JP2018070572A - Immunotherapy system - Google Patents
Immunotherapy system Download PDFInfo
- Publication number
- JP2018070572A JP2018070572A JP2016219198A JP2016219198A JP2018070572A JP 2018070572 A JP2018070572 A JP 2018070572A JP 2016219198 A JP2016219198 A JP 2016219198A JP 2016219198 A JP2016219198 A JP 2016219198A JP 2018070572 A JP2018070572 A JP 2018070572A
- Authority
- JP
- Japan
- Prior art keywords
- infection
- cell according
- cell
- protein
- cells
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000009169 immunotherapy Methods 0.000 title abstract description 4
- 210000004027 cell Anatomy 0.000 claims abstract description 115
- 210000001808 exosome Anatomy 0.000 claims abstract description 95
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 90
- 208000015181 infectious disease Diseases 0.000 claims abstract description 39
- 230000000890 antigenic effect Effects 0.000 claims abstract description 36
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 36
- 230000000694 effects Effects 0.000 claims abstract description 25
- 230000002265 prevention Effects 0.000 claims abstract description 8
- 230000000813 microbial effect Effects 0.000 claims abstract description 7
- 230000001225 therapeutic effect Effects 0.000 claims abstract description 5
- 210000004443 dendritic cell Anatomy 0.000 claims description 38
- 230000000259 anti-tumor effect Effects 0.000 claims description 33
- 108091007433 antigens Proteins 0.000 claims description 31
- 102000036639 antigens Human genes 0.000 claims description 29
- 239000000427 antigen Substances 0.000 claims description 23
- 241000187479 Mycobacterium tuberculosis Species 0.000 claims description 16
- 210000000987 immune system Anatomy 0.000 claims description 15
- 108010058846 Ovalbumin Proteins 0.000 claims description 10
- 201000008827 tuberculosis Diseases 0.000 claims description 10
- 229940092253 ovalbumin Drugs 0.000 claims description 8
- 101710088334 Diacylglycerol acyltransferase/mycolyltransferase Ag85B Proteins 0.000 claims description 6
- 208000035473 Communicable disease Diseases 0.000 claims description 5
- 230000003248 secreting effect Effects 0.000 claims description 5
- 244000005700 microbiome Species 0.000 claims description 4
- 230000000069 prophylactic effect Effects 0.000 claims 1
- 206010028980 Neoplasm Diseases 0.000 abstract description 32
- 201000011510 cancer Diseases 0.000 abstract description 10
- 108090000765 processed proteins & peptides Proteins 0.000 abstract description 10
- 239000012228 culture supernatant Substances 0.000 abstract description 6
- 238000012258 culturing Methods 0.000 abstract description 5
- 239000000203 mixture Substances 0.000 abstract description 3
- 238000009472 formulation Methods 0.000 abstract 2
- 210000004881 tumor cell Anatomy 0.000 description 17
- 238000000034 method Methods 0.000 description 15
- 208000001382 Experimental Melanoma Diseases 0.000 description 13
- 241000699670 Mus sp. Species 0.000 description 10
- 239000000725 suspension Substances 0.000 description 10
- 210000002950 fibroblast Anatomy 0.000 description 9
- 238000002955 isolation Methods 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 230000007969 cellular immunity Effects 0.000 description 8
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 6
- 210000004698 lymphocyte Anatomy 0.000 description 6
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 6
- 230000001939 inductive effect Effects 0.000 description 5
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 4
- 102100037850 Interferon gamma Human genes 0.000 description 4
- 108010074328 Interferon-gamma Proteins 0.000 description 4
- 210000004748 cultured cell Anatomy 0.000 description 4
- 239000012091 fetal bovine serum Substances 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000001990 intravenous administration Methods 0.000 description 4
- 210000001165 lymph node Anatomy 0.000 description 4
- 239000002609 medium Substances 0.000 description 4
- 239000013612 plasmid Substances 0.000 description 4
- 229930182555 Penicillin Natural products 0.000 description 3
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 3
- 230000003213 activating effect Effects 0.000 description 3
- -1 cationic lipid Chemical class 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000001361 intraarterial administration Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 244000052769 pathogen Species 0.000 description 3
- 230000001717 pathogenic effect Effects 0.000 description 3
- 229940049954 penicillin Drugs 0.000 description 3
- 102000004196 processed proteins & peptides Human genes 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 229960005322 streptomycin Drugs 0.000 description 3
- 239000006228 supernatant Substances 0.000 description 3
- 108090000695 Cytokines Proteins 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 238000008157 ELISA kit Methods 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- 108010065805 Interleukin-12 Proteins 0.000 description 2
- 102000013462 Interleukin-12 Human genes 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 108700005443 Microbial Genes Proteins 0.000 description 2
- 101001044384 Mus musculus Interferon gamma Proteins 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- 241000223996 Toxoplasma Species 0.000 description 2
- 241000700605 Viruses Species 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 230000005809 anti-tumor immunity Effects 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 239000006143 cell culture medium Substances 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000003745 diagnosis Methods 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 230000035876 healing Effects 0.000 description 2
- 230000028993 immune response Effects 0.000 description 2
- 230000005847 immunogenicity Effects 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229940117681 interleukin-12 Drugs 0.000 description 2
- 238000007917 intracranial administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 210000002540 macrophage Anatomy 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- 238000010361 transduction Methods 0.000 description 2
- 230000026683 transduction Effects 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 230000004614 tumor growth Effects 0.000 description 2
- 241000701161 unidentified adenovirus Species 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- KIUKXJAPPMFGSW-DNGZLQJQSA-N (2S,3S,4S,5R,6R)-6-[(2S,3R,4R,5S,6R)-3-Acetamido-2-[(2S,3S,4R,5R,6R)-6-[(2R,3R,4R,5S,6R)-3-acetamido-2,5-dihydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-2-carboxy-4,5-dihydroxyoxan-3-yl]oxy-5-hydroxy-6-(hydroxymethyl)oxan-4-yl]oxy-3,4,5-trihydroxyoxane-2-carboxylic acid Chemical compound CC(=O)N[C@H]1[C@H](O)O[C@H](CO)[C@@H](O)[C@@H]1O[C@H]1[C@H](O)[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](O[C@H]3[C@@H]([C@@H](O)[C@H](O)[C@H](O3)C(O)=O)O)[C@H](O)[C@@H](CO)O2)NC(C)=O)[C@@H](C(O)=O)O1 KIUKXJAPPMFGSW-DNGZLQJQSA-N 0.000 description 1
- 208000030507 AIDS Diseases 0.000 description 1
- 206010002091 Anaesthesia Diseases 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 208000035143 Bacterial infection Diseases 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 102000007644 Colony-Stimulating Factors Human genes 0.000 description 1
- 108010071942 Colony-Stimulating Factors Proteins 0.000 description 1
- 108010041986 DNA Vaccines Proteins 0.000 description 1
- 229940021995 DNA vaccine Drugs 0.000 description 1
- 239000006145 Eagle's minimal essential medium Substances 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 238000012404 In vitro experiment Methods 0.000 description 1
