JP2018084282A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2018084282A5 JP2018084282A5 JP2016227563A JP2016227563A JP2018084282A5 JP 2018084282 A5 JP2018084282 A5 JP 2018084282A5 JP 2016227563 A JP2016227563 A JP 2016227563A JP 2016227563 A JP2016227563 A JP 2016227563A JP 2018084282 A5 JP2018084282 A5 JP 2018084282A5
- Authority
- JP
- Japan
- Prior art keywords
- diameter
- fitting surface
- surface portion
- input
- axial
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005540 biological transmission Effects 0.000 description 27
- 230000002093 peripheral effect Effects 0.000 description 19
- 238000003825 pressing Methods 0.000 description 14
- 230000036316 preload Effects 0.000 description 5
- 230000013011 mating Effects 0.000 description 4
- 230000000452 restraining effect Effects 0.000 description 3
- 230000004323 axial length Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000010276 construction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
Description
本発明は、例えば航空機等で使用される発電機用、ポンプ等の各種産業機械用、車両(自動車)用、建設機械用の自動変速装置等として利用する、トロイダル型無段変速機の改良に関する。 The present invention relates to an improvement of a toroidal continuously variable transmission that is used as an automatic transmission device for generators used in, for example, aircrafts, various industrial machines such as pumps, vehicles (automobiles), and construction machines. .
自動車用変速装置としてトロイダル型無段変速機を使用する事が、特許文献1等の刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献2等の刊行物に記載されて、従来から広く知られている。 The use of a toroidal-type continuously variable transmission as a transmission for an automobile is described in publications such as Patent Document 1 and is partially implemented, and is well known. Further, a structure in which the adjustment range of the gear ratio is widened by combining a toroidal type continuously variable transmission and a planetary gear mechanism is described in publications such as Patent Document 2 and has been widely known.
図4は、前記各特許文献に記載された従来構造のトロイダル型無段変速機の1例を示している。この従来構造の場合、入力回転軸1の軸方向両端寄り部分の周囲に、1対の入力側ディスク2a、2bを、それぞれが断面円弧形のトロイド曲面である軸方向側面(内側面)同士を互いに対向させた状態で、ボールスプライン3、3を介して支持している。これにより、前記1対の入力側ディスク2a、2bを、遠近動可能に、且つ、前記入力回転軸1を介して互いに同期して回転する様にしている。又、この入力回転軸1の軸方向中間部周囲に、この入力回転軸1に対する相対回転を可能に、出力筒4を支持している。又、この出力筒4の外周面には、軸方向中央部に出力歯車5を固設すると共に、軸方向両端部に1対の出力側ディスク6、6を、前記出力筒4と同期した回転を可能に支持している。又、この状態で、それぞれが断面円弧形のトロイド曲面である、前記両出力側ディスク6、6の軸方向側面を、前記両入力側ディスク2a、2bの軸方向側面に対向させている。 FIG. 4 shows an example of a conventional toroidal continuously variable transmission described in each of the above-mentioned patent documents. In the case of this conventional structure, a pair of input-side discs 2a and 2b are disposed around the portions near both ends in the axial direction of the input rotating shaft 1 and axial side surfaces (inner side surfaces) each having a toroidal curved surface having an arcuate cross section. Are supported via ball splines 3 and 3 in a state of facing each other. As a result, the pair of input side disks 2a and 2b are configured to be able to move far and near and to rotate in synchronization with each other via the input rotation shaft 1. Further, an output cylinder 4 is supported around an intermediate portion in the axial direction of the input rotary shaft 1 so as to be able to rotate relative to the input rotary shaft 1. Further, an output gear 5 is fixed to the outer peripheral surface of the output cylinder 4 at the center in the axial direction, and a pair of output side disks 6 and 6 are rotated at both ends in the axial direction in synchronization with the output cylinder 4. I support it. Further, in this state, the axial side surfaces of the output side disks 6 and 6, each of which is a toroidal curved surface having an arc cross section, are opposed to the axial side surfaces of the input side disks 2 a and 2 b.
又、前記両入力側ディスク2a、2bと前記両出力側ディスク6、6との間に、それぞれの周面を部分球状凸面とした複数個のパワーローラ7、7を挟持している。これら各パワーローラ7、7は、トラニオン8、8に回転自在に支持されており、前記両入力側ディスク2a、2bの回転に伴って回転しつつ、これら両入力側ディスク2a、2bから前記両出力側ディスク6、6に動力を伝達する。即ち、トロイダル型無段変速機の運転時には、駆動軸9により片方(図4の左方)の入力側ディスク2aを、機械式の押圧装置10を介して回転駆動する。この結果、前記入力回転軸1の軸方向両端寄り部分に支持された1対の入力側ディスク2a、2bが、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ7、7を介して前記両出力側ディスク6、6に伝わり、前記出力歯車5から取り出される。
或いは、上述した説明とは反対に、前記両出力側ディスク6、6の位置に設けた内側ディスクに駆動源の動力を入力し、前記両入力側ディスク2a、2bの位置に設けた1対の外側ディスクから動力を取り出す様に構成する事もできる。
Also, a plurality of power rollers 7 and 7 each having a partially spherical convex surface are sandwiched between the input disks 2a and 2b and the output disks 6 and 6. These power rollers 7 and 7 are rotatably supported by trunnions 8 and 8, and rotate with the rotation of both input side disks 2 a and 2 b, while the both input side disks 2 a and 2 b rotate the both Power is transmitted to the output side disks 6 and 6. That is, when the toroidal continuously variable transmission is operated, the input shaft 2a on one side (left side in FIG. 4) is rotationally driven by the drive shaft 9 via the mechanical pressing device 10. As a result, the pair of input-side disks 2a and 2b supported on the axially opposite ends of the input rotating shaft 1 rotate synchronously while being pressed toward each other. The rotation is transmitted to the output side disks 6 and 6 through the power rollers 7 and 7 and is taken out from the output gear 5.
Or, contrary to the above description, the power of the drive source is input to the inner disk provided at the position of the both output side disks 6, 6 and a pair of positions provided at the positions of the both input side disks 2a, 2b. It can also be configured to extract power from the outer disk.
又、前記入力回転軸1の軸方向両端部の近傍で、前記両入力側ディスク2a、2bを軸方向両側から挟む位置に、それぞれ予圧ばね11a、11bを設けている。そして、前記押圧装置10の非作動時(前記駆動軸9の停止時)にも、前記各パワーローラ7、7の周面と、前記入力側、出力側各ディスク2a、2b、6の内側面との転がり接触部(トラクション部)の面圧を、必要最低限だけは確保する様にしている。従って、これら各転がり接触部は、トロイダル型無段変速機の運転開始直後から、過大な滑りを生じる事なく、動力伝達を開始する。 Preload springs 11a and 11b are provided in the vicinity of both end portions in the axial direction of the input rotary shaft 1 at positions where the both input side disks 2a and 2b are sandwiched from both sides in the axial direction. Even when the pressing device 10 is not in operation (when the drive shaft 9 is stopped), the peripheral surfaces of the power rollers 7 and 7 and the inner surfaces of the input side and output side disks 2a, 2b, 6 are provided. The surface pressure of the rolling contact part (traction part) is secured to the minimum necessary. Therefore, these rolling contact portions start power transmission without causing excessive slip immediately after the start of operation of the toroidal continuously variable transmission.
ところで、前記必要最低限の面圧を確保する為の弾力は、前記押圧装置10の内径側に配置した予圧ばね11aにより得る事ができる。前記入力回転軸1の軸方向一端部(先端部)に螺着したローディングナット12と入力側ディスク2bの外側面との間に配置した予圧ばね11bは、前記押圧装置10の急な作動時に加わる衝撃を緩和するものであり、省略できる。そこで、部品点数の低減及び組立作業効率の向上などを図る為に、入力回転軸の軸方向一端部に螺着したローディングナットと入力側ディスクの外側面との間から、予圧ばねを省略すると共に、該入力側ディスクを前記入力回転軸に対して、ボールスプラインを介さずに、スプライン係合により相対回転不能に支持する構造が提案されている(例えば特許文献3参照)。又、ローディングナットを設ける代わりに、入力回転軸の先端部に外向フランジ状の鍔部を設けたり、コッタと呼ばれる係止環を入力回転軸の先端部に係止する構造なども知られている。 By the way, the elasticity for securing the necessary minimum surface pressure can be obtained by the preload spring 11 a disposed on the inner diameter side of the pressing device 10. A preload spring 11b disposed between a loading nut 12 screwed to one axial end portion (tip portion) of the input rotary shaft 1 and the outer surface of the input side disk 2b is applied when the pressing device 10 is suddenly operated. It can alleviate the impact and can be omitted. Therefore, in order to reduce the number of parts and improve the assembly work efficiency, the preload spring is omitted from between the loading nut screwed to one axial end of the input rotation shaft and the outer surface of the input side disk. A structure has been proposed in which the input-side disk is supported relative to the input rotation shaft so as not to be relatively rotatable by spline engagement without using a ball spline (see, for example, Patent Document 3). In addition, instead of providing a loading nut, an outward flange-like flange is provided at the tip of the input rotation shaft, or a structure called a cotter for locking an engagement ring at the tip of the input rotation shaft is also known. .
