a rapidly progressive neurodegenerative alpha−synucleinopathy in mice,The Journal of experimental medicine 209,975−986.
Masuda−Suzukake,M.,Nonaka,T.,Hosokawa,M.,Oikawa,T.,Arai,T.,Akiyama,H.,Mann,D.M.,and Hasegawa,M.(2013).Prion−like spreading of pathological alpha−synuclein in brain.Brain:a journal of neurology 136,1128−1138.
McFarland,N.R.,Fan,Z.,Xu,K.,Schwarzschild,M.A.,Feany,M.B.,Hyman,B.T.,and McLean,P.J.(2009).Alpha−synuclein S129 phosphorylation mutants do not alter nigrostriatal toxicity in a rat model of Parkinson disease.Journal of neuropathology and experimental neurology 68,515−524.
Morales,R.,Moreno−Gonzalez,I.,and Soto,C.(2013).Cross−seeding of misfolded proteins:implications for etiology and pathogenesis of protein misfolding diseases.PLoS pathogens 9,e1003537.
Mougenot,A.L.,Nicot,S.,Bencsik,A.,Morignat,E.,Verchere,J.,Lakhdar,L.,Legastelois,S.,and Baron,T.(2012).Prion−like acceleration of a synucleinopathy in a transgenic mouse model.Neurobiology of aging 33,2225−2228.
Paleologou,K.E.,Kragh,C.L.,Mann,D.M.,Salem,S.A.,Al−Shami,R.,Allsop,D.,Hassan,A.H.,Jensen,P.H.,and El−Agnaf,O.M.(2009).Detection of elevated levels of soluble alpha−synuclein oligomers in post−mortem brain extracts from patients with dementia with Lewy bodies.Brain:a journal of neurology 132,1093−1101.
Paleologou,K.E.,Oueslati,A.,Shakked,G.,Rospigliosi,C.C.,Kim,H.Y.,Lamberto,G.R.,Fernandez,C.o.,Schmid,A.,Chegini,F.,Gai,W.P.,et al.(2010).Phosphorylation at S87 is enhanced in synucleinopathies, inhibits alpha−synuclein oligomerization, and influences synuclein−membrane interactions.The Journal of neuroscience:the official journal of the Society for Neuroscience 30,3184−3198.
Paleologou,K.E.,Schmid,A.W.,Rospigliosi,C.C.,Kim,H.Y.,Lamberto,GR.,Fredenburg,R.A.,Lansbury,P.T.,Jr.,Fernandez,C.O.,Eliezer,D.,Zweckstetter,M.,et al.(2008).Phosphorylation at Ser−129 but not the phosphomimics S129E/D inhibits the fibrillation of alpha−synuclein.The Journal of biological chemistry 283,16895−16905.
Perfeito,R.,Lazaro,D.F.,Outeiro,T.F.,and Rego,A.C.(2014).Linking alpha−synuclein phosphorylation to reactive oxygen species formation and mitochondrial dysfunction in SH−SY5Y cells.Molecular and cellular neurosciences 62,51−59.
Salvadores,N.,Shahnawaz,M.,Scarpini,E.,Tagliavini,F.,and Soto,C.(2014).Detection of misfolded Abeta oligomers for sensitive biochemical diagnosis of Alzheimer’s disease.Cell reports 7,261−268.
Sano,K.,Atarashi,R.,Ishibashi,D.,Nakagaki,T.,Satoh,K.,and Nishida,N.(2014).Conformational properties of prion strains can be transmitted to recombinant prion protein fibrils in real−time quaking−induced conversion.Journal of virology 88,11791−11801.
Smith,W.W.,Margolis,R.L.,Li,X.,Troncoso,J.C.,Lee,M.K.,Dawson,V.L.,Dawson,T.M.,Iwatsubo,T.and Ross,C.A.(2005).Alpha−synuclein phosphorylation enhances eosinophilic cytoplasmic inclusion formation in SH−SY5Y cells.The Journal of neuroscience:the official journal of the Society for Neuroscience 25,5544−5552.
