[go: up one dir, main page]

JP2018082676A - Production method of constituent oils and fats - Google Patents

Production method of constituent oils and fats Download PDF

Info

Publication number
JP2018082676A
JP2018082676A JP2016229275A JP2016229275A JP2018082676A JP 2018082676 A JP2018082676 A JP 2018082676A JP 2016229275 A JP2016229275 A JP 2016229275A JP 2016229275 A JP2016229275 A JP 2016229275A JP 2018082676 A JP2018082676 A JP 2018082676A
Authority
JP
Japan
Prior art keywords
acid
oil
fatty acid
mass
lipase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016229275A
Other languages
Japanese (ja)
Other versions
JP7092460B2 (en
Inventor
加瀬 実
Minoru Kase
実 加瀬
勇樹 松井
Yuuki Matsui
勇樹 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kao Corp
Original Assignee
Kao Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kao Corp filed Critical Kao Corp
Priority to JP2016229275A priority Critical patent/JP7092460B2/en
Publication of JP2018082676A publication Critical patent/JP2018082676A/en
Application granted granted Critical
Publication of JP7092460B2 publication Critical patent/JP7092460B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Enzymes And Modification Thereof (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Fats And Perfumes (AREA)

Abstract

【課題】ドコサヘキサエン酸を含むトリアシルグリセロールの生成を抑え、ジアシルグリセロール内に選択的にドコサヘキサエン酸を含有する構造油脂を製造する方法の提供。【解決手段】構成脂肪酸中のドコサヘキサエン酸の85質量%以上をジアシルグリセロール内に含有する構造油脂の製造方法であって、ドコサヘキサエン酸を含み、且つ酸価が170〜185mgKOH/gである脂肪酸類と、グリセリンとを、リゾムコール・ミエヘイ(Rhizomucour miehei)由来の1,3位選択性リパーゼを用いてエステル化反応させる工程を含む、製造方法。【選択図】なしPROBLEM TO BE SOLVED: To provide a method for producing a structural fat / oil containing docosahexaenoic acid selectively in diacylglycerol by suppressing the production of triacylglycerol containing docosahexaenoic acid. SOLUTION: This is a method for producing a structural fat and oil containing 85% by mass or more of docosahexaenoic acid in a constituent fatty acid in diacylglycerol, and the fatty acid containing docosahexaenoic acid and having an acid value of 170 to 185 mgKOH / g. , A production method comprising an esterification reaction of glycerin with a 1,3-position selective lipase derived from Rhizomucour mieehei. [Selection diagram] None

Description

本発明は、ドコサヘキサエン酸を含有する構造油脂の製造方法に関する。   The present invention relates to a method for producing a structural fat containing docosahexaenoic acid.

魚油の構成成分であるエイコサペンタエン酸(C20:5、EPA)やドコサヘキサエン酸(C22:6、DHA)等のω3系高度不飽和脂肪酸はその生理活性が注目され、これを含む油脂の利用が望まれている。   Ω3 polyunsaturated fatty acids such as eicosapentaenoic acid (C20: 5, EPA) and docosahexaenoic acid (C22: 6, DHA), which are constituents of fish oil, are attracting attention for their bioactivity, and the use of oils and fats containing them is hoped for. It is rare.

従来、ドコサヘキサエン酸を含むジアシルグリセロールの製造方法として、脂肪酸とグリセリンとのエステル化反応が知られている(例えば、特許文献1、2)。エステル化反応は、アルカリ触媒等を用いる化学法とリパーゼ等の酵素を用いる酵素法に大別されるが、温和な条件で反応を行う酵素法が好ましい。   Conventionally, an esterification reaction between a fatty acid and glycerin is known as a method for producing diacylglycerol containing docosahexaenoic acid (for example, Patent Documents 1 and 2). The esterification reaction is roughly classified into a chemical method using an alkali catalyst or the like and an enzyme method using an enzyme such as lipase, but an enzyme method in which the reaction is performed under mild conditions is preferable.

特開2004−208539号公報JP 2004-208539 A 特開2004−222595号公報JP 2004-222595 A

一般に、酵素法に用いるリパーゼにとってドコサヘキサエン酸は基質として認識し難く、特にグリセロールのsn−1位とsn−3位に特異性を示す1,3位選択性リパーゼの反応性は低いため(特許文献1及び2)、ドコサヘキサエン酸を含むジアシルグリセロールの製造には部分グリセリドに特異的に作用する部分グリセリドリパーゼが利用されてきた。
しかしながら、部分グリセリドリパーゼを用いてドコサヘキサエン酸とグリセリンとをエステル化反応させると、ジアシルグリセロールだけでなく、ドコサヘキサエン酸を含むトリアシルグリセロールも多く副生してしまうことが判明した。
ここで、ドコサヘキサエン酸の生理機能発現をより効果的に引き出すためには、構造油脂として、トリアシルグリセロールよりもジアシルグリセロールが好ましい。言い換えれば、同等の生理機能発現のためには、トリアシルグリセロールは、ジアシルグリセロールよりも多い量を要する。そして、ドコサヘキサエン酸は不飽和結合を多く有しているために熱や光に対して安定性が極めて低く、これを豊富に含む油脂は容易に劣化臭・異臭味を発生する。従って、ドコサヘキサエン酸の量が多くなると、抗酸化剤や、劣化臭・異臭味の発生抑制のためのマスキング剤等の添加剤もより多く必要となるが、このような添加剤は少量であるほうが望ましい。他方、トリアシルグリセロールではなく、ジアシルグリセロールが選択的に生成するようになれば、逆の場合に比べ、このような添加剤の使用量を少なくすることができる。
In general, docosahexaenoic acid is difficult to recognize as a substrate for lipases used in enzymatic methods, and in particular, the reactivity of 1,3-position selective lipase showing specificity at the sn-1 and sn-3 positions of glycerol is low (patent document) 1 and 2) For the production of diacylglycerol containing docosahexaenoic acid, a partial glyceride lipase that specifically acts on partial glycerides has been used.
However, it has been found that when docosahexaenoic acid and glycerin are esterified using a partial glyceride lipase, not only diacylglycerol but also triacylglycerol containing docosahexaenoic acid is produced as a by-product.
Here, in order to more effectively bring out the physiological function expression of docosahexaenoic acid, diacylglycerol is preferable to triacylglycerol as the structural oil. In other words, triacylglycerol requires a larger amount than diacylglycerol for equivalent physiological function expression. And since docosahexaenoic acid has many unsaturated bonds, its stability with respect to heat and light is extremely low, and fats and oils rich in these easily generate deteriorated odors and off-flavors. Therefore, when the amount of docosahexaenoic acid is increased, more additives such as antioxidants and masking agents for suppressing the generation of deteriorated odors and off-flavors are required. desirable. On the other hand, if diacylglycerol is selectively produced instead of triacylglycerol, the amount of such an additive can be reduced compared to the reverse case.

よって、本発明の課題は、ドコサヘキサエン酸を含むトリアシルグリセロールの生成を抑え、ジアシルグリセロール内に選択的にドコサヘキサエン酸を含有する構造油脂を製造する方法を提供することにある。   Therefore, the subject of this invention is suppressing the production | generation of the triacylglycerol containing docosahexaenoic acid, and providing the method of manufacturing the structure fats and oils which contain docosahexaenoic acid selectively in diacylglycerol.

本発明者は、上記課題に鑑み鋭意研究を行ったところ、リゾムコール・ミエヘイ(Rhizomucour miehei)に由来する1,3位選択性リパーゼを用いて、酸価の高いドコサヘキサエン酸を含む脂肪酸類とグリセリンとをエステル化反応させれば、意外にも反応が進行し、且つ、ドコサヘキサエン酸を含むトリアシルグリセロールの副生が抑えられ、ジアシルグリセロール内に選択的にドコサヘキサエン酸を含む構造油脂が得られることを見出した。   The present inventor conducted intensive studies in view of the above-described problems, and as a result, using a 1,3-position selective lipase derived from Rhizomucor miehei, fatty acids containing docosahexaenoic acid having a high acid value, glycerin, and If the esterification reaction is carried out, the reaction proceeds unexpectedly, and the by-product of triacylglycerol containing docosahexaenoic acid is suppressed, and a structural fat or oil containing docosahexaenoic acid selectively in diacylglycerol can be obtained. I found it.

すなわち、本発明は、構成脂肪酸中のドコサヘキサエン酸の85質量%以上をジアシルグリセロール内に含有する構造油脂の製造方法であって、
ドコサヘキサエン酸を含み、且つ酸価が170〜185mgKOH/gである脂肪酸類と、グリセリンとを、リゾムコール・ミエヘイ(Rhizomucour miehei)由来の1,3位選択性リパーゼを用いてエステル化反応させる工程を含む、製造方法を提供するものである。
That is, the present invention is a method for producing a structural fat or oil containing 85% by mass or more of docosahexaenoic acid in constituent fatty acids in diacylglycerol,
Including a step of esterifying a fatty acid containing docosahexaenoic acid and having an acid value of 170 to 185 mg KOH / g and glycerin using a 1,3-position selective lipase derived from Rhizomucor miehei. A manufacturing method is provided.