- 108700018351 Major Histocompatibility Complex Proteins 0.000 description 1
- 108700011259 MicroRNAs Proteins 0.000 description 1
- 229930192392 Mitomycin Natural products 0.000 description 1
- 240000001307 Myosotis scorpioides Species 0.000 description 1
- NWIBSHFKIJFRCO-WUDYKRTCSA-N Mytomycin Chemical compound C1N2C(C(C(C)=C(N)C3=O)=O)=C3[C@@H](COC(N)=O)[C@@]2(OC)[C@@H]2[C@H]1N2 NWIBSHFKIJFRCO-WUDYKRTCSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 108010059712 Pronase Proteins 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000037005 anaesthesia Effects 0.000 description 1
- 230000003302 anti-idiotype Effects 0.000 description 1
- 230000002924 anti-infective effect Effects 0.000 description 1
- 210000000612 antigen-presenting cell Anatomy 0.000 description 1
- 230000005975 antitumor immune response Effects 0.000 description 1
- 238000011398 antitumor immunotherapy Methods 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 208000022362 bacterial infectious disease Diseases 0.000 description 1
- 210000000601 blood cell Anatomy 0.000 description 1
- 238000009534 blood test Methods 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940022399 cancer vaccine Drugs 0.000 description 1
- 238000009566 cancer vaccine Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000002153 concerted effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 210000000448 cultured tumor cell Anatomy 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 210000001787 dendrite Anatomy 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 210000003714 granulocyte Anatomy 0.000 description 1
- 229920002674 hyaluronan Polymers 0.000 description 1
- 229960003160 hyaluronic acid Drugs 0.000 description 1
- 230000005934 immune activation Effects 0.000 description 1
- 210000002865 immune cell Anatomy 0.000 description 1
- 230000005931 immune cell recruitment Effects 0.000 description 1
- 238000002649 immunization Methods 0.000 description 1
- 230000003053 immunization Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001976 improved effect Effects 0.000 description 1
- 231100000053 low toxicity Toxicity 0.000 description 1
- 210000002751 lymph Anatomy 0.000 description 1
- 201000004792 malaria Diseases 0.000 description 1
- 108020004999 messenger RNA Proteins 0.000 description 1
- 208000037819 metastatic cancer Diseases 0.000 description 1
- 208000011575 metastatic malignant neoplasm Diseases 0.000 description 1
- 239000002679 microRNA Substances 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 229960004857 mitomycin Drugs 0.000 description 1
- 238000009126 molecular therapy Methods 0.000 description 1
- 108020004707 nucleic acids Proteins 0.000 description 1
- 102000039446 nucleic acids Human genes 0.000 description 1
- 150000007523 nucleic acids Chemical class 0.000 description 1
- 238000011017 operating method Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 229920000447 polyanionic polymer Polymers 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 210000002955 secretory cell Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 230000001954 sterilising effect Effects 0.000 description 1
- 238000004659 sterilization and disinfection Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 230000020382 suppression by virus of host antigen processing and presentation of peptide antigen via MHC class I Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 238000005199 ultracentrifugation Methods 0.000 description 1
- 229960005486 vaccine Drugs 0.000 description 1
Images
Landscapes
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
本発明は、遺伝子導入した細胞から得られるエクソソームを用いて得られる癌などの免疫治療システムおよび微生物感染予防・治療システムに関する。 The present invention relates to an immunotherapy system for cancer and the like and a microbial infection prevention / treatment system obtained using exosomes obtained from a gene-transferred cell.
癌などの疾患を対象とした免疫治療としては、様々な腫瘍関連抗原(以下TAAs)をコードしたDNAワクチンが試みられ、限定的ではあるがその効果が報告されている(非特許文献1)。しかしTAAsは、もともと同じ個体の正常細胞がガン化した細胞の抗原であり、正常細胞にも量の差はあれ多少は発現しているのが普通である。そのためTAAsは一般に免疫原性が低く、TAAsタンパクそのもの、あるいはそれをコードしたDNAを投与しても、十分な免疫応答が誘導できないことが常に問題となり、抗イディオタイプ・ワクチンによるB細胞腫の治療など一部の例を除いては、十分な効果は認められていない(非特許文献1)。 As immunotherapy for diseases such as cancer, DNA vaccines encoding various tumor-associated antigens (hereinafter TAAs) have been tried, and their effects have been reported, although limited (Non-patent Document 1). However, TAAs are originally antigens of cells in which normal cells of the same individual have become cancerous, and are usually expressed to some extent in normal cells, albeit in different amounts. For this reason, TAAs are generally low in immunogenicity, and it has always been a problem that even when TAAs protein itself or DNA encoding it is administered, sufficient immune response cannot be induced. Treatment of B cell tumor with anti-idiotype vaccine Except for some examples, sufficient effects are not recognized (Non-Patent Document 1).
一方近年、エクソソームを用いた新しいガンの診断、治療法が注目を集めている。特に、2007年にエクソソームが分泌細胞由来のmRNAやmicroRNAを内包することが報告されて以来、エクソソームをガンの診断や核酸医薬のキャリアーとして癌治療に用いる研究が急速に発展した。腫瘍細胞から放出されたエクソソームは腫瘍関連抗原(TAAs)を持つことが知られており、エクソソームを用いた抗腫瘍免疫応答の導入が試行された。しかし、TAAsは一般に免疫原性が低いため、サイトカインである顆粒球単球コロニー刺激因子(GM‐CSF)などの併用がないと、エクソソームそのものを投与しても免疫応答を誘導する効果は認められなかった(非特許文献2)。そこで、サイトカインであるインターロイキン−12(IL‐12)で修飾した腫瘍細胞由来エクソソームが作られ、これらには免疫抑制を抑える効果があることがイン・ビトロの実験で示された(非特許文献3)が、生体中での治癒効果までは確認されていない。また、腫瘍細胞由来エクソソームに代わって、TAAsでパルスした樹状細胞(DC)に由来するエクソソームを用いた免疫誘導が試みられた。しかし、これらのDC由来エクソソームは、成熟DCに対しては免疫導入効果を示すが、未成熟DCには効果は認められなかった(非特許文献4)。 On the other hand, in recent years, new cancer diagnosis and treatment methods using exosomes have attracted attention. In particular, since it was reported in 2007 that exosomes contain mRNA and microRNA derived from secretory cells, research on the use of exosomes for cancer diagnosis as cancer carriers and nucleic acid drug carriers has rapidly developed. Exosomes released from tumor cells are known to have tumor-associated antigens (TAAs), and attempts have been made to introduce an anti-tumor immune response using exosomes. However, TAAs are generally low in immunogenicity, and without the combined use of cytokines such as granulocyte monocyte colony stimulating factor (GM-CSF), the effect of inducing an immune response is observed even when exosomes themselves are administered. There was not (nonpatent literature 2). Therefore, tumor cell-derived exosomes modified with cytokine, interleukin-12 (IL-12), were made, and in vitro experiments showed that these have the effect of suppressing immunosuppression (non-patent literature) 3), but the healing effect in the living body has not been confirmed. In addition, immune induction was attempted using exosomes derived from dendritic cells (DC) pulsed with TAAs instead of tumor cell-derived exosomes. However, these DC-derived exosomes show an immunization effect on mature DCs, but no effect was observed on immature DCs (Non-patent Document 4).
原発性の腫瘍細胞の腫瘍関連抗原(TAAs)は、上述のように抗原性が弱く、また正常細胞にもしばしば発現しているため、腫瘍細胞から放出されたエクソソームや、TAAsでパルスした樹状細胞(DC)に由来するエクソソームだけでは抗腫瘍免疫を惹起するのに不十分であり、十分な治癒効果は得られない。免疫システムを稼動させるための「外来デンジャー・シグナル」の存在が無いと、抗原性の弱いTAAsに対する免疫を惹起させるのは難しい。 Tumor-associated antigens (TAAs) of primary tumor cells are weakly antigenic as described above, and are often expressed in normal cells, so exosomes released from tumor cells and dendrites pulsed with TAAs are used. Only exosomes derived from cells (DC) are insufficient to elicit anti-tumor immunity, and a sufficient healing effect cannot be obtained. Without the presence of a “foreign danger signal” for activating the immune system, it is difficult to elicit immunity against weakly antigenic TAAs.