Tanaka,M.,Kim,Y.M.,Lee,G.,Junn,E.,Iwatsubo,T.,and Mouradian,M.M.(2004).Aggresomes formed by alpha−synuclein and synphilin−1 are cytoprotective.The Journal of biological chemistry 279,4625−4631.
Thannickal,T.C.,Lai,Y.Y.,and Siegel,J.M.(2007).Hypocretin(orexin)cell loss in Parkinson’s diseas.Brain:a journal of neurology 130,1586−1595.
Tokuda,T.,Qureshi,M.M.,Ardah,M.T.,Varghese,S.,Shehab,S.A.,Kasai,T.,Ishigami,N.,Tamaoka,A.,Nakagawa,M.,and El−Agnaf,O.M.(2010).Detection of elevated levels of alpha−synuclein oligomers in CSF from patients with Parkinson disease.Neurology 75,1766−1772.
Vekrellis,K.,Xilouri,M.,Emmanouilidou,E.,Rideout,H.J.,and Stefanis,L.(2011).Pathological roles of alpha−synuclein in neurological disorders.The Lancet Neurology 10,1015−1025.
Vlad,C.,Lindner,K.,Karreman,C.,Schildknecht,S.,Leist,M.,Tomczyk,N.,Rontree,J.,Langridge,J.,Danzer,K.,Ciossek,T.,et al.(2011).Autoproteolytic fragments are intermediates in the oligomerization/aggregation of the Parkinson’s disease protein alpha−synuclein as revealed by ion mobility mass spectrometry.Chembiochem:a European journal of chemical biology 12,2740−2744.
Volpicelli−Daley,L.A.,Luk,K.C.,Patel,T.P.,Tanik,S.A.,Riddle,D.M.,Steiber,A.,Meaney,D.F.,Trojanowski,J.Q.and Lee,V.M.(2011).Exogenous alpha−synuclein fibrils induce Lewy body pathology leading to synaptic dysfunction and neuron death.Neuron 72,57−71.
Watts,J.C.,Giles,K.,Oehler,A.,Middleton,L.,Dexter,D.T.,Gentleman,S.M.,DeArmond,S.J.,and Prusiner,S.B.(2013).Transmission of multiple system atrophy prions to transgenic mice.Proceedings of the National Academy of Sciences of the United States of America 110,19555−19560.
Wilham,J.M.Orru,C.D.,Bessen,R.A.,Atarashi,R.,Sano,K.,Race,B.,Meade−White,K.D.,Taubner,L.M.,Timmes,A.,and Caughey,B.(2010).Rapid end−point quantitation of prion seeding activity with sensitivity comparable to bioassays.PLoS pathogens 6,e1001217.
References Atarashi, R .; Satoh, K .; Sano, K .; Fuse, T .; Yamaguchi, N .; Ishibashi, D .; , Matsubara, T .; Nakagaki, T .; Yamanaka, H .; Shirabe, S .; , Et. al. (2011). Ultrasensitive human prion detection in cerebrospinal fluid by real-time queuing-induced conversion. Nature medicine
17, 175-178.
Azeredo da Silveira, S.A. Schneider, B .; L. Cifentes-Diaz, C.I. Sage, D .; Abbas-Terki, T .; , Iwatsubo, T .; Unser, M .; , And Aebischer, P.A. (2009). Phosphorylation dos not prompt, the prevent, the formation of alpha-synucleic toxins in a rat model of Parkinson's disease. Human molecular genetics 18, 872-887.
Braak, H .; Del Tredici, K .; Rub, U .; , De Vos, R .; A. Jansen Steur, E .; N. , And Braak, E .; (2003). Staging of brain pathology related to sporadic Parkinson's disease. Neurobiology of aging 24, 197-211.
Braak, H .; Rub, U .; Jansen Steur, E .; N. Del Tredici, K .; , And de Vos, R .; A. (2005). Cognitive status correlates with neuropathological stage in Parkinson disease. Neurology 64, 1401-1410.
Brown, D.D. R. (2010). Oligomeric alpha-synuclein and its roles in neuron death. IUBMB life 62, 334-339.
Chau, K .; Y. , Ching, H .; L. , Shapira, A .; H. , And Cooper, J .; M.M. (2009). Relationship between alpha synthesis phosphorylation, proteasomal inhibition and cell death: relevance to Parkinson's disease pathogenesis. Journal of neurochemistry 110, 1005-1013.
