[go: up one dir, main page]

JP2018087660A - Drawn-cup type heat exchanger - Google Patents

Drawn-cup type heat exchanger Download PDF

Info

Publication number
JP2018087660A
JP2018087660A JP2016231022A JP2016231022A JP2018087660A JP 2018087660 A JP2018087660 A JP 2018087660A JP 2016231022 A JP2016231022 A JP 2016231022A JP 2016231022 A JP2016231022 A JP 2016231022A JP 2018087660 A JP2018087660 A JP 2018087660A
Authority
JP
Japan
Prior art keywords
pair
heat exchanger
drone cup
joint
type heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016231022A
Other languages
Japanese (ja)
Inventor
賢治 畑
Kenji Hata
賢治 畑
太一 浅野
Taichi Asano
太一 浅野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2016231022A priority Critical patent/JP2018087660A/en
Publication of JP2018087660A publication Critical patent/JP2018087660A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a drawn-cup type heat exchanger capable of confirming a joint state of a joint part from appearance, while suppressing pressure loss of a fluid passing between a plurality of tubes.SOLUTION: A drawn-cup type heat exchanger 1 is constituted by joining a pair of joint parts 31, 41 which are end edge parts of a pair of drawn-cup plates 3, 4 respectively so that the pair of drawn-cup plates face each other, and includes: a plurality of tubes 2 which are laminated and arranged in one direction; and a plurality of fins provided 5 in gaps of the plurality of tubes 2. Out of the pair of joint parts 31, 41, at least one (preferably both) has a linear cross sectional shape. In the case where both of the pair of joint parts 31, 41 are on a straight line, a step is provided at an end part.SELECTED DRAWING: Figure 3

Description

本開示は、ドロンカップ式熱交換器に関する。   The present disclosure relates to a drone cup heat exchanger.

従来、ドロンカップ式熱交換器を構成する複数のチューブは、一対のドロンカッププレートが対向するようそれぞれの継手部の間を接合して形成される。継手部は、一対のドロンカッププレートのそれぞれの縁端部である。この継手部は、それぞれの縁端部を両者が離間する方向に湾曲させたR形状に形成されている(例えば特許文献1)。これにより、継手部をろう付け接合した後のフィレット形成を外観で確認することができ、ろう付け不良の有無を外観にて調査可能としている。また、R形状には継手をろう付けするろう材の量を増やし、ろう付け長さを向上する効果も有る。これにより熱交換器の特に耐圧強度の品質を確保することができる。   Conventionally, a plurality of tubes constituting a drone cup type heat exchanger are formed by joining between respective joint portions so that a pair of drone cup plates face each other. A joint part is each edge part of a pair of drone cup plates. This joint part is formed in the R shape which curved each edge part in the direction which both space apart (for example, patent document 1). Thereby, the fillet formation after the joint portion is brazed and joined can be confirmed by appearance, and the presence or absence of a brazing defect can be investigated by appearance. The R shape also has the effect of increasing the brazing length by increasing the amount of brazing material that brazes the joint. As a result, the quality of the heat exchanger, particularly the pressure strength, can be ensured.

特開平2−208499号公報JP-A-2-208499

チューブの継手部は、複数のチューブの積層方向の一側面、すなわちチューブ間を流れてチューブ内の冷媒と熱交換を行う空気の流れ方向と対向するように設けられる。このため、継手部から外側に湾曲して形成されるR形状によって、空気の流れに対向する継手部の対向面積が増大し、このR形状に空気が当たり、流体の流れが変わることで流体の圧力損失が増加する虞がある。   The joint portion of the tube is provided so as to face one side surface in the stacking direction of the plurality of tubes, that is, the flow direction of the air that flows between the tubes and exchanges heat with the refrigerant in the tubes. For this reason, the R shape formed by bending outward from the joint portion increases the facing area of the joint portion facing the air flow, and the air hits the R shape and the fluid flow changes to change the fluid flow. Pressure loss may increase.

また、このような圧力損失を防止するには各チューブの継手部のR形状をやめて継手部が完全に密着するよう一対の継手部を共に扁平状とすることも考えられるが、この形状にうすると継手部のろう付け状態を外観で確認するのが困難となる。   In order to prevent such pressure loss, it is conceivable that the R-shape of the joint portion of each tube is stopped and the pair of joint portions are made flat so that the joint portions are in close contact with each other. Then, it becomes difficult to confirm the brazed state of the joint part with the appearance.

本開示は、複数のチューブの間を通過する流体の圧力損失を抑制しつつ、継手部の接合状態を外観で確認できるドロンカップ式熱交換器を提供することを目的とする。   An object of this indication is to provide the drone cup type heat exchanger which can confirm the joined state of a joint part by appearance, suppressing the pressure loss of the fluid which passes between a plurality of tubes.