また、ガンばかりでなく、感染症も毎年多くの人の命を奪い続けている重要な疾患である。三大感染症と呼ばれるエイズ、結核、マラリアだけで毎年300万人以上が亡くなっており、いまだに多くの中・低所得国で主要な死因の一つである。エクソソームを用いた感染予防の研究も近年盛んになった。結核菌に感染したマクロファージから分泌されたエクソソームを用いる研究(非特許文献5)や、トキソプラズマの抗原で刺激したDCからのエクソソームを用いた感染予防の研究(非特許文献6)が行われている。 In addition to cancer, infectious diseases are important diseases that continue to kill many people every year. More than 3 million people die each year from AIDS, tuberculosis, and malaria alone, which are called the three major infectious diseases, and it is still one of the leading causes of death in many low- and middle-income countries. Research on infection prevention using exosomes has also become active in recent years. Studies using exosomes secreted from macrophages infected with Mycobacterium tuberculosis (Non-Patent Document 5) and studies on prevention of infection using exosomes from DC stimulated with Toxoplasma antigen (Non-Patent Document 6) have been conducted. .
しかし、細菌感染や、単離したトキソプラズマ抗原による抗原提示細胞の刺激は、煩雑な手法や、特殊な設備、技術を必要とするため、広く一般的に応用できる、容易で汎用的な手法の開拓が望まれている。 However, bacterial infection and stimulation of antigen-presenting cells with isolated toxoplasma antigen require complicated methods, special equipment, and technology, and therefore cultivate easy and versatile methods that can be widely applied in general. Is desired.
本発明者は、原発性の腫瘍細胞の腫瘍関連抗原(TAAs)は、上述のように抗原性が弱く、また正常細胞にもしばしば発現しているため、単独、あるいはサイトカインの併用では抗腫瘍免疫を惹起するのに不十分であると考えた。そこで、免疫系を活性化させるためには「外来デンジャー・シグナル」の存在が必要であると考え、「抗原遺伝子導入細胞由来のデンジャー・シグナル担持エクソソーム製剤」を考案した。すなわち、抗原性の高いタンパクの遺伝子を導入した培養細胞から得たエクソソームを用いて効果的に免疫を惹起、誘導する製剤である。 The present inventor has found that tumor-associated antigens (TAAs) of primary tumor cells are weakly antigenic as described above and are often expressed in normal cells. Thought to be insufficient to trigger. Therefore, in order to activate the immune system, it was thought that the presence of a “foreign danger signal” was necessary, and the “danger signal carrying exosome preparation derived from an antigen gene-introduced cell” was devised. That is, it is a preparation that effectively induces and induces immunity using exosomes obtained from cultured cells into which a highly antigenic protein gene has been introduced.
この抗原性の高いタンパクの遺伝子を導入した培養細胞から得たエクソソームは生体に投与することで高い細胞性免疫を引き出すことが確認され、また、著しい腫瘍の増殖抑制効果が認められた。 It was confirmed that exosomes obtained from cultured cells introduced with the gene of this highly antigenic protein elicit high cellular immunity when administered to a living body, and a remarkable tumor growth inhibitory effect was observed.
しかし、エクソソームは極微細な粒子であり、分泌された時点ですでに大小様々な粒子の混合物であり、不均一である。また用いる細胞、産生条件、精製手法などによってその形状、含まれる成分性質は一定ではない。そのため、これを生体に直接投与する製剤とするのは容易ではない。 However, exosomes are very fine particles, and are already a mixture of large and small particles when they are secreted. In addition, the shape and component properties are not constant depending on the cells used, production conditions, purification techniques, and the like. For this reason, it is not easy to prepare a preparation for direct administration to a living body.
エクソソーム製剤はそのポテンシャルの高さから広く注目されているが、産生条件、精製手法などが確立しておらず、再現性良い生産が困難で不均一なバイオ製剤である。これらを一般的な治療手段として広く用いることは容易ではない。 Exosome preparations are attracting widespread attention because of their high potential, but production conditions, purification methods, etc. have not been established, and production is highly heterogeneous and difficult to reproduce. It is not easy to use these widely as general therapeutic means.
上記欠点を解決すべく鋭意研究を行った結果、上述のように、親細胞に抗原タンパクの遺伝子を導入して得られたエクソソームを、直接そのまま生体内に投与するのではなく、免疫系の細胞に加えて、これを活性化し、その後免疫系細胞を生体内に投与する(戻す)ことによって、目的とする免疫予防。治療効果が得られることを見出した。すなわち、本発明は、抗原性の高いタンパク遺伝子を培養腫瘍細胞に導入し、そこから得られたエクソソームを加えた免疫系細胞を抗腫瘍免疫製剤、感染症予防・治療製剤として利用する方法に関する。 As a result of earnest research to solve the above drawbacks, as described above, the exosome obtained by introducing the gene of the antigen protein into the parent cell is not directly administered directly into the living body, but the cell of the immune system In addition to activating this, the immune system cells are then administered (returned) in vivo to achieve the desired immune prevention. It was found that a therapeutic effect can be obtained. That is, the present invention relates to a method of introducing a protein gene with high antigenicity into cultured tumor cells and using the immune system cells obtained by adding exosomes as antitumor immunity preparations and infection prevention / treatment preparations.
親細胞として腫瘍細胞を用いた場合には、分泌されるエクソソームは「デンジャー・シグナル」と、TAAsの両者を兼ね備えた強力なガンワクチンとなる。実際に、デンジャーシグナルとして結核菌抗原タンパクの遺伝子をコードしたDNAの複合体を用いて、腫瘍細胞に「デンジャー・シグナル」遺伝子を導入後、培養を続けてエクソソームを分泌させ、回収、単離したエクソソームを培養樹状細胞に加えた後に、その樹状細胞を坦癌モデルマウスの腫瘍内に投与してみた。すると驚くべきことに、遺伝子導入していない(デンジャーシグナルを持たない)腫瘍細胞由来のエクソソームを加えた樹状細胞と比べて著しく高い治療効果が見られ、「抗原遺伝子導入細胞由来のデンジャー・シグナル担持エクソソーム」による免疫細胞活性化の優れた効果が確認された。と、同時に、抗腫瘍免疫活性化における「デンジャー・シグナル」の重要性が確認された。 When tumor cells are used as parental cells, the secreted exosome is a powerful cancer vaccine that combines both “danger signals” and TAAs. In fact, using a DNA complex that encodes the gene of Mycobacterium tuberculosis antigen protein as a danger signal, after introducing the "anger signal" gene into tumor cells, the culture was continued and the exosomes were secreted, recovered and isolated After adding exosomes to cultured dendritic cells, the dendritic cells were administered into the tumor of a cancer model mouse. Surprisingly, the therapeutic effect was significantly higher than that of dendritic cells to which exosomes derived from tumor cells without gene transfer (having no danger signal) were added. The excellent effect of immune cell activation by the “supported exosome” was confirmed. At the same time, the importance of “danger signal” in anti-tumor immune activation was confirmed.
本発明で投与する免疫細胞は、腫瘍組織内や所属リンパ節への蓄積性が高く、また、細胞自体の毒性が低く副作用が少ないため、局所投与、腹腔内投与、動脈内投与、静脈内投与、頭蓋内投与などの各種投与が可能である。デンジャー・シグナル担持エクソソームを加えた樹状細胞を静脈内投与してみたところ、やはり高い抗腫瘍効果が確認され、転移癌の治療にも有効であることが示された。 The immune cells to be administered in the present invention have high accumulation in tumor tissues and regional lymph nodes, and since the toxicity of the cells is low and there are few side effects, local administration, intraperitoneal administration, intraarterial administration, intravenous administration Various administrations such as intracranial administration are possible. Intravenous administration of dendritic cells supplemented with angersome-bearing exosomes confirmed high antitumor effects and was also effective in the treatment of metastatic cancer.