本発明によれば、ドコサヘキサエン酸を含むトリアシルグリセロールが少なく、ジアシルグリセロール内に多くのドコサヘキサエン酸を含有する構造油脂が得られる。   According to the present invention, there are few triacylglycerols containing docosahexaenoic acid, and structural oils and fats containing a large amount of docosahexaenoic acid in diacylglycerol can be obtained.

本発明の製造方法は、構成脂肪酸中のドコサヘキサエン酸の85質量%以上をジアシルグリセロール内に含有する構造油脂の製造方法であって、
ドコサヘキサエン酸を含み、且つ酸価が170〜185mgKOH/gである脂肪酸類と、グリセリンとを、リゾムコール・ミエヘイ(Rhizomucour miehei)由来の1,3位選択性リパーゼを用いてエステル化反応させる工程を有する。
本明細書において「油脂」は「油」と同義であり、油脂(油)を構成する物質にはトリアシルグリセロール(TAG)のみならずモノアシルグリセロール(MAG)やジアシルグリセロール(DAG)も含まれる。すなわち、油脂(油)は、モノアシルグリセロール、ジアシルグリセロール及びトリアシルグリセロールのいずれか1種以上を含むものである。
The production method of the present invention is a method for producing a structural fat or oil containing 85% by mass or more of docosahexaenoic acid in a constituent fatty acid in diacylglycerol,
A step of esterifying a fatty acid containing docosahexaenoic acid and having an acid value of 170 to 185 mg KOH / g and glycerin using a 1,3-position selective lipase derived from Rhizomucor miehei. .
In this specification, "oil" is synonymous with "oil", and substances constituting the oil (oil) include not only triacylglycerol (TAG) but also monoacylglycerol (MAG) and diacylglycerol (DAG). . That is, fats and oils (oil) contain at least one of monoacylglycerol, diacylglycerol, and triacylglycerol.

〔脂肪酸類〕
本発明で用いられる脂肪酸類は、ドコサヘキサエン酸を含み、且つ酸価が170〜185mgKOH/gである。
脂肪酸類は、脂肪酸の他、アシルグリセロール(トリアシルグリセロール、ジアシルグリセロール、モノアシルグリセロール)等を含んでいても良い。
脂肪酸類の酸価(AV)は170〜185mgKOH/gであるが、反応効率の点、ジアシルグリセロールに結合するDHAを高くできる点から、184mgKOH/g以下であるのが好ましく、また、更に172mgKOH/g以上、更に174mgKOH/g以上、更に176mgKOH/g以上であるのが好ましい。
[Fatty acids]
The fatty acids used in the present invention contain docosahexaenoic acid and have an acid value of 170 to 185 mg KOH / g.
Fatty acids may contain acyl glycerol (triacyl glycerol, diacyl glycerol, monoacyl glycerol) and the like in addition to fatty acids.
The acid value (AV) of the fatty acids is 170 to 185 mgKOH / g, but is preferably 184 mgKOH / g or less, more preferably 172 mgKOH / g from the viewpoint of reaction efficiency and the ability to increase DHA binding to diacylglycerol. g or more, preferably 174 mgKOH / g or more, more preferably 176 mgKOH / g or more.

エステル化反応でドコサヘキサエン酸が作用しやすいように、脂肪酸類には、ドコサヘキサエン酸が38質量%以上含まれるのが好ましく、更に43〜58質量%含まれるのが好ましい。
また、脂肪酸類中のω3系高度不飽和脂肪酸の含有量は、同様の点から、40質量%以上が好ましく、更に45〜60質量%が好ましい。
本明細書において、ω3系高度不飽和脂肪酸とは、炭素数が18以上、好ましくは20以上であり、不飽和結合数が3以上、好ましくは5以上である長鎖脂肪酸である。ドコサヘキサエン酸の他、例えば、エイコサペンタエン酸が挙げられる。
The fatty acids preferably contain 38% by mass or more of docosahexaenoic acid, and more preferably 43 to 58% by mass so that docosahexaenoic acid can easily act in the esterification reaction.
Moreover, 40 mass% or more is preferable from the same point, and, as for content of (omega) 3 type | system | group highly unsaturated fatty acid in fatty acids, 45-60 mass% is more preferable.
In the present specification, the ω3 highly unsaturated fatty acid is a long chain fatty acid having 18 or more carbon atoms, preferably 20 or more carbon atoms, and 3 or more, preferably 5 or more unsaturated bonds. In addition to docosahexaenoic acid, for example, eicosapentaenoic acid can be mentioned.

本発明では、油脂を加水分解して脂肪酸類を得るのが好ましい。
ここで、加水分解の対象となる油脂は、植物性油脂、動物性油脂のいずれでもよいが、構成脂肪酸としてω3系高度不飽和脂肪酸を含有する油脂が好ましい。このような油脂としては、魚油、藻油等の微生物油、アザラシ油等の動物油が挙げられ、これらは単独で又は2種以上を組み合わせて用いてもよい。魚油とは、水産動物油脂であり、例えば、イワシ、ニシン、サンマ、サバ、カツオ、マグロ、クジラ、イカ、たら肝臓等の原料から採取することができる。また、藻油は、緑藻綱、珪藻綱等に属する藻類から採取することができる。
また、油脂を構成する脂肪酸中のω3系高度不飽和脂肪酸の比率を高めた所謂ω3系高度不飽和脂肪酸濃縮油を用いてもよい。構成脂肪酸中のω3系高度不飽和脂肪酸の比率を高める方法としては、従来公知の方法、例えば、リパーゼを用いてω3系高度不飽和脂肪酸の以外の脂肪酸を優先的に遊離・除去する方法や溶剤分別法等が挙げられ、いずれの方法も使用できる。
In the present invention, it is preferable to obtain fatty acids by hydrolyzing fats and oils.
Here, the fats and oils to be hydrolyzed may be vegetable oils or animal fats, but fats and oils containing ω3 highly unsaturated fatty acids are preferred as constituent fatty acids. Examples of such fats and oils include microbial oils such as fish oil and algae oil, and animal oils such as seal oil, and these may be used alone or in combination of two or more. Fish oil is a marine animal fat, and can be collected from raw materials such as sardines, herring, saury, mackerel, skipjack, tuna, whales, squid and cod liver. Algae oil can be collected from algae belonging to the green alga class, the diatom class, and the like.
Moreover, you may use what is called omega-3 type | system | group highly unsaturated fatty acid concentrated oil which raised the ratio of the omega-3 type | system | group highly unsaturated fatty acid in the fatty acid which comprises fats and oils. As a method for increasing the ratio of the ω3 highly unsaturated fatty acid in the constituent fatty acids, a conventionally known method, for example, a method or solvent for preferentially releasing or removing fatty acids other than the ω3 highly unsaturated fatty acid using lipase Examples include a fractionation method, and any method can be used.

加水分解の対象となる油脂を構成する全脂肪酸に対するドコサヘキサエン酸の含有量は、エステル化反応でドコサヘキサエン酸が作用しやすいようにする点から、10質量%以上であることが好ましく、更に13〜41質量%、更に16〜38質量%、更に18〜36質量%であることが好ましい。
また、油脂中、油脂を構成する全脂肪酸に対するω3系高度不飽和脂肪酸の含有量は、同様の点から、10質量%以上であることが好ましく、更に15〜43質量%、更に20〜38質量%であることが好ましい。
The content of docosahexaenoic acid with respect to all fatty acids constituting the oil to be hydrolyzed is preferably 10% by mass or more, and more preferably 13 to 41 from the viewpoint that docosahexaenoic acid can easily act in the esterification reaction. It is preferable that they are mass%, 16-38 mass%, and also 18-36 mass%.
Moreover, it is preferable that it is 10 mass% or more from the same point with respect to the total fatty acid which comprises fats and oils in fats and oils, It is preferable that it is 10 mass% or more, Furthermore, 15-43 mass%, Furthermore, 20-38 mass. % Is preferred.

