[go: up one dir, main page]

JP2018076622A - High density fabric and textile material for industrial materials using the same - Google Patents

High density fabric and textile material for industrial materials using the same Download PDF

Info

Publication number
JP2018076622A
JP2018076622A JP2016219904A JP2016219904A JP2018076622A JP 2018076622 A JP2018076622 A JP 2018076622A JP 2016219904 A JP2016219904 A JP 2016219904A JP 2016219904 A JP2016219904 A JP 2016219904A JP 2018076622 A JP2018076622 A JP 2018076622A
Authority
JP
Japan
Prior art keywords
warp
weft
yarn
fabric
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016219904A
Other languages
Japanese (ja)
Inventor
弘至 土倉
Hiroyuki Tsuchikura
弘至 土倉
洋三 立石
Yozo Tateishi
洋三 立石
新太郎 風早
Shintaro Kazahaya
新太郎 風早
林 隆二
Ryuji Hayashi
隆二 林
長谷川 亮
Akira Hasegawa
亮 長谷川
中林 伊織
Iori Nakabayashi
伊織 中林
孝是 牧野
Takakore Makino
孝是 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
HARADA SHOJI KK
Toray Industries Inc
Original Assignee
HARADA SHOJI KK
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by HARADA SHOJI KK, Toray Industries Inc filed Critical HARADA SHOJI KK
Priority to JP2016219904A priority Critical patent/JP2018076622A/en
Publication of JP2018076622A publication Critical patent/JP2018076622A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Woven Fabrics (AREA)

Abstract

【課題】先鋭形状物質の耐突刺し性と各分野で要求される通気性、耐水圧など布帛を通過する物質量を制御できる高機能高密度織物を提供する。【解決手段】下記(1)から(6)を満たす高密度織物。(1)マルチフィラメントまたは紡績糸からなり、(2)式(1)から算出されるカバーファクタ(CF)が2700以上であり、(3)上記カバーファクタ(CF)と式(2)から算出される見かけカバーファクタ(CFa)との比CFa/CFが0.5以上0.8以下であり、(4)経糸および緯糸ともに浮き本数が4本未満であり、(5)隣り合う両方の糸条と直交する糸条を挟んで反対側に存在する確率は15%以上であり、(6)経糸および緯糸ともに直交する糸条の上側に対して下側に存在する比率が65%以上150%以下である。【選択図】図1The present invention provides a high-performance and high-density woven fabric capable of controlling the amount of a substance passing through a cloth, such as the piercing resistance of a sharp-shaped substance, the air permeability required in various fields, and the water pressure resistance. A high density fabric satisfying the following (1) to (6). (1) Made of multifilament or spun yarn, (2) Cover factor (CF) calculated from equation (1) is 2700 or more, (3) Calculated from above cover factor (CF) and equation (2) The ratio CFa / CF with respect to the apparent cover factor (CFa) is 0.5 or more and 0.8 or less, (4) the number of floats of both warp and weft is less than 4, and (5) both adjacent yarns The probability of being on the opposite side across the yarn orthogonal to the thread is 15% or more, and (6) the ratio of the warp and weft yarn existing on the lower side to the upper side of the orthogonal yarn is 65% or more and 150% or less. It is. [Selection] Figure 1

Description

本発明は、マルチフィラメントまたは紡績糸からなる高密度織物に関し、さらに詳しくは、透過する物質量を制御できる高機能高密度織物に関するものである。   The present invention relates to a high-density fabric made of multifilaments or spun yarns, and more particularly to a high-performance high-density fabric that can control the amount of permeated material.

従来より、ダウンやフェザーなどの先鋭形状物質に対する耐突刺し性能を得るために、高密度織物は種々検討されてきたが、構造上、糸条同士の拘束力が強い平織構造が一般的に使われてきた。しかし、構造上および設備的限界から、織密度を一定の値より高めることは困難であり、織密度を高めると糸条の交錯点に生ずる糸条間の隙間が小さくなるため通気性が低下するなど、物質の透過性の制御には性能的な限界が生じる。この問題に対して、カレンダー加工にて繊維を織物平面方向に広げて糸条間の隙間の大きさを制御する手法、織物にウレタン等の膜をラミネートやコーティングする手法が挙げられる(たとえば、特許文献1参照)。しかし、ラミネートする微多孔膜は通気性さえも著しく低下し、樹脂コーティングでは膜厚ムラにより均一な特性を得ることは難しく、適度な物質透過性があるとは言えない。   Conventionally, various high-density fabrics have been studied in order to obtain puncture-proof performance against sharp-shaped materials such as down and feathers, but a plain weave structure with strong binding force between yarns is generally used. I have been. However, due to structural and equipment limitations, it is difficult to increase the weaving density above a certain value. When the weaving density is increased, the gap between the yarns at the intersection of the yarns becomes smaller and the air permeability decreases. There are performance limitations in controlling the permeability of substances. In order to solve this problem, there are a method of controlling the size of the gap between the yarns by spreading the fibers in the fabric plane direction by calendering, and a method of laminating or coating a film such as urethane on the fabric (for example, patents) Reference 1). However, even the microporous film to be laminated has a significantly reduced air permeability, and it is difficult to obtain uniform characteristics due to film thickness unevenness in the resin coating, and it cannot be said that there is an appropriate substance permeability.