本開示は、ドロンカップ式熱交換器(1)であって、一対のドロンカッププレート(3,4,3A,4A,3B,4B,3C,4C)が対向するよう前記一対のドロンカッププレートのそれぞれの縁端部である一対の継手部(31,41,31A,41A,31B,41B,31C,41C)の間を接合して構成され、一方向に積層配置される複数のチューブ(2,2A,2B,2C)と、前記複数のチューブの間隙に設けられる複数のフィン(5)と、を備え、前記一対の継手部のうち少なくとも一方の断面形状が直線状である、ドロンカップ式熱交換器である。   The present disclosure is a drone cup type heat exchanger (1), in which a pair of drone cup plates (3,4, 3A, 4A, 3B, 4B, 3C, 4C) are opposed to each other. A plurality of tubes (2, 2, 1) formed by joining between a pair of joint portions (31, 41, 31A, 41A, 31B, 41B, 31C, 41C), which are the respective edge portions, are stacked in one direction. 2A, 2B, 2C) and a plurality of fins (5) provided in the gaps of the plurality of tubes, and at least one of the pair of joints has a linear cross-section heat It is an exchanger.

この構成により、熱交換器を通過する流体の流れに対してチューブの継手部の対向面積を縮小でき、継手部により流れを遮られる空気の量を減らすことができるので、複数のチューブの間を通過する流体の圧力損失を好適に抑制できる。また、一対の継手部の間にフィレットが形成されるので、継手部の接合状態を外観で確認できる。   With this configuration, the facing area of the joint portion of the tube can be reduced with respect to the flow of the fluid passing through the heat exchanger, and the amount of air blocked by the joint portion can be reduced. The pressure loss of the fluid passing therethrough can be suitably suppressed. Moreover, since a fillet is formed between a pair of joint parts, the joining state of a joint part can be confirmed with an external appearance.

本開示によれば、数のチューブの間を通過する流体の圧力損失を抑制しつつ、継手部の接合状態を外観で確認できるドロンカップ式熱交換器を提供することができる。   ADVANTAGE OF THE INVENTION According to this indication, the drone cup type heat exchanger which can confirm the joined state of a joint part by appearance can be provided, suppressing the pressure loss of the fluid which passes between several tubes.

図1は、第1実施形態に係るドロンカップ式熱交換器の概略構成を示す斜視図である。FIG. 1 is a perspective view showing a schematic configuration of the drone cup heat exchanger according to the first embodiment. 図2は、図1中のチューブの平面図である。FIG. 2 is a plan view of the tube in FIG. 図3は、図2中のIII−III断面図であり、チューブの継手部の近傍を拡大視した図である。FIG. 3 is a cross-sectional view taken along the line III-III in FIG. 2 and is an enlarged view of the vicinity of the joint portion of the tube. 図4は、第2実施形態に係るドロンカップ式熱交換器におけるチューブの継手部の構成を示す断面図である。FIG. 4 is a cross-sectional view showing the configuration of the joint portion of the tube in the drone cup heat exchanger according to the second embodiment. 図5は、第3実施形態に係るドロンカップ式熱交換器におけるチューブの継手部の構成を示す断面図である。FIG. 5 is a cross-sectional view illustrating a configuration of a joint portion of a tube in the drone cup heat exchanger according to the third embodiment. 図6は、第4実施形態に係るドロンカップ式熱交換器におけるチューブの継手部の構成を示す断面図である。FIG. 6 is a cross-sectional view showing the configuration of the joint portion of the tube in the drone cup heat exchanger according to the fourth embodiment. 図7は、比較例としての従来のドロンカップ式熱交換器におけるチューブの継手部の構成を示す断面図である。FIG. 7 is a cross-sectional view showing a configuration of a joint portion of a tube in a conventional drone cup heat exchanger as a comparative example.

以下、添付図面を参照しながら本実施形態について説明する。説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の符号を付して、重複する説明は省略する。   Hereinafter, the present embodiment will be described with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same constituent elements in the drawings will be denoted by the same reference numerals as much as possible, and redundant description will be omitted.

[第1実施形態]
図1〜図3を参照して第1実施形態を説明する。第1実施形態に係るドロンカップ式熱交換器1(以下では単に「熱交換器1」とも表記する場合がある)は、例えば図1に示すような構成をとる。一般に、ドロンカップ式熱交換器1とは、いわゆるドロンカップタイプ(Drawn Cup)構造と呼ばれる中空状のチューブ2を多段に積層して構成され、チューブ2の中空部内側を流れる流体(本実施形態では冷媒)と、チューブ2の表面を流れる流体(本実施形態では空気)との間で熱交換を行うものである。ドロンカップ式熱交換器1は、例えばオイルクーラー、エバポレータ、インタークーラー、ラジエータ等に用いられる。
[First Embodiment]
The first embodiment will be described with reference to FIGS. The drone cup type heat exchanger 1 according to the first embodiment (hereinafter sometimes simply referred to as “heat exchanger 1”) has a configuration as shown in FIG. In general, the drone cup type heat exchanger 1 is configured by stacking hollow tubes 2 called a so-called drone cup type (Drawn Cup) structure in multiple stages, and a fluid flowing inside the hollow portion of the tube 2 (this embodiment) Then, heat exchange is performed between the refrigerant and the fluid (air in the present embodiment) flowing on the surface of the tube 2. Delon cup type heat exchanger 1 is used for an oil cooler, an evaporator, an intercooler, a radiator, etc., for example.