油脂を加水分解する方法としては、高温高圧分解法と酵素分解法が挙げられる。
高温高圧分解法とは、油脂に水を加えて、高温、高圧の条件で反応することにより、脂肪酸とグリセリンを得る方法である。また、酵素分解法とは、油脂に水を加えて、油脂加水分解酵素を触媒として用い、低温の条件で反応することにより、脂肪酸とグリセリンを得る方法である。なかでも、ω3系高度不飽和脂肪酸のトランス化抑制の点から、油脂加水分解酵素を用いた酵素分解法が好ましい。
油脂加水分解酵素としては、リパーゼが好ましく、特に制限されず、動物由来、植物由来、微生物由来のリパーゼを用いることができる。例えば、リゾプス(Rhizopus)属、アスペルギルス(Aspergillus)属、ムコール(Mucor)属、リゾムコール(Rhizomucor)属、シュードモナス(Pseudomonas)属、ジオトリケム(Geotrichum)属、ペニシリウム(Penicillium)属、キャンディダ(Candida)属等の起源のリパーゼが挙げられる。
なかでも、加水分解効率の点から、位置・鎖長選択性のない、所謂非選択性リパーゼを用いるのが好ましく、更にキャンディダ・シリンドラセア(Candida cylindracea)によって生産される非選択性リパーゼを用いるのが好ましい。例えば、リパーゼAY「アマノ」30SD−K(天野エンザイム(株)製)がある。
Examples of the method for hydrolyzing fats and oils include a high-temperature and high-pressure decomposition method and an enzyme decomposition method.
The high-temperature and high-pressure decomposition method is a method for obtaining fatty acid and glycerin by adding water to fat and oil and reacting under conditions of high temperature and high pressure. The enzymatic decomposition method is a method for obtaining fatty acid and glycerin by adding water to fat and oil and reacting under conditions of low temperature using fat and oil hydrolase as a catalyst. Among these, from the viewpoint of suppressing translation of ω3 highly unsaturated fatty acid, an enzymatic decomposition method using an oil and fat hydrolase is preferable.
As the oil hydrolyzing enzyme, lipase is preferable, and it is not particularly limited, and lipases derived from animals, plants and microorganisms can be used. For example, the genus Rhizopus, the genus Aspergillus, the genus Mucor, the genus Rhizomucor, the genus Pseudomonas, the genus Geotrichum and the genus C And lipases of the origin.
Among these, from the viewpoint of hydrolysis efficiency, it is preferable to use a so-called non-selective lipase having no position / chain length selectivity, and further, a non-selective lipase produced by Candida cylindracea is used. Is preferred. For example, there is lipase AY “Amano” 30SD-K (manufactured by Amano Enzyme Co., Ltd.).

油脂加水分解酵素は、当該酵素を担体に固定化した固定化油脂加水分解酵素を用いることが酵素活性を有効利用できる点から好ましい。
固定化担体としては、セライト、ケイソウ土、カオリナイト、シリカゲル、モレキュラーシーブス、多孔質ガラス、活性炭、炭酸カルシウム、セラミックス等の無機担体、セラミックスパウダー、ポリビニルアルコール、ポリプロピレン、キトサン、イオン交換樹脂、疎水吸着樹脂、キレート樹脂、合成吸着樹脂等の有機高分子等が挙げられる。なかでも、保水力が高い点からイオン交換樹脂が好ましい。また、イオン交換樹脂の中でも、大きな表面積を有することにより酵素の吸着量を高くできるという点から、多孔質であることが好ましい。
As the fat hydrolase, it is preferable to use an immobilized fat hydrolase in which the enzyme is immobilized on a carrier from the viewpoint that the enzyme activity can be effectively used.
Immobilization carriers include celite, diatomaceous earth, kaolinite, silica gel, molecular sieves, porous glass, activated carbon, calcium carbonate, ceramics and other inorganic carriers, ceramic powder, polyvinyl alcohol, polypropylene, chitosan, ion exchange resin, hydrophobic adsorption Examples thereof include organic polymers such as resins, chelate resins, and synthetic adsorption resins. Among these, an ion exchange resin is preferable from the viewpoint of high water retention. Of the ion exchange resins, a porous material is preferable because it has a large surface area and can increase the amount of adsorbed enzyme.

固定化担体として用いる樹脂の粒子径は50〜2000μmが好ましく、更に100〜1000μmが好ましい。細孔径は10〜150nmが好ましく、更に10〜100nmが好ましい。材質としては、フェノールホルムアルデヒド系、ポリスチレン系、アクリルアミド系、ジビニルベンゼン系等が挙げられ、更にフェノールホルムアルデヒド系樹脂(例えば、ダウケミカル社製Duolite A−568)がリパーゼ吸着性向上の点から好ましい。
このとき、用いる油脂加水分解酵素量は、担体質量に対して10〜300質量%、更に30〜200質量%、更に50〜150質量%が工業的生産性の点から好ましい。固定化の際、酵素を溶液状態にするが、緩衝剤を用いてpH3〜7に調整して用いることが好ましい。固定化時の温度は0〜60℃、更に3〜40℃が好ましい。
The particle diameter of the resin used as the immobilization carrier is preferably 50 to 2000 μm, more preferably 100 to 1000 μm. The pore diameter is preferably 10 to 150 nm, more preferably 10 to 100 nm. Examples of the material include phenol formaldehyde, polystyrene, acrylamide, divinylbenzene, and the like, and phenol formaldehyde resin (for example, Duolite A-568 manufactured by Dow Chemical Company) is preferable from the viewpoint of improving lipase adsorption.
At this time, the amount of the oil and fat hydrolase used is preferably 10 to 300% by mass, more preferably 30 to 200% by mass, and further preferably 50 to 150% by mass with respect to the mass of the carrier, from the viewpoint of industrial productivity. At the time of immobilization, the enzyme is put into a solution state, but it is preferably adjusted to pH 3 to 7 using a buffer. The temperature at the time of immobilization is preferably 0 to 60 ° C, more preferably 3 to 40 ° C.

固定化リパーゼの活性を高めるために、リパーゼの固定化前に予め脂溶性脂肪酸又はその誘導体を担体に吸着させる処理を施しても良い。処理を施す方法としては、例えば、クロロホルム、ヘキサン、エタノール等の有機溶剤に脂溶性脂肪酸又はその誘導体を一旦分散、溶解させた後、水に分散させた担体に加える方法が挙げられる。
使用する脂溶性脂肪酸としては、炭素数8〜18の飽和又は不飽和の、直鎖又は分岐鎖の、水酸基が置換していても良い脂肪酸が挙げられる。具体的には、カプリン酸、ラウリン酸、ミリスチン酸、オレイン酸、リノール酸、α-リノレン酸、リシノール酸等が挙げられる。またその誘導体としては、これらの脂肪酸と一価又は多価アルコールとのエステル、リン脂質、及びこれらのエステルにエチレンオキサイドを付加した誘導体が挙げられる。具体的には、上記脂肪酸のメチルエステル、エチルエステル、モノアシルグリセロール、ジアシルグリセロール、それらのエチレンオキサイド付加体、ポリグリセリンエステル、ソルビタンエステル、ショ糖エステル等が挙げられる。これらの脂溶性脂肪酸又はその誘導体は2種以上を併用しても良い。
In order to increase the activity of the immobilized lipase, a treatment for adsorbing the fat-soluble fatty acid or a derivative thereof to the carrier in advance may be performed before the lipase is immobilized. Examples of a method for performing the treatment include a method in which a fat-soluble fatty acid or a derivative thereof is once dispersed and dissolved in an organic solvent such as chloroform, hexane, and ethanol, and then added to a carrier dispersed in water.
Examples of the fat-soluble fatty acid to be used include saturated or unsaturated, linear or branched fatty acids having 8 to 18 carbon atoms, which may be substituted with a hydroxyl group. Specific examples include capric acid, lauric acid, myristic acid, oleic acid, linoleic acid, α-linolenic acid, ricinoleic acid and the like. Examples of the derivatives include esters of these fatty acids with mono- or polyhydric alcohols, phospholipids, and derivatives obtained by adding ethylene oxide to these esters. Specific examples include methyl esters, ethyl esters, monoacylglycerols, diacylglycerols, ethylene oxide adducts thereof, polyglycerol esters, sorbitan esters, and sucrose esters of the above fatty acids. Two or more of these fat-soluble fatty acids or derivatives thereof may be used in combination.

油脂を加水分解反応後、好ましくは遊離脂肪酸を取り除く。遊離脂肪酸を除去する方法は、アルカリ分解、蒸留等、特に制限されないが、工業的生産性の点から、蒸留処理は薄膜式蒸発装置を用いて行うのが好ましい。薄膜式蒸発装置としては、薄膜を形成する方法によって、遠心式薄膜蒸留装置、流下膜式蒸留装置、ワイプトフィルム蒸発装置(Wiped film distillation)等が挙げられる。   After the hydrolysis of the fats and oils, the free fatty acids are preferably removed. The method for removing the free fatty acid is not particularly limited, such as alkali decomposition, distillation, etc. From the viewpoint of industrial productivity, the distillation treatment is preferably performed using a thin film evaporator. Examples of the thin film evaporator include a centrifugal thin film distillation apparatus, a falling film distillation apparatus, and a wiped film evaporation apparatus, depending on the method for forming a thin film.

油脂を加水分解反応後、蒸留して遊離脂肪酸を取り除いた蒸留油を、更に加水分解反応するのが好ましい。油脂加水分解酵素としては、前記と同様リパーゼが好ましい。なかでも、加水分解効率の点から、キャンディダ・シリンドラセア(Candida cylindracea)によって生産される非選択性リパーゼやアルカリゲネス属(Alcaligenes sp.)によって生産される1,3位を優先的に加水分解するリパーゼを用いるのが好ましい。
また、効率性の観点より、ペニシリウム・カメンベルティ(Penicillium camembertii)によって生産される部分グリセリドリパーゼを組み合わせて用いてもよい。部分グリセリドリパーゼは、モノアシルグリセロール及びジアシルグリセロールを加水分解するが、トリアシルグリセロールを加水分解し難いリパーゼである。
It is preferable to further hydrolyze the distilled oil from which free fatty acids have been removed by distillation after the fats and oils are hydrolyzed. As the oil and fat hydrolase, lipase is preferable as described above. Among them, from the viewpoint of hydrolysis efficiency, a lipase that preferentially hydrolyzes the first and third positions produced by a non-selective lipase produced by Candida cylindracea or Alcaligenes sp. Is preferably used.
From the viewpoint of efficiency, partial glyceride lipase produced by Penicillium camembertii may be used in combination. Partial glyceride lipase is a lipase that hydrolyzes monoacylglycerol and diacylglycerol, but hardly hydrolyzes triacylglycerol.