何れの構造の場合にも、入力回転軸の軸方向一端部外周面に設けた雄スプライン部と、入力側ディスクの中心孔に設けた雌スプライン部とをスプライン係合させて、この入力側ディスクを前記入力回転軸に対して同期した回転を可能に支持しているが、前記雄スプライン部と前記雌スプライン部とのスプライン係合部には、パワーローラによる押し付け力に伴う前記入力側ディスクの弾性変形に起因した応力が集中し易いだけでなく、スプライン係合部に存在する隙間に起因してフレッチング摩耗が生じ易い。 In any structure, the input side disk is formed by spline-engaging the male spline part provided on the outer peripheral surface of the axial end of the input rotating shaft and the female spline part provided in the center hole of the input side disk. The spline engagement portion between the male spline portion and the female spline portion is supported on the input disk by the pressing force of the power roller. Not only is stress due to elastic deformation easily concentrated, but also fretting wear is likely to occur due to a gap existing in the spline engaging portion.
この様な事情に鑑みて、本発明者等は、図5に示した様に、入力側ディスク2cの中心孔13に、雌スプライン部14に隣接する状態で外側円筒面部15を設けると共に、入力回転軸1aの外周面に、雄スプライン部16に隣接する状態で内側円筒面部17を設け、前記雌スプライン部14と前記雄スプライン部16とをスプライン係合させると共に、前記外側円筒面部15と前記内側円筒面部17とを軸方向全長に亙り締り嵌めで嵌合させる構造を先に考えた。又、この状態で、前記入力側ディスク2cの中心孔13に設けたディスク側段差面18と、前記入力回転軸1aの外周面に設けたシャフト側段差面19とを軸方向に当接させる。この様な構造によれば、前記外側円筒面部15と前記内側円筒面部17との嵌合部により、前記入力回転軸1aに対する前記入力側ディスク2cの支持剛性を向上させる事ができる為、スプライン係合部の応力集中やフレッチング摩耗の発生を抑制できる。 In view of such circumstances, the present inventors provided an outer cylindrical surface portion 15 in the center hole 13 of the input side disk 2c adjacent to the female spline portion 14 as shown in FIG. An inner cylindrical surface portion 17 is provided on the outer peripheral surface of the rotating shaft 1a so as to be adjacent to the male spline portion 16, and the female spline portion 14 and the male spline portion 16 are spline-engaged, and the outer cylindrical surface portion 15 and the The structure in which the inner cylindrical surface portion 17 is fitted over the entire length in the axial direction with an interference fit was considered first. Further, in this state, the disc-side step surface 18 provided in the center hole 13 of the input-side disc 2c and the shaft-side step surface 19 provided on the outer peripheral surface of the input rotating shaft 1a are brought into contact in the axial direction. According to such a structure, the fitting portion between the outer cylindrical surface portion 15 and the inner cylindrical surface portion 17 can improve the support rigidity of the input disk 2c with respect to the input rotating shaft 1a. Generation of stress concentration and fretting wear at joints can be suppressed.
但し、上述した様な図5に示した構造は、トロイダル型無段変速機の組立作業効率の向上を図る面からは、未だ改良の余地がある。
即ち、前記入力側ディスク2cを前記入力回転軸1aの周囲に組み付ける際、前記雌スプライン部14と前記雄スプライン部16とがスプライン係合するよりも先に、前記外側円筒面部15と前記内側円筒面部17とが締り嵌めで嵌合してしまう。この為、前記雌スプライン部14と前記雄スプライン部16との位相を合せる作業が困難になる可能性がある。この様な問題を解決する為に、例えば図6に示す様に、ディスク側段差面18から雌スプライン部14aの軸方向一端部までの軸方向長さαを、シャフト側段差面19から内側円筒面部17の軸方向他端部までの軸方向長さβよりも長くする事も考えられるが、単にこの様な構成を採用した場合には、入力側ディスク2cが徒に大型化するといった新たな問題を生じてしまう。
本発明は、上述の様な事情に鑑み、スプライン係合部にフレッチング摩耗が生じる事を抑制できる構造であって、外側ディスクを大型化せずに、組立作業効率の向上を図れる、トロイダル型無段変速機の構造を実現すべく発明したものである。
However, the structure shown in FIG. 5 as described above still has room for improvement from the viewpoint of improving the assembly work efficiency of the toroidal-type continuously variable transmission.
That is, when the input side disk 2c is assembled around the input rotary shaft 1a, the outer cylindrical surface portion 15 and the inner cylinder are connected before the female spline portion 14 and the male spline portion 16 are spline-engaged. The surface portion 17 is fitted with an interference fit. For this reason, the operation | work which adjusts the phase of the said female spline part 14 and the said male spline part 16 may become difficult. In order to solve such a problem, for example, as shown in FIG. 6, the axial length α from the disk-side step surface 18 to one axial end portion of the female spline portion 14a is set as follows. Although it is conceivable that the length of the surface portion 17 is longer than the axial length β up to the other end portion in the axial direction, when such a configuration is simply adopted, the input side disk 2c is increased in size. It will cause problems.
In view of the circumstances as described above, the present invention has a structure capable of suppressing the occurrence of fretting wear at the spline engaging portion, and can improve the assembly work efficiency without increasing the size of the outer disk. This invention was invented to realize the structure of the step transmission.
本発明のトロイダル型無段変速機は、回転軸と、1対の外側ディスクと、内側ディスクと、複数のパワーローラとを備える。
前記回転軸は、外周面のうちの軸方向一端側部分に、軸方向一端側から他端側の順に、雄スプライン部と、軸方向他端側を向いたシャフト側段差面と、大径内側嵌合面部及びこの大径内側嵌合面部より外径寸法の小さい小径内側嵌合面部を有する内側嵌合面部とを設けている。
前記1対の外側ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向側面同士を対向させた状態で、前記回転軸の軸方向両側部分に、この回転軸と同期した回転を可能に、この回転軸にそれぞれ支持されている。
又、前記内側ディスクは、断面円弧形のトロイド曲面である軸方向両側面を前記両外側ディスクの軸方向側面に対向させた状態で、前記回転軸の軸方向中間部周囲に、この回転軸に対する相対回転を可能に支持されたもので、一体若しくは1対の素子により構成されている。
又、前記複数のパワーローラは、それぞれ支持部材(例えばトラニオン)に回転自在に支持されたもので、部分球状凸面としたそれぞれの周面を、前記内側ディスクの軸方向両側面と前記1対の外側ディスクの軸方向側面とに当接させている。
又、前記1対の外側ディスクのうち軸方向一端側に設けられた一方の外側ディスクは、その内周面(中心孔)に、軸方向他端側から一端側の順に、小径外側嵌合面部及びこの小径外側嵌合面部よりも内径寸法の大きい大径外側嵌合面部を有する外側嵌合面部と、軸方向一端側を向いたディスク側段差面と、前記外側嵌合面部よりも内接円の直径が大きい雌スプライン部とを、それぞれ設けている。そして、このうちのディスク側段差面を前記シャフト側段差面に当接させた状態で、前記雌スプライン部を前記雄スプライン部にスプライン係合させると共に、前記大径外側嵌合面部を前記大径内側嵌合面部に締り嵌めで嵌合(圧入)させ、且つ、前記小径外側嵌合面部を前記小径内側嵌合面部に締り嵌めで嵌合(圧入)させる。
更に、追加的に押圧装置を設ける場合には、この押圧装置を、前記1対の外側ディスクのうちの軸方向他端側に設けられた他方の外側ディスクと、前記回転軸との間に設け、この他方の外側ディスクを軸方向一端側(一方の外側ディスク)に向けて押圧する。この様な押圧装置としては、ローディングカムを組み込んだ機械式、又は、油圧シリンダ及びピストンを備えた油圧式の押圧装置を使用する事ができる。
The toroidal continuously variable transmission of the present invention includes a rotating shaft, a pair of outer disks, an inner disk, and a plurality of power rollers.
The rotating shaft has a male spline portion, a shaft-side step surface facing the other end side in the axial direction, and a large-diameter inner side in the order from one end side to the other end side in the axial end portion of the outer peripheral surface. A fitting surface portion and an inner fitting surface portion having a small-diameter inner fitting surface portion whose outer diameter dimension is smaller than that of the large-diameter inner fitting surface portion are provided.
The pair of outer disks rotate in synchronization with the rotating shaft on both axial sides of the rotating shaft in a state in which the axial side surfaces, which are toroidal curved surfaces each having a circular arc cross section, face each other. It is possible to support each of the rotating shafts.
In addition, the inner disk has a rotating shaft around an axially intermediate portion of the rotating shaft in a state in which both axial side surfaces which are toroidal curved surfaces having an arcuate cross section are opposed to the axial side surfaces of the outer disks. It is supported so as to be capable of relative rotation with respect to, and is constituted by one or a pair of elements.
Further, each of the plurality of power rollers is rotatably supported by a support member (for example, trunnion), and each peripheral surface formed as a partial spherical convex surface is formed on the pair of axially opposite side surfaces of the inner disk and the pair of power rollers. It is in contact with the axial side surface of the outer disk.