図1に示すように、本実施形態のドロンカップ式熱交換器1は、一対のドロンカッププレート3,4を最中状に接合して構成される断面偏平状のチューブ2相互の間に、コルゲートフィン5(単に「フィン5」とも表記する場合がある)を介在させて積層して配設して、真空ろう付け又は雰囲気炉にて一体ろう付けして製造されている。本実施形態では、チューブ2及びコルゲートフィン5は鉛直方向(図1の上下方向)に積層配置されている。また、チューブ2間のコルゲートフィン5が設けられる間隙には、図1に矢印Aで示す方向に流れる空気が通過する空気流路12が形成されている。   As shown in FIG. 1, the drone cup type heat exchanger 1 of the present embodiment includes a pair of drone cup plates 3 and 4 joined in a middle state between the tubes 2 having a flat cross section. The corrugated fins 5 (which may be simply referred to as “fins 5”) are laminated and disposed, and are manufactured by vacuum brazing or brazing integrally in an atmospheric furnace. In the present embodiment, the tube 2 and the corrugated fins 5 are stacked in the vertical direction (the vertical direction in FIG. 1). Further, an air flow path 12 through which air flowing in a direction indicated by an arrow A in FIG. 1 passes is formed in a gap where the corrugated fins 5 are provided between the tubes 2.

なお、以下の説明では、チューブ2が積層されている方向(図1及び図3の上下方向)を「積層方向」と表記する。また、この積層方向に直交し、図1に矢印Aで示すように、熱交換を行う一方の流体である空気が流れる方向(図2の上下方向、図3の左右方向)を「空気流れ方向」と表記する。これらの積層方向及び空気流れ方向と直交する方向(図2の左右方向)を、熱交換を行う他方の流体である冷媒が流れる方向である「冷媒流れ方向」と表記する。   In the following description, the direction in which the tubes 2 are stacked (the vertical direction in FIGS. 1 and 3) is referred to as the “stacking direction”. In addition, as indicated by an arrow A in FIG. 1 that is orthogonal to the stacking direction, the direction of air that is one fluid for heat exchange (the vertical direction in FIG. 2 and the horizontal direction in FIG. 3) is referred to as “air flow direction”. ". The direction perpendicular to the stacking direction and the air flow direction (the left-right direction in FIG. 2) is referred to as a “refrigerant flow direction”, which is the direction in which the refrigerant that is the other fluid performing heat exchange flows.

ドロンカッププレート3,4は、アルミ板または銅板の表面にろう材をクラッドしたものをプレス成形し、内部に中空部を形成するよう積層している。また、図2に示すように、ドロンカッププレート3,4には、中空部が流体流通路となるよう連通孔9,10が形成されている。本実施形態では、チューブ2の内部に設けられる流通路11は、略U字状に形成されている。   The drone cup plates 3 and 4 are press-molded with a brazing material clad on the surface of an aluminum plate or a copper plate, and are laminated so as to form a hollow portion therein. As shown in FIG. 2, communication holes 9 and 10 are formed in the drone cup plates 3 and 4 so that the hollow portion becomes a fluid flow passage. In this embodiment, the flow path 11 provided in the tube 2 is formed in a substantially U shape.

ドロンカップ式熱交換器1には、図1に示すように、エンドプレート6の連通孔9,10に対応する位置に流入口7及び流出口8が設けられている。これにより、流入口7から熱交換器1に流入した冷媒は、各チューブ2の連通孔9から略U字状の流通路11を流通しながら、チューブ2間の空気流路12を流通する空気と熱交換を行って、連通孔10を流通し、熱交換器1の流出口8から回路に戻って行く。   As shown in FIG. 1, the drone cup type heat exchanger 1 is provided with an inlet 7 and an outlet 8 at positions corresponding to the communication holes 9 and 10 of the end plate 6. As a result, the refrigerant flowing into the heat exchanger 1 from the inlet 7 flows through the air flow path 12 between the tubes 2 while flowing through the substantially U-shaped flow passage 11 from the communication hole 9 of each tube 2. The heat exchange is performed, the communication hole 10 is circulated, and the circuit returns from the outlet 8 of the heat exchanger 1 to the circuit.