加水分解反応は、常法に従って行うことができる。
加水分解後は、蒸留処理を行うことなく、脂肪酸類を後述するエステル化反応に用いてもよいが、前記の酸価(AV)の範囲を満たす条件で、蒸留処理を行うことが好ましい。
蒸留処理は、上記と同様、工業的生産性の点から、薄膜式蒸発装置を用いて行うのが好ましい。
圧力は、設備コストや運転コストを小さくする点、蒸留能力を上げる点、蒸留温度を最適に選定できる点から、減圧下が好ましく、更に0.5〜200Pa、更に2〜100Paが好ましい。
温度は、脂肪酸の異性化抑制の点から、180〜280℃、更に190〜260℃、更に195〜250℃が好ましい。
滞留時間は、脂肪酸の異性化抑制の点から、5〜120秒、更に10〜90秒、更に15〜60秒が好ましい。
The hydrolysis reaction can be performed according to a conventional method.
After the hydrolysis, the fatty acids may be used in an esterification reaction described later without performing a distillation treatment, but the distillation treatment is preferably performed under conditions satisfying the above-described acid value (AV) range.
As in the above, the distillation treatment is preferably performed using a thin film evaporator from the viewpoint of industrial productivity.
The pressure is preferably under reduced pressure from the viewpoint of reducing equipment costs and operating costs, increasing the distillation capacity, and optimally selecting the distillation temperature, and more preferably 0.5 to 200 Pa, and more preferably 2 to 100 Pa.
The temperature is preferably 180 to 280 ° C, more preferably 190 to 260 ° C, and further preferably 195 to 250 ° C from the viewpoint of suppressing isomerization of fatty acids.
The residence time is preferably 5 to 120 seconds, more preferably 10 to 90 seconds, and further preferably 15 to 60 seconds from the viewpoint of suppressing isomerization of the fatty acid.

〔グリセリン〕
本発明において使用するグリセリンは、エステル化の反応性の点から、純度95質量%以上のものが好ましい。
[Glycerin]
The glycerin used in the present invention preferably has a purity of 95% by mass or more from the viewpoint of esterification reactivity.

〔1,3位選択性リパーゼ〕
本発明で用いられるリゾムコール・ミエヘイ(Rhizomucour miehei )由来の1,3位選択性リパーゼは、トリアシルグリセロールのsn−1位とsn−3位に特異性を示すリパーゼである。当該1,3位選択性リパーゼは、当該リパーゼを担体に固定化した固定化リパーゼを用いることが、リパーゼ活性を有効利用できる点、コストの点から好ましい。
固定化担体は、ω3系高度不飽和脂肪酸、特にドコサヘキサエン酸の反応性向上の点から、アクリル樹脂が好ましい。固定化1,3位選択性リパーゼは、たとえば、Novozym 40086(ノボザイムジャパン製)が挙げられる。
[1,3-position selective lipase]
The 1,3-position selective lipase derived from Rhizomucor miehei used in the present invention is a lipase exhibiting specificity at the sn-1 and sn-3 positions of triacylglycerol. As the 1,3-position selective lipase, it is preferable to use an immobilized lipase obtained by immobilizing the lipase on a carrier from the viewpoint of effective utilization of lipase activity and cost.
The immobilization carrier is preferably an acrylic resin from the viewpoint of improving the reactivity of the ω3 highly unsaturated fatty acid, particularly docosahexaenoic acid. Examples of the immobilized 1,3-position selective lipase include Novozym 40086 (manufactured by Novozyme Japan).

〔エステル化反応〕
本発明において、1,3位選択性リパーゼを用いて、脂肪酸類とグリセリンとをエステル化する方法は、常法に従って行うことができる。
エステル反応に用いる固定化リパーゼの量は、酵素の活性を考慮して適宜決定することができるが、反応速度を向上する点から、脂肪酸類とグリセリンの合計量100質量部に対して、1〜30質量%、更に2〜20質量%が好ましい。
[Esterification reaction]
In the present invention, the method of esterifying fatty acids and glycerin using a 1,3-position selective lipase can be performed according to a conventional method.
The amount of the immobilized lipase used for the ester reaction can be appropriately determined in consideration of the activity of the enzyme. From the viewpoint of improving the reaction rate, 1 to 1 part by mass relative to 100 parts by mass of the total amount of fatty acids and glycerol. 30 mass%, Furthermore, 2-20 mass% is preferable.

エステル化反応を行う際のグリセリン基のモル数に対する脂肪酸基のモル数の比[FA/GLY]は、ω3系高度不飽和脂肪酸を含むトリアシルグリセロールの副生を抑える点から、3.0以下、更に2.5以下、更に2.3以下とするのが好ましく、また、反応速度向上、蒸留残渣比率の向上の点から、0.5以上、更に1.0以上、更に1.5以上とするのが好ましい。
グリセリン基のモル数に対する脂肪酸基のモル数の比[FA/GLY]は、下式で表される。
FA/GLY=(脂肪酸のモル数+モノアシルグリセロールのモル数+ジアシルグリセロールのモル数×2+トリアシルグリセロールのモル数×3)/(グリセリンのモル数+モノアシルグリセロールのモル数+ジアシルグリセロールのモル数+トリアシルグリセロールのモル数)
The ratio [FA / GLY] of the number of moles of fatty acid groups to the number of moles of glycerin groups in the esterification reaction is 3.0 or less from the viewpoint of suppressing by-production of triacylglycerols containing ω3 highly unsaturated fatty acids. Further, it is preferably 2.5 or less, more preferably 2.3 or less, and from the viewpoint of improving the reaction rate and the distillation residue ratio, 0.5 or more, 1.0 or more, and 1.5 or more. It is preferable to do this.
The ratio [FA / GLY] of the number of moles of fatty acid groups to the number of moles of glycerin groups is represented by the following formula.
FA / GLY = (moles of fatty acid + moles of monoacylglycerol + moles of diacylglycerol × 2 + moles of triacylglycerol × 3) / (moles of glycerin + moles of monoacylglycerol + diacylglycerol) Number of moles + number of moles of triacylglycerol)

エステル化反応の反応温度は、反応速度を向上する点、酵素の失活を抑制する点から、0〜100℃、更に20〜80℃、更に30〜60℃とするのが好ましい。
また、反応時間は、トリアシルグリセロールへの転移反応抑制の点、工業的な生産性の点から、15時間以内、更に1〜12時間、更に2〜10時間が好ましい。
The reaction temperature of the esterification reaction is preferably 0 to 100 ° C., more preferably 20 to 80 ° C., and further preferably 30 to 60 ° C. from the viewpoint of improving the reaction rate and suppressing the deactivation of the enzyme.
The reaction time is preferably within 15 hours, more preferably 1 to 12 hours, and more preferably 2 to 10 hours from the viewpoint of inhibiting the transfer reaction to triacylglycerol and industrial productivity.

エステル化反応は、反応生成水を反応系外に除去しながら行われることが好ましい。例えば、減圧;ゼオライト、モレキュラーシーブス等の吸収剤の利用;反応槽中への乾燥した不活性ガスの通気等の方法により、系外に除去されるのが好ましい。   The esterification reaction is preferably performed while removing the reaction product water from the reaction system. For example, it is preferably removed out of the system by a method such as reduced pressure; use of an absorbent such as zeolite or molecular sieve; and ventilation of a dry inert gas into the reaction vessel.

1,3位選択性リパーゼと原料(脂肪酸類とグリセリン)の接触手段としては、浸漬、攪拌、固定化リパーゼを充填したカラムにポンプ等で通液する方法等が挙げられる。攪拌する場合、生産効率の点、リパーゼの破砕抑制の点から、10〜1000r/minが好ましく、更に50〜700r/min、更に100〜600r/minが好ましい。   Examples of the means for contacting the 1,3-position selective lipase and the raw materials (fatty acids and glycerin) include a method of passing through a column filled with immersion, stirring, and immobilized lipase with a pump or the like. In the case of stirring, 10 to 1000 r / min is preferable, 50 to 700 r / min, and further 100 to 600 r / min are preferable from the viewpoint of production efficiency and suppression of crushing of lipase.

反応系内の圧力は減圧下が好ましく、1〜10000Pa、更に10〜5000Pa、更に100〜3000Paが好ましい。   The pressure in the reaction system is preferably under reduced pressure, preferably 1 to 10000 Pa, more preferably 10 to 5000 Pa, and further preferably 100 to 3000 Pa.