Also, one outer disk provided on one axial end side of the pair of outer disks has a small-diameter outer fitting surface portion on the inner peripheral surface (center hole) in order from the other axial end side to the one end side. And an outer fitting surface portion having a large-diameter outer fitting surface portion having a larger inner diameter than the small-diameter outer fitting surface portion, a disc-side step surface facing one end in the axial direction, and an inscribed circle than the outer fitting surface portion. Female spline portions each having a large diameter are provided. The female spline portion is spline-engaged with the male spline portion while the disc-side step surface is in contact with the shaft-side step surface, and the large-diameter outer fitting surface portion is The inner fitting surface is fitted (press-fit) with an interference fit, and the small-diameter outer fitting surface is fitted (press-fit) with the small-diameter inner fitting surface.
Further, when a pressing device is additionally provided, the pressing device is provided between the other outer disk provided on the other axial end side of the pair of outer disks and the rotating shaft. Then, the other outer disk is pressed toward one axial end side (one outer disk). As such a pressing device, a mechanical pressing device incorporating a loading cam or a hydraulic pressing device including a hydraulic cylinder and a piston can be used.
上述の様な本発明を実施する場合には、例えば請求項2に記載した発明の様に、前記雌スプライン部の軸方向一端部から前記大径外側嵌合面部の軸方向一端部までの軸方向寸法を、前記雄スプライン部の軸方向他端部から前記大径内側嵌合面部の軸方向他端部までの軸方向寸法よりも大きくする。且つ、前記雌スプライン部の軸方向一端部から前記小径外側嵌合面部の軸方向一端部までの軸方向寸法を、前記雄スプライン部の軸方向他端部から前記小径内側嵌合面部の軸方向他端部までの軸方向寸法よりも大きくする。 When carrying out the present invention as described above, for example, as in the invention described in claim 2, the shaft from one axial end portion of the female spline portion to one axial end portion of the large-diameter outer fitting surface portion. The direction dimension is made larger than the axial dimension from the other axial end of the male spline part to the other axial end of the large-diameter inner fitting surface part. In addition, the axial dimension from one axial end of the female spline portion to one axial end of the small-diameter outer fitting surface portion, and the axial direction of the small-diameter inner fitting surface portion from the other axial end of the male spline portion. It is larger than the axial dimension to the other end.
以上の様な構成を有する本発明のトロイダル型無段変速機によれば、スプライン係合部にフレッチング摩耗が生じる事を抑制できると共に、(一方の)外側ディスクを大型化せずに、組立作業効率の向上を図れる。
即ち、本発明の場合には、外側ディスクの中心孔に設けた外側嵌合面部として、軸方向一端側部分の大径外側嵌合面部と、軸方向他端側部分の小径外側嵌合面部とを有するものを使用している。そして、回転軸の外周面に設けた内側嵌合面部のうち、軸方向一端側部分の大径内側嵌合面部に前記大径外側嵌合面部を締り嵌めで嵌合すると共に、軸方向他端側部分の小径内側嵌合面部に前記小径外側嵌合面部を締り嵌めで嵌合している。
この様に、本発明の場合には、前記外側ディスクを前記回転軸に対して、スプライン係合させるだけでなく、少なくとも軸方向2個所位置で締り嵌めにより嵌合(外嵌)している為、前記回転軸に対する前記外側ディスクの支持剛性を向上させる事ができる。この為、スプライン係合部にフレッチング摩耗が生じる事を抑制できる。
又、本発明の場合には、前記外側ディスクを、前記回転軸の周囲に軸方向他端側から組み付ける際に、前記外側嵌合面部のうちの前記大径外側嵌合面部を、前記内側嵌合面部のうちの軸方向他端側部分に設けられた前記小径内側嵌合面部に嵌合させずに済み、前記大径外側嵌合面部が軸方向一端側部分に設けられた前記大径内側嵌合面部に嵌合するか、又は、前記小径外側嵌合面部が軸方向他端側部分に設けられた前記小径内側嵌合面部に嵌合するまで、前記外側ディスクを軸方向一端側に移動させる事ができる。従って、本発明によれば、前記外側嵌合面部と前記内側嵌合面部との間で嵌合が生じる際の、前記回転軸に対する前記外側ディスクの軸方向位置を、外側嵌合面部及び内側嵌合面部を軸方向に亙り直径寸法が変化しない円筒面とした場合に比べて、軸方向一端側にずらす事ができる。そして、この様に、嵌合が生じる軸方向位置をずらせる分だけ、前記雌スプライン部の軸方向寸法を長くする程度を小さくしても(軸方向寸法を短くしても)、前記外側嵌合面部と前記内側嵌合面部とが嵌合するよりも先に、前記雌スプライン部を前記雄スプライン部にスプライン係合させる事ができる。つまり、前記外側嵌合面部と前記内側嵌合面部とが締り嵌めで嵌合するよりも先に、前記雌スプライン部と前記雄スプライン部との位相を合せる作業を行う事ができる。この結果、本発明の場合には、前記外側ディスクを必要以上に大型化せずに、トロイダル型無段変速機の組立作業効率の向上を図れる。
According to the toroidal-type continuously variable transmission of the present invention having the above-described configuration, it is possible to prevent fretting wear from occurring at the spline engaging portion and to perform assembly work without increasing the size of the outer disk (one). Efficiency can be improved.
That is, in the case of the present invention, as an outer fitting surface portion provided in the center hole of the outer disk, a large-diameter outer fitting surface portion at one axial end side portion and a small-diameter outer fitting surface portion at the other axial end portion. Is used. And among the inner fitting surface portions provided on the outer peripheral surface of the rotating shaft, the large diameter outer fitting surface portion is fitted into the large diameter inner fitting surface portion of the one axial end side portion and the other axial end portion is fitted. The small-diameter outer fitting surface portion is fitted to the small-diameter inner fitting surface portion of the side portion by an interference fit.
Thus, in the case of the present invention, the outer disk is not only spline-engaged with the rotating shaft, but is also fitted (externally fitted) by interference fitting at least at two positions in the axial direction. Further, the support rigidity of the outer disk with respect to the rotating shaft can be improved. For this reason, it can suppress that fretting wear arises in a spline engaging part.
Further, in the case of the present invention, when the outer disk is assembled from the other axial end around the rotation shaft, the large-diameter outer fitting surface portion of the outer fitting surface portions is inserted into the inner fitting. The large-diameter inner side where the large-diameter outer fitting surface part is provided in the axial one end side part is not required to be fitted into the small-diameter inner fitting surface part provided in the other axial-side part of the mating surface part. The outer disk is moved to one end in the axial direction until it is fitted to the fitting surface or until the small-diameter outer fitting surface is fitted to the small-diameter inner fitting surface provided at the other axial end portion. You can make it. Therefore, according to the present invention, when the fitting occurs between the outer fitting surface portion and the inner fitting surface portion, the axial position of the outer disk with respect to the rotating shaft is determined as the outer fitting surface portion and the inner fitting. Compared to the case where the mating surface portion is a cylindrical surface that is not changed in diameter in the axial direction, it can be shifted to one end in the axial direction. In this way, even if the axial dimension of the female spline portion is lengthened to the extent that the axial position where the fitting occurs is shifted (even if the axial dimension is shortened), the outer fitting is performed. The female spline portion can be spline engaged with the male spline portion before the mating surface portion and the inner fitting surface portion are fitted. That is, before the outer fitting surface portion and the inner fitting surface portion are fitted with an interference fit, the work of aligning the phases of the female spline portion and the male spline portion can be performed. As a result, in the case of the present invention, it is possible to improve the assembly work efficiency of the toroidal type continuously variable transmission without increasing the size of the outer disk more than necessary.
[実施の形態の1例]
図1〜3は、本発明の実施の形態の1例を示している。本例のトロイダル型無段変速機20は、例えば航空機の発電機用として使用される変速機であり、特許請求の範囲に記載した回転軸に相当する入力回転軸1bと、それぞれが特許請求の範囲に記載した外側ディスクに相当する1対の入力側ディスク2d、2eと、特許請求の範囲に記載した内側ディスクに相当する出力側ディスク6aと、複数個のパワーローラ7、7と、図示しない複数個のトラニオンと、油圧式の押圧装置(ローディング装置)10aとを備えている。
[Example of Embodiment]
1 to 3 show an example of an embodiment of the present invention. The toroidal-type continuously variable transmission 20 of this example is a transmission that is used, for example, for an aircraft generator. Each of the input rotary shaft 1b corresponding to the rotary shaft described in the claims, A pair of input side disks 2d and 2e corresponding to the outer disk described in the range, an output side disk 6a corresponding to the inner disk described in the claims, a plurality of power rollers 7 and 7, and not shown A plurality of trunnions and a hydraulic pressing device (loading device) 10a are provided.