本実施形態では、一対のドロンカッププレート3,4は、組立時に空気流れ方向の下流側(図2では上側)の一辺21が連結されている。そして、この一辺21が回転軸となるよう一対のドロンカッププレート3,4が相互に対向するように折り曲げられて、図3に示すように、この一辺21の対辺である空気流れ方向の上流側の一辺22に設けられた各プレートの継手部31,41が当接する。そして、継手部31,41の当接面の間が、例えばろう付け接合などの任意の接合手法により接合されて、チューブ2が形成される。これらの継手部31,41は、ドロンカッププレート3,4のそれぞれの縁端部とも表現できる。   In the present embodiment, the pair of drone cup plates 3 and 4 are connected to one side 21 on the downstream side (upper side in FIG. 2) in the air flow direction during assembly. Then, the pair of drone cup plates 3 and 4 are bent so that the one side 21 serves as a rotation axis, and as shown in FIG. 3, the upstream side in the air flow direction which is the opposite side of the one side 21 The joint portions 31 and 41 of the plates provided on one side 22 abut. And between the contact surfaces of the joint parts 31 and 41 is joined by arbitrary joining techniques, such as brazing joining, for example, and the tube 2 is formed. These joint portions 31 and 41 can also be expressed as the respective edge portions of the drone cup plates 3 and 4.

チューブ2は、図3に示すように、一対のドロンカッププレート3,4のうち、積層方向の下側に配置される一方のドロンカッププレート4が平板状であり、積層方向の上側に配置される他方のドロンカッププレート3が外側に凸となるよう加工された凸形状である片絞り構造である。図3に示す冷媒流れ方向から視た断面形状では、一方のドロンカッププレート4は空気流れ方向に沿った直線状で形成され、他方のドロンカッププレート3は積層方向上側に突出する凸形状に形成されている。また、チューブ2の内部にはインナフィン13が設置されている。   As shown in FIG. 3, the tube 2 has a plate shape in which one of the pair of drone cup plates 3 and 4 disposed on the lower side in the stacking direction is disposed on the upper side in the stacking direction. The other drone cup plate 3 has a single-drawing structure having a convex shape that is processed to be convex outward. In the cross-sectional shape seen from the refrigerant flow direction shown in FIG. 3, one of the drone cup plates 4 is formed in a straight shape along the air flow direction, and the other drone cup plate 3 is formed in a convex shape protruding upward in the stacking direction. Has been. An inner fin 13 is installed inside the tube 2.

図3に示すように、平板状のドロンカッププレート4の継手部41の断面形状が直線状に形成されており、また、凸形状のドロンカッププレート3の継手部31の断面形状も同じく直線状に形成されている。ここで、「継手部の断面形状が直線状」とは、継手部31,41が共に扁平であり、相互に当接する面の全体が密着可能な形状をいう。   As shown in FIG. 3, the cross-sectional shape of the joint portion 41 of the flat-shaped drone cup plate 4 is linearly formed, and the cross-sectional shape of the joint portion 31 of the convex drone cup plate 3 is also linear. Is formed. Here, “the cross-sectional shape of the joint part is a straight line” refers to a shape in which the joint parts 31 and 41 are both flat and the entire surfaces in contact with each other can be in close contact with each other.

また、これらの一対の継手部31,41は、空気流れ方向の端部位置をずらして配置されており、これにより一対の継手部31,41の端部に段差が設けられている。図3の例では、積層方向上側のドロンカッププレート3の継手部31に対して、積層方向下側のドロンカッププレート4の継手部41が、空気流れ方向の上流側に突出しており、これにより継手部31,41の端部の積層方向上側に段差が形成されている。なお、図3の例とは反対に、積層方向上側のドロンカッププレート3の継手部31の方が継手部41に対して突出し、継手部31,41の端部の積層方向下側に段差が形成される構成でもよい。   In addition, the pair of joint portions 31 and 41 are arranged so that the end positions in the air flow direction are shifted, thereby providing a step at the end portions of the pair of joint portions 31 and 41. In the example of FIG. 3, the joint portion 41 of the drone cup plate 4 on the lower side in the stacking direction protrudes to the upstream side in the air flow direction with respect to the joint portion 31 of the drone cup plate 3 on the upper side in the stacking direction. A step is formed on the upper side in the stacking direction of the end portions of the joint portions 31 and 41. In addition, contrary to the example of FIG. 3, the joint portion 31 of the drone cup plate 3 on the upper side in the stacking direction protrudes from the joint portion 41, and a step is formed on the lower side in the stacking direction of the end portions of the joint portions 31 and 41. The structure formed may be sufficient.

次に、第1実施形態に係るドロンカップ式熱交換器1の効果を説明する。まず、図7を参照して、従来のドロンカップ式熱交換器の問題点について述べる。図7に示すように、従来のドロンカップ式熱交換器では、チューブ2Dの継手部31D,41Dは、それぞれの縁端部を両者が離間する方向に湾曲させたR形状に形成されている。これにより、継手部31D,41Dをろう付け接合した後のフィレット14の形成を外観で確認することができ、ろう付け不良の有無を外観にて調査可能としている。また、このようなR形状には、継手をろう付けするろう材の量を増やし、ろう付け長さを向上する効果も有る。これにより熱交換器の特に耐圧強度の品質を確保することができる。   Next, the effect of the drone cup type heat exchanger 1 according to the first embodiment will be described. First, with reference to FIG. 7, the problem of the conventional drone cup type heat exchanger will be described. As shown in FIG. 7, in the conventional drone cup type heat exchanger, the joint portions 31D and 41D of the tube 2D are formed in an R shape in which the respective edge portions are curved in the direction in which both are separated from each other. Thereby, the formation of the fillet 14 after the joint portions 31D and 41D are brazed and joined can be confirmed in appearance, and the presence or absence of brazing defects can be investigated in the appearance. Such an R shape also has an effect of increasing the brazing length by increasing the amount of brazing material for brazing the joint. As a result, the quality of the heat exchanger, particularly the pressure strength, can be ensured.