さらに驚くべきことに、罹患している腫瘍とは異なる種類の腫瘍細胞にデンジャーシグナルを遺伝子導入して生成したエクソソームや、親細胞として正常細胞にデンジャーシグナルを遺伝子導入して生成したエクソソームを加えた樹状細胞も、同様に高い腫瘍増殖抑制効果を示した。腫瘍細胞は貪食作用が盛んであり、エクソソームを取り込みやすいこと、さらに取り込んだエクソソームの持つ抗原、あるいはエピトープは自己の主要組織適合遺伝子複合体への再結合が可能であるため、と思われる。すなわち、抗原遺伝子導入した細胞由来のエクソソームは、親細胞が他家であっても、正常細胞であっても、また、他種の腫瘍に対しても効果的に用いることができることが示された。 Surprisingly, we added exosomes generated by transfecting a danger signal into a different type of tumor cell from the diseased tumor, and exosomes generated by transducing a danger signal into normal cells as parent cells. Dendritic cells also showed a high tumor growth inhibitory effect. This is probably because tumor cells are phagocytically active and are likely to take up exosomes, and the antigens or epitopes of the taken up exosomes can be rebound to their major histocompatibility complex. That is, it was shown that the exosome derived from the cell into which the antigen gene was introduced can be used effectively against other types of tumors, whether the parent cell is another family or normal cell. .
また、治療の対象となる患者の生体内には、すでに腫瘍細胞から分泌されたTAAsを持ったエクソソーム、あるいはTAAsそのもの、またはそれを含んだ細胞断片など、いく種類ものTAAsやその断片が存在している。これらが投与した免疫系細胞に協奏効果を及ぼすことによって抗腫瘍効果が現れたとも思われる。或いは「デンジャー・シグナル」を持ったエクソソーム自体が強力なアジュバントとして免疫系細胞を活性化する効果を示したことも考えられる。 In addition, there are various types of TAAs and fragments, such as exosomes with TAAs secreted from tumor cells, TAAs themselves, or cell fragments containing them, in the living body of the patient to be treated. ing. It seems that an antitumor effect appeared by exerting a concerted effect on the immune system cells to which they were administered. Alternatively, exosomes with “danger signals” themselves may have the effect of activating immune system cells as powerful adjuvants.
また、病原体の抗原遺伝子を導入した細胞から分泌されたエクソソームは、「デンジャー・シグナル」としてこれらの病原体の抗原またはそのエピトープを含む。そのため、これらの抗原に対する強い細胞性免疫を誘導することが見出された。これは、本発明のエクソソームを加えた免疫系細胞が微生物の感染予防、治癒にも非常に有効であることを示すものである。 In addition, exosomes secreted from cells into which pathogen antigen genes have been introduced contain these pathogen antigens or epitopes thereof as “danger signals”. Therefore, it was found to induce strong cellular immunity against these antigens. This shows that the immune system cell to which the exosome of the present invention is added is very effective in preventing and curing microorganism infection.
本発明のエクソソームを加えた免疫系細胞は、腫瘍組織内や所属リンパ節への蓄積性が高く、毒性が低いため、局所投与、腹腔内投与、動脈内投与、静脈内投与、頭蓋内投与などの各種投与が可能である。また、前駆細胞からの調製・精製・保存方法がすでに確立しているものも多く、取り扱いが簡便である。さらに、本発明の一態様においては、他の抗腫瘍免疫治療製剤と併用することで治癒効果を向上させることができる。 Immune system cells to which the exosome of the present invention is added have high accumulation in tumor tissues and regional lymph nodes and low toxicity, so local administration, intraperitoneal administration, intraarterial administration, intravenous administration, intracranial administration, etc. Can be administered in various ways. In addition, many preparation, purification, and storage methods from progenitor cells have already been established, and handling is simple. Furthermore, in one embodiment of the present invention, the curative effect can be improved by using in combination with other antitumor immunotherapy preparations.
本発明で行う細胞に導入するデンジャー・シグナル遺伝子としては、抗腫瘍効果を期待するのであれば、対象とする患者、罹患動物において抗原性を有するものであればあらゆる種類のタンパク、ペプチド、またはこれらのエピトープを含むタンパク、ペプチドの遺伝子を使用することができる。デンジャー・シグナルとしての効果は、その抗原性の高さに由来するため、高い効果を期待するのであれば、抗原性の高いタンパク、ペプチド、またはこれらのエピトープを含むタンパク、ペプチドの遺伝子を用いるのが望ましい。例えば、ウィルス、バクテリア、原虫、異種生物、異種動物の抗原性タンパク遺伝子などが使用できる。 As a danger signal gene to be introduced into a cell according to the present invention, any anti-tumor effect can be expected. It is possible to use a gene of a protein or peptide containing the above-mentioned epitope. Since the effect as a danger signal is derived from its high antigenicity, if a high effect is expected, a highly antigenic protein or peptide, or a protein or peptide gene containing these epitopes should be used. Is desirable. For example, antigenic protein genes of viruses, bacteria, protozoa, heterologous organisms, and heterologous animals can be used.
感染予防効果を期待するのであれば、対象となる疾患の病原体の抗原タンパク、ペプチド、またはそのエピトープを含むタンパク、ペプチドの遺伝子、またはそれらの類似の構造のタンパク、ペプチドの遺伝子が使用できる。また、免疫系細胞の活性化のためのアジュバントとして用いるのであれば、抗原性の高いタンパク、ペプチド、またはこれらのエピトープを含むタンパク、ペプチドの遺伝子すべてが使用できる。 As long as an anti-infection effect is expected, antigen proteins, peptides, or proteins containing the epitope of the pathogen of the target disease, peptide genes, or proteins having similar structures, peptide genes can be used. In addition, if used as an adjuvant for activation of immune system cells, highly antigenic proteins, peptides, or proteins and peptides containing these epitopes can all be used.
本発明でデンジャー・シグナル遺伝子を導入し、エクソソームを分泌させる細胞にとしては、培養可能な細胞であれば、自家、他家を問わず、腫瘍細胞、繊維芽細胞、血球系細胞、DC、マクロファージなど、あらゆる動物・植物・微生物の細胞を使用することができる。 In the present invention, the cells that introduce the danger signal gene and secrete exosomes can be cultured cells, regardless of whether they are cultivated or not, tumor cells, fibroblasts, blood cells, DCs, macrophages. Any animal / plant / microbe cells can be used.
本発明で行う細胞への遺伝子導入法には、ウィルスを用いる方法、リン酸カルシウム、ポリカチオン、カチオン性脂質またはその集合体を用いる方法、エレクトロポレーション法、マイクロインジェクション法などを使用することができる。実施例では、非特許文献8に記載と同じDNA複合体を用いた。その複合体の特徴を以下に述べる。ただし、この特徴の記載は、本発明を説明するためのものであって、本発明を何ら限定するものではない。 As a method for introducing a gene into a cell according to the present invention, a method using a virus, a method using calcium phosphate, a polycation, a cationic lipid or an aggregate thereof, an electroporation method, a microinjection method and the like can be used. In Examples, the same DNA complex as described in Non-Patent Document 8 was used. The characteristics of the composite are described below. However, the description of this feature is for explaining the present invention and does not limit the present invention.
