JP2018059193A - Manufacturing method of high strength low alloy steel - Google Patents
Manufacturing method of high strength low alloy steel Download PDFInfo
- Publication number
- JP2018059193A JP2018059193A JP2017183133A JP2017183133A JP2018059193A JP 2018059193 A JP2018059193 A JP 2018059193A JP 2017183133 A JP2017183133 A JP 2017183133A JP 2017183133 A JP2017183133 A JP 2017183133A JP 2018059193 A JP2018059193 A JP 2018059193A
- Authority
- JP
- Japan
- Prior art keywords
- less
- tensile strength
- mpa
- present
- content
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
【課題】高価な合金元素の含有量が低く、引張強さが1500MPa以上で、耐水素脆化特性及び生産性に優れ、自動車、産業機械、建築構造物等に用いるのに好適な、高強度低合金鋼材の製造方法を提供する。【解決手段】化学組成が、質量%で、C:0.60%超〜1.0%、Si:1.2〜2.0%、Mn:0.30〜1.0%未満、Cr:0.5〜1.5%、Al:0.005〜0.10%、Mo:0〜0.30%未満、Ti:0〜0.10%、Nb:0〜0.10%、V:0〜0.10%、Zr:0〜0.20%、残部:Fe及び不純物で、不純物としてのP、S、N及びOが、P≦0.030%、S≦0.030%、N≦0.030%及びO≦0.010%である鋼材に、[850〜1050℃で20〜60分加熱するオーステナイト化工程]、[30℃/秒以上の冷却速度で400〜300℃の温度域まで冷却し、該温度域で10〜100分保持する等温変態工程]、[室温まで冷却する冷却工程]及び[総加工率10.0%以上で冷間加工する冷間加工工程]を順に施す。【選択図】なし[PROBLEMS] To provide high strength, low content of expensive alloy elements, tensile strength of 1500MPa or more, excellent hydrogen embrittlement resistance and productivity, and suitable for use in automobiles, industrial machinery, building structures, etc. A method for producing a low alloy steel material is provided. The chemical composition is, by mass%, C: more than 0.60% to 1.0%, Si: 1.2 to 2.0%, Mn: less than 0.30 to 1.0%, Cr: 0.5 to 1.5%, Al: 0.005 to 0.10%, Mo: 0 to less than 0.30%, Ti: 0 to 0.10%, Nb: 0 to 0.10%, V: 0 to 0.10%, Zr: 0 to 0.20%, balance: Fe and impurities, P, S as impurities For steel materials in which N and O are P ≦ 0.030%, S ≦ 0.030%, N ≦ 0.030%, and O ≦ 0.010%, [austeniteizing step of heating at 850 to 1050 ° C. for 20 to 60 minutes], [30 ° C. / Cool to a temperature range of 400 to 300 ° C. at a cooling rate of at least 2 seconds and hold at that temperature range for 10 to 100 minutes, a cooling step to cool to room temperature, and a cooling at a total processing rate of 10.0% or more. Cold working process] is performed in order. [Selection figure] None
Description
本発明は、高強度低合金鋼材の製造方法、特に、引張強さが1500MPa以上で耐水素脆化特性に優れ、自動車、産業機械、建築構造物等に用いるのに好適な、高強度低合金鋼材の製造方法に関する。 The present invention relates to a method for producing a high-strength low-alloy steel, particularly a high-strength low-alloy having a tensile strength of 1500 MPa or more and excellent hydrogen embrittlement resistance, and suitable for use in automobiles, industrial machines, building structures, etc. The present invention relates to a method for manufacturing a steel material.
近年、軽量化、機能等の観点から引張強さが1000MPaを超えるような高強度鋼材が使用される傾向にある。しかし、鉄鋼材料は引張強さが1000MPaを超えると、水素脆化が深刻な問題となる。水素脆化とは、鉄鋼材料中に水素が侵入することにより機械特性が元の値よりも劣化する現象である。なお、水素はその原子半径が全元素中最小であることから鉄鋼材料中への侵入は不可避である。 In recent years, high strength steel materials having a tensile strength exceeding 1000 MPa tend to be used from the viewpoint of weight reduction, function, and the like. However, when the tensile strength of steel materials exceeds 1000 MPa, hydrogen embrittlement becomes a serious problem. Hydrogen embrittlement is a phenomenon in which mechanical properties deteriorate from the original value due to hydrogen intrusion into a steel material. In addition, since the atomic radius of hydrogen is the smallest among all the elements, penetration into the steel material is inevitable.
耐水素脆化特性に優れた高強度の鉄鋼材料およびその製造方法に関して、例えば、特許文献1に、水素脆化特性の1形態である遅れ破壊特性を抑止した技術が開示されている。具体的には、特定量のCを含有する鋼材からなり、ベイナイト組織の面積率を80%以上とし、その後、強伸線加工することによって1200MPa(1200N/mm2)以上の強度と優れた耐遅れ破壊性を有するようにした、耐遅れ破壊性と鍛造性に優れた高強度鋼線に関する技術が開示されている。なお、特許文献1には、上述の化学組成を有する鋼を熱間圧延または鍛造した後、300〜500℃の温度まで急冷し、その温度から1℃/秒以下の平均冷却速度で200秒以上かけて冷却し、その後に強伸線加工を行う製造方法が示されている。 Regarding a high-strength steel material excellent in hydrogen embrittlement resistance and a method for producing the same, for example, Patent Document 1 discloses a technique that suppresses delayed fracture characteristics, which is one form of hydrogen embrittlement characteristics. Specifically, it is made of a steel material containing a specific amount of C, the area ratio of the bainite structure is 80% or more, and then subjected to strong wire drawing to have a strength of 1200 MPa (1200 N / mm 2 ) or more and excellent resistance. A technique related to a high strength steel wire having delayed fracture resistance and excellent forgeability is disclosed. In Patent Document 1, steel having the above-described chemical composition is hot-rolled or forged, then rapidly cooled to a temperature of 300 to 500 ° C., and at an average cooling rate of 1 ° C./second or less from that temperature for 200 seconds or more. A manufacturing method in which the wire is cooled and then subjected to strong wire drawing is shown.
特許文献1で開示された高強度鋼線は、破断限界水素濃度の観点から耐水素脆化特性に改善の余地がある。 The high-strength steel wire disclosed in Patent Document 1 has room for improvement in hydrogen embrittlement resistance from the viewpoint of the fracture limit hydrogen concentration.
本発明は、高価な合金元素の含有量が低く、しかも引張強さが1500MPa以上、かつ耐水素脆化特性に優れるとともに生産性にも優れる、自動車、産業機械、建築構造物等に用いるのに好適な、高強度低合金鋼材の製造方法を提供することを目的とする。 The present invention is used for automobiles, industrial machines, building structures, etc., which have a low content of expensive alloy elements, a tensile strength of 1500 MPa or more, excellent hydrogen embrittlement resistance and excellent productivity. An object of the present invention is to provide a suitable method for producing a high-strength low-alloy steel material.
本発明の要旨は、下記に示す引張強さが1500MPa以上の高強度低合金鋼材の製造方法にある。 The gist of the present invention resides in a method for producing a high-strength low-alloy steel material having a tensile strength of 1500 MPa or more as shown below.