エステル化反応を行った後の反応油中には、油脂、即ちトリアシルグリセロール、ジアシルグリセロール及びモノアシルグリセロールと、未反応物として脂肪酸が含まれる。
反応油の酸価(AV)は、ジアシルグリセロールに結合するDHAを高くする点、工業的な生産の点から、20〜60mgKOH/g、更に25〜55mgKOH/g、更に30〜50mgKOH/gであることが好ましい。
また、反応油中のジアシルグリセロール及びトリアシルグリセロールの合計含有量は、生理効果、工業的生産性の点から、45〜67質量%、更に48〜65質量%であることが好ましい。
The reaction oil after the esterification reaction contains fats and oils, that is, triacylglycerol, diacylglycerol, and monoacylglycerol, and fatty acids as unreacted substances.
The acid value (AV) of the reaction oil is 20 to 60 mgKOH / g, more preferably 25 to 55 mgKOH / g, and further 30 to 50 mgKOH / g from the viewpoint of increasing DHA binding to diacylglycerol and industrial production. It is preferable.
In addition, the total content of diacylglycerol and triacylglycerol in the reaction oil is preferably 45 to 67% by mass, more preferably 48 to 65% by mass, from the viewpoint of physiological effects and industrial productivity.

本発明では、エステル化反応後、軽質留分を蒸発させてトリアシルグリセロールとジアシルグリセロールを残渣分として得る蒸留処理を行って、エステル化反応油からモノアシルグリセロール及び脂肪酸を除去するのが好ましい。
蒸留処理は薄膜式蒸発装置を用いて行うのが好ましい。
圧力は、揮発性の有臭成分を除去する点、設備コストや運転コストを小さくする点、蒸留能力を上げる点、蒸留温度を最適に選定できる点から、減圧下が好ましく、更に0.5〜200Pa、更に2〜100Paが好ましい。
温度は、揮発性の有臭成分を除去する点、風味を良好とする点から、180〜280℃、更に190〜260℃、更に195〜250℃が好ましい。
滞留時間は、揮発性の有臭成分を除去する点、風味を良好とする点から、5〜120秒、更に10〜90秒、更に15〜60秒が好ましい。
In the present invention, after the esterification reaction, it is preferable to remove the monoacylglycerol and the fatty acid from the esterification reaction oil by evaporating the light fraction to obtain a triacylglycerol and diacylglycerol as a residue.
The distillation treatment is preferably performed using a thin film evaporator.
The pressure is preferably reduced under reduced pressure from the viewpoint of removing volatile odorous components, reducing equipment costs and operating costs, increasing the distillation capacity, and optimally selecting the distillation temperature. 200 Pa, more preferably 2 to 100 Pa are preferred.
The temperature is preferably 180 to 280 ° C., more preferably 190 to 260 ° C., and further preferably 195 to 250 ° C. from the viewpoint of removing volatile odorous components and improving the flavor.
The residence time is preferably 5 to 120 seconds, more preferably 10 to 90 seconds, and further preferably 15 to 60 seconds from the viewpoint of removing volatile odorous components and improving the flavor.

本発明の処理の結果、ドコサヘキサエン酸を含むトリアシルグリセロールの生成が抑制されて、ジアシルグリセロール内に選択的にドコサヘキサエン酸を含む構造油脂が得られる。本発明の構造油脂は、従来のドコサヘキサエン酸を含有する油脂に比べて、少ない使用量で高い生理機能発現が期待される。
本発明の構造油脂においては、構成脂肪酸中のドコサヘキサエン酸の85質量%以上がジアシルグリセロール内に含まれるが、このジアシルグリセロール内に含まれるドコサヘキサエン酸の割合は、生理機能発現の観点から、構成脂肪酸中のドコサヘキサエン酸の87質量%以上、更に89質量%以上が好ましい。
ジアシルグリセロール内に含まれるドコサヘキサエン酸の割合は、油脂を構成する脂肪酸中のドコサヘキサエン酸の総量に対する、ジアシルグリセロールを構成するドコサヘキサエン酸の割合を百分率で表したものである。詳細は後記実施例に記載した。
As a result of the treatment of the present invention, the production of triacylglycerol containing docosahexaenoic acid is suppressed, and a structured fat / oil containing docosahexaenoic acid selectively in diacylglycerol is obtained. The structural fats and oils of the present invention are expected to exhibit high physiological functions with a small amount of use as compared with conventional fats and oils containing docosahexaenoic acid.
In the structured fats and oils of the present invention, 85% by mass or more of docosahexaenoic acid in the constituent fatty acid is contained in diacylglycerol. The proportion of docosahexaenoic acid contained in this diacylglycerol is a constituent fatty acid from the viewpoint of physiological function expression. 87 mass% or more of the docosahexaenoic acid in it, and also 89 mass% or more are preferable.
The ratio of docosahexaenoic acid contained in diacylglycerol is a percentage of the ratio of docosahexaenoic acid constituting diacylglycerol to the total amount of docosahexaenoic acid in the fatty acids constituting the fats and oils. Details are described in Examples below.

構造油脂を構成する脂肪酸中のドコサヘキサエン酸の含有量は、生理機能発現に有利に働く点、油脂特性の点から、18〜68質量%、更に23〜58質量%、更に28〜48質量%が好ましい。
また、構造油脂を構成する脂肪酸中のω3系高度不飽和脂肪酸の含有量は、生理機能発現に有利に働く点から、20〜70質量%、更に25〜60質量%であることが好ましい。
The content of docosahexaenoic acid in the fatty acids constituting the structural fats and oils is 18 to 68% by mass, more preferably 23 to 58% by mass, and more preferably 28 to 48% by mass from the viewpoint of working favorably for the manifestation of physiological functions and oil and fat characteristics. preferable.
Moreover, it is preferable that content of the (omega) 3 type | system | group highly unsaturated fatty acid in the fatty acid which comprises structural fats and oils is 20-70 mass%, and also 25-60 mass% from the point which acts advantageously on physiological function expression.

本発明の構造油脂において、ジアシルグリセロールの含有量は、生理機能発現の点から、60〜95質量%、更に65〜90質量%が好ましい。
また、本発明の構造油脂において、トリアシルグリセロールの含有量は、生理機能発現の点から、5〜40質量%、更に10〜35質量%が好ましい。
In the structured fat and oil of the present invention, the content of diacylglycerol is preferably 60 to 95% by mass, and more preferably 65 to 90% by mass, from the viewpoint of physiological function expression.
In the structured fat of the present invention, the content of triacylglycerol is preferably 5 to 40% by mass, more preferably 10 to 35% by mass, from the viewpoint of manifesting physiological functions.

本発明の方法により得られる構造油脂は、必要に応じて精製工程を行って、一般の食用油脂と同様に使用することができる。   The structural fats and oils obtained by the method of the present invention can be used in the same manner as general edible fats and oils by performing a purification step as necessary.

以下の実施例において、「%」は「質量%」を意味する。
〔原料油脂〕
原料油脂として、表1に示すマグロ原油を用いた。なお、ドコサヘキサエン酸(DHA)含有量の含有量、酸価(AV)、グリセリド組成は、次に示す方法にて測定した。
In the following examples, “%” means “mass%”.
[Raw oil]
Tuna crude oil shown in Table 1 was used as the raw material fat. The content of docosahexaenoic acid (DHA), the acid value (AV), and the glyceride composition were measured by the following methods.

Figure 2018082676
Figure 2018082676

〔分析方法〕
(i)DHA含有量の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「メチルエステル化法(三フッ化ホウ素メタノール法)(2.4.1.2−1996)」に従って、試料を脂肪酸メチルエステルし、得られたサンプルをガスクロマトグラフィー(GLC)に供した。トリヘンイコサノイン(和光純薬工業製)を内部標準物質として、DHA(Larodan Fine Chemicals製)の検量線を作成した。次に、試料に内部標準物質を添加して分析し、内部標準物質のピークと検量線からDHAの含有量を求めた。
[Analysis method]
(I) Measurement of DHA content According to “Methyl esterification method (boron trifluoride methanol method) (2.4.1.2-1996)” in “Standard oil analysis method 2003 edition” edited by Japan Oil Chemists' Society The sample was subjected to fatty acid methyl ester, and the obtained sample was subjected to gas chromatography (GLC). A calibration curve of DHA (manufactured by Larodan Fine Chemicals) was prepared using trihenicosanoin (manufactured by Wako Pure Chemical Industries) as an internal standard substance. Next, an internal standard substance was added to the sample for analysis, and the DHA content was determined from the peak of the internal standard substance and a calibration curve.

(ii)酸価の測定
日本油化学会編「基準油脂分析試験法2003年版」中の「酸価(2.3.1−1996)」に従って測定した。
(Ii) Measurement of Acid Value The acid value was measured according to “Acid Value (2.3.1-1996)” in “Standard Oil Analysis Test Method 2003” edited by Japan Oil Chemists' Society.

(iii)グリセリド組成の測定
「グリセリド組成」は、ガラス製サンプル瓶に、サンプル10mgとトリメチルシリル化剤(「シリル化剤TH」、関東化学製)0.5mLを加え、密栓した後、70℃で15分間加熱した。これに蒸留水1.0mL、ヘキサン2.0mLを加えて、混合後、ヘキサン層をガスクロマトグラフィー(GLC)に供して、グリセリド組成の分析を行った。
(Iii) Measurement of glyceride composition “Glyceride composition” is obtained by adding 10 mg of a sample and 0.5 mL of a trimethylsilylating agent (“silylating agent TH”, manufactured by Kanto Chemical Co., Ltd.) to a glass sample bottle and sealing it at 70 ° C. Heated for 15 minutes. Distilled water (1.0 mL) and hexane (2.0 mL) were added thereto, and after mixing, the hexane layer was subjected to gas chromatography (GLC) to analyze the glyceride composition.