培養細胞に人工のベクター(ポリカチオン、カチオン性脂質など)を用いて遺伝子導入しても、その遺伝子発現期間は短く、通常3〜4日後には発現が消えてしまう。また、発現を高めようと、多くのDNA複合体を細胞に加えると、その毒性のために細胞は弱り、一両日中に死んでしまう。効率よくデンジャー・シグナルを担持したエクソソームを調製するためには、細胞が導入した遺伝子を発現しながら長期間エクソソームを分泌する条件が必要である。我々は、以前生体内で高発現する遺伝子導入システムを得るために、通常のDNN/ポリカチオン(またはカチオン性脂質)複合体ではなく、これにさらにポリアニオンを加えたDNA三元複合体システムを開発し、様々な効果を上げてきた(特許文献1)。このDNA三元複合体システムは遺伝子発現が比較的長期間持続すること(非特許文献7)、また、細胞毒性が低いこと(非特許文献8)から、エクソソームの効率良い調製に適している。 Even if a gene is introduced into a cultured cell using an artificial vector (polycation, cationic lipid, etc.), the gene expression period is short, and the expression usually disappears after 3 to 4 days. Also, when many DNA complexes are added to cells to increase expression, the cells become weak due to their toxicity and die within a day or two. In order to efficiently prepare exosomes carrying a danger signal, conditions for secreting exosomes for a long period of time while expressing genes introduced by cells are necessary. We have developed a DNA ternary complex system in which a polyanion is added to the conventional DNN / polycation (or cationic lipid) complex in order to obtain a gene transfer system that is highly expressed in vivo. However, various effects have been achieved (Patent Document 1). This DNA ternary complex system is suitable for the efficient preparation of exosomes because gene expression lasts for a relatively long period of time (Non-patent Document 7) and has low cytotoxicity (Non-patent Document 8).
様々な手法で遺伝子導入した細胞を数日間培養し、その上澄みから超遠心分離法、エクソソーム単離試薬など、通常の方法によって、目的のデンジャー・シグナルを担持したエクソソームを容易に得ることができる Cells transfected with various methods can be cultured for several days, and exosomes carrying the desired danger signal can be easily obtained from the supernatant by ordinary methods such as ultracentrifugation and exosome isolation reagents.
免疫系細胞は、血液から、あるいは腹水、供水から、またリンパ組織、脾臓などから通常の方法によって容易に採取、単離、培養することができる。また、樹状細胞などの免疫系細胞は、血液中の単球などの分化前の細胞から通常の方法により、容易に分化培養して得ることができる。 Immune system cells can be easily collected, isolated and cultured from blood, from ascites, water supply, lymph tissue, spleen, and the like by conventional methods. In addition, immune system cells such as dendritic cells can be obtained by easily differentiating and culturing from undifferentiated cells such as monocytes in blood by an ordinary method.
得られたデンジャー・シグナルを担持したエクソソームを加えた免疫系細胞は、注射用シリンジ、点滴用具などを用いて、生体に腫瘍内投与、傍腫瘍投与、皮下投与、静脈内投与、動脈内投与などにより容易に投与することができる。 The obtained immune system cells with added exosomes carrying the Danger signal can be administered to a living body by intra-tumor, para-tumor, subcutaneous, intravenous, intra-arterial, etc. Easier to administer.
本発明を、実施例により更に具体的に説明する。なお、これらの実施例は、本発明を説明するためのものであって、本発明を何ら限定するものではない。 The present invention will be described more specifically with reference to examples. In addition, these Examples are for demonstrating this invention, Comprising: This invention is not limited at all.
結核菌の抗原タンパクであるEarly Secretory Antigenic Target‐6(ESAT‐6)の遺伝子を導入したB16メラノーマ細胞からのエクソソーム(ES‐B16‐Ex)および遺伝子導入していないB16メラノーマ細胞からのコントロールの空エクソソーム(Empty‐B16‐Ex)の単離
ESAT‐6をコードしたプラスミド(ESAT‐6プラスミド)、およびPEI”Max”は、非特許文献8に記載したものと同じものを用いた。HAは、生化学工業株式会社の「トリトサカ由来」のヒアルロン酸を用いた。PBSはRoman Industries社製のPhosphate Buffered Salts(Tablet)を蒸留したイオン交換水に溶解したものを用いた。以降の実施例でも同様である。 Control sky from exosomes (ES-B16-Ex) from B16 melanoma cells transfected with the gene of Early Secret Antigen Target-6 (ESAT-6), an antigenic protein of Mycobacterium tuberculosis, and B16 melanoma cells not transfected Isolation of Exosome (Empty-B16-Ex) A plasmid encoding ESAT-6 (ESAT-6 plasmid) and PEI “Max” were the same as those described in Non-Patent Document 8. As the HA, hyaluronic acid “derived from Tritosaka” manufactured by Seikagaku Corporation was used. The PBS used was a solution of Phosphate Buffered Salts (Tablet) manufactured by Roman Industries in distilled ion-exchanged water. The same applies to the following embodiments.
操作手順
▲1▼ 遺伝子を導入する3日前に、24穴マルチプレートに1ウェルあたり1.0×104個のB16メラノーマ細胞をまき、10%fetal bovine serum(FBS)、ペニシリン(100unit/mL)、およびストレプトマイシン(0.1mg/mL)を含むEagle’s Minimum Essential Medium(EMEM)培地を用いて3晩インキュベートした。
▲2▼ 培養した培地を取り除き、10%エクソソーム・フリーFBS、ペニシリン(100unit/mL)、およびストレプトマイシン(0.1mg/mL)を含むEMEM培地500μlをウェルに入れた。
▲3▼ ESAT‐6プラスミド1.5μgを含む水溶液4.84μlを1.78μlのCS溶液(5mg/ml)とDNA/CS比(電荷モル比)が8となるように混合した後、0.88μlのPEI”Max”水溶液(5mg/ml)とDNA/PEI”Max”比(電荷モル比)が12となるように混合し、20分後に2倍濃縮PBSを7.5μl加えた。。
▲4▼ ▲3▼で調製したDNA複合体懸濁液15μLをウェルに加えた(ESAT‐6プラスミド1.5μg/ウェル)。
▲5▼ 37℃、5%CO2‐95%air下で5時間インキュベートした。
▲6▼ 培地を新しい10%エクソソーム・フリーFBSと25Uのペニシリンと25μgのストレプトマイシンを含むEMEM1mlと取り換え、37℃で72時間インキュベートした。
▲7▼ 72時間のインキュベート後、ウェル中の上澄みを回収した。
▲8▼ 遠心分離(3000xg、15分)した後、上清を採取し、体積にして半分量のTotal Exosome Isolation(from cell culture media)(The Thermo Fisher Scientific,Inc.Corporate(Waltham,MA,USA).)を加え、一晩4℃で静置した。
▲9▼ 遠心分離(10000xg、1時間)した後、沈殿したエクソソームを0.16mlのPBSに懸濁した。エクソソーム懸濁液は、4℃で保管、一週間以内に使用した。
▲10▼ 同様の実験を遺伝子導入していないB16細胞に対しても行い、コントロールの空エクソソーム(Empty‐B16‐Ex)懸濁液を作成した。Operating procedure (1) Three days before gene introduction, 1.0 × 10 4 B16 melanoma cells per well are plated in a 24-well multiplate, 10% fetal bovine serum (FBS), penicillin (100 units / mL) And Eagle's Minimum Essential Medium (EMEM) medium containing streptomycin (0.1 mg / mL).
(2) The cultured medium was removed, and 500 μl of EMEM medium containing 10% exosome-free FBS, penicillin (100 units / mL), and streptomycin (0.1 mg / mL) was added to the wells.
(3) After 4.84 μl of an aqueous solution containing 1.5 μg of ESAT-6 plasmid was mixed with 1.78 μl of CS solution (5 mg / ml) so that the DNA / CS ratio (charge molar ratio) was 8, 88 μl of PEI “Max” aqueous solution (5 mg / ml) was mixed with DNA / PEI “Max” ratio (charge molar ratio) to 12, and after 20 minutes, 7.5 μl of 2-fold concentrated PBS was added. .
(4) 15 μL of the DNA complex suspension prepared in (3) was added to the well (1.5 μg / well of ESAT-6 plasmid).