(1)高強度低合金鋼材を製造する方法であって、
化学組成が、質量%で、
C:0.60%を超えて1.0%以下、
Si:1.2〜2.0%、
Mn:0.30%以上1.0%未満、
Cr:0.5〜1.5%、
Al:0.005〜0.10%、
Mo:0〜0.30%未満、
Ti:0〜0.10%、
Nb:0〜0.10%、
V:0〜0.10%、
Zr:0〜0.20%、
残部がFeおよび不純物であり、
不純物としてのP、S、NおよびOが、P:0.030%以下、S:0.030%以下、N:0.030%以下およびO:0.010%以下である鋼材に、
下記の(i)から(iv)までの工程を順に施す、
引張強さが1500MPa以上の高強度低合金鋼材の製造方法。
(i):850〜1050℃で20〜60分加熱する、オーステナイト化工程
(ii):30℃/秒以上の冷却速度で400〜300℃の温度域まで冷却し、該温度域で10〜100分保持する、等温変態工程
(iii):室温まで冷却する、冷却工程
(iv):総加工率10.0%以上で冷間加工を施す、冷間加工工程
(1) A method for producing a high strength low alloy steel material,
Chemical composition is mass%,
C: more than 0.60% and 1.0% or less,
Si: 1.2-2.0%,
Mn: 0.30% or more and less than 1.0%,
Cr: 0.5 to 1.5%
Al: 0.005 to 0.10%,
Mo: 0 to less than 0.30%,
Ti: 0 to 0.10%,
Nb: 0 to 0.10%,
V: 0 to 0.10%,
Zr: 0 to 0.20%,
The balance is Fe and impurities,
In steel materials in which P, S, N and O as impurities are P: 0.030% or less, S: 0.030% or less, N: 0.030% or less and O: 0.010% or less,
The following steps (i) to (iv) are sequentially performed.
A method for producing a high-strength low-alloy steel material having a tensile strength of 1500 MPa or more.
(I): Austenitizing step of heating at 850 to 1050 ° C. for 20 to 60 minutes (ii): Cooling to a temperature range of 400 to 300 ° C. at a cooling rate of 30 ° C./second or more, and 10 to 100 in the temperature range Isothermal transformation step (iii): cooling to room temperature, cooling step (iv): cold working step for cold working at a total working rate of 10.0% or more
(2)前記(iv)の冷間加工工程が、総減面率10.0〜20.0%で引抜加工を施す、冷間加工工程である、上記(1)に記載の引張強さが1500MPa以上の高強度低合金鋼材の製造方法。 (2) The tensile strength according to (1) above, wherein the cold working process of (iv) is a cold working process in which a drawing process is performed with a total area reduction rate of 10.0 to 20.0%. A method for producing a high-strength low-alloy steel material of 1500 MPa or more.
(3)前記(iv)の冷間加工工程が、総圧下率10.0〜40.0%で板圧延加工を施す、冷間加工工程である、上記(1)に記載の引張強さが1500MPa以上の高強度低合金鋼材の製造方法。 (3) The tensile strength according to (1) above, wherein the cold working process of (iv) is a cold working process in which sheet rolling is performed at a total rolling reduction of 10.0 to 40.0%. A method for producing a high-strength low-alloy steel material of 1500 MPa or more.
(4)鋼材の化学組成が、質量%で、
Mo:0.05%以上で0.30%未満を含有する、上記(1)から(3)までのいずれかに記載の、引張強さが1500MPa以上の高強度低合金鋼材の製造方法。
(4) The chemical composition of the steel material is mass%,
Mo: A method for producing a high-strength low-alloy steel material having a tensile strength of 1500 MPa or more, according to any one of (1) to (3), which is 0.05% or more and less than 0.30%.
(5)鋼材の化学組成が、質量%で、
Ti:0.005〜0.10%、
Nb:0.005〜0.10%、
V:0.005〜0.10%、および、
Zr:0.010〜0.20%、
から選択される1種以上を含有する、上記(1)から(4)までのいずれかに記載の、引張強さが1500MPa以上の高強度低合金鋼材の製造方法。
(5) The chemical composition of the steel material is mass%,
Ti: 0.005 to 0.10%,
Nb: 0.005 to 0.10%,
V: 0.005 to 0.10%, and
Zr: 0.010 to 0.20%,
A method for producing a high-strength low-alloy steel material having a tensile strength of 1500 MPa or more, according to any one of the above (1) to (4), which contains one or more selected from:
本発明によれば、高価な合金元素の含有量が低く、耐水素脆化特性に優れて、自動車、産業機械、建築構造物等に好適に用いることができる、引張強さが1500MPa以上の高強度低合金鋼材を、高い生産性の下に製造することができる。 According to the present invention, the content of expensive alloy elements is low, the hydrogen embrittlement resistance is excellent, and the tensile strength is 1500 MPa or more, which can be suitably used for automobiles, industrial machines, building structures and the like. High strength low alloy steel can be manufactured with high productivity.
以下、本発明の各要件について詳しく説明する。なお、各元素の含有量の「%」は「質量%」を意味する。 Hereinafter, each requirement of the present invention will be described in detail. In addition, “%” of the content of each element means “mass%”.
(A)鋼材の化学組成について:
C:0.60%を超えて1.0%以下
Cは、本発明において最も重要な元素である。Cは、同じ強度でも吸蔵水素濃度を低減する作用があるので、Mo、Ni等の高価な元素の含有量を低くしても、耐水素脆化特性を向上させることができる。Cは、高強度の確保に重要な元素であり、過剰な冷間加工を施さなくても強度を担保できるため、冷間加工により導入する転位が少なくてすみ、耐水素脆化特性を低下させにくい。このため、Cは0.60%を超えて含有させなくてはならない。さらに、Cは、Ac3点を低下させるため、比較的低い温度での加熱で、鋼が完全オーステナイト化しやすいので、旧オーステナイト結晶粒径が小さくなって、この点でも耐水素脆化特性が向上する。一方、Cの含有量が増えて1.0%を超えると靱性の劣化が著しくなる。したがって、Cの含有量を0.60%を超えて1.0%以下とする。C含有量の望ましい下限は0.65%、また望ましい上限は0.80%である。
(A) About chemical composition of steel materials:
C: more than 0.60% and 1.0% or less C is the most important element in the present invention. Since C has the effect of reducing the stored hydrogen concentration even at the same strength, the hydrogen embrittlement resistance can be improved even when the content of expensive elements such as Mo and Ni is lowered. C is an element that is important for ensuring high strength, and can ensure the strength without excessive cold working. Therefore, less dislocations are introduced by cold working, reducing hydrogen embrittlement resistance. Hateful. For this reason, C must be contained exceeding 0.60%. Further, C lowers the Ac 3 point, so that the steel is easily converted to austenite by heating at a relatively low temperature, so that the prior austenite crystal grain size is reduced, and in this respect also the hydrogen embrittlement resistance is improved. To do. On the other hand, when the C content increases and exceeds 1.0%, the deterioration of toughness becomes significant. Therefore, the C content is more than 0.60% and 1.0% or less. A desirable lower limit of the C content is 0.65%, and a desirable upper limit is 0.80%.