一方、綾織や朱子織などの場合、平織より織密度を高密度化できるが、経糸と緯糸の交錯点が少なければ、先鋭形状物が織物に差し込まれると糸条間のずれが生じやすいため突き抜けやすくなる。また、洗濯等の物理的な揉みや摩擦によって構造は崩れやすいため、物質透過性が変動する。この問題に対して、後加工にて糸を収縮させて織密度を高める手法や、平織と同様にカレンダー加工やウレタン膜等のラミネートやコーティングする手法が挙げられる(たとえば、特許文献2参照)。しかし、加工時の揉みや摩擦により構造が崩れ、物性値のバラツキが増大する。また、平織と同様に微多孔膜ラミネートでは通気性が著しく低下し、樹脂コーティングでは膜厚ムラにより均一な特性を得ることは難しく、物質透過性の制御は困難である。   On the other hand, in the case of twill weave and satin weave, weaving density can be higher than plain weave. It becomes easy. Moreover, since the structure tends to collapse due to physical stagnation and friction such as washing, the material permeability varies. In order to solve this problem, there are a method of shrinking the yarn by post-processing and increasing the woven density, and a method of laminating and coating such as calendering and urethane film as in the case of plain weaving (for example, see Patent Document 2). However, the structure collapses due to stagnation and friction during processing, and the variation in physical properties increases. In addition, as with the plain weave, the air permeability is remarkably lowered in the microporous membrane laminate, and it is difficult to obtain uniform characteristics due to uneven film thickness in the resin coating, and it is difficult to control the material permeability.

特開2012−091411号公報JP 2012-091411 A 特開2010−248667号公報JP 2010-248667 A

本発明は上記背景技術に鑑みなされたものであり、先鋭形状物質の耐突刺し性と各分野で要求される通気性、耐水圧など布帛を通過する物質量を制御できる高機能高密度織物を提供することにある。   The present invention has been made in view of the above-described background art, and provides a high-performance high-density fabric capable of controlling the amount of material passing through the fabric, such as the puncture resistance of a sharp-shaped material and the air permeability and water pressure required in each field. It is to provide.

かかる課題を解決するため発明者らは鋭意検討した結果、本発明をなすに至った。すなわち、本発明の高密度織物は、下記(1)から(6)を満たす高密度織物である。
(1)マルチフィラメントまたは紡績糸からなり、
(2)下記式(1)から算出されるカバーファクタ(CF)が2700以上であり、
(3)上記カバーファクタ(CF)と下記式(2)から算出される見かけカバーファクタ(CFa)との比CFa/CFが0.5以上0.8以下であり、
(4)経糸および緯糸ともに浮き本数が4本未満であり、
(5)隣り合う両方の糸条と直交する糸条を挟んで反対側に存在する確率は15%以上であり、
(6)経糸および緯糸ともに直交する糸条の上側に対して下側に存在する比率が65%以上150%以下である。
As a result of diligent studies by the inventors in order to solve this problem, the present invention has been made. That is, the high-density fabric of the present invention is a high-density fabric satisfying the following (1) to (6).
(1) Made of multifilament or spun yarn,
(2) The cover factor (CF) calculated from the following formula (1) is 2700 or more,
(3) The ratio CFa / CF between the cover factor (CF) and the apparent cover factor (CFa) calculated from the following formula (2) is 0.5 or more and 0.8 or less,
(4) The number of floats of both warp and weft is less than 4,
(5) The probability of being present on the opposite side across a thread perpendicular to both adjacent threads is 15% or more,
(6) The ratio of the warp and the weft to the lower side with respect to the upper side of the orthogonal yarn is 65% or more and 150% or less.

Figure 2018076622
Figure 2018076622

ただし、
WARPは経糸の実繊度[dtex]、
WARPは経糸仕上織密度[本/25.4mm]、
WEFTは緯糸の実繊度[dtex]、
WEFTは緯糸仕上密度[本/25.4mm]である。
However,
F WARP is the actual fineness of the warp [dtex],
D WARP is the warp finish weaving density [25.4mm]
F WEFT is the weft actual fineness [dtex],
D WEFT is a weft finish density [lines / 25.4 mm].

Figure 2018076622
Figure 2018076622

ただし、
WARPは25.4mm角内の、経糸が緯糸と交錯する点数、
WEFTは 25.4mm角内の、緯糸が経糸と交錯する点数、
WARPは経糸の実繊度[dtex]、
WEFTは 緯糸の実繊度[dtex]である。
However,
n WARP is the number of warp yarns intersecting with weft yarns within 25.4 mm square,
n WEFT is the number of points where wefts intersect with warps within 25.4 mm square,
F WARP is the actual fineness of the warp [dtex],
F WEFT is the actual fineness [dtex] of the weft.

本発明によれば、従来にない織物構造が発現され、先鋭形状物質の耐突刺し性と各分野で要求される通気性、耐水圧など布帛を通過する物質量を制御できる高機能高密度織物が得られる。   ADVANTAGE OF THE INVENTION According to this invention, the high-functional high-density fabric which can control the amount of materials which can pass through cloth, such as the puncture resistance of a sharp-shaped substance, the air permeability required in each field | area, and a water pressure resistance, expresses the textile structure which is not in the past. Is obtained.

図1は、見かけカバーファクタを求めるための、変化組織の織物表面の繊維の形状を示す拡大写真である(150倍)。FIG. 1 is an enlarged photograph (150 times) showing the shape of a fiber on the surface of a fabric having a changed structure for obtaining an apparent cover factor. 図2は、見かけカバーファクタの求め方を説明するための、図1の要部を拡大した模式図である。FIG. 2 is a schematic diagram enlarging the main part of FIG. 1 for explaining how to obtain the apparent cover factor. 図3aは、本発明の織組織の一例を示す平面図である。FIG. 3 a is a plan view showing an example of the woven structure of the present invention. 図3bは、本発明の織組織の他の例を示す平面図である。FIG. 3b is a plan view showing another example of the woven structure of the present invention. 図4aは、本発明の織組織の他の例を示す平面図である。Fig. 4a is a plan view showing another example of the woven structure of the present invention. 図4bは、図4aのA1地点を示す模式断面図である。FIG. 4B is a schematic cross-sectional view showing a point A1 in FIG. 4A.