前記入力回転軸1bは、アクチュエータケース21の上側に、1対の支柱22、22と前記出力側ディスク6aとを介して回転のみ可能に支持されている。具体的には、前記入力回転軸1bは、前記両支柱22、22の中間部に設けた支持環部にそれぞれスラストアンギュラ型の玉軸受23、23により回転自在に支持された前記出力側ディスク6aの内径側に、1対のラジアルニードル軸受24、24により回転自在に支持されている。
尚、本明細書及び特許請求の範囲で「軸方向」とは、特に断らない限り、前記入力回転軸1bの軸方向を言い、図1〜3の左右方向を指す。又、本例の場合には、前記入力回転軸1bの先端側である図1〜3の右側が、特許請求の範囲の軸方向一端側に相当する。反対に、前記入力回転軸1bの基端側である図1〜3の左側が、特許請求の範囲の軸方向他端側に相当する。
The input rotary shaft 1b is supported on the upper side of the actuator case 21 through a pair of support columns 22 and 22 and the output side disk 6a so as to be rotatable only. Specifically, the input rotary shaft 1b is configured such that the output-side disk 6a is rotatably supported by thrust angular ball bearings 23 and 23 on support ring portions provided at intermediate portions of the support columns 22 and 22, respectively. Is supported by a pair of radial needle bearings 24, 24 in a rotatable manner.
The "axial direction" in the present specification and claims, unless otherwise indicated, refers to the axial direction of the entering Chikarakai rotating shaft 1b, refer to the left-right direction in FIGS. Moreover, in the case of this example, the right side of FIGS. 1-3 which is the front end side of the said input rotating shaft 1b is equivalent to the axial direction one end side of a claim. On the contrary, the left side of FIGS. 1 to 3 which is the base end side of the input rotary shaft 1b corresponds to the other end side in the axial direction of the claims.
前記両入力側ディスク2d、2eは、それぞれが断面円弧形のトロイド曲面である互いの軸方向側面(内側面)同士を対向させた状態で、前記入力回転軸1bの軸方向両端寄り部分に、この入力回転軸1bと同期した回転を可能に且つ遠近動可能に支持されている。 The two input-side disks 2d and 2e are arranged near the both ends in the axial direction of the input rotary shaft 1b in a state where the axial side surfaces (inner side surfaces) each of which is a toroidal curved surface having an arc cross section are opposed to each other. In addition, it is supported so as to be able to rotate in synchronism with the input rotating shaft 1b and to be able to move far and near.
この為に、前記両入力側ディスク2d、2eのうち、前記入力回転軸1bの軸方向他端側(基端側)である、図1の左側に設けられた入力側ディスク2dを、前記押圧装置10aを構成するシリンダ25を介して、軸方向の若干の変位を可能に、且つ、前記入力回転軸1bと同期した回転を可能に、この入力回転軸1bに支持している。前記シリンダ25は、内径側シリンダ素子26の外周縁部と、外径側シリンダ素子27の内周縁部とを結合固定する事により構成されており、このうちの内径側シリンダ素子26を、前記入力回転軸1bの外周面の軸方向他端寄り部分に形成した雄スプライン部に対し、スプライン係合させている。 For this purpose, of the two input side disks 2d and 2e, the input side disk 2d provided on the left side in FIG. 1, which is the other axial end side (base end side) of the input rotary shaft 1b, is pressed. through a cylinder 25 constituting a device 10a, to allow a slight displacement in the axial direction, and, to enable rotation in synchronization with the input rotary shaft 1b, it is supported on the input Chikarakai rotating shaft 1b. The cylinder 25 is configured by coupling and fixing an outer peripheral edge portion of the inner diameter side cylinder element 26 and an inner peripheral edge portion of the outer diameter side cylinder element 27, of which the inner diameter side cylinder element 26 is connected to the input side. The male spline part formed in the axial direction other end part vicinity of the outer peripheral surface of the rotating shaft 1b is engaged with the spline.
又、前記入力回転軸1bのうちで、前記内径側シリンダ素子26を外嵌した部分よりも軸方向他端側部分に係止凹溝28を形成し、この係止凹溝28内に係止環(コッタ)29を係止している。そして、この係止環29の軸方向一端面を、前記内径側シリンダ素子26の内径側部分の軸方向他端面に突き当てて、前記シリンダ25が前記入力側ディスク2dから離れる方向(図1の左側)に変位するのを阻止している。従って、前記内径側シリンダ素子26は、前記入力回転軸1bの軸方向他端寄り部分に対し、トルク伝達を可能に、且つ、軸方向他端側への変位を阻止された状態で、がたつきなく外嵌されている。 Further, a locking groove 28 is formed in the other end portion in the axial direction of the input rotary shaft 1b than the portion where the inner diameter side cylinder element 26 is fitted, and the locking groove 28 is locked in the locking groove 28. A ring (cotter) 29 is locked. Then, one axial end surface of the locking ring 29 is abutted against the other axial end surface of the inner diameter side portion of the inner diameter side cylinder element 26 so that the cylinder 25 moves away from the input side disk 2d (see FIG. 1). To the left). Accordingly, the inner diameter side cylinder element 26 can be transmitted to the portion near the other end in the axial direction of the input rotating shaft 1b, and can be transmitted while being prevented from being displaced toward the other end in the axial direction. It has been fitted outside.
尚、前記係止環29は、複数(例えば2〜4個)の部分円弧状の素子を円周方向に組み合わせて成るもので、前記係止凹溝28に係止した状態で、円環状の前記係止環29を構成している。又、前記係止環29を構成する複数の素子が、前記係止凹溝28から径方向外方に抜け出るのを防止する為、これら各素子の周囲を、抑え環30により覆っている。図示の構造の場合には、エンジン等の動力源によりこの抑え環30を回転駆動し、この抑え環30に伝わった駆動トルクを、前記シリンダ25を介して、前記入力回転軸1b、及び、前記入力側ディスク2dに伝達する様に構成している。 The locking ring 29 is formed by combining a plurality of (for example, 2 to 4) partial arc-shaped elements in the circumferential direction. The locking ring 29 is configured. Further, in order to prevent a plurality of elements constituting the locking ring 29 from coming out radially outward from the locking groove 28, the periphery of each of these elements is covered with a restraining ring 30. In the case of the illustrated structure, the restraining ring 30 is rotationally driven by a power source such as an engine, and the driving torque transmitted to the restraining ring 30 is transmitted via the cylinder 25 to the input rotary shaft 1b and It is configured to transmit to the input side disk 2d.
更に、前記シリンダ25内には、2枚のピストン板31a、31bを組み付けている。そして、軸方向他端側のピストン板31aと前記シリンダ25の底板部32との間部分、及び、軸方向一端側のピストン板31bと前記入力側ディスク2dとの間部分を、それぞれ油圧室33a、33bとして、ダブルピストン型の前記押圧装置10aを構成している。そして、これら各油圧室33a、33b内に所定圧の油圧を導入する事で、軸方向他端側の前記入力側ディスク2dを、軸方向一端側の前記入力側ディスク2cに向け、前記油圧の大きさに応じた力で押圧可能としている。 Further, two piston plates 31 a and 31 b are assembled in the cylinder 25. A hydraulic chamber 33a is provided between a portion between the piston plate 31a on the other axial end side and the bottom plate portion 32 of the cylinder 25 and a portion between the piston plate 31b on the one axial end side and the input side disk 2d. , 33b constitutes the double piston type pressing device 10a. Then, by introducing a predetermined hydraulic pressure into each of the hydraulic chambers 33a and 33b, the input side disk 2d on the other end side in the axial direction is directed toward the input side disk 2c on the one end side in the axial direction, and the hydraulic pressure is reduced. It can be pressed with a force according to the size.
これに対し、前記両入力側ディスク2d、2eのうち、前記入力回転軸1bの軸方向一端側(先端側)である、図1の右側に設けられた、特許請求の範囲に記載した一方の外側ディスクに相当する入力側ディスク2eは、前記入力側ディスク2dから離れる方向である軸方向一端側への変位を不能に、且つ、前記入力回転軸1bと同期した回転を可能に、この入力回転軸1bに支持されている。この為に、本例の場合には、前記入力回転軸1bの軸方向一端寄り部分を、軸方向他端側から一端側(図1〜3の左から右側)の順に、小径軸部34と大径軸部35とをシャフト側段差面36により連続させた段付状に構成している。そして、このうちの小径軸部34の外周面を、特許請求の範囲に記載した内側嵌合面部37としている。又、前記大径軸部35の軸方向中間部に、この大径軸部35のうちの残部よりも外径寸法が大きくなった雄スプライン部38を設けている。又、図示の例では、前記大径軸部35のうちで、前記雄スプライン部38の軸方向一端側に隣接する部分に、径方向内方に凹んだ逃げ凹溝39を全周に亙り設けている。又、前記シャフト側段差面36は、前記入力回転軸1bの中心軸に対して直交する仮想平面上に存在している。 On the other hand, one of the two input-side disks 2d and 2e, which is provided on the right side of FIG. 1 that is one end side (tip side) in the axial direction of the input rotation shaft 1b. input side disk 2e corresponding to the outer disc, so as not to displacement of a direction away from the input side disk 2d in the axial direction one end side, and, to enable rotation in synchronization with the input rotary shaft 1b, the input and it is supported by the rotation axis 1b. For this reason, in the case of this example, the portion closer to one end in the axial direction of the input rotary shaft 1b is arranged in the order from the other end side in the axial direction to the one end side (from left to right in FIGS. The large-diameter shaft portion 35 is configured in a stepped shape in which the shaft-side step surface 36 is continuous. Of these, the outer peripheral surface of the small-diameter shaft portion 34 is the inner fitting surface portion 37 described in the claims. Further, a male spline portion 38 having an outer diameter dimension larger than that of the remaining portion of the large diameter shaft portion 35 is provided at an axially intermediate portion of the large diameter shaft portion 35. In the illustrated example, a relief groove 39 that is recessed inward in the radial direction is provided over the entire circumference in a portion of the large-diameter shaft portion 35 that is adjacent to one end of the male spline portion 38 in the axial direction. ing. Further, the shaft side step surface 36 exists on a virtual plane orthogonal to the central axis of the input rotation shaft 1b.