(iv)蒸留残渣中のTAGとDAGの分離方法
固相カラム(Sep−Pak C18 5g、Waters製)にメタノール20mLを通液しコンデショニングした。その後、アセトニトリル2mLに試料0.2gを溶解したサンプル溶液を固相カラムにロードした。次に、メタノール100mLを固相カラムにロードし、DAGフラクションを得た。DAGフラクションは、脱溶剤して秤量し、DHA含有量を分析した。さらに、アセトン30mLを固相カラムにロードし、TAGフラクションを得た。同様に、TAGフラクションは、脱溶剤して秤量し、DHA含有量を分析した。
(Iv) Separation method of TAG and DAG in distillation residue 20 mL of methanol was passed through a solid phase column (Sep-Pak C18 5 g, manufactured by Waters) for conditioning. Thereafter, a sample solution in which 0.2 g of sample was dissolved in 2 mL of acetonitrile was loaded onto a solid phase column. Next, 100 mL of methanol was loaded onto the solid phase column to obtain a DAG fraction. The DAG fraction was desolvated and weighed, and the DHA content was analyzed. Furthermore, 30 mL of acetone was loaded onto a solid phase column to obtain a TAG fraction. Similarly, the TAG fraction was desolvated and weighed and analyzed for DHA content.

〔DHA比率の算出〕
DHA比率(%)を次式(1)より算出した。
DHA比率(質量%)
=(残渣中DAG[%]×DAG中のDHA[%])/(残渣中DAG[%]×DAG中のDHA[%]+残渣中TAG[%]×TAG中のDHA[%])×100 (1)
[Calculation of DHA ratio]
The DHA ratio (%) was calculated from the following formula (1).
DHA ratio (mass%)
= (DAG [%] in residue × DHA [%] in DAG) / (DAG [%] in residue × DHA [%] in DAG + TAG [%] in residue × DHA [%] in TAG) × 100 (1)

〔固定化1,3位選択性リパーゼ〕
リゾムコール・ミエヘイ(Rhizomucour miehei)由来のNovozym 40086(ノボザイムジャパン製)を用いた。
[Immobilized 1,3-position selective lipase]
Novozym 40086 (manufactured by Novozyme Japan) derived from Rhizomucour miehei was used.

〔固定化リパーゼAYの調製〕
リパーゼを固定化する担体としてDuoliteA−568(佐々木化学製)を用いた。担体1000gをN/10のNaOH溶液10L中で1時間攪拌し、ろ過した。その後、10Lのイオン交換水中で1時間攪拌しろ過、500mMのリン酸緩衝液(pH7)10LでpH平衡化を2時間行いろ過した。その後、50mMのリン酸緩衝液(pH7)10LでpH平衡化を2時間しろ過する操作を2回行なった。この後、エタノール5Lでエタノール置換を30分行いろ過した。その後、−3℃で析出する高融点成分を除いた大豆脂肪酸を1000g含むエタノール5Lを加え30分間、脂肪酸を担体に吸着させ、ろ過した。その後、50mMのリン酸緩衝液(pH7)5Lで30分ずつ4回洗浄し、エタノールを除去し、ろ過して担体を回収した。その後市販のキャンディダ・シリンドラセア(Candida cylindracea)に由来するリパーゼ(リパーゼAY「アマノ」30SD−K、天野エンザイム製)1000gを50mMのリン酸緩衝液(pH7)9000gに溶解した酵素液と5時間接触させ、リパーゼの固定化を行なった。その後、ろ過し、リパーゼが固定化された担体を50mMのリン酸緩衝液(pH7)10Lで洗浄を行なうことにより、固定化していない酵素やタンパクを除去した。その後、マグロ原油を4000g加え12時間攪拌し、ろ過して固定化リパーゼAYを得た。以上の操作はいずれも20℃で行なった。その後、ろ過してヘキサンで油脂を洗浄し、脱溶剤して固定化リパーゼAYを得た。
[Preparation of immobilized lipase AY]
Duolite A-568 (manufactured by Sasaki Chemical Co., Ltd.) was used as a carrier for immobilizing lipase. 1000 g of support was stirred in 10 L of N / 10 NaOH solution for 1 hour and filtered. Thereafter, the mixture was stirred for 1 hour in 10 L of ion-exchanged water, filtered, and then equilibrated with 10 L of 500 mM phosphate buffer (pH 7) for 2 hours and filtered. Thereafter, the pH was equilibrated with 10 L of 50 mM phosphate buffer (pH 7) for 2 hours, and the operation of filtration was performed twice. Then, ethanol substitution with 5 L of ethanol was performed for 30 minutes, followed by filtration. Thereafter, 5 L of ethanol containing 1000 g of soybean fatty acid excluding the high melting point component precipitated at −3 ° C. was added, and the fatty acid was adsorbed on the carrier for 30 minutes, followed by filtration. Thereafter, the substrate was washed with 5 L of 50 mM phosphate buffer (pH 7) four times for 30 minutes, ethanol was removed, and the carrier was recovered by filtration. Thereafter, 1000 g of lipase derived from commercially available Candida cylindracea (lipase AY “Amano” 30SD-K, manufactured by Amano Enzyme) was contacted with an enzyme solution dissolved in 9000 g of 50 mM phosphate buffer (pH 7) for 5 hours. The lipase was immobilized. Then, the enzyme and protein which were not fix | immobilized were removed by filtering and wash | cleaning the support | carrier with which the lipase was fix | immobilized by 10 L of 50 mM phosphate buffer (pH7). Thereafter, 4000 g of tuna crude oil was added, stirred for 12 hours, and filtered to obtain immobilized lipase AY. All the above operations were performed at 20 ° C. Then, it filtered, wash | cleaned fats and oils with hexane, removed the solvent, and obtained immobilized lipase AY.

〔固定化リパーゼQLMの調製〕
固定化リパーゼAYと同じ製造法で、リパーゼの種類をアルカリゲネス(Alcaligenes)属由来のリパーゼ(リパーゼQLM、名糖産業製)に変えて、固定化リパーゼQLMを得た。
[Preparation of immobilized lipase QLM]
In the same production method as immobilized lipase AY, the type of lipase was changed to a lipase derived from the genus Alcaligenes (Lipase QLM, manufactured by Meisei Sangyo) to obtain immobilized lipase QLM.

〔固定化リパーゼGの調製〕
固定化リパーゼAYと同じ製造法で、リパーゼの種類をペニシリウム・カメンベルティ(Penicillium camembertii)に由来する部分グリセリドリパーゼ(リパーゼG「アマノ」50、天野エンザイム製)に、リン酸緩衝液(pH7)を酢酸緩衝液(pH5)変えて、固定化リパーゼGを得た。
[Preparation of immobilized lipase G]
Phosphate buffer (pH 7) was applied to a partial glyceride lipase (lipase G “Amano” 50, manufactured by Amano Enzyme) derived from Penicillium camemberti using the same production method as immobilized lipase AY. Immobilized lipase G was obtained by changing the acetate buffer (pH 5).

〔原料脂肪酸1の調製〕
<1.酵素加水分解反応1>
表1に示すマグロ原油を2000g、蒸留水を2000g仕込み、温度40℃、400r/minで攪拌しながら、固定化リパーゼAYを200g添加しバッチ攪拌反応により加水分解反応を2時間行った。固定化酵素を濾別した後、遠心分離(日立工機製、ローターR9A、8000r/min×10min)して甘水を分離した。その後、油相を減圧脱水してマグロ原油分解油を得た。この操作を2回繰り返し、マグロ原油分解油を得た。
[Preparation of raw fatty acid 1]
<1. Enzymatic hydrolysis reaction 1>
While adding 2000 g of tuna crude oil shown in Table 1 and 2000 g of distilled water and stirring at a temperature of 40 ° C. and 400 r / min, 200 g of immobilized lipase AY was added, and a hydrolysis reaction was performed by batch stirring reaction for 2 hours. The immobilized enzyme was filtered off, and then centrifuged (manufactured by Hitachi Koki, rotor R9A, 8000 r / min × 10 min) to separate sweet water. Thereafter, the oil phase was dehydrated under reduced pressure to obtain a tuna crude oil cracked oil. This operation was repeated twice to obtain a tuna crude oil cracked oil.

<2.蒸留1>
上記1で得た、マグロ原油分解油を、ワイプトフィルム蒸発装置(2−03型:神鋼環境ソリューション製)を用いて、温度設定230℃、真空<2Pa、流量150mL/hの条件で薄膜蒸留処理し、遊離脂肪酸を留去して、残渣にDHA及びEPAを濃縮したグリセリドを得た。
<2. Distillation 1>
Thin-film distillation treatment of the tuna crude oil decomposed oil obtained in 1 above using a wipe film evaporator (type 2-03: manufactured by Shinko Environmental Solution Co., Ltd.) at a temperature setting of 230 ° C., a vacuum <2 Pa, and a flow rate of 150 mL / h. Then, free fatty acids were distilled off to obtain glycerides in which DHA and EPA were concentrated in the residue.