以下、本発明の高密度織物について、詳細に説明する。
本発明の高密度織物で用いられる糸の形態は何ら限定されるものではなく、マルチフィラメントや紡績糸が適用されるが、流体の透過性を抑制するにはマルチフィラメントが好ましい。また、マルチフィラメントは仮撚加工の捲縮やエアー加工により嵩高性を有していても良く、通気性や耐水圧を調整する目的として、フィラメント数や繊度、単繊維断面を任意に選択できる。特に、耐水圧を向上させる手段として、フィラメント数の増加やフィラメントの細繊度化が適している。単繊度断面は丸、三角、扁平、中空などの異型断面糸や割繊糸などを用いることも効果的である。糸の材質としては、綿や羊毛、麻のような天然繊維や、ポリエステルやナイロン、アクリルなどの合成繊維、セルロース、レーヨンなどの再生繊維、半合成繊維などのいずれかを選択することができるが、糸物性が比較的安定な合成繊維が好ましい。要求機能に応じて、フッ素、ポリフェニレンサルファイド、アラミドなどの高性能繊維を用いてもよく、2種以上の糸を交織しても問題ない。
Hereinafter, the high-density fabric of the present invention will be described in detail.
The form of the yarn used in the high-density fabric of the present invention is not limited in any way, and multifilament and spun yarn are applied, but multifilament is preferable for suppressing fluid permeability. Moreover, the multifilament may have bulkiness by crimping of false twisting or air processing, and the number of filaments, fineness, and single fiber cross section can be arbitrarily selected for the purpose of adjusting air permeability and water pressure resistance. In particular, increasing the number of filaments and reducing the fineness of the filaments are suitable as means for improving the water pressure resistance. It is also effective to use irregular cross-section yarns such as round, triangular, flat, hollow, or split yarns for the single fineness cross section. The material of the yarn can be selected from natural fibers such as cotton, wool and hemp, synthetic fibers such as polyester, nylon and acrylic, recycled fibers such as cellulose and rayon, and semi-synthetic fibers. A synthetic fiber having a relatively stable yarn physical property is preferable. Depending on the required function, high-performance fibers such as fluorine, polyphenylene sulfide, and aramid may be used, and there is no problem even if two or more kinds of yarns are interwoven.

本発明の高密度織物は、カバーファクタ(CF)は2700以上が好ましく、2900〜4000の範囲であればより好ましい。カバーファクタは2700より小さいと、糸条間の隙間が大きくなるため先鋭形状物質が突き抜けやすくなる。一方、カバーファクタは4000よりも大きいと、糸条間の隙間が小さくなるため物質透過性の低下が起こる。   In the high-density fabric of the present invention, the cover factor (CF) is preferably 2700 or more, and more preferably in the range of 2900 to 4000. When the cover factor is smaller than 2700, the gap between the yarns becomes large, so that the sharp-shaped substance can easily penetrate. On the other hand, when the cover factor is larger than 4000, the gap between the yarns becomes small, and the material permeability is lowered.

カバーファクタ(CF)は下記式(1)で算出した。   The cover factor (CF) was calculated by the following formula (1).

Figure 2018076622
Figure 2018076622

ただし、
WARPは経糸の実繊度[dtex]、
However,
F WARP is the actual fineness of the warp [dtex],

WARPは経糸仕上織密度[本/25.4mm]、
WEFTは緯糸の実繊度[dtex]、
WEFTは緯糸仕上密度[本/25.4mm]である。
D WARP is the warp finish weaving density [25.4mm]
F WEFT is the weft actual fineness [dtex],
D WEFT is a weft finish density [lines / 25.4 mm].

本発明の高密度織物において、カバーファクタ(CF)と式(2)から算出される見かけカバーファクタ(CFa)との比CFa/CFが0.5以上0.8以下であることは重要である。CFa/CFが0.8以上であると、平織りや糸条の交錯点の多い綾織り以外の組織が困難となり、交錯点に生ずる糸条間の隙間が小さくなるため物質透過性が低下する。CFa/CFが0.5未満の場合、交錯点の少ない組織となるため、先鋭形状物質に対する耐突刺し性が低くなる。上記範囲であれば、先鋭形状物質の突き抜けが抑制でき、且つ適度な物質透過性を確保することができる。   In the high-density fabric of the present invention, it is important that the ratio CFa / CF between the cover factor (CF) and the apparent cover factor (CFa) calculated from the formula (2) is 0.5 or more and 0.8 or less. . When CFa / CF is 0.8 or more, a structure other than a plain weave or a twill weave having many intersecting points of yarns becomes difficult, and a gap between yarns formed at the intersecting points becomes small, so that material permeability is lowered. When CFa / CF is less than 0.5, the structure has few crossing points, so that the puncture resistance to a sharp-shaped substance is lowered. If it is the said range, penetration of a sharp-shaped substance can be suppressed and moderate substance permeability can be ensured.

見かけカバーファクタの算出方法について下記に説明する。   The method for calculating the apparent cover factor will be described below.