このようなR形状をとるチューブ2Dの継手部31D,41Dが空気流れ方向の上流側に配置されると、継手部31D,41Dは、チューブ2D間を流れてチューブ2D内の冷媒と熱交換を行う空気の流れ方向と対向するように設けられることになる。このため、継手部31D,41Dから積層方向の外側にそれぞれ湾曲して形成されるR形状によって、空気の流れに対する継手部31D,41Dの対向面積が増大し、このR形状の部分に多くの空気が当たって流れを遮られ、空気の流れが変わることで、複数のチューブ2Dの間を通過する空気の流体の圧力損失が増加する虞がある。   When the joint portions 31D and 41D of the tube 2D having such an R shape are arranged on the upstream side in the air flow direction, the joint portions 31D and 41D flow between the tubes 2D and exchange heat with the refrigerant in the tube 2D. It is provided so as to face the direction of air flow to be performed. For this reason, the opposing areas of the joint portions 31D and 41D with respect to the air flow are increased by the R shapes that are curved from the joint portions 31D and 41D to the outside in the stacking direction. , The flow is blocked and the air flow is changed, so that the pressure loss of the fluid of the air passing between the plurality of tubes 2D may increase.

これに対して、第1実施形態に係るドロンカップ式熱交換器1では、図3に示すように、チューブ2を構成する平板状のドロンカッププレート4の継手部41と、凸形状のドロンカッププレート3の継手部31の両方の断面形状が直線状となるよう形成されている。これにより、熱交換器1を通過する空気の流れに対してチューブ2の継手部31,41の対向面積を縮小でき、継手部31,41により流れを遮られる空気の量を減らすことができるので、複数のチューブ2の間を通過する空気の圧力損失を好適に抑制できる。   On the other hand, in the drone cup type heat exchanger 1 according to the first embodiment, as shown in FIG. 3, the joint portion 41 of the flat drone cup plate 4 constituting the tube 2 and the convex drone cup Both cross-sectional shapes of the joint portion 31 of the plate 3 are formed to be linear. Thereby, the facing area of the joint portions 31 and 41 of the tube 2 can be reduced with respect to the air flow passing through the heat exchanger 1, and the amount of air blocked by the joint portions 31 and 41 can be reduced. The pressure loss of the air passing between the plurality of tubes 2 can be suitably suppressed.

さらに、第1実施形態に係るドロンカップ式熱交換器1では、一対の継手部31,41の端部に段差が設けられており、この段差部分にフィレット14が形成されるので、従来の継手部のR形状を無くしても、継手部31,41のろう付け状態を外観で確認できる。この結果、第1実施形態に係るドロンカップ式熱交換器1は、複数のチューブ2の間を通過する空気の圧力損失を抑制しつつ、継手部31,41の接合状態を外観で確認できる。   Furthermore, in the drone cup type heat exchanger 1 according to the first embodiment, a step is provided at the ends of the pair of joint portions 31 and 41, and the fillet 14 is formed at the step portion. Even if the R shape of the portion is eliminated, the brazed state of the joint portions 31 and 41 can be confirmed by appearance. As a result, the drone cup type heat exchanger 1 according to the first embodiment can confirm the joining state of the joint portions 31 and 41 with the appearance while suppressing the pressure loss of the air passing between the plurality of tubes 2.

また、チューブ2を片絞り構造とすることで積層方向の寸法を縮小できる。これにより、積層方向に沿ったチューブ2とコルゲートフィン5との配分の調整が容易となり、ドロンカップ式熱交換器1の熱交換性能の向上や小型化を図ることができる。   Moreover, the dimension of the lamination direction can be reduced by making the tube 2 into a single-drawing structure. Thereby, adjustment of distribution with the tube 2 and the corrugated fin 5 along a lamination direction becomes easy, and the improvement and miniaturization of the heat exchange performance of the drone cup type heat exchanger 1 can be achieved.

[第2実施形態]
図4を参照して第2実施形態を説明する。第2実施形態は、図4に示すように、チューブ2Aを構成する一対のドロンカッププレート3A,4Aのうち、平板状のドロンカッププレート4Aの継手部41Aの断面形状のみが直線状であり、凸形状のドロンカッププレート3Aの継手部31Aの端部が従来と同様にR形状に湾曲している点で、第1実施形態と異なる。
[Second Embodiment]
A second embodiment will be described with reference to FIG. In the second embodiment, as shown in FIG. 4, only the cross-sectional shape of the joint portion 41A of the flat-shaped drone cup plate 4A among the pair of drone cup plates 3A and 4A constituting the tube 2A is linear. It differs from 1st Embodiment by the point which the edge part of 31 A of coupling parts of 3D of convex shape drone cup plates is curving in R shape similarly to the past.