又、前記入力側ディスク2eの中心には、前記入力回転軸1bを挿通する為の、軸方向に貫通した中心孔40が形成されている。この中心孔40は、軸方向他端側から一端側(図1〜3の左から右側)の順に、小径孔部41と中径孔部42とをディスク側段差面43により連続させると共に、この中径孔部42と大径孔部44とをディスク側平坦面45により連続させた段付状に構成している。そして、このうちの中径孔部42の軸方向中間部に、前記雄スプライン部38とスプライン係合可能な雌スプライン部46を設けている。又、前記小径孔部41の内周面を、前記雌スプライン部46の内接円の直径よりも小さな内径寸法を有する外側嵌合面部47としている。又、前記ディスク側段差面43及び前記ディスク側平坦面45は、前記入力側ディスク2eの中心軸に対して直交する仮想平面上に存在している。 Further, the center of the input side disk 2e is for inserting the entering-Chikarakai rotation axis 1b, the center hole 40 that penetrates in the axial direction is formed. The center hole 40 has a small-diameter hole portion 41 and a medium-diameter hole portion 42 that are continued from the other end side in the axial direction to one end side (from left to right in FIGS. The medium-diameter hole portion 42 and the large-diameter hole portion 44 are configured in a stepped shape in which the disk-side flat surface 45 is continuous. In addition, a female spline portion 46 that can be spline-engaged with the male spline portion 38 is provided in an intermediate portion in the axial direction of the medium diameter hole portion 42. Further, the inner peripheral surface of the small-diameter hole portion 41 is an outer fitting surface portion 47 having an inner diameter dimension smaller than the diameter of the inscribed circle of the female spline portion 46. The disk-side step surface 43 and the disk-side flat surface 45 exist on a virtual plane orthogonal to the central axis of the input-side disk 2e.
前記トロイダル型無段変速機20の組み立て状態では、前記入力回転軸1bの外周面に形成したシャフト側段差面36と前記入力側ディスク2eの内周面に形成したディスク側段差面43とを軸方向に当接させる事で、前記入力回転軸1bに対する前記入力側ディスク2eの軸方向に関する位置決めを図った状態で、前記雄スプライン部38と前記雌スプライン部46とをスプライン係合させると共に、前記内側嵌合面部37と前記外側嵌合面部47とを締り嵌めにより嵌合(圧入、インロー嵌合)させる。この様な構成により、前記入力側ディスク2eを、前記入力回転軸1bの軸方向一端寄り部分に対し、軸方向一端側への変位を阻止した状態で、この入力回転軸1bと同期した回転を可能に支持している。 In the assembled state of the toroidal-type continuously variable transmission 20, the shaft-side step surface 36 formed on the outer peripheral surface of the input rotary shaft 1b and the disk-side step surface 43 formed on the inner peripheral surface of the input-side disc 2e are pivoted. by to abut against the direction, in a state which attained positioning in the axial direction of the input side disk 2e for the entering Chikarakai rotating shaft 1b, and said male spline section 38 and the female spline section 46 causes splined The inner fitting surface portion 37 and the outer fitting surface portion 47 are fitted (press-fit, inlay fitting) by interference fitting. With such a configuration, the input-side disk 2e is rotated in synchronization with the input rotation shaft 1b in a state in which the input-side disk 2e is prevented from being displaced toward one end in the axial direction with respect to a portion near one end of the input rotation shaft 1b. I support it as possible.
特に本例の場合には、前記トロイダルダル型無段変速機20の組立作業効率の向上を図る面から、前記内側嵌合面部37と前記外側嵌合面部47との嵌合部48の構造を、次の様に工夫している。
即ち、本例の場合には、前記内側嵌合面部37を、軸方向に関して外径寸法が変化しない円筒面とはせずに、軸方向位置に応じて外径寸法を異ならせている。具体的には、前記内側嵌合面部37のうち、軸方向一端側部分に大径内側嵌合面部49を設けると共に、軸方向他端側部分に、この大径内側嵌合面部49よりも外径寸法の小さい小径内側嵌合面部50を設けている。又、前記内側嵌合面部37の軸方向中間部(大径内側嵌合面部49と小径内側嵌合面部50との間部分)に、前記小径内側嵌合面部50よりも外径寸法の小さい内側逃げ部51を設けている。前記大径内側嵌合面部49及び前記小径内側嵌合面部50のそれぞれの外周面は、軸方向に関して外径寸法が変化しない円筒面状となっている。
In particular, in the case of this example, the structure of the fitting portion 48 between the inner fitting surface portion 37 and the outer fitting surface portion 47 is designed in order to improve the assembly work efficiency of the toroidal dull type continuously variable transmission 20. Devised as follows.
That is, in the case of this example, the inner fitting surface portion 37 is not a cylindrical surface whose outer diameter dimension does not change in the axial direction, and the outer diameter dimension is varied according to the axial position. Specifically, a large-diameter inner fitting surface portion 49 is provided on one end side in the axial direction of the inner fitting surface portion 37, and an outer side of the large-diameter inner fitting surface portion 49 is provided on the other end side in the axial direction. A small-diameter inner fitting surface portion 50 having a small diameter is provided. Further, an inner side having an outer diameter smaller than that of the small-diameter inner fitting surface portion 50 at an intermediate portion in the axial direction of the inner fitting surface portion 37 (a portion between the large-diameter inner fitting surface portion 49 and the small-diameter inner fitting surface portion 50). An escape portion 51 is provided. The outer peripheral surfaces of the large-diameter inner fitting surface portion 49 and the small-diameter inner fitting surface portion 50 have a cylindrical surface shape whose outer diameter does not change in the axial direction.
又、前記外側嵌合面部47に就いても、軸方向に関して内径寸法が変化しない円筒面とはせずに、軸方向位置に応じて内径寸法を異ならせている。具体的には、前記外側嵌合面部47のうち、軸方向他端側部分に小径外側嵌合面部53を設けると共に、軸方向一端側部分に、この小径外側嵌合面部53よりも内径寸法の大きい大径外側嵌合面部52を設けている。又、前記外側嵌合面部47の軸方向中間部(大径外側嵌合面部52と小径外側嵌合面部53との間部分)に、前記大径外側嵌合面部52よりも内径寸法の大きい外側逃げ部54を設けている。前記大径外側嵌合面部52及び前記小径外側嵌合面部53のそれぞれの内周面は、軸方向に関して外径寸法が変化しない円筒面状となっている。又、前記大径外側嵌合面部52の内径寸法は、前記内側嵌合面部37のうち、軸方向他端側部分に設けられた前記小径内側嵌合面部50の外径寸法よりも大きく、軸方向一端側部分に設けられた前記大径内側嵌合面部49の外径寸法よりも僅かに小さい。これに対し、前記小径外側嵌合面部53の内径寸法は、前記内側嵌合面部37のうち、軸方向他端側部分に設けられた前記小径内側嵌合面部50の外径寸法よりも僅かに小さい。 Also, the outer fitting surface portion 47 is not a cylindrical surface whose inner diameter dimension does not change in the axial direction, but the inner diameter dimension is varied according to the axial position. Specifically, a small-diameter outer fitting surface portion 53 is provided on the other end portion in the axial direction of the outer fitting surface portion 47, and the inner diameter dimension is smaller than that of the small-diameter outer fitting surface portion 53 on the one axial end portion. A large large-diameter outer fitting surface portion 52 is provided. Further, an outer side having an inner diameter dimension larger than that of the large-diameter outer fitting surface portion 52 at an intermediate portion in the axial direction of the outer fitting surface portion 47 (a portion between the large-diameter outer fitting surface portion 52 and the small-diameter outer fitting surface portion 53). An escape portion 54 is provided. The inner peripheral surfaces of the large-diameter outer fitting surface portion 52 and the small-diameter outer fitting surface portion 53 have a cylindrical surface shape whose outer diameter dimension does not change in the axial direction. Further, the inner diameter dimension of the large-diameter outer fitting surface portion 52 is larger than the outer diameter dimension of the small-diameter inner fitting surface portion 50 provided in the other axial end portion of the inner fitting surface portion 37. It is slightly smaller than the outer diameter of the large-diameter inner fitting surface portion 49 provided at one end portion in the direction. On the other hand, the inner diameter dimension of the small-diameter outer fitting surface portion 53 is slightly smaller than the outer diameter dimension of the small-diameter inner fitting surface portion 50 provided at the other axial end portion of the inner fitting surface portion 37. small.