図1は、変化組織をもつ織物の拡大写真(150倍)であり、図2は、見かけカバーファクタの求め方を説明するために、図1の要部を拡大した模式図である。図2に示すように、経糸および緯糸に平行な線を描いて単位面積の正方形(細線で囲まれた図形)を得、その正方形の内部にある経糸の織構造の山部を数え、その正方形から少しでもはみ出した山部は0.5とする。そのようにして図1の正方形の内部にある山部を数えると、21(単位数CWARP)になる。その単位数CWARPから25.4mm四方の山部の数(MWARP)を求める。経糸が緯糸との交錯する点数をnWARPとすると、nWARPは以下の式(3)のように求められる。 FIG. 1 is an enlarged photograph (150 times) of a woven fabric having a change structure, and FIG. 2 is a schematic diagram in which a main part of FIG. 1 is enlarged to explain how to obtain an apparent cover factor. As shown in FIG. 2, a line parallel to the warp and weft is drawn to obtain a unit area square (figure surrounded by fine lines), and the peak of the woven structure of the warp inside the square is counted. The mountain part that protrudes even a little is 0.5. Thus, if the peak part in the square of FIG. 1 is counted, it will be 21 (unit number CWARP ). The number (M WARP ) of 25.4 mm squares is obtained from the unit number C WARP . When the number of points that warp is interlaced with the weft and n WARP, n WARP is obtained as the following equation (3).

Figure 2018076622
Figure 2018076622

同様に、緯糸の織構造の山部は、図1の正方形の内部にある山部の数(単位数CWEFT)、25.4mm四方の山部の数(MWEFT)から算出され、緯糸が経糸と交錯する点数nWEFTは以下式(4)のように求められる。 Similarly, the ridges of the weft structure are calculated from the number of ridges (unit number C WEFT ) and the number of ridges 25.4 mm square (M WEFT ) inside the square of FIG. The number n WEFT that intersects with the warp is obtained as shown in the following formula (4).

Figure 2018076622
Figure 2018076622

経糸の実繊度[dtex]をFWARP、緯糸の実繊度[dtex]をFWEFTとすると、式(3)、(4)で算出された交錯点数を用いて、見かけカバーファクタ(CFa)が算出される。 Actual fineness of the warp [dtex] and F WARP, when the actual fineness of the weft yarn [dtex] and F WEFT, equation (3), using the interlaced points calculated in (4), calculates the apparent cover factor (CFa) is Is done.

Figure 2018076622
Figure 2018076622

本発明の高密度織物の織組織は、経糸・緯糸共に浮き本数が4本未満であることが好ましい。例えば図3aに示す織組織(2/3綾織)であれば、経糸条Aは緯糸条cから緯糸条eと交錯する間は布帛下側で浮き糸として存在しており、浮き本数は緯糸条を跨ぐ本数となるため3本となる。また、図3bに示す織組織(5枚朱子織)であれば、緯糸条bは経糸条Aから経糸条Dと交錯する間は布帛上側で浮き糸として存在しており、浮き本数は経糸条を跨ぐ本数となるため4本となる。4糸条以上同じ側に存在すると直交する糸条との交錯点数が減少するため、洗濯等の揉みや擦過により糸条の位置がずれてしまい、糸条間から先鋭形状物質が突き抜けやすくなる。   The woven structure of the high-density fabric of the present invention preferably has a number of floats of less than 4 for both warp and weft. For example, in the woven structure (2/3 twill weave) shown in FIG. 3a, the warp yarn A exists as a floating yarn under the fabric while it intersects with the weft yarn c to the weft yarn e, and the number of floats is the weft yarn. Since the number crosses the number, it becomes three. In the woven structure (five satin weaves) shown in FIG. 3b, the weft yarn b exists as a floating yarn on the upper side of the fabric while it intersects with the warp yarn A to the warp yarn D, and the number of floats is the warp yarn. Since the number crosses the number, it becomes 4. When four or more yarns are present on the same side, the number of crossing points with orthogonal yarns is reduced, so that the position of the yarns is shifted due to stagnation or rubbing such as washing, and the sharp-shaped substance easily penetrates between the yarns.

また、隣り合う両方の糸条と直交する糸条を挟んで反対側に存在する確率は15%以上が好ましい。例えば図4aに示す織組織の糸条AのA1地点であれば、点線部での断面図は図4bとなるが、A1地点で隣接する両側の糸条BとCに対し、直交する1本の糸条Dを挟んで反対の位置(Aは布帛下側、BとCは布帛上側)に存在している。A1地点のような織構造は、糸条Aと直交する糸条と平行方向の応力に対し、織物構造として最も拘束力が働く構造となる。   Further, the probability of existing on the opposite side across the yarn orthogonal to both adjacent yarns is preferably 15% or more. For example, if it is A1 point of the yarn A of the woven structure shown in FIG. 4a, the cross-sectional view at the dotted line portion is FIG. 4b, but one piece orthogonal to the yarns B and C on both sides adjacent to the A1 point. Are present at opposite positions (A is the fabric lower side, B and C are the fabric upper side). The woven structure such as the point A1 is a structure in which the binding force works most as a woven structure against a stress parallel to the yarn orthogonal to the yarn A.

更には、経糸と緯糸共に織物表面もしくは裏面のどちらか一方に偏って多く存在すると織物のシワやカールの原因となるため、経糸・緯糸ともに直交する糸条の上側に対して下側に存在する比率が65%以上150%以下であることが好ましく、100%であればより好ましい。図4aの織組織を用いて算出すると、上側の糸19箇所、下側の糸30箇所、上側に対して下側に存在する比率は約158%となる。   Furthermore, if both the warp and weft are biased to either the front or back of the fabric, the warp and curl of the fabric will be caused. Therefore, both the warp and weft are on the lower side of the perpendicular yarn. The ratio is preferably 65% or more and 150% or less, and more preferably 100%. When calculated using the woven structure of FIG. 4a, the ratio of the upper 19 yarns, the lower 30 yarns, and the lower side with respect to the upper side is about 158%.