第2実施形態における継手部31A,41Aの構成でも、図7に示した従来の継手部31D,41Dと比較して、熱交換器1を通過する空気の流れに対してチューブ2Aの継手部31A,41Aの対向面積を縮小でき、継手部31A,41Aにより流れを遮られる空気の量を減らすことができるので、第1実施形態と同様に、複数のチューブ2Aの間を通過する空気の流体の圧力損失を好適に抑制できる。   Even in the configuration of the joint portions 31A and 41A in the second embodiment, the joint portion 31A of the tube 2A with respect to the flow of air passing through the heat exchanger 1 as compared with the conventional joint portions 31D and 41D shown in FIG. , 41A can be reduced, and the amount of air blocked by the joints 31A, 41A can be reduced. Therefore, as in the first embodiment, the air fluid passing between the plurality of tubes 2A can be reduced. Pressure loss can be suitably suppressed.

また、継手部31Aと継手部41Aの端部が離間して配置され、この離間部分にフィレット14が形成されるので、第1実施形態と同様に、継手部31A,41Aのろう付け状態を外観で確認できる。したがって、図4に示す第2実施形態の構成でも、第1実施形態と同様の効果を奏することができる。   In addition, since the end portions of the joint portion 31A and the joint portion 41A are spaced apart and the fillet 14 is formed in this separated portion, the brazed state of the joint portions 31A and 41A can be seen as in the first embodiment. It can be confirmed with. Therefore, the configuration of the second embodiment shown in FIG. 4 can achieve the same effects as those of the first embodiment.

なお、図4には平板状のドロンカッププレート4Aの継手部41Aの断面形状のみが直線状に形成される構成を例示したが、これとは反対に、凸形状のドロンカッププレート3Aの継手部31Aの断面形状のみが直線状に形成される構成であってもよい。   FIG. 4 illustrates the configuration in which only the cross-sectional shape of the joint portion 41A of the flat-shaped drone cup plate 4A is formed in a straight line, but on the contrary, the joint portion of the convex drone cup plate 3A. Only the cross-sectional shape of 31A may be linearly formed.

[第3実施形態]
図5を参照して第3実施形態を説明する。第3実施形態は、図5に示すように、チューブ2Bを構成する一対のドロンカッププレート3B,4Bの両方が外側に凸となるよう加工された凸形状である両絞り構造である点で、第1実施形態と異なる。
[Third Embodiment]
A third embodiment will be described with reference to FIG. As shown in FIG. 5, the third embodiment is a double-throttle structure that is a convex shape that is processed so that both of the pair of drone cup plates 3B and 4B that constitute the tube 2B are convex outward. Different from the first embodiment.

第3実施形態は、第1実施形態と同様に、チューブ2Bを構成する一対のドロンカッププレート3B,4Bの両方の継手部31B,41Bの断面形状が直線状となるよう形成されており、かつ、一対の継手部31B,41Bの端部に段差が設けられているので、図5に示す第3実施形態の構成でも、第1実施形態と同様の効果を奏することができる。   Similarly to the first embodiment, the third embodiment is formed such that the cross-sectional shapes of both joint portions 31B and 41B of the pair of drone cup plates 3B and 4B constituting the tube 2B are linear, and Since the steps are provided at the end portions of the pair of joint portions 31B and 41B, the configuration of the third embodiment shown in FIG. 5 can achieve the same effects as those of the first embodiment.

[第4実施形態]
図6を参照して第4実施形態を説明する。第4実施形態は、図6に示すように、チューブ2Cを構成する一対のドロンカッププレート3C,4Cのうち、一方のドロンカッププレート4Cの継手部41Cの断面形状のみが直線状であり、他方のドロンカッププレート3Cの継手部31Cの端部が従来と同様にR形状に湾曲している点で、第3実施形態と異なる。なお、第4実施形態の継手部31C,41Cの構成は、図4を参照して説明した第2実施形態の継手部31A,41Aと同様である。したがって、図6に示す第4実施形態の構成でも、第2実施形態と同様の理由により、第1実施形態と同様の効果を奏することができる。
[Fourth Embodiment]
A fourth embodiment will be described with reference to FIG. In the fourth embodiment, as shown in FIG. 6, only the cross-sectional shape of the joint portion 41 </ b> C of one of the drone cup plates 4 </ b> C of the pair of drone cup plates 3 </ b> C and 4 </ b> C constituting the tube 2 </ b> C is linear. This is different from the third embodiment in that the end of the joint portion 31C of the drone cup plate 3C is curved in an R shape as in the conventional case. In addition, the structure of the joint parts 31C and 41C of 4th Embodiment is the same as that of the joint parts 31A and 41A of 2nd Embodiment demonstrated with reference to FIG. Therefore, the configuration of the fourth embodiment shown in FIG. 6 can also achieve the same effect as that of the first embodiment for the same reason as in the second embodiment.