Si:1.2〜2.0%
Siは、脱酸作用を有し、強度および焼入れ性の向上作用もある。強度の向上は1500MPa以上の引張強さの確保に有効である。また、Siには低温で等温変態を行うことで耐水素脆化特性を向上させる効果もある。これらの効果を得るには、Siの含有量は1.2%以上とする必要がある。一方、2.0%を超えてSiを含有させてもその効果は飽和することに加え、靱性の劣化が生じる。したがって、Siの含有量を1.2〜2.0%とする。Si含有量の望ましい下限は1.3%、また、望ましい上限は1.5%である。
Si: 1.2-2.0%
Si has a deoxidizing action and also has an effect of improving strength and hardenability. The improvement in strength is effective for securing a tensile strength of 1500 MPa or more. Si also has an effect of improving hydrogen embrittlement resistance by isothermal transformation at a low temperature. In order to obtain these effects, the Si content needs to be 1.2% or more. On the other hand, even if Si is contained exceeding 2.0%, the effect is saturated and toughness is deteriorated. Therefore, the Si content is set to 1.2 to 2.0%. A desirable lower limit of the Si content is 1.3%, and a desirable upper limit is 1.5%.
Mn:0.30%以上1.0%未満
Mnは、焼入れ性と強度を向上させる作用を有する。強度の向上は1500MPa以上の引張強さの確保に有効であり、また、焼入れ性の向上は、所望の強度が得やすくなるため製造の観点から有利である。また、Mnには、Sと結合して硫化物を形成し、Sの粒界偏析を抑制して耐水素脆化特性を向上する効果もある。これらの効果を得るには、Mnの含有量は0.30%以上とする必要がある。一方で、Mnを過剰に含有させると粒界に偏析し、粒界割れ型の水素脆性破壊を促進する。したがって、Mnの含有量を0.30%以上1.0%未満とする。Mn含有量の望ましい下限は0.40%、また、望ましい上限は0.60%である。
Mn: 0.30% or more and less than 1.0% Mn has an effect of improving hardenability and strength. The improvement in strength is effective for securing a tensile strength of 1500 MPa or more, and the improvement in hardenability is advantageous from the viewpoint of manufacturing because a desired strength can be easily obtained. Further, Mn also has an effect of improving hydrogen embrittlement resistance by combining with S to form sulfides and suppressing S grain boundary segregation. In order to obtain these effects, the Mn content needs to be 0.30% or more. On the other hand, when Mn is contained excessively, it segregates at the grain boundary and promotes the intergranular cracking type hydrogen embrittlement fracture. Therefore, the Mn content is set to 0.30% or more and less than 1.0%. A desirable lower limit of the Mn content is 0.40%, and a desirable upper limit is 0.60%.
Cr:0.5〜1.5%
Crは、強度を向上させるのに有効な元素である。また、Crには、焼入れ性を向上させる作用もあり、焼入れ性の向上は、所望の強度が得やすくなるため製造の観点から有利である。これらの効果を得るためには、Crを0.5%以上含有させる必要がある。一方で、Crを過剰に含有させると靱性の劣化が生じる。したがって、Crの含有量を0.5〜1.5%とする。Cr含有量の望ましい下限は0.8%、また、望ましい上限は1.2%である。
Cr: 0.5 to 1.5%
Cr is an element effective for improving the strength. Cr also has an effect of improving the hardenability, and the improvement of the hardenability is advantageous from the viewpoint of manufacturing because a desired strength can be easily obtained. In order to obtain these effects, it is necessary to contain 0.5% or more of Cr. On the other hand, when Cr is excessively contained, toughness is deteriorated. Therefore, the Cr content is set to 0.5 to 1.5%. A desirable lower limit of the Cr content is 0.8%, and a desirable upper limit is 1.2%.
Al:0.005〜0.10%
Alは、脱酸作用を有する元素である。この効果を十分に確保するためにはAlを0.005%以上含有させる必要がある。一方、Alを0.10%を超えて含有させてもその効果は飽和する。したがって、Alの含有量を0.005〜0.10%とする。なお、本発明のAl含有量とは酸可溶Al(所謂「sol.Al」)での含有量を指す。
Al: 0.005-0.10%
Al is an element having a deoxidizing action. In order to sufficiently secure this effect, it is necessary to contain Al by 0.005% or more. On the other hand, the effect is saturated even if Al is contained exceeding 0.10%. Therefore, the content of Al is set to 0.005 to 0.10%. The Al content of the present invention refers to the content of acid-soluble Al (so-called “sol. Al”).
Mo:0〜0.30%未満
Moは、Fe炭化物の安定性を高めて、耐水素脆化特性を向上させる元素である。このため、必要に応じてMoを含有させてもよい。しかしながら、本発明では、C等の他の元素の含有量を適正化することで良好な耐水素脆化特性を確保することができるし、Moが非常に高価な元素であるため、Moの多量の含有は経済性を大きく損なうことになる。したがって、含有させる場合のMo含有量を0.30%未満とする。Mo含有量の上限は、0.20%であることが望ましい。なお、前記の効果を安定して得るためには、Mo含有量の下限は、0.05%であることが望ましく、0.10%であることが一層望ましい。
Mo: 0 to less than 0.30% Mo is an element that improves the stability of the Fe carbide and improves the hydrogen embrittlement resistance. For this reason, you may contain Mo as needed. However, in the present invention, good hydrogen embrittlement resistance can be ensured by optimizing the content of other elements such as C, and since Mo is a very expensive element, a large amount of Mo The inclusion of slashes the economy. Therefore, the Mo content in the case of inclusion is less than 0.30%. The upper limit of the Mo content is desirably 0.20%. In order to obtain the above effect stably, the lower limit of the Mo content is desirably 0.05%, and more desirably 0.10%.
Ti:0〜0.10%
Tiは、Cまたは/およびNと結合し、微細な析出物を形成し、旧オーステナイト結晶粒を微細化して耐水素脆化特性を向上させる元素である。このため、必要に応じてTiを含有させてもよい。しかしながら、0.10%を超える量のTiを含有させると、析出物の量が増大し、靱性を劣化させる。したがって、含有させる場合のTi含有量の上限を0.10%とする。Ti含有量の上限は、0.06%であることが望ましい。なお、前記の効果を安定して得るためには、Ti含有量の下限は、0.005%であることが望ましく、0.03%であることが一層望ましい。
Ti: 0 to 0.10%
Ti is an element that combines with C or / and N, forms fine precipitates, refines prior austenite crystal grains, and improves hydrogen embrittlement resistance. For this reason, you may contain Ti as needed. However, if Ti is contained in an amount exceeding 0.10%, the amount of precipitates increases and the toughness is deteriorated. Therefore, the upper limit of the Ti content when contained is 0.10%. The upper limit of the Ti content is preferably 0.06%. In order to obtain the above effect stably, the lower limit of the Ti content is preferably 0.005%, and more preferably 0.03%.