(5) The plate was incubated at 37 ° C. and 5% CO 2 -95% air for 5 hours.
(6) The medium was replaced with 1 ml of EMEM containing fresh 10% exosome-free FBS, 25 U penicillin and 25 μg streptomycin, and incubated at 37 ° C. for 72 hours.
(7) After 72 hours of incubation, the supernatant in the well was collected.
(8) After centrifugation (3000 × g, 15 minutes), the supernatant was collected, and half the volume of Total Exosome Isolation (from the cell culture media (The Thermo Fisher Scientific, Inc., USA, USA). ).) Was added and left at 4 ° C. overnight.
(9) After centrifugation (10000 × g, 1 hour), the precipitated exosome was suspended in 0.16 ml of PBS. The exosome suspension was stored at 4 ° C. and used within a week.
(10) A similar experiment was carried out on B16 cells into which no gene had been introduced to prepare a control empty exosome (Empty-B16-Ex) suspension.
結果
遺伝子導入したもの、していないものともに、Exosome Isolation(from cell culture media)と混合し、一晩後遠心分離することによって、白色のエクソソームの沈殿が得られた。再懸濁した液中のエクソソームをExo‐greenまたはExo‐red(ともにSystem Biosciences(San Francisco,Inc.,CA,USA))で染色し、ExoQuick‐TC(System Biosciences(San Francisco,Inc.,CA,USA))で単離し、蛍光顕微鏡で観察したところ、直径数十nm前後の輝点が浮遊しているのが同じ位置に観察され、確かにエクソソーム懸濁液が得られたことが確認された。Results Both exogenous and non-transfected ones were mixed with Exosome Isolation (from cell culture media) and centrifuged overnight to obtain white exosome precipitates. Exosomes in the resuspended solution are stained with Exo-green or Exo-red (both System Biosciences (San Francisco, Inc., CA, USA)) and ExoQuick-TC (System Francisco, Inc., San Francisco, Inc., San Francisco, Inc.). USA)) and observed with a fluorescence microscope, it was confirmed that a bright spot with a diameter of several tens of nanometers was floating at the same position, and that an exosome suspension was indeed obtained. It was.
結核菌の抗原タンパクであるMycobacterium tuberculosis Major Secreted Protein Antigen 85B(Ag85B)の遺伝子を導入したB16メラノーマ細胞からのエクソソーム(Ag‐B16‐Ex)の単離
実施例1と同様の手法で、B16メラノーマ細胞にAg85Bの遺伝子を導入した後、その培養上澄からAg85B遺伝子を導入したB16メラノーマ細胞由来のエクソソーム(Ag‐B16‐Ex)を単離した。 Isolation of exosomes (Ag-B16-Ex) from B16 melanoma cells into which the gene of Mycobacterium tuberculosis Major Major Protein Protein 85B (Ag85B), which is an antigenic protein of Mycobacterium tuberculosis, was introduced in the same manner as in Example 1, B16 melanoma After the Ag85B gene was introduced into the B16 melanoma cell-derived exosome (Ag-B16-Ex) into which the Ag85B gene had been introduced was isolated from the culture supernatant.
アデノウィルスの抗原タンパクであるAdenovirus death protein(ADP)の遺伝子を導入したB16メラノーマ細胞からのエクソソーム(AD‐B16‐Ex)の単離
実施例1と同様の手法で、B16メラノーマ細胞にADPの遺伝子を導入した後、その培養上澄みからADP遺伝子を導入したB16メラノーマ細胞由来のエクソソーム(AD‐B16‐Ex)を単離した。 Isolation of exosomes (AD-B16-Ex) from B16 melanoma cells into which the gene for adenovirus antigen protein (ADP), an adenovirus antigen protein, has been introduced In the same manner as in Example 1, the ADP gene was transferred to B16 melanoma cells. After the introduction, B16 melanoma cell-derived exosome (AD-B16-Ex) introduced with the ADP gene was isolated from the culture supernatant.
卵白アルブミン(Ovalbumin)(OVA)の遺伝子を導入したB16メラノーマ細胞からのエクソソーム(OVA‐B16‐Ex)の単離
実施例1と同様の手法で、B16メラノーマ細胞にOVAの遺伝子を導入した後、その培養上澄みからOVA遺伝子を導入したB16メラノーマ細胞由来のエクソソーム(OVA‐B16‐Ex)を単離した。 Isolation of Exosome (OVA-B16-Ex) from B16 Melanoma Cells Introduced with Ovalbumin (OVA) Gene After introducing the OVA gene into B16 melanoma cells in the same manner as in Example 1, An exosome derived from B16 melanoma cells (OVA-B16-Ex) into which the OVA gene was introduced was isolated from the culture supernatant.
結核菌の抗原タンパクであるearly secretory antigenic 6 kDa(ESAT‐6)の遺伝子を導入したチャイニーズハムスター卵巣細胞(CHO細胞)からのエクソソーム(ES‐CHO‐Ex)の単離
実施例1と同様の手法で、CHO細胞にESAT‐6の遺伝子を導入した後、その培養上澄みからESAT‐6遺伝子を導入したCHO細胞由来のエクソソーム(ES‐CHO‐Ex)、および遺伝子導入していないCHO細胞からのエクソソーム(Empty‐CHO‐Ex)を単離した。 Isolation of exosomes (ES-CHO-Ex) from Chinese hamster ovary cells (CHO cells) introduced with the gene for early secretory antigenic 6 kDa (ESAT-6), an antigenic protein of Mycobacterium tuberculosis, the same method as in Example 1 The CHO cell derived from the culture supernatant after introducing the ESAT-6 gene into the CHO cell, and the exosome derived from the CHO cell into which the gene has not been introduced (ES-CHO-Ex) (Empty-CHO-Ex) was isolated.
結核菌の抗原タンパクであるearly secretory antigenic 6 kDa(ESAT‐6)の遺伝子を導入した繊維芽細胞からのエクソソーム(ES‐Fb‐Ex)の単離
麻酔下で採取し、エタノール滅菌後、剃毛したマウスの耳片を約3mmx3mmに刻み、コラゲナーゼDとプロナーゼ処理して繊維芽細胞を得た。これを培養し、実施例1と同様の手法でESAT‐6の遺伝子を導入した後、その培養上澄みからESAT‐6遺伝子を導入した繊維芽細胞由来のエクソソーム(ES‐Fb‐Ex)を単離した。 Isolation of exosomes (ES-Fb-Ex) from fibroblasts introduced with the gene of early secretory antigenic 6 kDa (ESAT-6), an antigenic protein of Mycobacterium tuberculosis , collected under anesthesia, shaved after ethanol sterilization The mouse ear pieces were cut into approximately 3 mm × 3 mm and treated with collagenase D and pronase to obtain fibroblasts. After culturing this and introducing the ESAT-6 gene in the same manner as in Example 1, fibroblast-derived exosomes (ES-Fb-Ex) introduced with the ESAT-6 gene were isolated from the culture supernatant. did.
樹状細胞の分化培養
マウスの末梢血から単球由来樹状細胞の分化誘導用キットを用いて、未成熟の樹状細胞を得た。 Dendritic Cell Differentiation Culture Immature dendritic cells were obtained from the peripheral blood of mice using monocyte-derived dendritic cell differentiation induction kits.
デンジャーシグナル遺伝子を導入した細胞から分泌したエクソソームを加えた樹状細胞の抗腫瘍効果(1)
▲1▼ C57BL/6マウス(オス、5週齢)の皮下にB16細胞を移植し、坦癌モデルマウスを作成した。
▲2▼ 腫瘍の直径が4mmを越えたところで、実施例1〜4で得られた各エクソソーム懸濁液(200μL)を加えて一晩培養した樹状細胞を腫瘍内に中3日で3回投与し、その後の腫瘍のサイズの変化を調べた。 Antitumor effect of dendritic cells added with exosomes secreted from cells introduced with a danger signal gene (1)
(1) B16 cells were transplanted subcutaneously into C57BL / 6 mice (male, 5 weeks old) to prepare a cancer model mouse.