なお、図6には一方のドロンカッププレート4Cの継手部41Cの断面形状のみが直線状に形成される構成を例示したが、これとは反対に、他方のドロンカッププレート3Cの継手部31Cの断面形状のみが直線状に形成される構成であってもよい。   FIG. 6 illustrates a configuration in which only the cross-sectional shape of the joint portion 41C of one of the drone cup plates 4C is formed in a straight line, but on the contrary, the joint portion 31C of the other drone cup plate 3C is illustrated. Only the cross-sectional shape may be linearly formed.

以上、具体例を参照しつつ本実施形態について説明した。しかし、本開示はこれらの具体例に限定されるものではない。これら具体例に、当業者が適宜設計変更を加えたものも、本開示の特徴を備えている限り、本開示の範囲に包含される。前述した各具体例が備える各要素およびその配置、条件、形状などは、例示したものに限定されるわけではなく適宜変更することができる。前述した各具体例が備える各要素は、技術的な矛盾が生じない限り、適宜組み合わせを変えることができる。   The present embodiment has been described above with reference to specific examples. However, the present disclosure is not limited to these specific examples. Those in which those skilled in the art appropriately modify the design of these specific examples are also included in the scope of the present disclosure as long as they have the features of the present disclosure. Each element included in each of the specific examples described above and their arrangement, conditions, shape, and the like are not limited to those illustrated, and can be changed as appropriate. Each element included in each of the specific examples described above can be appropriately combined as long as no technical contradiction occurs.

1:ドロンカップ式熱交換器
2,2A,2B,2C:チューブ
3,3A,3B,4B,3C,4C:凸形状のドロンカッププレート
4,4A:平板状のドロンカッププレート
31,41,31A,41A,31B,41B,31C,41C:継手部
5:コルゲートフィン(フィン)
1: Delon cup type heat exchangers 2, 2A, 2B, 2C: Tubes 3, 3A, 3B, 4B, 3C, 4C: Convex-shaped drone cup plates 4, 4A: Flat plate-like drone cup plates 31, 41, 31A , 41A, 31B, 41B, 31C, 41C: Joint portion 5: Corrugated fin (fin)

Claims (5)

ドロンカップ式熱交換器(1)であって、
一対のドロンカッププレート(3,4,3A,4A,3B,4B,3C,4C)が対向するよう前記一対のドロンカッププレートのそれぞれの縁端部である一対の継手部(31,41,31A,41A,31B,41B,31C,41C)の間を接合して構成され、一方向に積層配置される複数のチューブ(2,2A,2B,2C)と、
前記複数のチューブの間隙に設けられる複数のフィン(5)と、
を備え、
前記一対の継手部のうち少なくとも一方の断面形状が直線状である、
ドロンカップ式熱交換器。
Delon cup type heat exchanger (1),
A pair of joint portions (31, 41, 31A) which are respective edge portions of the pair of drone cup plates so that the pair of drone cup plates (3,4, 3A, 4A, 3B, 4B, 3C, 4C) face each other. , 41A, 31B, 41B, 31C, 41C) and a plurality of tubes (2, 2A, 2B, 2C) arranged in one direction,
A plurality of fins (5) provided in gaps between the plurality of tubes;
With
The cross-sectional shape of at least one of the pair of joint portions is linear.
Delon cup type heat exchanger.
前記チューブ(2,2A)は、前記一対のドロンカッププレートのうちの一方(4,4A)が平板状であり、他方(3,3A)が外側に凸となるよう加工された凸形状である片絞り構造であり、
前記平板状のドロンカッププレートの前記継手部(41,41A)の断面形状が直線状である、
請求項1に記載のドロンカップ式熱交換器。
The tube (2, 2A) has a convex shape that is processed such that one (4, 4A) of the pair of drone cup plates is flat and the other (3, 3A) is convex outward. It has a single diaphragm structure,
The cross-sectional shape of the joint portion (41, 41A) of the flat-shaped drone cup plate is linear.
The drone cup type heat exchanger according to claim 1.
前記平板状のドロンカッププレート(4)及び前記凸形状のドロンカッププレート(3)の両方の前記継手部(41,31)の断面形状が直線状であり、
前記一対の継手部の端部に段差が設けられる、
請求項2に記載のドロンカップ式熱交換器。
The cross-sectional shapes of the joint portions (41, 31) of both the flat-shaped drone cup plate (4) and the convex drone cup plate (3) are linear,
A step is provided at the ends of the pair of joint portions,
The drone cup type heat exchanger according to claim 2.
前記チューブ(2B,2C)は、前記一対のドロンカッププレート(3B,4B,3C,4C)の両方が外側に凸となるよう加工された凸形状である両絞り構造である、
請求項1に記載のドロンカップ式熱交換器。
The tube (2B, 2C) has a double-throttle structure that is a convex shape processed so that both of the pair of drone cup plates (3B, 4B, 3C, 4C) are convex outward.
The drone cup type heat exchanger according to claim 1.
一対のドロンカッププレート(3B,4B)の両方の前記継手部(31B,41B)の断面形状が直線状であり、
前記一対の継手部の端部に段差が設けられる、
請求項4に記載のドロンカップ式熱交換器。
The cross-sectional shape of both the joint parts (31B, 41B) of the pair of drone cup plates (3B, 4B) is linear,
A step is provided at the ends of the pair of joint portions,
The drone cup type heat exchanger according to claim 4.
JP2016231022A 2016-11-29 2016-11-29 Drawn-cup type heat exchanger Pending JP2018087660A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016231022A JP2018087660A (en) 2016-11-29 2016-11-29 Drawn-cup type heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016231022A JP2018087660A (en) 2016-11-29 2016-11-29 Drawn-cup type heat exchanger