Chen, L .; , And Feany, M .; B. (2005). Alpha-synuclein phosphorylation control neurotoxicity and inclusion formation in a Drosophila model of Parkinson disease. Nature neuroscience 8, 657-663.
Danzer, K.M. M.M. Haasen, D .; , Karow, A .; R. , Moussaud, S .; , Habeck, M .; Giese, A .; Kretzschmar, H .; Hengerer, B .; , And Kostka, M .; (2007). Different specifications of alpha-synnuclein oligomers induce calcium influx and seeding. The Journal of neuroscience: the official journal of the Society for Neuroscience 27, 9220-9232.
Danzer, K.M. M.M. Krebs, S .; K. Wolff, M .; Birk, G .; , And Hangerer, B.M. (2009). Seeding induced by alpha-synclein oligomers evidences evidence for spreading of alpha-synthesis pathology. Journal of neurochemistry 111, 192-203.
Fujiwara, H .; Hasegawa, M .; Dohmae, N .; , Kawashima, A .; Masliah, E .; Goldberg, M .; S. , Shen, J .; Takao, K .; , And Iwatsubo, T .; (2002). alpha-Synnuclein is phosphorylated in syndrome pathions. Nature cell biology 4, 160-164.
Gorbatyuuk. O. S. Li, S .; Sullivan, L .; F. Chen, W .; , Kondrikova, G .; Manfredsson, F .; P. Mandel, R .; J. et al. , And Muzyczka, N .; (2008). The phosphorylation state of Ser-129 in human alpha-synclein determines neurodegeneration in a rat model of Parkinson disease. Proceedings of the National Academy of Sciences of the United States of America 105, 763-768.
Hansson, O .; Hall, S .; Ohrfeld, A .; Zetterberg, H .; Blennow, K .; Minthon, L .; Nagaga, K .; Londos, E .; , Vargese, S .; Majbour, N .; K. , Et al. (2014). Levels of cerebrospinal fluid alpha-synclein oligomers are increased in Parkinson's disease with dementia and dementia with the height of the body. Alzheimer's research & therapy 6,25.
Kasuga, K .; Nishizawa, M .; , And Ikeuchi, T .; (2012). alpha-Synnuclein as CSF and Blood Biomarker of Dimension with Lewis Bodies. International journal of Alzheimer's disease 2012, 437025.
Kordower, J .; H. , Chu, Y .; , Hauser, R .; A. , Freeman, T .; B. , And Onowow, C.I. W. (2008). Lewy body-like pathology in long-term embronic primary transplants in Parkinson's disease. Nature medicine 14, 504-506.
Kuwahara, T .; Tonegawa, R .; Ito, G. et al. Mitani, S .; , And Iwatsubo, T .; (2012). Phosphorylation of alpha-synclein protein at Ser-129 reduced neurological functions by lowering it's membrane binding property in Caenorhabditis. The Journal of biologic chemistry 287, 7098-7109.
Li, J. et al. Y. Englund, E .; Holton, J .; L. , Soulet, D .; Hagel, P .; Lees, A .; J. et al. Lashley, T .; , Quinn, N .; P. Rehncrona, S .; , Bjorkland, A .; , Et al. (2008). Lewy bodies in grafted neurons in subjects with Parkinson's disease proposal host-to-graft disease propagation. Nature medicine 14, 501-503.
Lue, L .; F. Walker, D .; G. Adler, C .; H. Shill, H .; Tran, H .; , Akiyama, H .; Sue, L .; I. , Cabines, J. et al. Sabbagh, M .; N. , And Beach, T .; G. (2012). Biochemical incremental in phosphorated alpha-synclein predesed histopathology of Lewy-type synoinopathies. Brain pathology (Zurich, Switzerland) 22, 745-756.
Luk, K .; C. Kehm, V .; Carroll, J .; Zhang, B .; , O'Brien, P .; , Trojanowski, J. et al. Q. , And Lee, V .; M.M. (2012a). Pathological alpha-synuclein transmission initiations Parkinson-like neurodegeneration in nontransgenic mice, Science (New York, NY) 338, 949-953.