本発明の高密度織物はレピア織機、エアージェット織機、ウォータージェット織機、フライシャトル織機、グリッパ織機から選択されるいずれかで製織することできる。そして、高付加価値を付与できる多色自由交換装置を有した織機、変化組織に対応することが可能なドビー装置を有した織機などは更に好ましく使用することができる。中でも、生産性の高く、製造コストが比較的安価なドビー装置を有するウォータージェット織機が好ましい。   The high-density fabric of the present invention can be woven by any one selected from a rapier loom, an air jet loom, a water jet loom, a fly shuttle loom, and a gripper loom. Further, a loom having a multicolor free exchange device capable of giving high added value, a loom having a dobby device capable of dealing with a changed tissue, and the like can be more preferably used. Among these, a water jet loom having a dobby device with high productivity and relatively low manufacturing cost is preferable.

本発明の高密度織物の通気度は、用途に応じて適宜選択することができる。例えば、ダウンジャケット側地に用いる場合は、1cc/cm・sec以上あれば 着用時のムレ感を抑制することができる。上記通気度の測定は、JIS L1096A法 フラジール形法によるものとする。 本発明の高密度織物の耐水圧は、用途に応じて適宜選択することができる。特に、衣料用側地に用いる場合は、300mmHg以上あれば軽度の雨でも側地裏側へ濡れがなく着用できる。上記耐水圧の測定は、JIS L1092耐水度試験(静水圧法) A法(低水圧法)によるものとする。   The air permeability of the high-density fabric of the present invention can be appropriately selected depending on the application. For example, when used on the down jacket side, the stuffiness when worn can be suppressed if it is 1 cc / cm · sec or more. The measurement of the said air permeability shall be based on JIS L1096A method fragile type method. The water pressure resistance of the high-density fabric of the present invention can be appropriately selected depending on the application. In particular, when used for clothing side ground, if it is 300 mmHg or more, it can be worn without getting wet on the back side of the side even in light rain. The measurement of the water pressure resistance is based on the JIS L1092 water resistance test (hydrostatic pressure method) A method (low water pressure method).

本発明の高密度織物の好適な衣料品の事例として、フィッシング、登山衣などのアウトドアウェア、スキーウェア、アスレチックウェア、ゴルフウェアなどのスポーツウェア、カジュアルウェア、レインコート、ユニフォーム、屋外作業衣などがあるが、特にダウンジャケットやウィンドブレーカーの側地がより好ましい事例として挙げられる。ダウンジャケット側地であれば、先鋭形状物質であるダウンやフェザーに対する耐突刺性が高いため抜けを抑制でき、且つ通気性が1cc/cm・sec以上と高いためムレ感を低減することができる。ウィンドブレーカー側地であれば、耐水圧が500mmHg以上と高いため防風性に優れた生地として提供できる。   Examples of suitable clothing of the high-density fabric of the present invention include outdoor wear such as fishing, mountaineering clothes, sportswear such as ski wear, athletic wear, golf wear, casual wear, raincoats, uniforms, outdoor work clothes, etc. In particular, a down jacket and a windbreaker side are more preferable examples. If it is a down jacket side place, since it has high puncture resistance against down and feathers, which are sharp-shaped substances, it can be prevented from coming out, and the air permeability is as high as 1 cc / cm · sec or more, so that the feeling of stuffiness can be reduced. If it is a windbreaker side land, since the water pressure resistance is as high as 500 mmHg or more, it can be provided as a fabric excellent in windproof properties.

本発明の高密度織物の好適な繊維製品の事例として、さらに布団や枕などの寝装側地、テント地、傘地、帽子、手袋などが挙げられる。寝装側地であれば、衣料用途の事例と同様に、綿や羽毛などの先鋭形状物質を保温材として用いた場合でも、高耐突刺性により保温材の抜けを抑制でき、さらには、高通気性を有するためムレを防ぐことができる。   Examples of suitable textile products of the high-density fabric of the present invention include bedding side areas such as futons and pillows, tents, umbrellas, hats, gloves and the like. In the case of bedding-side land, as in the case of apparel applications, even when a sharp-shaped material such as cotton or feather is used as the heat insulating material, it is possible to prevent the heat insulating material from falling out due to its high piercing resistance, Due to the air permeability, stuffiness can be prevented.

本発明の高密度織物の好適な産業用繊維製品の事例として、防護服、安全保護具、フィルター材などが挙げられる。防護服、安全保護具であれば、有刺植物や蜂の針、刃物などの先鋭形状物質が身の回りに存在しうる環境において、突刺されによる怪我の防止や装着時のムレ感を抑制でき、且つ引裂強度が高いため先鋭形状物質の引掛りによる生地の裂けを防ぐことができる生地として活用できる。さらに、フィルター材としては透過させる物質量を任意に変更できる利点を有する。   Examples of suitable industrial textile products of the high-density fabric of the present invention include protective clothing, safety protective equipment, filter materials and the like. Protective clothing and safety protective equipment can prevent injuries caused by piercing and suppress stuffiness when worn in environments where sharp-shaped substances such as barbed plants, bee needles, and blades can exist around you Since the tear strength is high, it can be used as a fabric that can prevent the fabric from tearing due to the catch of a sharp-shaped material. Further, the filter material has an advantage that the amount of substance to be transmitted can be arbitrarily changed.