<3.酵素加水分解反応2>
上記2で蒸留した残渣1500g、蒸留水1500gを4ツ口フラスコに仕込み、温度40℃、400r/minで攪拌しながら、固定化リパーゼQLMを150gと固定化リパーゼGを150g添加し、バッチ攪拌反応により加水分解反応を24時間行った。固定化リパーゼを濾別後、油相を減圧脱水した。
<3. Enzymatic hydrolysis reaction 2>
1500 g of the residue distilled in 2 above and 1500 g of distilled water are charged into a four-necked flask, and while stirring at a temperature of 40 ° C. and 400 r / min, 150 g of immobilized lipase QLM and 150 g of immobilized lipase G are added, and batch stirring reaction The hydrolysis reaction was carried out for 24 hours. After the immobilized lipase was filtered off, the oil phase was dehydrated under reduced pressure.

<4.蒸留2>
上記3で得た、酵素加水分解反応油を、ワイプトフィルム蒸発装置(2−03型:神鋼環境ソリューション製)を用いて、温度設定230℃、真空<2Pa、流量150mL/hの条件で薄膜蒸留処理し、残渣成分のMAG、DAG、TAGを除いて、原料脂肪酸1を得た。表2に、分析値を示した。
<4. Distillation 2>
Thin-film distillation of the enzyme hydrolysis reaction oil obtained in 3 above using a wipe film evaporator (type 2-03: manufactured by Shinko Environmental Solution) under the conditions of temperature setting 230 ° C., vacuum <2 Pa, flow rate 150 mL / h. The raw material fatty acid 1 was obtained by removing the residual components MAG, DAG and TAG. Table 2 shows the analytical values.

〔原料脂肪酸2の調製〕
<酵素加水分解反応>
〔原料脂肪酸1の調製〕の<1.酵素加水分解反応1>及び<2.蒸留1>まで、同じ操作を行い、DHA及びEPAを濃縮したグリセリド組成物を得た。蒸留した残渣1500g、蒸留水1500gを4ツ口フラスコに仕込み、温度40℃、400r/minで攪拌しながら、固定化リパーゼAYを150gと固定化リパーゼGを150g添加し、バッチ攪拌反応により加水分解反応を72時間行った。固定化リパーゼを濾別後、油相を減圧脱水して、原料脂肪酸2を得た。表2に、分析値を示した。
[Preparation of raw fatty acid 2]
<Enzymatic hydrolysis reaction>
<1. Preparation of raw fatty acid 1> Enzymatic hydrolysis reaction 1> and <2. The same operation was performed until distillation 1> to obtain a glyceride composition in which DHA and EPA were concentrated. Charged 1500 g of distilled residue and 1500 g of distilled water into a four-necked flask, added 150 g of immobilized lipase AY and 150 g of immobilized lipase G while stirring at a temperature of 40 ° C. and 400 r / min, and hydrolyzed by batch stirring reaction The reaction was performed for 72 hours. After the immobilized lipase was filtered off, the oil phase was dehydrated under reduced pressure to obtain raw fatty acid 2. Table 2 shows the analytical values.

Figure 2018082676
Figure 2018082676

〔実施例1〕
<1.エステル化反応>
マグロ油由来の原料脂肪酸1を4ツ口フラスコに仕込み、リゾムコール・ミエヘイ(Rhizomucour miehei)由来の固定化1,3位選択性リパーゼを原料脂肪酸1とグリセリンの合計に対して5%添加し、温度50℃、400r/minで攪拌した。その後、グリセリンを4ツ口フラスコに仕込み、真空度400Paの条件でエステル化反応を行った。4ツ口フラスコ内のグリセリンに対する脂肪酸のモル比(FA/GLY)は2とした。8時間後、リパーゼを濾別して、エステル化反応油を得た。
[Example 1]
<1. Esterification reaction>
Raw material fatty acid 1 derived from tuna oil was charged into a four-necked flask, and an immobilized 1,3-position selective lipase derived from Rhizomucor miehei was added 5% to the total of raw material fatty acid 1 and glycerin. The mixture was stirred at 50 ° C. and 400 r / min. Thereafter, glycerin was charged into a four-necked flask, and an esterification reaction was carried out under a vacuum degree of 400 Pa. The molar ratio of fatty acid to glycerin (FA / GLY) in the four-necked flask was 2. After 8 hours, the lipase was filtered off to obtain an esterification reaction oil.

<2.エステル化反応油の蒸留>
上記1.で得たエステル化反応油を、ワイプトフィルム蒸発装置(2−03型:神鋼環境ソリューション製)を用いて、温度設定230℃、真空<2Pa、流量120mL/hの条件で薄膜蒸留処理した。残渣(DAG+TAG)と留分(FA+MAG)の質量から分離比率を求めた。蒸留残渣を固相カラムでDAGとTAGを分離し、それぞれのDHA含有量を測定した。
<2. Distillation of esterification reaction oil>
Above 1. The esterification reaction oil obtained in the above was subjected to thin film distillation using a wipe film evaporator (2-03 type: manufactured by Shinko Environmental Solution Co., Ltd.) under the conditions of a temperature setting of 230 ° C., a vacuum of <2 Pa, and a flow rate of 120 mL / h. The separation ratio was determined from the mass of the residue (DAG + TAG) and the fraction (FA + MAG). DAG and TAG were separated from the distillation residue using a solid phase column, and each DHA content was measured.

〔実施例2〕
マグロ油由来の原料脂肪酸1とグリセリンの仕込みを変えて、グリセリンに対する脂肪酸のモル比(FA/GLY)を2.5とした以外は、実施例1と同じ条件でエステル化反応と蒸留を行った。
[Example 2]
The esterification reaction and distillation were carried out under the same conditions as in Example 1 except that the raw material fatty acid 1 derived from tuna oil and glycerin were charged and the molar ratio of fatty acid to glycerin (FA / GLY) was 2.5. .

〔比較例1〕
<1.エステル化反応>
マグロ油由来の原料脂肪酸2を4ツ口フラスコに仕込み、固定化リパーゼG(部分グリセリド選択性)を原料脂肪酸2とグリセリンの合計に対して10%添加し、温度40℃、400r/minで攪拌した。その後、グリセリンを4ツ口フラスコに仕込み、真空度400Paの条件でエステル化反応を行った。4ツ口フラスコ内のグリセリンに対する脂肪酸のモル比(FA/GLY)は1.5とした。165時間後、固定化リパーゼGを濾別して、エステル化反応油を得た。
[Comparative Example 1]
<1. Esterification reaction>
Raw material fatty acid 2 derived from tuna oil is charged into a four-necked flask, 10% of immobilized lipase G (partial glyceride selectivity) is added to the total of raw material fatty acid 2 and glycerin, and stirred at a temperature of 40 ° C. and 400 r / min. did. Thereafter, glycerin was charged into a four-necked flask, and an esterification reaction was carried out under a vacuum degree of 400 Pa. The molar ratio of fatty acid to glycerin (FA / GLY) in the four-necked flask was 1.5. After 165 hours, the immobilized lipase G was filtered off to obtain an esterification reaction oil.

<2.エステル化反応油の蒸留>
上記1で得たエステル化反応油を、ワイプトフィルム蒸発装置(2−03型:神鋼環境ソリューション製)を用いて、温度設定230℃、真空<2Pa、流量120mL/hの条件で薄膜蒸留処理した。蒸留残渣を固相カラムでDAGとTAGを分離し、それぞれのDHA含量を測定した。
<2. Distillation of esterification reaction oil>
The esterification reaction oil obtained in 1 above was subjected to thin film distillation using a wipe film evaporator (type 2-03: manufactured by Shinko Environmental Solution Co., Ltd.) under conditions of a temperature setting of 230 ° C., a vacuum of <2 Pa, and a flow rate of 120 mL / h. . DAG and TAG were separated from the distillation residue using a solid phase column, and each DHA content was measured.

〔比較例2〕
マグロ油由来の原料脂肪酸2とグリセリンの仕込みを変えて、グリセリンに対する脂肪酸のモル比(FA/GLY)を2としてエステル化反応を25時間行った以外は、比較例1と同じ条件でエステル化反応と蒸留を行った。
[Comparative Example 2]
The esterification reaction was carried out under the same conditions as in Comparative Example 1, except that the feed of fatty acid 2 derived from tuna oil and glycerin was changed and the molar ratio of fatty acid to glycerin (FA / GLY) was changed to 2 for 25 hours. And distilled.

〔比較例3〕
マグロ油由来の原料脂肪酸2とグリセリンの仕込みを変えて、グリセリンに対する脂肪酸のモル比(FA/GLY)を2.5としてエステル化反応を18時間行った以外は、比較例1と同じ条件でエステル化反応と蒸留を行った。
[Comparative Example 3]
Esters were changed under the same conditions as in Comparative Example 1 except that the feed of fatty acid 2 and glycerin derived from tuna oil was changed and the molar ratio of fatty acid to glycerin (FA / GLY) was 2.5 and the esterification reaction was carried out for 18 hours. Reaction and distillation were carried out.