Luk, K .; C. Kehm, V .; M.M. Zhang, B .; , O'Brien, P .; , Trojanowski, J. et al. Q. , And Lee, V .; M.M. (2012b). Intracerebral inoculation of pathological alpha-synchronin initiates a rapidly progressive neurodegeneratively in the world.
Masuda-Suzuki, M .; , Nonaka, T .; Hosokawa, M .; , Oikawa, T .; , Arai, T .; , Akiyama, H .; Mann, D .; M.M. , And Hasegawa, M .; (2013). Prion-like spreading of pathological alpha-synuclein in brain. Brain: a journal of neurology 136, 1128-1138.
McFarland, N.M. R. , Fan, Z. Xu, K .; , Schwartzschild, M .; A. , Feany, M .; B. Hyman, B .; T.A. , And McLean, P.M. J. et al. (2009). Alpha-synclein S129 phosphoration mutants do not alter tactical proximity in a rat model of Parkinson disease. Journal of neuropathology and experimental neurology 68, 515-524.
Morales, R.M. Moreno-Gonzalez, I .; , And Soto, C.I. (2013). Cross-seeding of misfolded proteins: implications for etiology and pathogenesis of protein misting diseases. PLoS pathogens 9, e1003537.
Mougenot, A.M. L. , Nicot, S .; , Bencsik, A .; , Morignat, E .; Verchere, J .; Lakhdar, L .; , Legastelois, S .; , And Baron, T .; (2012). Prion-like acceleratio of a synthinopathy in a transgenic mouse model. Neurobiology of aging 33, 2225-2228.
Paleologou, K .; E. Kragh, C .; L. Mann, D .; M.M. , Salem, S .; A. Al-Shami, R .; Allsop, D .; Hassan, A .; H. Jensen, P .; H. , And El-Agnaf, O .; M.M. (2009). Detection of elaborated levels of soluble alpha-synclein oligomers in post-brain brain extracts from dementia with dementia with. Brain: a journal of neurology 132, 1093-1101.
Paleologou, K .; E. Oueslati, A .; Shakked, G .; Rospigliosi, C.I. C. Kim, H .; Y. Lamberto, G .; R. , Fernandez, C.I. o. Schmid, A .; , Chegini, F .; , Gai, W .; P. , Et al. (2010). Phosphorylation at S87 is enhanced in synapinopathies, inhibits alpha-synthesis oligomerization, and influx synnuclein-membrane interactions. The Journal of Neuroscience: the official journal of the Society for Neuroscience 30, 3184-3198. The Journal of Neuroscience: the official journal of the Society for Neuroscience 30, 3184-3198.
Paleologou, K .; E. Schmid, A .; W. Rospigliosi, C.I. C. Kim, H .; Y. , Lamberto, GR. Fredenburg, R .; A. Lanbury, P .; T.A. , Jr. , Fernandez, C.I. O. Elliezer, D .; , Zwecketter, M .; , Et al. (2008). Phosphorylation at Ser-129 but not the phophomics S129E / D inhibits the fibration of alpha-synclein. The Journal of biologic chemistry 283, 16895-16905.
Perfeito, R.A. Lazaro, D .; F. Outeiro, T .; F. , And Rego, A .; C. (2014). Linking alpha-synclein phosphorylation to reactive oxygen specifications and mitochondral dysfunction in SH-SY5Y cells. Molecular and cellular neurosciences 62, 51-59.
Salvadores, N .; , Shahnawaz, M .; Scarpini, E .; Tagliavini, F .; , And Soto, C.I. (2014). Detection of misfolded Abeta oligomers for sensuous biochemical diagnosis of Alzheimer's disease. Cell reports 7, 261-268.
Sano, K .; , Atarashi, R .; Ishibashi, D .; Nakagaki, T .; Satoh, K .; , And Nishida, N .; (2014). Conformal properties of prior strains can be transmitted to recombinant preferential guidelines for profibrations in real-time queuing-induced conversions. Journal of virology 88, 11791-11801.