Nb:0〜0.10%
Nbは、Cまたは/およびNと結合し、微細な析出物を形成し、旧オーステナイト結晶粒を微細化して耐水素脆化特性を向上させる元素である。このため、必要に応じてNbを含有させてもよい。しかしながら、0.10%を超える量のNbを含有させると、析出物の量が増大し、靱性を劣化させる。したがって、含有させる場合のNb含有量の上限を0.10%とする。Nb含有量の上限は、0.06%であることが望ましい。なお、前記の効果を安定して得るためには、Nb含有量の下限は、0.005%であることが望ましく、0.03%であることが一層望ましい。
Nb: 0 to 0.10%
Nb is an element that combines with C or / and N to form fine precipitates and refines prior austenite crystal grains to improve hydrogen embrittlement resistance. For this reason, you may contain Nb as needed. However, when an amount of Nb exceeding 0.10% is contained, the amount of precipitates increases and the toughness is deteriorated. Therefore, the upper limit of the Nb content when contained is 0.10%. The upper limit of the Nb content is preferably 0.06%. In order to obtain the above effect stably, the lower limit of the Nb content is preferably 0.005%, and more preferably 0.03%.
V:0〜0.10%
Vは、Cまたは/およびNと結合し、微細な析出物を形成し、旧オーステナイト結晶粒を微細化して耐水素脆化特性を向上させる元素である。このため、必要に応じてVを含有させてもよい。しかしながら、0.10%を超える量のVを含有させても、旧オーステナイト結晶粒を微細にする効果は飽和し、コストが嵩むだけである。したがって、含有させる場合のV含有量の上限を0.10%とする。V含有量の上限は、0.06%であることが望ましい。なお、前記の効果を安定して得るためには、V含有量の下限は、0.005%であることが望ましく、0.03%であることが一層望ましい。
V: 0 to 0.10%
V is an element that combines with C or / and N, forms fine precipitates, refines prior austenite crystal grains, and improves hydrogen embrittlement resistance. For this reason, you may contain V as needed. However, even if V is contained in an amount exceeding 0.10%, the effect of making the prior austenite crystal grains fine is saturated and only the cost is increased. Therefore, the upper limit of the V content when contained is 0.10%. The upper limit of the V content is preferably 0.06%. In order to obtain the above effect stably, the lower limit of the V content is preferably 0.005%, and more preferably 0.03%.
Zr:0〜0.20%
Zrは、Cまたは/およびNと結合し、微細な析出物を形成し、旧オーステナイト結晶粒を微細化して耐水素脆化特性を向上させる元素である。このため、必要に応じてZrを含有させてもよい。しかしながら、0.20%を超える量のZrを含有させると、析出物の量が増大し、靱性を劣化させる。したがって、含有させる場合のZr含有量の上限を0.20%とする。Zr含有量の上限は、0.12%であることが望ましい。なお、前記の効果を安定して得るためには、Zr含有量の下限は、0.010%であることが望ましく、0.06%であることが一層望ましい。
Zr: 0 to 0.20%
Zr is an element that combines with C or / and N to form fine precipitates and refines prior austenite crystal grains to improve hydrogen embrittlement resistance. For this reason, you may contain Zr as needed. However, when Zr is contained in an amount exceeding 0.20%, the amount of precipitates increases and the toughness is deteriorated. Therefore, the upper limit of the Zr content when contained is 0.20%. The upper limit of the Zr content is preferably 0.12%. In order to obtain the above effect stably, the lower limit of the Zr content is preferably 0.010%, and more preferably 0.06%.
上記のTi、Nb、VおよびZrを複合して含有させる場合の合計量は、0.08%以下であることが望ましい。 The total amount when Ti, Nb, V and Zr are contained in combination is preferably 0.08% or less.
本発明に係る鋼材は、上述の各元素と、残部がFeおよび不純物とからなり、不純物としてのP、S、NおよびOが、P:0.030%以下、S:0.030%以下、N:0.030%以下およびO:0.010%以下である化学組成を有する。 The steel material according to the present invention is composed of the above-described elements, the balance being Fe and impurities, and P, S, N and O as impurities are P: 0.030% or less, S: 0.030% or less, The chemical composition is N: 0.030% or less and O: 0.010% or less.
ここで「不純物」とは、鉄鋼材料を工業的に製造する際に、鉱石、スクラップ等の原料、製造工程の種々の要因によって混入する成分であって、本発明に悪影響を与えない範囲で許容されるものを意味する。 Here, “impurities” are components mixed in due to various factors of raw materials such as ores and scraps and manufacturing processes when industrially producing steel materials, and are permitted within a range that does not adversely affect the present invention. Means what will be done.
P:0.030%以下
Pは、不純物として含有され、粒界に偏析して靱性および/または耐水素脆化特性を低下させる。Pの含有量が0.030%を超えると上記の悪影響が顕著になる。このため、Pの含有量を0.030%以下とする。Pの含有量は極力低いことが望ましい。
P: 0.030% or less P is contained as an impurity and segregates at the grain boundary to lower toughness and / or hydrogen embrittlement resistance. When the P content exceeds 0.030%, the above-described adverse effects become remarkable. For this reason, content of P shall be 0.030% or less. The P content is desirably as low as possible.
S:0.030%以下
Sは、不純物として含有され、Pと同様に粒界に偏析して耐水素脆化特性を低下させる。Sの含有量が0.030%を超えると上記の悪影響が顕著になる。このため、Sの含有量を0.030%以下とする。Sの含有量は極力低いことが望ましい。
S: 0.030% or less S is contained as an impurity and, like P, segregates at the grain boundary and deteriorates the hydrogen embrittlement resistance. When the S content exceeds 0.030%, the above-described adverse effects become remarkable. For this reason, content of S shall be 0.030% or less. It is desirable that the S content be as low as possible.
N:0.030%以下
Nは、不純物として含有され、その含有量が過剰になって0.030%を超えると靱性の劣化が顕著になる。したがって、Nの含有量を0.030%以下とする。Nの含有量は極力低いことが望ましい。
N: 0.030% or less N is contained as an impurity, and when its content is excessive and exceeds 0.030%, the deterioration of toughness becomes remarkable. Therefore, the N content is 0.030% or less. The N content is desirably as low as possible.
O:0.010%以下
O(酸素)は、不純物として含有され、Alと結びついて酸化物を形成する。その含有量が多くなって0.010%を超えると、酸化物が過剰に形成されて靱性が低下する等の問題が生じる。したがって、Oの含有量を0.010%以下とする。Oの含有量は極力低いことが望ましい。
O: 0.010% or less O (oxygen) is contained as an impurity and is combined with Al to form an oxide. When the content increases and exceeds 0.010%, problems such as excessive formation of oxides and reduction in toughness occur. Therefore, the content of O is set to 0.010% or less. The O content is desirably as low as possible.
(B)高強度低合金鋼材の強度について:
本発明に係る高強度低合金鋼材は、引張強さが1500MPa以上である。引張強さが1500MPa以上であれば、近年、軽量化、機能等の観点から自動車、産業機械、建築構造物等に対して要求されている高強度化に十分応えることができる。なお、引張強さの上限は2500MPaであることが望ましく、2000MPaであればより望ましい。
(B) Strength of high strength low alloy steel:
The high strength low alloy steel according to the present invention has a tensile strength of 1500 MPa or more. If the tensile strength is 1500 MPa or more, in recent years, it is possible to sufficiently meet the increase in strength required for automobiles, industrial machines, building structures and the like from the viewpoints of weight reduction, function, and the like. The upper limit of the tensile strength is desirably 2500 MPa, and more desirably 2000 MPa.
(C)製造方法について:
本発明に係る引張強さが1500MPa以上の高強度低合金鋼材は、以下の方法によって製造する。
(C) About manufacturing method:
The high strength low alloy steel material having a tensile strength of 1500 MPa or more according to the present invention is produced by the following method.