(2) When the diameter of the tumor exceeded 4 mm, the dendritic cells obtained by adding each exosome suspension (200 μL) obtained in Examples 1 to 4 and culturing overnight were placed in the tumor three times in 3 days. After administration, changes in tumor size were examined.
結果
結果を図1に示す。図の縦軸は腫瘍サイズの平均値である。デンジャーシグナル遺伝子を導入していないB16細胞から得られたエクソソーム、Empty‐B16‐Exを加えて培養した樹状細胞は余り顕著な抗腫瘍効果を示さなかったのに対し、デンジャーシグナル遺伝子を導入したB16細胞から得られたエクソソーム、AD‐B16‐Ex、Ag‐B16‐Ex、ES‐B16‐Ex、OVA‐B16‐Exを加えて一晩培養した樹状細胞は明らかな抗腫瘍効果を示した。Results The results are shown in FIG. The vertical axis of the figure is the average value of tumor size. Dendritic cells cultured with the addition of exosome, Empty-B16-Ex, obtained from B16 cells not introduced with a danger signal gene did not show a significant antitumor effect, whereas a danger signal gene was introduced. Dendritic cells cultured overnight with exosomes, AD-B16-Ex, Ag-B16-Ex, ES-B16-Ex, OVA-B16-Ex obtained from B16 cells showed a clear antitumor effect .
デンジャーシグナル遺伝子を導入した細胞から分泌したエクソソームを加えた樹状細胞の抗腫瘍効果(2)
▲1▼ C57BL/6マウス(オス、5週齢)の皮下にB16細胞を移植し、坦癌モデルマウスを作成した。
▲2▼ 腫瘍の直径が4mmを越えたところで、実施例5、6で得られた各エクソソーム懸濁液(200μL)を加えて一晩培養した樹状細胞を腫瘍内に中3日で3回投与し、その後の腫瘍のサイズの変化を調べた。 Antitumor effect of dendritic cells added with exosomes secreted from cells introduced with a danger signal gene (2)
(1) B16 cells were transplanted subcutaneously into C57BL / 6 mice (male, 5 weeks old) to prepare a cancer model mouse.
(2) When the diameter of the tumor exceeded 4 mm, the dendritic cells obtained by adding each exosome suspension (200 μL) obtained in Examples 5 and 6 and culturing overnight were placed in the tumor three times in 3 days. After administration, changes in tumor size were examined.
[結果]
結果を図2に示す。図の縦軸は腫瘍サイズの平均値である。デンジャーシグナル遺伝子を導入していないCHO細胞から得られたエクソソーム、Empty‐CHO‐Exを加えて一晩培養した樹状細胞は余り顕著な抗腫瘍効果を示さなかったのに対し、ESAT‐6遺伝子を導入したCHO細胞から得られたエクソソーム、ES‐CHO‐Exを加えて一晩培養した樹状細胞はより高い抗腫瘍効果を示し、異種の腫瘍に対しても効果があること、また他家のエクソソームも抗腫瘍効果を導くことが示された。同様に、ES‐Fb‐Exを加えて一晩培養した樹状細胞も明らかな抗腫瘍効果を示し、デンジャーシグナル遺伝子を導入した正常細胞由来ののエクソソームも抗腫瘍効果を導くことが確認された。[result]
The results are shown in FIG. The vertical axis of the figure is the average value of tumor size. The dendritic cells cultured overnight with the addition of exosomes, Empty-CHO-Ex, obtained from CHO cells not introduced with the danger signal gene did not show a significant antitumor effect, whereas the ESAT-6 gene Dendritic cells cultured overnight with ES-CHO-Ex, an exosome obtained from CHO cells into which CHO has been introduced, have a higher antitumor effect and are effective against different types of tumors. Exosomes have also been shown to induce antitumor effects. Similarly, dendritic cells cultured overnight with ES-Fb-Ex also showed clear antitumor effects, and it was confirmed that exosomes derived from normal cells into which a danger signal gene was introduced also lead to antitumor effects. .
デンジャーシグナル遺伝子を導入した細胞から分泌したエクソソームを加えた樹状細胞の細胞性免疫導入効果(1)
▲1▼ 実施例1または6で得られたエクソソーム懸濁液を加えて一晩培養した樹状細胞をC57BL/6マウス(オス、5週齢)の両後足の足底に75μLずつ一回投与した。
▲2▼ 9日目に両後足の膝裏のリンパ節を採取し、つぶしてメッシュを通した後、RPMI1640培地に懸濁させた。
▲3▼ 得られたリンパ球懸濁液をマイトマイシン処理したB16メラノーマ細胞とともに96穴培養プレートに加え、37℃で2日間インキュベート後、分泌されたIFN‐γをMouse IFN‐gamma Quantikine ELISA Kit(R&D Systems,Inc.(Minneapolis,MN,USA))で定量した。 Cellular immunity transduction effect of dendritic cells added with exosomes secreted from cells introduced with a danger signal gene (1)
(1) Dendritic cells obtained by adding the exosome suspension obtained in Example 1 or 6 and cultivating overnight were once applied to the soles of both hind paws of C57BL / 6 mice (male, 5 weeks old) once by 75 μL. Administered.
(2) On the ninth day, lymph nodes on the back of knees of both hind paws were collected, crushed and passed through a mesh, and suspended in RPMI 1640 medium.
(3) The resulting lymphocyte suspension was added to a 96-well culture plate together with mitomycin-treated B16 melanoma cells, incubated at 37 ° C. for 2 days, and then secreted IFN-γ was released into the Mouse IFN-gamma Quantikine ELISA Kit (R & D). Quantified by Systems, Inc. (Minneapolis, MN, USA).
[結果]
結果を図3に示す。図の値は3例以上の平均値と標準偏差を表している。ESAT‐6遺伝子を導入したB16細胞から得られたエクソソームES‐B16‐Exを加えて培養した樹状細胞、またはESAT‐6遺伝子を導入した繊維芽細胞から得られたエクソソーム、ES‐Fb‐Exを加えて培養した樹状細胞を投与したマウスのリンパ球はどちらも、ESAT‐6遺伝子を導入していないB16細胞から得られたエクソソーム、Empty‐B16‐Exを加えて培養した樹状細胞を投与したマウスのリンパ球に比べて、B16細胞と2日間インキュベートすることで明らかに多くのIFN‐γを分泌した。このことから、デンジャーシグナル遺伝子を導入した腫瘍細胞、または正常細胞から得られたエクソソームを加えて培養した樹状細胞は腫瘍細胞に対する細胞性免疫を惹起する効果を持つことが確認された。[result]
The results are shown in FIG. The values in the figure represent average values and standard deviations of three or more cases. Dendritic cells cultured by adding exosome ES-B16-Ex obtained from B16 cells introduced with ESAT-6 gene, or exosome obtained from fibroblasts introduced with ESAT-6 gene, ES-Fb-Ex The lymphocytes of mice administered with dendritic cells cultured with the addition of exosomes obtained from B16 cells into which ESAT-6 gene has not been introduced, Empty-B16-Ex, were added and cultured. Compared to the lymphocytes of the administered mice, incubation with B16 cells for 2 days clearly secreted more IFN-γ. From this, it was confirmed that the dendritic cells cultured by adding exosomes obtained from tumor cells into which the danger signal gene was introduced or normal cells had an effect of inducing cellular immunity against the tumor cells.