Smith, W.M. W. Margollis, R .; L. Li, X .; , Troncoso, J .; C. Lee, M .; K. Dawson, V .; L. Dawson, T .; M.M. , Iwatsubo, T .; and Ross, C.I. A. (2005). Alpha-synuclein phosphorescence enhancement eosinophilic cytoplasmic inclusion formation in SH-SY5Y cells. The Journal of neuroscience: the official journal of the Society for Neuroscience 25, 5544-5552. The Journal of neuroscience: the official journal of the Society for Neuroscience 25, 5544-5552.
Tanaka, M .; Kim, Y .; M.M. Lee, G .; Junn, E .; , Iwatsubo, T .; , And Mauradian, M .; M.M. (2004). Aggresomes formed by alpha-synclein and synphilin-1 are cytoprotective. The Journal of biologic 279, 4625-4631.
Thannickal, T.A. C. Lai, Y .; Y. , And Siegel, J. et al. M.M. (2007). Hypocretin (orexin) cell loss in Parkinson's disease. Brain: a journal of neurology 130, 1586-1595.
Tokuda, T .; , Qureshi, M .; M.M. Ardah, M .; T.A. , Vargese, S .; , Shehab, S .; A. , Kasai, T .; , Ishigami, N .; Tamaoka, A .; Nakagawa, M .; , And El-Agnaf, O .; M.M. (2010). Detection of elevated levels of alpha-synclein oligomers in CSF from patents with Parkinson disease. Neurology 75, 1766-1772.
Vekrellis, K.M. Xirouri, M .; , Emmanouilou, E .; Rideout, H .; J. et al. , And Stefanis, L. (2011). Pathological roles of alpha-synclein in neurological disorders. The Lancet Neurology 10, 1015-1025.
Vlad, C.I. Lindner, K .; Karreman, C .; Schildknecht, S .; Leist, M .; , Tomczzyk, N .; Rontree, J .; Langridge, J .; Danzer, K .; Ciossek, T .; , Et al. (2011). Autoproteolitic fragments in the mediations in the oligomerization / aggregation of the Parkinson's dissemination protein alpha-synthetically bisected. Chembiochem: a European journal of chemical biology 12, 2740-2744.
Volpicelli-Dalley, L.M. A. Luk, K .; C. Patel, T .; P. , Tanik, S .; A. Riddle, D .; M.M. , Steiber, A .; , Meaney, D .; F. , Trojanowski, J. et al. Q. and Lee, V .; M.M. (2011). Exogenous alpha-synclein fibrils induce Lewy body pathology leading to synthetic dysfunction and neuron death. Neuron 72, 57-71.
Watts, J .; C. Giles, K .; Oehler, A .; Middleton, L., et al. Dexter, D .; T.A. Gentleman, S .; M.M. , DeArmond, S.M. J. et al. , And Prusiner, S .; B. (2013). Transmission of multiple system atropri- tions to transgenic rice. Proceedings of the National Academy of Sciences of the United States of America 110, 19555-19560.
Wilham, J .; M.M. Orru, C.I. D. Bessen, R .; A. , Atarashi, R .; Sano, K .; , Race, B .; , Meade-White, K .; D. Taubner, L .; M.M. , Times, A .; , And Caughey, B .; (2010). Rapid end-point quantification of prion seeding activity with sensibility compatible to bioassays. PLoS pathogens 6, e1001217.
本発明によれば、被験体がα−シヌクレイノパチーに罹患しているか否かの診断を補助することができる。当該方法は、α−シヌクレイノパチーと他の認知症等との明確な鑑別を補助できる強力な方法となり得る。当該方法により、早期に鑑別することにより、α−シヌクレイノパチーの進行を抑制するための適切な治療法の選択が可能となる。 According to the present invention, it is possible to assist in the diagnosis of whether or not a subject is suffering from α-synucleinopathy. This method can be a powerful method that can assist in the clear differentiation between α-synucleinopathies and other dementias. By this method, it is possible to select an appropriate treatment method for suppressing the progression of α-synucleinopathy by early differentiation.