又、前記入力回転軸1bの軸方向中間部周囲に、前記出力側ディスク6aを、前記入力回転軸1bに対する相対回転を可能に支持している。そして、この状態で、前記出力側ディスク6aの軸方向両側面(外側面)を、前記両入力側ディスク2d、2eの軸方向側面に対向させている。又、これら両入力側ディスク2d、2eと前記出力側ディスク6aとの間に、複数のパワーローラ7、7を挟持している。これら各パワーローラ7、7は、前記両入力側ディスク2d、2eの回転に伴って回転しつつ、これら両入力側ディスク2d、2eから前記出力側ディスク6aに動力を伝達する。 Further, the output side disk 6a is supported around the intermediate portion in the axial direction of the input rotation shaft 1b so as to be able to rotate relative to the input rotation shaft 1b. In this state, both side surfaces (outer surfaces) in the axial direction of the output side disk 6a are opposed to side surfaces in the axial direction of the both input side disks 2d and 2e. A plurality of power rollers 7 and 7 are sandwiched between the input side disks 2d and 2e and the output side disk 6a. The power rollers 7 and 7 transmit power from the input disks 2d and 2e to the output disk 6a while rotating with the rotation of the input disks 2d and 2e.
以上の様な構成を有する本例のトロイダル型無段変速機20を組み立てるには、前記入力側ディスク2e、前記出力側ディスク6a、及び、前記入力側ディスク2dの順に、前記入力回転軸1bの周囲にこの入力回転軸1bの軸方向他端側から組み付けた後、前記入力側ディスク2eと前記出力側ディスク6aとの間部分、この入力側ディスク2dと前この力側ディスク6aとの間部分に、それぞれ前記パワーローラ7、7を配置する。次いで、前記押圧装置10aを、前記入力回転軸1bの周囲にこの入力回転軸1bの軸方向他端側から組み付け、前記入力回転軸1bの軸方向他端寄り部分に前記係止環29及び前記抑え環30を固定して、本例のトロイダル型無段変速機20を得る。 In order to assemble the toroidal type continuously variable transmission 20 of the present example having the above-described configuration, the input rotary shaft 1b of the input side disk 2e, the output side disk 6a, and the input side disk 2d are sequentially arranged. after assembling the other axial end side of the input Chikarakai rotating shaft 1b around the portion between the input side disk 2e and the output side disks 6a, between the input side disk 2d before the force side disk 6a The power rollers 7 and 7 are disposed in the intermediate portion, respectively. Then, the locking of the pressing device 10a, assembled from the axial direction other end of the input Chikarakai rotating shaft 1b around the input rotation axis 1b, in the axial direction near the other end portion of the entering Chikarakai rotating shaft 1b The toroidal type continuously variable transmission 20 of this example is obtained by fixing the ring 29 and the holding ring 30.
特に本例の場合には、前記入力回転軸1bに対する前記入力側ディスク2eの組立作業を、次の様にして行う。
先ず、図3の(A)に示した様に、前記入力側ディスク2eを軸方向一端側に移動させて、この入力側ディスク2eの中心孔40の軸方向一端側部分に設けられた前記大径外側嵌合面部52を、前記入力回転軸1bのうちの小径内側嵌合面部50に嵌合させる事なく、この小径内側嵌合面部50の周囲を軸方向一端側に通過させる。そして、前記大径外側嵌合面部52が前記内側逃げ部51の周囲に位置した状態で、前記雌スプライン部46の軸方向一端部と前記雄スプライン部38の軸方向他端部との間に軸方向隙間Aを存在させると共に、前記大径外側嵌合面部52の軸方向一端部と前記大径内側嵌合面部49の軸方向他端部との間に前記軸方向隙間Aよりも大きい軸方向隙間B、及び、前記小径外側嵌合面部53の軸方向一端部と前記小径内側嵌合面部50の軸方向他端部との間に前記軸方向隙間Aよりも大きい軸方向隙間Cをそれぞれ存在させる。本例の場合には、この様な寸法関係を有する軸方向隙間A、B、Cが形成される様に、前記入力回転軸1b及び前記入力側ディスク2eの各部の寸法を規制している。例えば、前記軸方向隙間Aが前記軸方向隙間Bよりも小さくなる様に、前記雌スプライン部46の軸方向軸方向一端部から前記大径外側嵌合面部52の軸方向一端部までの軸方向寸法X1を、前記雄スプライン部38の軸方向他端部から前記大径内側嵌合面部49の軸方向他端部までの軸方向寸法Y1よりも大きくしている(X1>Y1)。又、前記軸方向隙間Aが前記軸方向隙間Cよりも小さくなる様に、前記雌スプライン部46の軸方向一端部から前記小径外側嵌合面部53の軸方向一端部までの軸方向寸法X2を、前記雄スプライン部38の軸方向他端部から前記小径内側嵌合面部50の軸方向他端部までの軸方向寸法Y2よりも大きくしている(X2>Y2)。
Particularly in the case of this example, the assembly work of the input side disk 2e with respect to the input rotating shaft 1b is performed as follows.
First, as shown in FIG. 3A, the input side disk 2e is moved to one end side in the axial direction, and the large side provided at one end part in the axial direction of the center hole 40 of the input side disk 2e. the radially outer side fitting surface 52, without causing fitted to the small-diameter inner fitting surface 50 of the entering Chikarakai rotating shaft 1b, passing around the small-diameter inner engagement surface 50 on one axial end. Then, in a state where the large-diameter outer fitting surface portion 52 is positioned around the inner escape portion 51, it is between the one axial end portion of the female spline portion 46 and the other axial end portion of the male spline portion 38. An axis larger than the axial gap A between the axial end of the large-diameter outer fitting surface portion 52 and the other axial end of the large-diameter inner fitting surface portion 49 while having an axial clearance A. An axial gap C larger than the axial gap A between the axial gap B and the axial end of the small-diameter outer fitting surface portion 53 and the other axial end of the small-diameter inner fitting surface portion 50, respectively. To exist. In the case of this example, the dimensions of each part of the input rotary shaft 1b and the input side disk 2e are regulated so that the axial gaps A, B, C having such a dimensional relationship are formed. For example, the axial direction from one axial end portion of the female spline portion 46 to one axial end portion of the large-diameter outer fitting surface portion 52 so that the axial clearance A is smaller than the axial clearance B. The dimension X1 is larger than the axial dimension Y1 from the other axial end of the male spline portion 38 to the other axial end of the large-diameter inner fitting surface portion 49 (X1> Y1). Further, an axial dimension X2 from one axial end portion of the female spline portion 46 to one axial end portion of the small-diameter outer fitting surface portion 53 is set so that the axial clearance A becomes smaller than the axial clearance C. The axial dimension Y2 from the other axial end of the male spline portion 38 to the other axial end of the small-diameter inner fitting surface portion 50 is larger (X2> Y2).
そして、本例の場合には、前記大径外側嵌合面部52を前記内側逃げ部51の周囲に位置させた状態で、前記入力回転軸1bに対して前記入力側ディスク2eを相対回転させる事により、前記雄スプライン部38と前記雌スプライン部46との位相合わせを行う。 In the case of this example, the input side disk 2e is rotated relative to the input rotation shaft 1b with the large-diameter outer fitting surface portion 52 positioned around the inner escape portion 51. Thus, the male spline portion 38 and the female spline portion 46 are phase-matched.
そして、前記雄スプライン部38と前記雌スプライン部46との位相を一致させた状態で、前記入力側ディスク2eを軸方向一端側に向けて更に移動させる。これにより、先ず、前記雄スプライン部38と前記雌スプライン部46とをスプライン係合させる。続いて、前記大径内側嵌合面部49と前記大径外側嵌合面部52とを締り嵌めにより嵌合させると共に、前記小径内側嵌合面部50と前記小径外側嵌合面部53とを締り嵌めにより嵌合させる。尚、前記大径内側嵌合面部49と前記大径外側嵌合面部52とを嵌合させるタイミングと、前記小径内側嵌合面部50と前記小径外側嵌合面部53とを嵌合させるタイミングとは、前記軸方向隙間B、Cの大きさを調整する事で、同時にする事もできるし、何れか一方を他方よりも早くする事もできる。又、本例の場合には、前記雄スプライン部38と前記雌スプライン部46とをスプライン係合させる際に、前記内側嵌合面部37と前記外側嵌合面部47とが緩く嵌合した状態になっており、当該部分により芯出しを行える為、スプライン係合させる作業を容易にできる。 Then, in a state where the phases of the male spline portion 38 and the female spline portion 46 are matched, the input side disk 2e is further moved toward the one end side in the axial direction. Thereby, first, the male spline portion 38 and the female spline portion 46 are spline-engaged. Subsequently, the large-diameter inner fitting surface portion 49 and the large-diameter outer fitting surface portion 52 are fitted by an interference fit, and the small-diameter inner fitting surface portion 50 and the small-diameter outer fitting surface portion 53 are fitted by an interference fit. Fit. The timing for fitting the large-diameter inner fitting surface portion 49 and the large-diameter outer fitting surface portion 52 and the timing for fitting the small-diameter inner fitting surface portion 50 and the small-diameter outer fitting surface portion 53 are as follows. By adjusting the sizes of the axial gaps B and C, it is possible to make them simultaneously, or to make either one faster than the other. In the case of this example, when the male spline portion 38 and the female spline portion 46 are spline-engaged, the inner fitting surface portion 37 and the outer fitting surface portion 47 are loosely fitted. Therefore, since the centering can be performed by this portion, the work of engaging the spline can be facilitated.