エステル化反応条件、反応油の酸価、蒸留の分離比率、及び蒸留残渣の分析値を表3に示す。   Table 3 shows the esterification reaction conditions, the acid value of the reaction oil, the distillation separation ratio, and the analytical value of the distillation residue.

Figure 2018082676
Figure 2018082676

表3より明らかなように、DHAを含む脂肪酸類をリゾムコール・ミエヘイ(Rhizomucour miehei)由来の1,3位選択性リパーゼでエステル化反応すると蒸留残渣は45〜67%得られ、また、DHAはTAGではなく主にDAGに多く含まれていた。
これに対して、DHAを含む脂肪酸類を固定化リパーゼG(部分グリセリド選択性)でエステル化反応すると蒸留残渣は多かったが、DHAはDAGに選択的に含まれず、TAGにも多く含まれていた。
As is apparent from Table 3, when fatty acids containing DHA are esterified with 1,3-position selective lipase derived from Rhizomucor miehei, a distillation residue of 45 to 67% is obtained, and DHA is TAG. Rather, it was mainly included in DAG.
In contrast, when fatty acids containing DHA were esterified with immobilized lipase G (partial glyceride selectivity), there were many distillation residues, but DHA was not selectively contained in DAG, but was also contained in TAG. It was.

Claims (8)

構成脂肪酸中のドコサヘキサエン酸の85質量%以上をジアシルグリセロール内に含有する構造油脂の製造方法であって、
ドコサヘキサエン酸を含み、且つ酸価が170〜185mgKOH/gである脂肪酸類と、グリセリンとを、リゾムコール・ミエヘイ(Rhizomucour miehei)由来の1,3位選択性リパーゼを用いてエステル化反応させる工程を含む、製造方法。
A method for producing a structural fat or oil containing 85% by mass or more of docosahexaenoic acid in a constituent fatty acid in diacylglycerol,
Including a step of esterifying a fatty acid containing docosahexaenoic acid and having an acid value of 170 to 185 mg KOH / g and glycerin using a 1,3-position selective lipase derived from Rhizomucor miehei. ,Production method.
脂肪酸類が蒸留処理したものである請求項1記載の構造油脂の製造方法。   2. The method for producing a structured fat according to claim 1, wherein the fatty acids are distilled. 脂肪酸類がドコサヘキサエン酸を38質量%以上含有するものである請求項1又は2記載の構造油脂の製造方法。   The method for producing a structural fat or oil according to claim 1 or 2, wherein the fatty acid contains 38 mass% or more of docosahexaenoic acid. エステル化反応時間が15時間以内である請求項1〜3のいずれか1項記載の構造油脂の製造方法。   The method for producing a structural fat according to any one of claims 1 to 3, wherein the esterification reaction time is within 15 hours. 脂肪酸類とグリセリンとを、グリセリン基のモル数に対する脂肪酸基のモル数の比[FA/GLY]が3.0以下となる範囲でエステル化反応させる請求項1〜4のいずれか1項記載の構造油脂の製造方法。   5. The esterification reaction of fatty acids and glycerin in a range in which the ratio of the number of moles of fatty acid groups to the number of moles of glycerin groups [FA / GLY] is 3.0 or less, according to claim 1. Manufacturing method of structural fats and oils. エステル化反応により酸価が20〜60mgKOH/gである反応油を得る請求項1〜5のいずれか1項記載の構造油脂の製造方法。   The manufacturing method of the structural fats and oils of any one of Claims 1-5 which obtain the reaction oil whose acid value is 20-60 mgKOH / g by esterification reaction. 構造油脂が油脂を構成する脂肪酸中にドコサヘキサエン酸を18〜68質量%含有するものである請求項1〜6のいずれか1項記載の構造油脂の製造方法。   The method for producing a structured fat according to any one of claims 1 to 6, wherein the structured fat contains 18 to 68% by mass of docosahexaenoic acid in the fatty acid constituting the fat. 構造油脂がジアシルグリセロールを60〜95質量%含有するものである請求項1〜7のいずれか1項記載の構造油脂の製造方法。   The method for producing structured fats and oils according to any one of claims 1 to 7, wherein the structured fats and oils contain 60 to 95% by mass of diacylglycerol.
JP2016229275A 2016-11-25 2016-11-25 Manufacturing method of structural fats and oils Active JP7092460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016229275A JP7092460B2 (en) 2016-11-25 2016-11-25 Manufacturing method of structural fats and oils

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016229275A JP7092460B2 (en) 2016-11-25 2016-11-25 Manufacturing method of structural fats and oils

Publications (2)

Publication Number Publication Date
JP2018082676A true JP2018082676A (en) 2018-05-31
JP7092460B2 JP7092460B2 (en) 2022-06-28

Family

ID=62236721

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016229275A Active JP7092460B2 (en) 2016-11-25 2016-11-25 Manufacturing method of structural fats and oils

Country Status (1)

Country Link
JP (1) JP7092460B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021195471A (en) * 2020-06-16 2021-12-27 日本水産株式会社 Method to reduce 3-MCPD content in fats and oils

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252090A (en) * 2000-03-10 2001-09-18 Kao Corp Diglyceride production method
JP2004208539A (en) * 2002-12-27 2004-07-29 Kao Corp Method for producing diglyceride
JP2008278781A (en) * 2007-05-09 2008-11-20 Osaka City Method for producing triacylglycerol having higher DHA content at positions 1 and 3 than at position 2
WO2016153065A1 (en) * 2015-03-25 2016-09-29 キユーピー株式会社 Method for producing dha-containing glyceride-containing composition

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001252090A (en) * 2000-03-10 2001-09-18 Kao Corp Diglyceride production method
JP2004208539A (en) * 2002-12-27 2004-07-29 Kao Corp Method for producing diglyceride
JP2008278781A (en) * 2007-05-09 2008-11-20 Osaka City Method for producing triacylglycerol having higher DHA content at positions 1 and 3 than at position 2
WO2016153065A1 (en) * 2015-03-25 2016-09-29 キユーピー株式会社 Method for producing dha-containing glyceride-containing composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021195471A (en) * 2020-06-16 2021-12-27 日本水産株式会社 Method to reduce 3-MCPD content in fats and oils
JP7505925B2 (en) 2020-06-16 2024-06-25 株式会社ニッスイ Method for reducing 3-MCPD content in fats and oils

Also Published As

Publication number Publication date
JP7092460B2 (en) 2022-06-28

Similar Documents

Publication Publication Date Title
JP7213184B2 (en) Enzymatic enrichment of n-3 fatty acids in the form of glycerides
US9556401B2 (en) Method for producing EPA-enriched oil and DHA-enriched oil
US9476008B2 (en) Process for separating polyunsaturated fatty acids from long chain unsaturated or less saturated fatty acids
HUT76707A (en) Refining oil compositions
JP6715586B2 (en) Method for producing highly unsaturated fatty acid
JP5416861B2 (en) Method for producing highly unsaturated fatty acid-containing fat with lipase
JP6175198B2 (en) Method for producing DHA-containing glyceride-containing composition
JP5242230B2 (en) Method for producing immobilized enzyme
JP2020174570A (en) Method for producing polyunsaturated fatty acid and medium chain fatty acid-containing triglyceride
JP6645804B2 (en) Manufacturing method of structural fats and oils
JP7092460B2 (en) Manufacturing method of structural fats and oils
JP3813585B2 (en) Method for producing diglyceride
JP5836025B2 (en) Method for producing highly unsaturated fatty acid concentrated oil
JP7365202B2 (en) Method for producing fats and oils with high diacylglycerol content
JP3893107B2 (en) Method for producing fatty acid
JP4220957B2 (en) Method for producing immobilized enzyme
JP3929890B2 (en) Method for producing diglyceride
JP2012034622A (en) Method for producing fat and oil with high diacylglycerol content
JP3813584B2 (en) Method for producing diglyceride
JP5527983B2 (en) Process for producing docosahexaenoic acid-rich oil
JP2019054738A (en) Production method of fatty acids
JP6990019B2 (en) Method for producing fatty acids
JP6859212B2 (en) Method for producing fats and oils containing high diacylglycerol

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191004

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200630

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200907

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210209

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20210510

C116 Written invitation by the chief administrative judge to file amendments

Free format text: JAPANESE INTERMEDIATE CODE: C116

Effective date: 20210525

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20210525

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220201

C13 Notice of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: C13

Effective date: 20220301

C22 Notice of designation (change) of administrative judge

Free format text: JAPANESE INTERMEDIATE CODE: C22

Effective date: 20220405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220427

C23 Notice of termination of proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C23

Effective date: 20220517

C03 Trial/appeal decision taken

Free format text: JAPANESE INTERMEDIATE CODE: C03

Effective date: 20220614

C30A Notification sent

Free format text: JAPANESE INTERMEDIATE CODE: C3012

Effective date: 20220614

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20220616

R151 Written notification of patent or utility model registration

Ref document number: 7092460

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250