Claims (21)
(2)反応混合液をインキュベーションして、生体試料中の異常α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び
(3)形成されたα−シヌクレインの凝集体を検出する工程、
を含む、生体試料中の異常α−シヌクレインを検出する方法。 (1) A step of mixing a biological sample and normal α-synuclein in a buffer solution to obtain a reaction mixture;
(2) Incubating the reaction mixture to form an α-synuclein aggregate using abnormal α-synuclein in a biological sample as a seed; and (3) detecting the formed α-synuclein aggregate. Process,
A method for detecting abnormal α-synuclein in a biological sample, comprising:
(2)反応混合液をインキュベーションして、生体試料中の異常α−シヌクレインをシードとしたα−シヌクレインの凝集体を形成する工程;及び
(3)形成されたα−シヌクレインの凝集体を検出する工程、
を含む、α−シヌクレイノパチーの診断を補助する方法。 (1) A step of mixing a biological sample and normal α-synuclein in a buffer solution to obtain a reaction mixture;
(2) Incubating the reaction mixture to form an α-synuclein aggregate using abnormal α-synuclein in a biological sample as a seed; and (3) detecting the formed α-synuclein aggregate. Process,
A method for assisting diagnosis of α-synucleinopathy, comprising:
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016231861 | 2016-11-29 | ||
JP2016231861 | 2016-11-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018091844A true JP2018091844A (en) | 2018-06-14 |
Family
ID=62565956
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017228820A Pending JP2018091844A (en) | 2016-11-29 | 2017-11-29 | METHOD FOR DETECTING α-SYNUCLEIN |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018091844A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020034353A (en) * | 2018-08-28 | 2020-03-05 | 学校法人順天堂 | DIAGNOSIS OF α-SYNUCLEINOPHATHY |
WO2020162388A1 (en) * | 2019-02-05 | 2020-08-13 | 国立大学法人大阪大学 | Method and kit for discriminating between parkinson's disease and multiple system atrophy |
CN111544584A (en) * | 2020-04-16 | 2020-08-18 | 首都医科大学 | Therapeutic effect of a monoclonal antibody on Parkinson's disease |
CN113390836A (en) * | 2020-03-13 | 2021-09-14 | 吉林大学 | Application of thioflavine T and detection method of casein in milk |
CN114324892A (en) * | 2021-12-24 | 2022-04-12 | 桂林医学院附属医院 | Method for enhancing stability of alpha-synuclein aggregate |
WO2024089232A1 (en) * | 2022-10-28 | 2024-05-02 | Stavanger University Hospital | Alpha-synuclein detection assay comprising zinc ions in the reaction mixture and method for diagnosing alpha-synucleinopathies |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050121A1 (en) * | 2000-12-13 | 2002-06-27 | Taisho Pharmaceutical Co.,Ltd. | Novel antibody |
US20160077111A1 (en) * | 2014-09-11 | 2016-03-17 | Board Of Regents Of The University Of Texas System | Detection of Misfolded Alpha Synuclein Protein |
-
2017
- 2017-11-29 JP JP2017228820A patent/JP2018091844A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2002050121A1 (en) * | 2000-12-13 | 2002-06-27 | Taisho Pharmaceutical Co.,Ltd. | Novel antibody |
US20160077111A1 (en) * | 2014-09-11 | 2016-03-17 | Board Of Regents Of The University Of Texas System | Detection of Misfolded Alpha Synuclein Protein |
Non-Patent Citations (1)
Title |
---|
FAIRFOUL, G. ET AL.: "Alpha-synuclein RT-QuIC in the CSF of patients with alpha-synucleinopathies", ANNALS OF CLINICAL AND TRANSLATIONAL NEUROLOGY, vol. 3, no. 10, JPN6021035120, 2016, pages 812 - 818, XP055402981, ISSN: 0004726378, DOI: 10.1002/acn3.338 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020034353A (en) * | 2018-08-28 | 2020-03-05 | 学校法人順天堂 | DIAGNOSIS OF α-SYNUCLEINOPHATHY |
WO2020162388A1 (en) * | 2019-02-05 | 2020-08-13 | 国立大学法人大阪大学 | Method and kit for discriminating between parkinson's disease and multiple system atrophy |
JPWO2020162388A1 (en) * | 2019-02-05 | 2021-11-18 | 国立大学法人大阪大学 | Discrimination method and discrimination kit between Parkinson's disease and multiple system atrophy |
JP7203445B2 (en) | 2019-02-05 | 2023-01-13 | 国立大学法人大阪大学 | Discrimination method and discrimination kit between Parkinson's disease and multiple system atrophy |
US12099070B2 (en) | 2019-02-05 | 2024-09-24 | Osaka University | Method and kit for discriminating between parkinson's disease and multiple system atrophy |