以下に実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらによって限定されるものではない。はじめに、評価方法の説明を行う。   The present invention will be specifically described below with reference to examples. However, the present invention is not limited by these. First, the evaluation method will be explained.

[織物の密度]JIS L1096−2010織物の密度のA法(JIS法)に準じて測定した。 [Density of woven fabric] The density of the woven fabric was measured according to JIS L1096-2010 woven fabric density A method (JIS method).

[織物の目付]JIS L1096−2010織物の単位面積当たりの質量のA法(JIS法)に準じて測定した。 [Weight of woven fabric] The mass per unit area of JIS L1096-2010 woven fabric was measured according to the method A (JIS method).

[カバーファクタ CF]下式(1)より算出した。 [Cover factor CF] Calculated from the following equation (1).

Figure 2018076622
Figure 2018076622

WARP:経糸の実繊度[dtex]
WEFT:緯糸の実繊度[dtex]
F WARP : Actual fineness of warp [dtex]
F WEFT : Actual fineness of weft yarn [dtex]

WARP:経糸仕上織密度[本/25.4mm]
WEFT:緯糸仕上織密度[本/25.4mm]
D WARP : Warp finish weaving density [Book / 25.4mm]
D WEFT : Weft finish weaving density [Book / 25.4mm]

[見掛けカバーファクタ CFa]下式(2)より算出した。 [Apparent cover factor CFa] Calculated from the following equation (2).

Figure 2018076622
Figure 2018076622

WARP: 25.4mm角内の、経糸が緯糸と交錯する点数
WEFT: 25.4mm角内の、緯糸が経糸と交錯する点数
WARP: 経糸の実繊度[dtex]
WEFT: 緯糸の実繊度[dtex]
n WARP : Number of points where the warp yarn intersects with the weft yarn within 25.4 mm square n WEFT : Number of points where the weft yarn intersects with the warp yarn within 25.4 mm square F WARP : Actual fineness of the warp yarn [dtex]
F WEFT : Weft actual fineness [dtex]

[CFa/CF]式(2)を式(1)で除した。 [CFa / CF] Formula (2) was divided by Formula (1).

[耐突刺し性]JIS T8050−2005突刺抵抗試験法に準じて測定した。 [Puncture resistance] Measured according to JIS T8050-2005 puncture resistance test method.

[通気度]JIS L1096−2010通気性のA法(フラジ−ル形法)に準じて測定した。 [Air permeability] Measured according to JIS L1096-2010 air permeability A method (fragile type method).

[耐水圧]JIS L1091−1999耐水度試験(静水圧法)のA法(低水圧法)に準じて測定した。 [Water pressure resistance] Measured according to method A (low water pressure method) of JIS L1091-1999 water resistance test (hydrostatic pressure method).

[引張強さ]JIS L1096−2010引張強さのA法(ストリップ法)に準じて測定した。 [Tensile Strength] Measured according to JIS L1096-2010 tensile strength method A (strip method).

[引裂強さ]JIS L1096−2010引裂強さのA法(シングルタング法)に準じて測定した。 [Tear Strength] Measured according to JIS L1096-2010 tear strength method A (single tongue method).

[実施例1]
総繊度33dtex、26フィラメントのナイロン6、6マルチフィラメントを経糸、緯糸に用いて、ウォータージェットルームにより変化組織の生機を作製した。この生機に精練、中間セット、染色を行い、加熱したロールを用いて生地の裏面にカレンダー加工を行った。
[Example 1]
Using a nylon 6,6 multifilament with a total fineness of 33 dtex and 26 filaments for warp and weft, a living machine of a changed structure was produced by a water jet loom. Scouring, intermediate setting, and dyeing were performed on this raw machine, and the back surface of the dough was calendered using a heated roll.

得られた織物の特性は比較例1〜3と比較して、耐突刺性、通気性、引張強さ、引裂強さのいずれも良好な結果が得られた。この織物は、先鋭形状物質の耐突刺し性と通気性や耐水圧など布帛を通過する物質量を制御できる高機能高密度織物として提供できる。結果を表1に示す。   As for the properties of the obtained woven fabric, all results of puncture resistance, breathability, tensile strength, and tear strength were obtained as compared with Comparative Examples 1 to 3. This woven fabric can be provided as a high-functional and high-density woven fabric that can control the amount of material passing through the fabric, such as the piercing resistance, air permeability, and water pressure resistance of the sharp-shaped material. The results are shown in Table 1.

Figure 2018076622
Figure 2018076622

[実施例2]
カレンダー加工後にタンブラーを行った以外は、実施例1と同様に作製した。
得られた織物の特性は比較例1〜3と比較して、実施例1には劣るが、耐突刺性、通気性、引張強さ、引裂強さはいずれも良好な結果が得られた。特に、引張強さ、引裂強さが強いため、強力が必要で先鋭形状物質による引掛りの発生しやすい場面で使用される防護服や安全保護具などへの適用が好ましい。結果を表1に示す。
[Example 2]
It produced similarly to Example 1 except having performed the tumbler after the calendar process.
Although the characteristics of the obtained woven fabric were inferior to those of Example 1 as compared with Comparative Examples 1 to 3, good results were obtained for puncture resistance, air permeability, tensile strength, and tear strength. In particular, since the tensile strength and tear strength are high, it is preferable to apply to protective clothing, safety protective equipment, and the like that are used in scenes that require high strength and are easily caught by sharp-shaped substances. The results are shown in Table 1.