前記(A)項で述べた化学組成を有する低合金鋼を溶製した後、鋳造によりインゴットまたは鋳片とする。鋳造されたインゴットまたは鋳片は、熱間圧延、熱間押出、熱間鍛造等の熱間加工によって、さらに必要に応じて、冷間加工を行って、丸棒、鋼線、鋼板等所要の形状を有する鋼材に仕上げる。その後、該鋼材に、以下に述べる(i)から(iv)までの工程を順に施す。 After melting the low alloy steel having the chemical composition described in the above section (A), an ingot or slab is formed by casting. The cast ingot or slab is subjected to hot working such as hot rolling, hot extrusion, hot forging, etc., and if necessary, cold working is performed to obtain the required round bar, steel wire, steel plate, etc. Finish the steel with a shape. Thereafter, the steps (i) to (iv) described below are sequentially performed on the steel material.
(i):850〜1050℃で20〜60分加熱する、オーステナイト化工程
上述した鋼材を850〜1050℃で20〜60分加熱して、完全にオーステナイト化する。鋼材の加熱温度が、850℃を下回ると、完全にオーステナイト化できない場合がある。一方、加熱温度が1050℃を超えると、旧オーステナイト粒が粗大になるため、延性が低下して後述する(iv)の総加工率10.0%以上という冷間加工を行うことが困難になったり、1500MPa以上という引張強さおよび良好な耐水素脆化特性という重要な特性の同時確保ができなくなったりする。鋼材の加熱温度が上記の範囲であっても、加熱時間が20分未満では、鋼材を完全にオーステナイト化できないことがあり、また、60分を超えると、エネルギーコストが嵩むことに加えて、微細な旧オーステナイト粒を得ることが困難になる場合がある。したがって、オーステナイト化工程は、鋼材を850〜1050℃で20〜60分加熱するものとする。なお、この(i)の工程での加熱温度は、鋼材の表面における温度を指す。鋼材の加熱温度の望ましい下限は、870℃である。また、上記加熱温度の望ましい上限は、1000℃であり、950℃であれば一層望ましい。加熱時間の望ましい下限は30分であり、また、望ましい上限は45分である。
(I): Austenitizing step of heating at 850 to 1050 ° C. for 20 to 60 minutes The above-described steel material is heated at 850 to 1050 ° C. for 20 to 60 minutes to completely austenite. If the heating temperature of the steel material is lower than 850 ° C., it may not be possible to completely austenite. On the other hand, when the heating temperature exceeds 1050 ° C., the prior austenite grains become coarse, so that the ductility is lowered and it becomes difficult to perform cold working with a total working rate of 10.0% or more as described later (iv). Or important properties such as tensile strength of 1500 MPa or more and good hydrogen embrittlement resistance cannot be secured at the same time. Even if the heating temperature of the steel material is in the above range, if the heating time is less than 20 minutes, the steel material may not be completely austenitic, and if it exceeds 60 minutes, in addition to increasing the energy cost, It may be difficult to obtain new prior austenite grains. Therefore, an austenitization process shall heat a steel material at 850-1050 degreeC for 20 to 60 minutes. In addition, the heating temperature in this process (i) points out the temperature in the surface of steel materials. A desirable lower limit of the heating temperature of the steel material is 870 ° C. The desirable upper limit of the heating temperature is 1000 ° C., more desirably 950 ° C. A desirable lower limit of the heating time is 30 minutes, and a desirable upper limit is 45 minutes.
(ii):30℃/秒以上の冷却速度で400〜300℃の温度域まで冷却し、該温度域で10〜100分保持する、等温変態工程
上記(i)の工程でオーステナイト化した鋼材を、冷却速度を30℃/秒以上として、400〜300℃の温度域まで冷却し、該温度域で10〜100分保持して等温変態させる。オーステナイト化後の冷却速度が30℃/秒未満の場合には、後述の(iv)の冷間加工を施しても、所定の1500MPa以上という引張強さに達しないことがある。なお、オーステナイト化後の冷却速度の上限は工業的には80℃/秒程度である。上記の30℃/秒以上の冷却速度であっても、冷却する温度が400℃を超える場合は1500MPa以上の強度を得るのが難しくなる。また、前記の温度が300℃未満になると、10〜100分の保持時間では脆くなって、(iv)の冷間加工時に割れ等の欠陥を生ずる可能性がある。また、上記(A)項で述べた化学組成の場合、通常、完全オーステナイト化させた後、前記した温度範囲で10〜100分保持することにより、後の(iii)および(iv)の工程を経れば(B)項に記載の引張強さで1500MPa以上の高強度を安定して具備させることができる。なお、鋼材のサイズまたは/および含有元素の影響から、(iv)の冷間加工時に割れ等の欠陥が生じたり、所望の耐水素脆化特性が得られなくなる場合があるので、前記した温度範囲における保持時間の下限は、30分であることが望ましく、60分であればより望ましい。また、上限は80分程度であることが望ましい。なお、この(ii)の工程での冷却速度および温度は、鋼材の表面を基準にした冷却速度および温度を指す。
(Ii): An isothermal transformation step in which the steel material is cooled to a temperature range of 400 to 300 ° C. at a cooling rate of 30 ° C./second or more and held in the temperature range for 10 to 100 minutes. Then, the cooling rate is set to 30 ° C./second or more, the temperature is cooled to a temperature range of 400 to 300 ° C., and the temperature is maintained for 10 to 100 minutes to perform isothermal transformation. When the cooling rate after austenitization is less than 30 ° C./second, the tensile strength of 1500 MPa or more may not be reached even if cold working (iv) described later is performed. The upper limit of the cooling rate after austenitization is about 80 ° C./second industrially. Even at the cooling rate of 30 ° C./second or more, it is difficult to obtain a strength of 1500 MPa or more when the cooling temperature exceeds 400 ° C. Moreover, when the said temperature will be less than 300 degreeC, it will become weak in the holding time of 10 to 100 minutes, and defects, such as a crack, may be produced at the time of the cold processing of (iv). Further, in the case of the chemical composition described in the above section (A), the following steps (iii) and (iv) are usually performed by maintaining the temperature within the above-described temperature range for 10 to 100 minutes after complete austenite formation. If it passes, the high intensity | strength of 1500 Mpa or more can be stably comprised with the tensile strength as described in (B) term. In addition, because of the influence of the size or / and contained elements of the steel material, defects such as cracks may occur during the cold working of (iv), or desired hydrogen embrittlement resistance may not be obtained. The lower limit of the retention time in is desirably 30 minutes, and more desirably 60 minutes. The upper limit is preferably about 80 minutes. In addition, the cooling rate and temperature in the step (ii) indicate the cooling rate and temperature based on the surface of the steel material.
(iii):室温まで冷却する、冷却工程
上記(ii)の工程で等温変態させた鋼材を、室温まで冷却する。この際の冷却速度については、特に制限がない。この(iii)の工程での冷却温度も、鋼材の表面における温度を指す。
(Iii): Cooling step for cooling to room temperature The steel material that has been isothermally transformed in the step (ii) is cooled to room temperature. There is no particular limitation on the cooling rate at this time. The cooling temperature in the step (iii) also refers to the temperature on the surface of the steel material.