デンジャーシグナル遺伝子を導入した細胞から分泌したエクソソームを加えた樹状細胞の細胞性免疫導入効果(2)
▲1▼ 実施例1または6で得られたエクソソーム懸濁液を加えて一晩培養した樹状細胞をC57BL/6マウス(オス、5週齢)の両後足の足底に75μLずつ一回投与した。
▲2▼ 9日目に両後足の膝裏のリンパ節を採取し、つぶしてメッシュを通した後、RPMI1640培地に懸濁させた。
▲3▼ 得られたリンパ球懸濁液を1μgのESAT‐6を含むQuantiFERON‐TB Gold bloodの検査管に加え、37℃で一晩インキュベート後、分泌されたIFN‐γをMouse IFN‐gamma Quantikine ELISA Kit(R&D Systems,Inc,(Minneapolis,MN,USA))で定量した。 Cellular immunity transduction effect of dendritic cells added with exosomes secreted from cells introduced with a danger signal gene (2)
(1) Dendritic cells obtained by adding the exosome suspension obtained in Example 1 or 6 and cultivating overnight were once applied to the soles of both hind paws of C57BL / 6 mice (male, 5 weeks old) once by 75 μL. Administered.
(2) On the ninth day, lymph nodes on the back of knees of both hind paws were collected, crushed and passed through a mesh, and suspended in RPMI 1640 medium.
(3) The obtained lymphocyte suspension was added to a Quantferon-TB Gold blood test tube containing 1 μg of ESAT-6, incubated at 37 ° C. overnight, and then secreted IFN-γ was added to Mouse IFN-gamma Quantikine. Quantification was performed by ELISA Kit (R & D Systems, Inc, (Minneapolis, MN, USA)).
[結果]
結果を図4に示す。ここで、図の値は3例以上の平均値と標準偏差を表している。ESAT‐6遺伝子を導入したB16細胞から得られたエクソソームES‐B16‐Exを加えて培養した樹状細胞、またはESAT‐6遺伝子を導入した繊維芽細胞から得られたエクソソーム、ES‐Fb‐Exを加えて培養した樹状細胞を投与したマウスのリンパ球はどちらも、ESAT‐6遺伝子を導入していないB16細胞から得られたエクソソーム、Empty‐B16‐Exを加えて培養した樹状細胞を投与したマウスのリンパ球に比べて、ESAT‐6抗原タンパクと一晩インキュベートすることで明らかに多くのIFN‐γを分泌した。このことから、微生物遺伝子を導入した腫瘍細胞、または正常細胞から得られたエクソソームを加えて培養した樹状細胞は当該微生物抗原に対する細胞性免疫を惹起する効果を持つことが確認された。[result]
The results are shown in FIG. Here, the values in the figure represent average values and standard deviations of three or more examples. Dendritic cells cultured by adding exosome ES-B16-Ex obtained from B16 cells introduced with ESAT-6 gene, or exosome obtained from fibroblasts introduced with ESAT-6 gene, ES-Fb-Ex The lymphocytes of mice administered with dendritic cells cultured with the addition of exosomes obtained from B16 cells into which ESAT-6 gene has not been introduced, Empty-B16-Ex, were added and cultured. Compared to the lymphocytes of the administered mice, overnight incubation with ESAT-6 antigen protein clearly secreted more IFN-γ. From this, it was confirmed that dendritic cells cultured by adding exosomes obtained from tumor cells into which microbial genes have been introduced or normal cells have the effect of inducing cellular immunity against the microbial antigens.
Claims (54)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016219198A JP2018070572A (en) | 2016-10-24 | 2016-10-24 | Immunotherapy system |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016219198A JP2018070572A (en) | 2016-10-24 | 2016-10-24 | Immunotherapy system |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2018070572A true JP2018070572A (en) | 2018-05-10 |
Family
ID=62112402
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016219198A Pending JP2018070572A (en) | 2016-10-24 | 2016-10-24 | Immunotherapy system |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2018070572A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020214961A1 (en) * | 2019-04-17 | 2020-10-22 | Codiak Biosciences, Inc. | Methods of treating tuberculosis |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001508780A (en) * | 1997-01-23 | 2001-07-03 | ワグナー,ハーマン | Pharmaceutical compositions, especially for vaccination, comprising a polynucleotide and optionally an antigen |
WO2004071518A1 (en) * | 2003-02-17 | 2004-08-26 | Mebiopharm Co., Ltd. | Remedy for cancer |
JP2011517402A (en) * | 2008-03-18 | 2011-06-09 | サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) | Chimeric polynucleotides and polypeptides that bind to exosomes and allow secretion of the polypeptide of interest, and their use in the production of immunogenic compositions |
JP2013523824A (en) * | 2010-04-06 | 2013-06-17 | ジョン ダブリュ. ホラデイ、 | How to treat cancer |
WO2014142235A1 (en) * | 2013-03-13 | 2014-09-18 | Li Zhong | Microvesicle, and manufacturing method for same |
-
2016
- 2016-10-24 JP JP2016219198A patent/JP2018070572A/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001508780A (en) * | 1997-01-23 | 2001-07-03 | ワグナー,ハーマン | Pharmaceutical compositions, especially for vaccination, comprising a polynucleotide and optionally an antigen |
WO2004071518A1 (en) * | 2003-02-17 | 2004-08-26 | Mebiopharm Co., Ltd. | Remedy for cancer |
JP2011517402A (en) * | 2008-03-18 | 2011-06-09 | サントル ナシオナル ドゥ ラ ルシェルシェサイアンティフィク(セエヌエールエス) | Chimeric polynucleotides and polypeptides that bind to exosomes and allow secretion of the polypeptide of interest, and their use in the production of immunogenic compositions |
JP2013523824A (en) * | 2010-04-06 | 2013-06-17 | ジョン ダブリュ. ホラデイ、 | How to treat cancer |
WO2014142235A1 (en) * | 2013-03-13 | 2014-09-18 | Li Zhong | Microvesicle, and manufacturing method for same |
Non-Patent Citations (1)
Title |
---|
第13回遺伝子・デリバリー研究会シンポジウム要旨集, JPN6020040562, 2013, pages 31, ISSN: 0004491216 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020214961A1 (en) * | 2019-04-17 | 2020-10-22 | Codiak Biosciences, Inc. | Methods of treating tuberculosis |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN103502439B (en) | Method for T cells with antigenic specificity propagation | |
US12233091B2 (en) | Vaccine compositions and methods | |
EP0915708B1 (en) | Immunogenic composition comprising tumor associated antigen and human cytokine | |
US20100303868A1 (en) | Ex vivo, fast and efficient process to obtain activated antigen-presenting cells that are useful for therapies against cancer and immune system-related diseases | |
JP2024036364A (en) | Methods and compositions comprising cationic lipids for stimulating type I interferon genes | |
AU2005314271B2 (en) | Alpha thymosin peptides as cancer vaccine adjuvants | |
JP2018070572A (en) | Immunotherapy system | |
JP2017101012A (en) | Immunotherapeutic formulation | |
US10232036B2 (en) | Vaccine formulation, preparation method therefor and use thereof | |
AU782196B2 (en) | Activation of antigen-specific T cells by virus/antigen-treated dendritic cells | |
Ratre et al. | Molecular farming and anticancer vaccine: current opportunities and openings | |
KR102092469B1 (en) | Composition for inducing maturation of dendritic cell comprising Ribosomal Protein S3 | |
KR20250089555A (en) | Immunotherapeutic compositions and methods of use | |
Wędrowska et al. | Preliminary flagellin gene transfection into tumor cells-attempts of generating anti-tumor response in experimental model | |
Ali | Programming cells in situ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A80 | Written request to apply exceptions to lack of novelty of invention |
Free format text: JAPANESE INTERMEDIATE CODE: A80 Effective date: 20161116 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20191003 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20201027 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20201221 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210427 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210621 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20211109 |