[実施例3]
緯糸に総繊度66dtex、52フィラメントのエアー混繊したナイロン6、6マルチフィラメントを用いた以外は、実施例1と同様に作製した。
得られた織物の特性は比較例1〜3と比較して、実施例2と同様に実施例1には劣るが、耐突刺性、通気性、引張強さ、引裂強さはいずれも良好な結果が得られた。特に、引張強さ、引裂強さが強いため、強力が必要で先鋭形状物質による引掛りの発生しやすい場面で使用される防護服や安全保護具などへの適用が好ましい。結果を表1に示す。
[Example 3]
It was produced in the same manner as in Example 1 except that nylon 6 or 6 multifilament mixed with air having a total fineness of 66 dtex and 52 filaments was used as the weft.
The properties of the resulting woven fabric are inferior to those of Example 1 as in Example 2 as compared with Comparative Examples 1 to 3, but the puncture resistance, breathability, tensile strength, and tear strength are all good. Results were obtained. In particular, since the tensile strength and tear strength are high, it is preferable to apply to protective clothing, safety protective equipment, and the like that are used in scenes that require high strength and are easily caught by sharp-shaped substances. The results are shown in Table 1.

[比較例1]
総繊度33dtex、26フィラメントのナイロン6、6マルチフィラメントを経糸、緯糸に用いて、ウォータージェットルームにより平織の生機を作製した。この生機に精練、中間セット、染色を行い、加熱したロールを用いて生地の裏面にカレンダー加工を行った。
得られた織物の特性は実施例1〜3と比較して、耐水圧以外は劣るため、先鋭形状物質の耐突刺し性と通気性や耐水圧など布帛を通過する物質量を制御できる高機能高密度織物としての提供は困難である。結果を表1に示す。
[Comparative Example 1]
A plain weaving machine was produced in a water jet loom by using nylon 6,6 multifilament with a total fineness of 33 dtex and 26 filaments for warp and weft. Scouring, intermediate setting, and dyeing were performed on this raw machine, and the back surface of the dough was calendered using a heated roll.
Since the properties of the resulting fabric are inferior to those of Examples 1 to 3 except for the water pressure resistance, it has a high function capable of controlling the amount of material passing through the fabric such as the piercing resistance and air permeability and water pressure resistance of the sharp-shaped material. Providing as a high-density fabric is difficult. The results are shown in Table 1.

[比較例2]
総繊度33dtex、26フィラメントでナイロン6、6とポリエステルの存在比が1:1のマルチフィラメントを経糸、緯糸に用いて、ウォータージェットルームにより2/1綾織の生機を作製した。この生機に精練、中間セット、染色を行い、加熱したロールを用いて生地の裏面にカレンダー加工を行った。
[Comparative Example 2]
Using a multifilament with a total fineness of 33 dtex, 26 filaments and a ratio of nylon 6, 6 to polyester of 1: 1 for warp and weft, a 2/1 twill weave was produced using a water jet loom. Scouring, intermediate setting, and dyeing were performed on this raw machine, and the back surface of the dough was calendered using a heated roll.

得られた織物の特性は実施例1〜3と比較して、優位な特性はなく、先鋭形状物質の耐突刺し性と通気性や耐水圧など布帛を通過する物質量を制御できる高機能高密度織物としての提供は困難である。結果を表1に示す。   The properties of the resulting fabric are not superior to those of Examples 1 to 3, and the high-performance and high-function that can control the amount of material passing through the fabric, such as the piercing resistance and air permeability and water pressure resistance of sharp-shaped materials. Providing as a density fabric is difficult. The results are shown in Table 1.

[比較例3]
経糸に総繊度22dtex、26フィラメントのナイロン6、6マルチフィラメントを、緯糸に総繊度22dtex、26フィラメントのエアー混繊したナイロン6、6マルチフィラメントを用いて、ウォータージェットルームにより5枚朱子織の生機を作製した。この生機に精練、中間セット、染色を行い、加熱したロールを用いて生地の裏面にカレンダー加工を行った。
[Comparative Example 3]
Nylon 6, 6 multifilament with a total fineness of 22 dtex and 26 filaments for warp yarns, Nylon 6, 6 multifilament with a total fineness of 22 dtex and 26 filaments mixed with air for weft yarns, and 5 satin weaving machines in a water jet loom Was made. Scouring, intermediate setting, and dyeing were performed on this raw machine, and the back surface of the dough was calendered using a heated roll.

得られた織物の特性は実施例1〜3と比較して、優位な特性はなく、先鋭形状物質の耐突刺し性と通気性や耐水圧など布帛を通過する物質量を制御できる高機能高密度織物としての提供は困難である。結果を表1に示す。   The properties of the resulting fabric are not superior to those of Examples 1 to 3, and the high-performance and high-function that can control the amount of material passing through the fabric, such as the piercing resistance and air permeability and water pressure resistance of sharp-shaped materials. Providing as a density fabric is difficult. The results are shown in Table 1.