(iv):総加工率10.0%以上で冷間加工を施す、冷間加工工程
上記(iii)の工程で室温まで冷却した鋼材に、総加工率10.0%以上で冷間加工を施す。冷間加工における総加工率が10.0%未満の場合には、所望の引張強さと耐水素脆化特性(1500MPa以上という引張強さでの良好な耐水素脆化特性)が得られない。なお、(iv)の工程における冷間加工は、(iii)の工程で室温まで冷却した鋼材に対して、軟化処理することなく施す必要がある。(iv)の冷間加工工程の具体的な加工方法には、「引抜加工」、「板圧延加工」等があり、総加工率の上限は、加工方法によって異なる。以下、「引抜加工」および「板圧延加工」の場合を例に説明する。
(Iv): Cold working step for performing cold working at a total working rate of 10.0% or more Cold working at a total working rate of 10.0% or more is applied to the steel material cooled to room temperature in the step (iii) above. Apply. When the total processing rate in cold working is less than 10.0%, desired tensile strength and hydrogen embrittlement resistance (good hydrogen embrittlement resistance at a tensile strength of 1500 MPa or more) cannot be obtained. Note that the cold working in the step (iv) needs to be performed without softening the steel material cooled to room temperature in the step (iii). Specific processing methods in the cold processing step (iv) include “drawing”, “plate rolling”, and the like, and the upper limit of the total processing rate varies depending on the processing method. Hereinafter, the case of “drawing” and “plate rolling” will be described as an example.
本発明において「引抜加工」とは、鋼材をダイスを通して引き抜いて一方向に伸ばす塑性加工法を指し、線材コイルの伸線加工も包含する。なお、「引抜加工」における「総加工率」は「総減面率」で表され、上述のとおり、総加工率である「総減面率」が10.0%未満の場合には、所望の引張強さと耐水素脆化特性が得られない。一方、割れや破断等の加工不良の発生を抑止するために「総減面率」の上限は20.0%であることが望ましい。「総減面率」の下限は12.0%であることが望ましく、また、上限は18.0%であることがより望ましい。 In the present invention, “drawing” refers to a plastic working method in which a steel material is drawn through a die and stretched in one direction, and includes wire drawing of a wire coil. The “total processing rate” in “drawing” is expressed by “total area reduction rate”. As described above, when the “total area reduction rate”, which is the total processing rate, is less than 10.0%, it is desired. The tensile strength and hydrogen embrittlement resistance cannot be obtained. On the other hand, the upper limit of the “total area reduction rate” is preferably 20.0% in order to suppress the occurrence of processing defects such as cracks and breaks. The lower limit of the “total area reduction ratio” is preferably 12.0%, and the upper limit is more preferably 18.0%.
総減面率が10.0〜20.0%であれば、引抜加工の回数は特に限定されず、1回でも複数回でもよい。 If the total area reduction ratio is 10.0 to 20.0%, the number of drawing processes is not particularly limited, and may be one or more times.
第n回目の「引抜加工」における「減面率」とは、上記n回目(ただし、nは正の整数である。)の引抜加工前後の鋼材の断面積をそれぞれ、「Sn-1」および「Sn」とした場合に
{(Sn-1−Sn)/Sn-1}×100
で表される値を指す。そして、「総減面率」とは、第1回目の引抜加工前の鋼材の断面積を「S0」、最終の引抜加工を施した後の鋼材の断面積を「Sf」とした場合に
{(S0−Sf)/S0}×100
で表される値を指す。
The “area reduction ratio” in the n-th “drawing” is the cross-sectional area of the steel material before and after the n-th drawing (where n is a positive integer), respectively, “S n-1 ”. And “S n ”, {(S n−1 −S n ) / S n−1 } × 100
The value represented by The “total area reduction ratio” means that the cross-sectional area of the steel material before the first drawing process is “S 0 ”, and the cross-sectional area of the steel material after the final drawing process is “S f ”. {(S 0 −S f ) / S 0 } × 100
The value represented by
室温まで冷却した鋼材には、必要に応じて、「引抜加工」する前に切削加工やピーリング加工等の機械的な加工処理を行ってもよい。なお、「引抜加工」の際には、適宜の方法で潤滑処理を行うことが好ましい。 If necessary, the steel material cooled to room temperature may be subjected to mechanical processing such as cutting or peeling before performing “pulling”. In the “drawing process”, it is preferable to perform a lubrication treatment by an appropriate method.
本発明において「板圧延加工」とは、鋼材を圧延ロールを用いて一方向に伸ばす塑性加工法を指す。なお、「板圧延加工」における「総加工率」は「総圧下率」で表され、上述のとおり、総加工率である「総圧下率」が10.0%未満の場合には、所望の引張強さと耐水素脆化特性が得られない。一方、総圧下率が大きくなると引張強度は向上するが、耐水素脆化特性が劣化するので、「総圧下率」の上限は40.0%であることが望ましい。「総圧下率」の下限は15.0%であることが望ましく、また、上限は35.0%であることがより望ましい。 In the present invention, “plate rolling” refers to a plastic working method in which a steel material is stretched in one direction using a rolling roll. In addition, the “total reduction ratio” in the “sheet rolling” is represented by the “total reduction ratio”. As described above, when the “total reduction ratio” that is the total reduction ratio is less than 10.0%, the desired reduction ratio Tensile strength and hydrogen embrittlement resistance cannot be obtained. On the other hand, when the total rolling reduction is increased, the tensile strength is improved, but the hydrogen embrittlement resistance is deteriorated. Therefore, the upper limit of the “total rolling reduction” is desirably 40.0%. The lower limit of the “total rolling reduction” is preferably 15.0%, and the upper limit is more preferably 35.0%.
総圧下率が10.0〜40.0%であれば、板圧延加工の回数は特に限定されず、1回でも複数回でもよい。なお、「総圧下率」とは、第1回目の板圧延加工前の鋼材の厚さを「t0」、最終の板圧延加工を施した後の鋼材の厚さを「tf」とした場合に
{(t0−tf)/t0}×100
で表される値を指す。
If the total rolling reduction is 10.0 to 40.0%, the number of plate rolling processes is not particularly limited, and may be one or more times. The “total rolling reduction” is defined as “t 0 ” for the thickness of the steel before the first plate rolling and “t f ” for the steel after the final plate rolling. {(T 0 −t f ) / t 0 } × 100
The value represented by
室温まで冷却した鋼材には、必要に応じて、「板圧延加工」する前に切削加工、ブラスト処理、酸洗等の脱スケール処理を行ってもよい。なお、「板圧延加工」の際には、適宜の方法で潤滑処理を行うことが好ましい。 If necessary, the steel material cooled to room temperature may be subjected to descaling treatment such as cutting, blasting, and pickling before performing “sheet rolling”. In the “plate rolling process”, it is preferable to perform a lubrication treatment by an appropriate method.
以下、実施例によって、本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention more concretely, this invention is not limited to these Examples.
表1に示す化学組成を有する鋼A〜Oを溶製し、鋳型に鋳込んで得たインゴットを1250℃に加熱した後、熱間鍛造により直径25mmの丸棒とした。 Steels A to O having the chemical composition shown in Table 1 were melted, and the ingot obtained by casting into a mold was heated to 1250 ° C., and then a round bar having a diameter of 25 mm was formed by hot forging.