以上の様な構成を有する本例のトロイダル型無段変速機20によれば、前記スプライン係合部55にフレッチング摩耗が生じる事を抑制できると共に、前記入力側ディスク2eを大型化せずに、組立作業効率の向上を図れる。
即ち、本例の場合には、前記入力側ディスク2eの中心孔40に設けた外側嵌合面部47として、軸方向一端側部分の大径外側嵌合面部52と、軸方向他端側部分の小径外側嵌合面部53とを有するものを使用している。そして、前記入力回転軸1bの外周面に設けた内側嵌合面部37のうち、軸方向一端側部分の大径内側嵌合面部49に前記大径外側嵌合面部52を締り嵌めで嵌合すると共に、軸方向他端側部分の小径内側嵌合面部50に前記小径外側嵌合面部53を締り嵌めで嵌合している。この様に、本例の場合には、前記入力側ディスク2eを前記入力回転軸1bに対して、スプライン係合させるだけでなく、軸方向に離隔した2個所位置で締り嵌めにより嵌合(外嵌)している為、前記入力回転軸1bに対する前記入力側ディスク2eの支持剛性を向上させる事ができる。この為、前記スプライン係合部55にフレッチング摩耗が生じる事を抑制できる。
According to the toroidal-type continuously variable transmission 20 of the present example having the above-described configuration, it is possible to suppress the occurrence of fretting wear in the spline engaging portion 55, and without increasing the size of the input side disk 2e. The assembly work efficiency can be improved.
That is, in the case of this example, as the outer fitting surface portion 47 provided in the center hole 40 of the input side disk 2e, the large-diameter outer fitting surface portion 52 at one end portion in the axial direction and the other end portion portion in the axial direction. The thing which has the small diameter outer fitting surface part 53 is used. Of the inner fitting surface portion 37 provided on the outer peripheral surface of the input rotary shaft 1b, the large-diameter outer fitting surface portion 52 is fitted into the large-diameter inner fitting surface portion 49 at one end in the axial direction by an interference fit. At the same time, the small-diameter outer fitting surface portion 53 is fitted into the small-diameter inner fitting surface portion 50 at the other end portion in the axial direction by an interference fit. Thus, in the case of this example, not only the input side disk 2e is spline-engaged with the input rotary shaft 1b, but also fitted by an interference fit at two positions separated in the axial direction (outside). Therefore, the support rigidity of the input side disk 2e with respect to the input rotation shaft 1b can be improved. For this reason, it is possible to suppress fretting wear from occurring in the spline engaging portion 55.
又、本例の場合には、前記入力側ディスク2eを、前記入力回転軸1aの周囲に軸方向他端側から組み付ける際に、前記外側嵌合面部47のうちの前記大径外側嵌合面部52を、前記内側嵌合面部37のうちの軸方向他端側部分に設けられた前記小径内側嵌合面部50に嵌合させずに済み、前記大径外側嵌合面部52が軸方向一端側部分に設けられた前記大径内側嵌合面部49に嵌合するか、又は、前記小径外側嵌合面部53が軸方向他端側部分に設けられた前記小径内側嵌合面部50に嵌合するまで、前記入力側ディスク2eを軸方向一端側に移動させる事ができる。従って、本例のトロイダル型無段変速機20によれば、前記外側嵌合面部47と前記内側嵌合面部37との間で嵌合が生じる際の、前記入力回転軸1aに対する前記入力側ディスク2eの軸方向位置を、外側嵌合面部及び内側嵌合面部を軸方向に亙り直径寸法が変化しない円筒面とした場合に比べて、軸方向一端側にずらす事ができる。そして、この様に、嵌合が生じる軸方向位置をずらせる分だけ、前記雌スプライン部46の軸方向寸法を長くする程度を小さくしても(軸方向寸法を短くしても)、前記外側嵌合面部47と前記内側嵌合面部37とが締り嵌めで嵌合するよりも先に、前記雌スプライン部46を前記雄スプライン部38にスプライン係合させる事ができる。つまり、前記外側嵌合面部47と前記内側嵌合面部37とが締り嵌めで嵌合するよりも先に、前記雌スプライン部46と前記雄スプライン部38との位相を合せる作業を行う事ができる。この結果、本例の場合には、前記入力側ディスク2eを必要以上に大型化せずに、トロイダル型無段変速機20の組立作業効率の向上を図れる。 Further, in the case of this example, when the input side disk 2e is assembled from the other end side in the axial direction around the input rotary shaft 1a, the large-diameter outer fitting surface portion of the outer fitting surface portion 47. 52 does not need to be fitted to the small-diameter inner fitting surface portion 50 provided at the other axial end portion of the inner fitting surface portion 37, and the large-diameter outer fitting surface portion 52 is disposed at one axial end side. The small-diameter outer fitting surface portion 53 is fitted to the small-diameter inner fitting surface portion 50 provided at the other end portion in the axial direction. The input disk 2e can be moved to one axial end. Therefore, according to the toroidal-type continuously variable transmission 20 of the present example, the input-side disk with respect to the input rotary shaft 1a when the outer fitting surface portion 47 and the inner fitting surface portion 37 are fitted. The axial position of 2e can be shifted to the one end side in the axial direction as compared with the case where the outer fitting surface portion and the inner fitting surface portion are made cylindrical surfaces with the diameter dimension not changed over the axial direction. In this way, even if the axial dimension of the female spline portion 46 is lengthened to the extent that the axial position where the fitting occurs is shifted, the outer side is reduced. The female spline portion 46 can be spline-engaged with the male spline portion 38 before the fitting surface portion 47 and the inner fitting surface portion 37 are fitted with an interference fit. That is, prior to said outer fitting surface 47 and the inner fitting surface 37 is fitted with an interference fit, be carried out the task of matching the phases of the female spline section 4 6 and the male spline section 38 it can. As a result, in this example, the assembly work efficiency of the toroidal type continuously variable transmission 20 can be improved without increasing the size of the input side disk 2e more than necessary.
更に、本例の場合には、前記入力側ディスク2eのうちの軸方向中間部乃至一端寄り部分(中径孔部42)に、前記雌スプライン部46を形成しているが、前記入力側ディスク2eの径方向に関する厚さ寸法(肉厚)は、その軸方向側面(軸方向他端面)を断面円弧形のトロイド曲面としている事に起因して、軸方向一端側に向かう程厚くなる傾向にある。この為、本例の場合には、前記雌スプライン部46を、前記入力側ディスク2eのうちで径方向厚さ寸法が十分に大きくなった部分に形成している為、前記トロイダル型無段変速機20の運転に伴う応力集中に係らわず、変形等の損傷が生じる事を有効に防止できる。 Further, in the case of the present example, the female spline portion 46 is formed in the axially middle portion or the portion closer to one end (medium diameter hole portion 42) of the input side disc 2e. The thickness dimension (thickness) in the radial direction of 2e tends to become thicker toward the one end side in the axial direction due to the axial side surface (the other end surface in the axial direction) being a toroidal curved surface having a circular arc cross section. It is in. For this reason, in the case of this example, the female spline portion 46 is formed in a portion of the input side disk 2e having a sufficiently large radial thickness dimension. Regardless of the stress concentration associated with the operation of the machine 20, it is possible to effectively prevent damage such as deformation.