Claims (2)

下記(1)から(6)を満たす高密度織物。
(1)マルチフィラメントまたは紡績糸からなり、
(2)下記式(1)から算出されるカバーファクタ(CF)が2700以上であり、
(3)上記カバーファクタ(CF)と下記式(2)から算出される見かけカバーファクタ(CFa)との比CFa/CFが0.5以上0.8以下であり、
(4)経糸および緯糸ともに浮き本数が4本未満であり、
(5)隣り合う両方の糸条と直交する糸条を挟んで反対側に存在する確率は15%以上であり、
(6)経糸および緯糸ともに直交する糸条の上側に対して下側に存在する比率が65%以上150%以下である。
Figure 2018076622
ただし、
WARPは経糸の実繊度[dtex]、
WARPは経糸仕上織密度[本/25.4mm]、
WEFTは緯糸の実繊度[dtex]、
WEFTは緯糸仕上密度[本/25.4mm]である。
Figure 2018076622
ただし、
WARPは25.4mm角内の、経糸が緯糸と交錯する点数、
WEFTは 25.4mm角内の、緯糸が経糸と交錯する点数、
WARPは経糸の実繊度[dtex]、
WEFTは 緯糸の実繊度[dtex]である。
A high-density fabric satisfying the following (1) to (6).
(1) Made of multifilament or spun yarn,
(2) The cover factor (CF) calculated from the following formula (1) is 2700 or more,
(3) The ratio CFa / CF between the cover factor (CF) and the apparent cover factor (CFa) calculated from the following formula (2) is 0.5 or more and 0.8 or less,
(4) The number of floats of both warp and weft is less than 4,
(5) The probability of being present on the opposite side across a thread perpendicular to both adjacent threads is 15% or more,
(6) The ratio of the warp and the weft to the lower side with respect to the upper side of the orthogonal yarn is 65% or more and 150% or less.
Figure 2018076622
However,
F WARP is the actual fineness of the warp [dtex],
D WARP is the warp finish weaving density [25.4mm]
F WEFT is the weft actual fineness [dtex],
D WEFT is a weft finish density [lines / 25.4 mm].
Figure 2018076622
However,
n WARP is the number of warp yarns intersecting with weft yarns within 25.4 mm square,
n WEFT is the number of points where wefts intersect with warps within 25.4 mm square,
F WARP is the actual fineness of the warp [dtex],
F WEFT is the actual fineness [dtex] of the weft.
請求項1に記載の織物を用いてなる産業資材用繊維製品であって、スポーツウェア、アウトドアウェア、レインコート、紳士衣服、婦人衣服、作業衣、アウトドア用品、履物、カーテン、防護服、安全保護具、またはフィルターとして使用される産業資材用繊維製品。   A textile product for industrial materials using the fabric according to claim 1, comprising sportswear, outdoor clothing, raincoat, men's clothing, women's clothing, work clothing, outdoor equipment, footwear, curtains, protective clothing, safety protection Textile products for industrial materials used as tools or filters.
JP2016219904A 2016-11-10 2016-11-10 High density fabric and textile material for industrial materials using the same Pending JP2018076622A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016219904A JP2018076622A (en) 2016-11-10 2016-11-10 High density fabric and textile material for industrial materials using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016219904A JP2018076622A (en) 2016-11-10 2016-11-10 High density fabric and textile material for industrial materials using the same

Publications (1)

Publication Number Publication Date
JP2018076622A true JP2018076622A (en) 2018-05-17

Family

ID=62148962

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016219904A Pending JP2018076622A (en) 2016-11-10 2016-11-10 High density fabric and textile material for industrial materials using the same

Country Status (1)

Country Link
JP (1) JP2018076622A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118694A (en) * 2020-01-22 2020-05-08 南通帝人有限公司 A high-efficiency leak-proof fleece horizontal pocket fabric
JPWO2022004858A1 (en) * 2020-07-01 2022-01-06

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111118694A (en) * 2020-01-22 2020-05-08 南通帝人有限公司 A high-efficiency leak-proof fleece horizontal pocket fabric
JPWO2022004858A1 (en) * 2020-07-01 2022-01-06
WO2022004858A1 (en) * 2020-07-01 2022-01-06 旭化成株式会社 Textile for hollow weave airbag
JP7320678B2 (en) 2020-07-01 2023-08-03 旭化成株式会社 Hollow weave fabric for airbags
US12202430B2 (en) 2020-07-01 2025-01-21 Asahi Kasei Kabushiki Kaisha Textile for hollow weave airbag

Similar Documents

Publication Publication Date Title
JP6184483B2 (en) Abrasion resistant fabric
JP5933952B2 (en) Fabrics and textile products
JP6469950B2 (en) Anti-stain fabric and textile products
WO2017075587A1 (en) Three-dimensional channeled fabric structure for garments and/or footwear
CN102630259A (en) Variegated ripstop
JP6856422B2 (en) Abrasion resistant woven fabric
US20180014584A1 (en) Thin lightweight woven fabric
CA3126906A1 (en) Woven fabric, method for producing same, and fiber product containing said woven fabric
JP6496275B2 (en) Highly breathable fabric with durability to washing
KR20130140791A (en) Fabric and clothing
Kaynak et al. Polyester microfilament woven fabrics
JP2018076622A (en) High density fabric and textile material for industrial materials using the same
JP2006249595A (en) Knitted fabric and clothing with little wetting
JP5768329B2 (en) Stretch fabric
JP2005068571A (en) Garment stuffed with feather
JP6539495B2 (en) Laminated fabric
JP5833269B1 (en) Lightweight high density fabric with breathability
JP2017527702A (en) Manufacturing method of blade-proof fabric using water punching
JP2022006743A (en) fabric
JP7602778B2 (en) Laminated fabric and single circular knit fabric
JP7376436B2 (en) fabric
CN109208150A (en) A kind of three layers of folders bullet woven fabric of double-sided anisotropic
JPH08158115A (en) Clothes
TWI675948B (en) Multiple textured fabrics
JP6377899B2 (en) Double-tissue weave

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20201014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201023

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210416