表1中の鋼A〜Iは、化学組成が本発明で規定する範囲内にある鋼であり、一方、鋼J〜Oは、化学組成が本発明で規定する条件から外れた鋼である。 Steels A to I in Table 1 are steels whose chemical compositions are within the range defined by the present invention, while Steels J to O are steels whose chemical compositions deviate from the conditions defined by the present invention.
(実施例1)冷間加工工程が「引抜加工」の場合:
上記のようにして得た直径25mmの丸棒を、表2に示す温度で45分加熱してオーステナイト化した。試験番号1−1〜1−12および試験番号1−14〜1−20の各丸棒はオーステナイト化後、該温度から5秒以内に鉛浴中または塩浴中に浸漬して等温変態処理した。また、試験番号1−13の丸棒はオーステナイト化後、該温度から大気中で冷却し、30秒経過したところで鉛浴中に浸漬して等温変態処理した。オーステナイト化温度からの冷却速度ならびに、等温変態処理の温度および保持時間(鉛浴または塩浴の温度(つまり、上記冷却速度による冷却を停止した温度)および該温度での保持時間)の詳細は、表2に示すとおりである。なお、試験番号1−12を除いて、等温変態処理後は大気中で室温まで放冷した。一方、試験番号1−12は、等温変態処理後、30℃/秒の冷却速度で室温まで冷却した。
(Example 1) When the cold working process is "drawing":
The round bar having a diameter of 25 mm obtained as described above was heated to the austenite at the temperature shown in Table 2 for 45 minutes. Each round bar of test numbers 1-1 to 1-12 and test numbers 1-14 to 1-20 was austenitized, and then immersed in a lead bath or a salt bath within 5 seconds from the temperature and subjected to isothermal transformation treatment. . Moreover, the round bar of test number 1-13 was austenitized, cooled in the atmosphere from the temperature, and immersed in a lead bath when 30 seconds had elapsed, and subjected to an isothermal transformation treatment. Details of the cooling rate from the austenitizing temperature and the temperature and holding time of the isothermal transformation treatment (the temperature of the lead bath or salt bath (that is, the temperature at which cooling by the cooling rate is stopped) and the holding time at the temperature) are as follows: As shown in Table 2. In addition, except test number 1-12, after isothermal transformation process, it stood to cool to room temperature in air | atmosphere. On the other hand, Test Nos. 1-12 were cooled to room temperature at a cooling rate of 30 ° C./second after the isothermal transformation treatment.
各試験番号について、上記の室温まで冷却した直径25mmの丸棒の一部を用いて、後述の〈1〉に示す機械的特性を調査した。さらに、各試験番号について、室温まで冷却した直径25mmの丸棒の残りを直径23mmにピーリング加工した後、軟化処理を施すことなく、1回目の減面率を8.5%または16.6%として、表2に示す条件で冷間において引抜加工を施した。引抜加工時の潤滑は、湿式潤滑油剤で行った。 For each test number, a part of a round bar with a diameter of 25 mm cooled to the above room temperature was used to investigate the mechanical characteristics shown in <1> described later. Further, for each test number, the remaining area of the round bar having a diameter of 25 mm cooled to room temperature was peeled to a diameter of 23 mm, and then the first area reduction was 8.5% or 16.6% without applying a softening treatment. As shown in Table 2, it was cold-drawn under the conditions shown in Table 2. Lubrication during the drawing process was performed with a wet lubricant.
なお、表2に示す試験番号1−12および試験番号1−14は、上記の減面率を16.6%とする1回目の引抜加工で割れを生じた。また、試験番号1−10は、1回目の引抜加工では割れを生じなかったが、総減面率が28.1%となる次の2回目の引抜加工で割れを生じた。 In Test Nos. 1-12 and 1-14 shown in Table 2, cracks occurred in the first drawing process in which the above-mentioned area reduction rate was 16.6%. Moreover, although the test number 1-10 did not produce a crack in the first drawing process, it produced a crack in the next second drawing process in which the total area reduction rate was 28.1%.
上記の1回目の引抜加工で割れを生じた試験番号1−12および試験番号1−14、ならびに2回目の引抜加工で割れを生じた試験番号1−10を除いて、引抜加工した後の各丸棒について、下記の〈1〉に示す機械的特性および〈2〉に示す耐水素脆化特性を調査した。 Except for Test No. 1-12 and Test No. 1-14 that caused cracks in the above-mentioned first drawing, and Test No. 1-10 that caused cracks in the second drawing, For the round bar, the mechanical properties shown in the following <1> and the hydrogen embrittlement resistance shown in <2> were investigated.
〈1〉機械的特性:
各鋼について、前記の室温まで冷却した直径25mmの丸棒の一部、および引抜加工を施した丸棒について、その中心部から、長手方向に平行部の直径が6mmで標点距離が40mmの丸棒引張試験片を切り出し、室温で引張試験して、引張強さを求めた。
<1> Mechanical properties:
For each steel, about a part of the round bar with a diameter of 25 mm cooled to the room temperature and a round bar subjected to drawing processing, the diameter of the parallel part in the longitudinal direction is 6 mm and the gauge distance is 40 mm from the center part. A round bar tensile test piece was cut out and subjected to a tensile test at room temperature to determine the tensile strength.
〈2〉耐水素脆化特性:
上記〈1〉の調査で1500MPa以上の引張強さが得られた引抜加工を施した各丸棒の中心部から、長手方向に図1に示す形状の切欠き付引張試験片を切り出して、耐水素脆化特性を調査した。具体的には、先ず、3%NaCl溶液に1mA/cm2の電流密度で陰極チャージする条件下で、900MPaの応力を負荷した定荷重試験を200時間行った際の破断の有無を調査した。
<2> Hydrogen embrittlement resistance:
A notched tensile test piece having a shape shown in FIG. 1 is cut out in the longitudinal direction from the center of each of the round bars subjected to the drawing process in which a tensile strength of 1500 MPa or more was obtained in the investigation of <1> above. The hydrogen embrittlement characteristics were investigated. Specifically, first, the presence or absence of breakage was investigated when a constant load test with a stress of 900 MPa was performed for 200 hours under the condition of cathodic charging a 3% NaCl solution at a current density of 1 mA / cm 2 .
次いで、破断しなかった試験片について、図1に示す平行部10mmを低温切断機で切出し、昇温脱離装置により10℃/分で昇温した際に500℃までに放出される水素濃度を測定し、該水素濃度を「破断限界水素濃度」と見做した。 Next, for the test piece that did not break, the 10 mm parallel portion shown in FIG. The hydrogen concentration was measured and regarded as the “breaking limit hydrogen concentration”.
なお、上記の定荷重試験で破断せず、破断限界水素濃度が0.50ppm以上の場合に良好な耐水素脆化特性を有すると判定した。 In addition, it determined with having a favorable hydrogen embrittlement-proof characteristic, when it does not fracture | rupture by said constant load test and a fracture | rupture limit hydrogen concentration is 0.50 ppm or more.
表2に、上記の各調査結果をまとめて示す。 Table 2 summarizes the results of each of the above investigations.