CN113390836A (en) * | 2020-03-13 | 2021-09-14 | 吉林大学 | Application of thioflavine T and detection method of casein in milk |
CN113390836B (en) * | 2020-03-13 | 2023-09-29 | 吉林大学 | Application of Thioflavin T and a detection method for casein in milk |
CN111544584A (en) * | 2020-04-16 | 2020-08-18 | 首都医科大学 | Therapeutic effect of a monoclonal antibody on Parkinson's disease |
CN114324892A (en) * | 2021-12-24 | 2022-04-12 | 桂林医学院附属医院 | Method for enhancing stability of alpha-synuclein aggregate |
WO2024089232A1 (en) * | 2022-10-28 | 2024-05-02 | Stavanger University Hospital | Alpha-synuclein detection assay comprising zinc ions in the reaction mixture and method for diagnosing alpha-synucleinopathies |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Oliveira et al. | Alpha-synuclein research: defining strategic moves in the battle against Parkinson’s disease | |
JP2018091844A (en) | METHOD FOR DETECTING α-SYNUCLEIN | |
Sano et al. | Prion-like seeding of misfolded α-synuclein in the brains of dementia with Lewy body patients in RT-QUIC | |
Vaikath et al. | Antibodies against alpha‐synuclein: tools and therapies | |
Eftekharzadeh et al. | Tau protein disrupts nucleocytoplasmic transport in Alzheimer’s disease | |
Candelise et al. | Effect of the micro-environment on α-synuclein conversion and implication in seeded conversion assays | |
Magnani et al. | Interaction of tau protein with the dynactin complex | |
Suzuki et al. | α-synuclein strains that cause distinct pathologies differentially inhibit proteasome | |
Outeiro et al. | Formation of toxic oligomeric α-synuclein species in living cells | |
Allsop et al. | -Synuclein implicated in Parkinson's disease is present in extracellular biological fluids, including human plasma | |
Sacino et al. | Amyloidogenic α-synuclein seeds do not invariably induce rapid, widespread pathology in mice | |
Waxman et al. | A novel, high‐efficiency cellular model of fibrillar α‐synuclein inclusions and the examination of mutations that inhibit amyloid formation | |
JP6478987B2 (en) | Method for measuring protein aggregates using surface FIDA | |
CN103460049B (en) | Amplification and the method for detection Protein virus | |
Barth et al. | Microglial inclusions and neurofilament light chain release follow neuronal α-synuclein lesions in long-term brain slice cultures | |
Daude et al. | Diverse, evolving conformer populations drive distinct phenotypes in frontotemporal lobar degeneration caused by the same MAPT-P301L mutation | |
Chandupatla et al. | Novel antibody against low‐n oligomers of tau protein promotes clearance of tau in cells via lysosomes | |
Hollister et al. | Efficient uptake and dissemination of scrapie prion protein by astrocytes and fibroblasts from adult hamster brain | |
Annadurai et al. | Tau R2 and R3 are essential regions for tau aggregation, seeding and propagation | |
WO2016123401A1 (en) | Detection of disease-associated tau protein conformations and applications thereof | |
Jorge-Oliva et al. | Granulovacuolar degeneration bodies are independently induced by tau and α-synuclein pathology | |
WO2016149537A1 (en) | Bank vole prion protein as a broad-spectrum substrate for rt-quic-based detection and discrimination of prion strains | |
Priola et al. | Molecular aspects of disease pathogenesis in the transmissible spongiform encephalopathies | |
Postupna et al. | Flow cytometric evaluation of crude synaptosome preparation as a way to study synaptic alteration in neurodegenerative diseases | |
Wüsten et al. | A bioluminescent cell assay to quantify prion protein dimerization |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD01 | Notification of change of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7426 Effective date: 20171226 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20171226 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200918 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210820 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210907 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20211108 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20220315 |