本発明は、図示の様なハーフトロイダル型に限らず、フルトロイダル型のトロイダル型無段変速機で実施する事もできる。又、本発明を実施する場合に、外側嵌合面部及び内側嵌合面部の構造に就いては、上述した様な実施の形態の構造に限定されない。即ち、外側嵌合面部に関しては、軸方向一端側部分に大径外側嵌合面部が設けられると共に、軸方向他端側部分に前記大径外側嵌合面部よりも内径寸法の小さい小径外側嵌合面部が設けられていれば足り、これら大径外側嵌合面部と小径外側嵌合面部との間に必ずしも外側逃げ部が設けられている必要はない。又、内側嵌合面部に関しても、軸方向一端側部分に大径内側嵌合面部が設けられると共に、軸方向他端側部分に前記大径内側嵌合面部よりも外径寸法の小さい小径内側嵌合面部が設けられていれば足り、これら大径内側嵌合面部と小径内側嵌合面部との間に必ずしも内側逃げ部が設けられている必要はない。更に、大径外側嵌合面部と小径外側嵌合面部との間に、内径寸法がこれら大径外側嵌合面部と小径外側嵌合面部との中間となる中径外側嵌合面部を設け、この中径外側嵌合面部を、大径内側嵌合面部と小径内側嵌合面部との間に設けた、外径寸法がこれら大径内側嵌合面部と小径内側嵌合面部との中間となる中径内側嵌合面部に対し、締り嵌めで嵌合する構成を採用する事もできる。又、前記実施の形態では、1対の外側ディスクを、動力を入力する入力側ディスクとし、内側ディスクを、動力を出力する出力側ディスクとした場合に就いて説明したが、本発明を実施する場合には、これとは反対に、内側ディスクを、動力を入力する入力側ディスクとし、1対の外側ディスクを、動力を出力する出力側ディスクとする事もできる。 The present invention is not limited to the half toroidal type as shown in the figure, and can be implemented by a full toroidal type toroidal continuously variable transmission. Moreover, when implementing this invention, about the structure of an outer fitting surface part and an inner fitting surface part, it is not limited to the structure of embodiment as mentioned above. That is, with regard to the outer fitting surface portion, a large-diameter outer fitting surface portion is provided at one end portion in the axial direction, and a small-diameter outer fitting having a smaller inner diameter than the large-diameter outer fitting surface portion at the other axial end portion. It suffices if the surface portion is provided, and it is not always necessary to provide the outer clearance portion between the large-diameter outer fitting surface portion and the small-diameter outer fitting surface portion. Also, with respect to the inner fitting surface portion, a large-diameter inner fitting surface portion is provided at one end portion in the axial direction, and a small-diameter inner fitting having a smaller outer diameter than the large-diameter inner fitting surface portion is provided at the other axial end portion. It is sufficient if the mating surface portion is provided, and it is not always necessary to provide the inner relief portion between the large-diameter inner fitting surface portion and the small-diameter inner fitting surface portion. Further, between the large-diameter outer fitting surface portion and the small-diameter outer fitting surface portion, there is provided an intermediate-diameter outer fitting surface portion whose inner diameter is intermediate between the large-diameter outer fitting surface portion and the small-diameter outer fitting surface portion. A medium-diameter outer fitting surface portion is provided between the large-diameter inner fitting surface portion and the small-diameter inner fitting surface portion, and the outer diameter dimension is intermediate between the large-diameter inner fitting surface portion and the small-diameter inner fitting surface portion. It is also possible to employ a configuration in which the inner side fitting surface portion is fitted with an interference fit. In the above embodiment, the description has been given of the case where the pair of outer disks are input disks for inputting power, and the inner disks are output disks for outputting power. In some cases, on the contrary, the inner disk may be an input side disk for inputting power, and the pair of outer disks may be an output side disk for outputting power.
1、1a、1b 入力回転軸
2a、2b、2c、2d、2e 入力側ディスク
3 ボールスプライン
4 出力筒
5 出力歯車
6、6a 出力側ディスク
7 パワーローラ
8 トラニオン
9 駆動軸
10、10a 押圧装置
11a、11b 予圧ばね
12 ローディングナット
13 中心孔
14、14a 雌スプライン部
15 外側円筒面部
16 雄スプライン部
17 内側円筒面部
18 ディスク側段差面
19 シャフト側段差面
20 トロイダル型無段変速機
21 アクチュエータケース
22 支柱
23 玉軸受
24 ラジアルニードル軸受
25 シリンダ
26 内径側シリンダ素子
27 外径側シリンダ素子
28 係止凹溝
29 係止環
30 抑え環
31a、31b ピストン板
32 底板部
33a、33b 油圧室
34 小径軸部
35 大径軸部
36 シャフト側段差面
37 内側嵌合面部
38 雄スプライン部
39 逃げ凹溝
40 中心孔
41 小径孔部
42 中径孔部
43 ディスク側段差面
44 大径孔部
45 ディスク側平坦面
46 雌スプライン部
47 外側嵌合面部
48 嵌合部
49 大径内側嵌合面部
50 小径内側嵌合面部
51 内側逃げ部
52 大径外側嵌合面部
53 小径外側嵌合面部
54 外側逃げ部
55 スプライン係合部
DESCRIPTION OF SYMBOLS 1, 1a, 1b Input rotary shaft 2a, 2b, 2c, 2d, 2e Input side disk 3 Ball spline 4 Output cylinder 5 Output gear 6, 6a Output side disk 7 Power roller 8 Trunnion 9 Drive shaft 10, 10a Pressing device 11a, 11b preload spring 12 loading nut 13 central hole 14,14a female spline portion 15 outer cylindrical surface 16 male spline portion 17 inside cylindrical surface portion 18 the disc-side stepped surface 19 shaft-side stepped surface 20 toroidal type continuously variable transmission 21 actuator case 22 posts 23 Ball bearing 24 Radial needle bearing 25 Cylinder 26 Inner diameter side cylinder element 27 Outer diameter side cylinder element 28 Engagement groove 29 Engagement ring 30 Retaining ring 31a, 31b Piston plate 32 Bottom plate part 33a, 33b Hydraulic chamber 34 Small diameter shaft part 35 Large Diameter shaft part 36 Shaft Step surface 37 Inner fitting surface portion 38 Male spline portion 39 Escape groove 40 Center hole 41 Small diameter hole portion 42 Medium diameter hole portion 43 Disc side step surface 44 Large diameter hole portion 45 Disc side flat surface 46 Female spline portion 47 Outer fitting Face portion 48 Fitting portion 49 Large diameter inner fitting surface portion 50 Small diameter inner fitting surface portion 51 Inner relief portion 52 Large diameter outer fitting surface portion 53 Small diameter outer fitting surface portion 54 Outer relief portion 55 Spline engagement portion
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016227563A JP6705735B2 (en) | 2016-11-24 | 2016-11-24 | Toroidal type continuously variable transmission |
PCT/JP2017/040956 WO2018096983A1 (en) | 2016-11-24 | 2017-11-14 | Toroidal continuously variable transmission |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016227563A JP6705735B2 (en) | 2016-11-24 | 2016-11-24 | Toroidal type continuously variable transmission |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018084282A JP2018084282A (en) | 2018-05-31 |
JP2018084282A5 true JP2018084282A5 (en) | 2019-10-24 |
JP6705735B2 JP6705735B2 (en) | 2020-06-03 |
Family
ID=62195128
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016227563A Active JP6705735B2 (en) | 2016-11-24 | 2016-11-24 | Toroidal type continuously variable transmission |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6705735B2 (en) |
WO (1) | WO2018096983A1 (en) |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4017319B2 (en) * | 2000-07-04 | 2007-12-05 | 株式会社ジェイテクト | Toroidal type continuously variable transmission and method of manufacturing input disk used therefor |
JP2015090160A (en) * | 2013-11-05 | 2015-05-11 | 日本精工株式会社 | Toroidal continuously variable transmission |
JP6252227B2 (en) * | 2014-02-18 | 2017-12-27 | 日本精工株式会社 | Toroidal continuously variable transmission |
US10436294B2 (en) * | 2014-04-02 | 2019-10-08 | Nsk Ltd. | Toroidal continuously variable transmission |
JP6409329B2 (en) * | 2014-05-15 | 2018-10-24 | 日本精工株式会社 | Toroidal continuously variable transmission |
-
2016
- 2016-11-24 JP JP2016227563A patent/JP6705735B2/en active Active
-
2017
- 2017-11-14 WO PCT/JP2017/040956 patent/WO2018096983A1/en active Application Filing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2012111562A1 (en) | Toroidal type continuously variable transmission | |
WO2017043316A1 (en) | Torque-fluctuation-minimizing device, torque converter, and motive power transmission device | |
JP6117991B2 (en) | Toroidal continuously variable transmission | |
WO2018096941A1 (en) | Toroidal continuously variable transmission | |
JP6252227B2 (en) | Toroidal continuously variable transmission | |
JP2018084282A5 (en) | ||
JP6705735B2 (en) | Toroidal type continuously variable transmission | |
JP6110215B2 (en) | Toroidal continuously variable transmission | |
JP5982291B2 (en) | Toroidal continuously variable transmission | |
JP5953977B2 (en) | Toroidal continuously variable transmission | |
JP6372304B2 (en) | Toroidal continuously variable transmission | |
JP6561572B2 (en) | Toroidal continuously variable transmission | |
JP6277833B2 (en) | Toroidal continuously variable transmission | |
JP6427886B2 (en) | Toroidal continuously variable transmission | |
JP6528358B2 (en) | Toroidal type continuously variable transmission | |
WO2015052950A1 (en) | Single-cavity toroidal continuously variable transmission | |
JP6519333B2 (en) | Toroidal type continuously variable transmission | |
WO2018110446A1 (en) | Toroidal continuously variable transmission | |
JP6458443B2 (en) | Toroidal continuously variable transmission | |
JP6492906B2 (en) | Toroidal continuously variable transmission | |
JP6528361B2 (en) | Toroidal type continuously variable transmission | |
JP6561554B2 (en) | Toroidal continuously variable transmission | |
JP2014234870A (en) | Toroidal type continuously variable transmission | |
JP6248442B2 (en) | Toroidal continuously variable transmission | |
JP6413367B2 (en) | Toroidal continuously variable transmission |