Publications (1)

Publication Number Publication Date
JP2018087660A true JP2018087660A (en) 2018-06-07

Family

ID=62494424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016231022A Pending JP2018087660A (en) 2016-11-29 2016-11-29 Drawn-cup type heat exchanger

Country Status (1)

Country Link
JP (1) JP2018087660A (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155422A (en) * 1989-11-14 1991-07-03 Calsonic Corp Heat transfer tube for heat exchanger and its manufacturing method
JPH07280484A (en) * 1994-04-06 1995-10-27 Calsonic Corp Stacked type heat exchanger
JPH1130493A (en) * 1997-07-09 1999-02-02 Zexel Corp Tube for heat exchange and manufacture thereof
JP2001050690A (en) * 1999-05-28 2001-02-23 Denso Corp Heat exchanger made of aluminum alloy
JP2001124481A (en) * 1999-10-29 2001-05-11 Denso Corp Heat exchanger
JP2004263997A (en) * 2003-03-04 2004-09-24 Calsonic Kansei Corp Evaporator
JP2007178010A (en) * 2005-12-27 2007-07-12 Calsonic Kansei Corp Inner fin for heat exchanger
JP2007212084A (en) * 2006-02-10 2007-08-23 Denso Corp Heat exchanger
JP2009019799A (en) * 2007-07-11 2009-01-29 Denso Corp Heat exchanger tube
JP2016099063A (en) * 2014-11-21 2016-05-30 三浦工業株式会社 Plate type heat exchanger

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03155422A (en) * 1989-11-14 1991-07-03 Calsonic Corp Heat transfer tube for heat exchanger and its manufacturing method
JPH07280484A (en) * 1994-04-06 1995-10-27 Calsonic Corp Stacked type heat exchanger
JPH1130493A (en) * 1997-07-09 1999-02-02 Zexel Corp Tube for heat exchange and manufacture thereof
JP2001050690A (en) * 1999-05-28 2001-02-23 Denso Corp Heat exchanger made of aluminum alloy
JP2001124481A (en) * 1999-10-29 2001-05-11 Denso Corp Heat exchanger
JP2004263997A (en) * 2003-03-04 2004-09-24 Calsonic Kansei Corp Evaporator
JP2007178010A (en) * 2005-12-27 2007-07-12 Calsonic Kansei Corp Inner fin for heat exchanger
JP2007212084A (en) * 2006-02-10 2007-08-23 Denso Corp Heat exchanger
JP2009019799A (en) * 2007-07-11 2009-01-29 Denso Corp Heat exchanger tube
JP2016099063A (en) * 2014-11-21 2016-05-30 三浦工業株式会社 Plate type heat exchanger

Similar Documents

Publication Publication Date Title
JP2007298197A (en) Heat exchanger
WO2014171095A1 (en) Heat exchanger
CN110392814A (en) Heat exchanger with heat transfer tube unit
JP2013047585A (en) Heat exchanger
JP2010121925A (en) Heat exchanger
WO2021066083A1 (en) Plate for stack-type heat exchanger
JP2015203508A (en) Plate type heat exchanger
CN113544457A (en) propeller fan
JP2018087660A (en) Drawn-cup type heat exchanger
WO2018173536A1 (en) Heat exchanger
JP2008249241A (en) Heat exchanger
JP7538991B2 (en) Heat exchanger
WO2021149462A1 (en) Heat exchanger
JP5154837B2 (en) Heat exchanger
JP2009008347A (en) Heat exchanger
JP2008089188A (en) Heat exchanger
JP5947158B2 (en) Outdoor heat exchanger for heat pump
JP5486841B2 (en) Delon cup type heat exchanger
JP5741470B2 (en) Heat exchanger and method for manufacturing the same
JP2007017061A (en) Gas cooler for carbon dioxide air conditioner
EP1744116A2 (en) Heat exchanger
JP2007147173A (en) Heat exchanger and its manufacturing method
JP5525805B2 (en) Heat exchanger
JP2006317080A (en) Heat exchanger and method of manufacturing heat exchanger
JP2018151110A (en) Parallel flow heat exchanger and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190626

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208