表2から、化学組成が本発明で規定する範囲内にある丸棒に、本発明で規定する工程を施して製造した本発明例の試験番号1−1〜1−9の丸棒は、引抜加工を施した際に割れが発生しなかったし、1500MPa以上という高い引張強さを有するにもかかわらず、陰極チャージ下での定荷重試験で破断が起こらず、その時の破断限界水素濃度も0.56ppm以上で、0.50ppmという基準を超えるものであり、良好な耐水素脆化特性を備えていることが明らかである。 From Table 2, the round bars with test numbers 1-1 to 1-9 of the examples of the present invention produced by subjecting the round bars whose chemical composition is within the range defined by the present invention to the process defined by the present invention are drawn out. Cracking did not occur when processing was performed, and despite having a high tensile strength of 1500 MPa or more, no breakage occurred in a constant load test under a cathode charge, and the breaking hydrogen concentration at that time was also 0 It is clear that it has a good hydrogen embrittlement resistance, and exceeds the standard of 0.50 ppm at 0.56 ppm or more.
これに対して、参考例の試験番号1−10の丸棒は、化学組成と(i)から(iii)までの熱処理工程は、本発明で規定する範囲内にあるものの、総減面率で28.1%となる2回目の引抜加工を施した際に割れが生じた。 On the other hand, the round bars with test numbers 1 to 10 in the reference example have a chemical composition and a heat treatment process from (i) to (iii) within the range defined by the present invention, but with a total area reduction rate. Cracks occurred when the second drawing process of 28.1% was performed.
また、比較例の試験番号1−11〜1−20の丸棒の場合は、引抜加工を施した際に割れが発生したり、1500MPa以上という引張強さおよび良好な耐水素脆化特性という重要な特性の同時確保ができていない。 Further, in the case of the round bars of test numbers 1-11 to 1-20 of the comparative example, cracks are generated when the drawing process is performed, and the tensile strength of 1500 MPa or more and good hydrogen embrittlement resistance are important. Simultaneous characteristics cannot be secured.
試験番号1−11の丸棒は、化学組成と(i)から(iii)までの熱処理工程は、本発明で規定する範囲内にあるものの、総減面率が8.5%であって、本発明が規定する条件から外れるので、破断限界水素濃度が0.48ppmと低く、耐水素脆化特性に劣っている。 Although the round bar of the test number 1-11 has a chemical composition and the heat treatment process from (i) to (iii) is within the range specified in the present invention, the total area reduction rate is 8.5%, Since it deviates from the conditions stipulated by the present invention, the fracture limit hydrogen concentration is as low as 0.48 ppm, and the hydrogen embrittlement resistance is inferior.
試験番号1−12の丸棒は、用いた鋼Aの化学組成は本発明で規定する範囲内にあるものの、等温変態処理温度が250℃であって、本発明が規定する条件から外れるので、引抜加工を施した際に割れが生じた。 The round bar of test number 1-12, although the chemical composition of the steel A used is within the range specified by the present invention, the isothermal transformation treatment temperature is 250 ° C., and thus deviates from the conditions specified by the present invention. Cracks occurred when the drawing process was performed.
試験番号1−13の丸棒は、用いた鋼Cの化学組成と引抜加工の工程は本発明で規定する範囲内にあるものの、オーステナイト化後の冷却速度が本発明が規定する条件から外れるので、引張強さが1383MPaと低く、1500MPaに満たなかった。 In the round bar of test number 1-13, the chemical composition of the steel C used and the drawing process are within the range specified by the present invention, but the cooling rate after austenitization deviates from the conditions specified by the present invention. The tensile strength was as low as 1383 MPa and was less than 1500 MPa.
試験番号1−14の丸棒は、用いた鋼Fの化学組成は本発明で規定する範囲内にあるものの、オーステナイト化温度が1100℃であって、本発明が規定する条件から外れるので、旧オーステナイト粒径が大きくなり、引抜加工を施した際に割れを生じた。 Although the round bar of test number 1-14 has the chemical composition of steel F used within the range specified in the present invention, the austenitizing temperature is 1100 ° C., which is out of the conditions specified by the present invention. The austenite grain size became large, and cracking occurred when drawing.
試験番号1−15の丸棒は、本発明で規定する工程を施して製造したものであるが、用いた鋼JのC含有量が0.47%と少なく、本発明で規定する条件から外れるため、引張強さが1435MPaと低く、1500MPaに満たなかった。 The round bar of test number 1-15 was manufactured by performing the process specified in the present invention, but the C content of the steel J used was as low as 0.47%, and deviated from the conditions specified in the present invention. Therefore, the tensile strength was as low as 1435 MPa and was less than 1500 MPa.
試験番号1−16の丸棒は、本発明で規定する工程を施して製造したものであるが、用いた鋼KのSi含有量が0.89%と少なく、本発明で規定する条件から外れるので、破断限界水素濃度が0.29ppmと低く、耐水素脆化特性に劣っている。 The round bars of test numbers 1-16 were manufactured by performing the process specified in the present invention, but the Si content of the steel K used was as low as 0.89%, and deviated from the conditions specified in the present invention. Therefore, the fracture limit hydrogen concentration is as low as 0.29 ppm, and the hydrogen embrittlement resistance is inferior.
試験番号1−17の丸棒は、本発明で規定する工程を施して製造したものであるが、用いた鋼LのMn含有量が1.22%と多く、本発明で規定する条件から外れるため、陰極チャージ下での定荷重試験で破断し、耐水素脆化特性に劣っている。 The round bar of test number 1-17 was manufactured by applying the process specified in the present invention, but the Mn content of the steel L used was as large as 1.22%, which deviated from the conditions specified in the present invention. For this reason, it breaks in a constant load test under cathodic charge and is inferior in hydrogen embrittlement resistance.
試験番号1−18の丸棒は、本発明で規定する工程を施して製造したものであるが、用いた鋼MのCr含有量が0.36%と少なく、本発明で規定する条件から外れて焼入れ性に劣るので、引張強さが1427MPaと低く、1500MPaに満たなかった。 The round bar of test number 1-18 was manufactured by applying the process specified in the present invention, but the Cr content of the steel M used was as low as 0.36%, which was not within the conditions specified in the present invention. Since the hardenability was poor, the tensile strength was as low as 1427 MPa and less than 1500 MPa.
試験番号1−19の丸棒は、本発明で規定する工程を施して製造したものであるが、用いた鋼Nの不純物中のPとSの含有量がそれぞれ、0.042%および0.040%と多く、本発明で規定する条件から外れるため、陰極チャージ下での定荷重試験で破断し、耐水素脆化特性に劣っている。 The round bars of Test No. 1-19 were manufactured by applying the process specified in the present invention, and the contents of P and S in the impurities of the steel N used were 0.042% and 0. 0%, respectively. Since it is as high as 040% and deviates from the conditions stipulated in the present invention, it is broken in a constant load test under a cathode charge and inferior in hydrogen embrittlement resistance.
試験番号1−20の丸棒は、用いた鋼OのSiの含有量が0.19%と低いうえにCrを含有しておらず、本発明で規定する化学組成条件から外れ、さらに、製造条件としての等温変態処理の温度および保持時間がそれぞれ、450℃および4分であり、本発明で規定する(ii)の等温変態工程の条件からも外れている。このため、45.4%もの総減面率を割れずに確保できるものの、破断限界水素濃度が0.32ppmと低く、耐水素脆化特性に劣っている。 The round bar of test number 1-20 has a low Si content of 0.19% in steel O used, and does not contain Cr, which is out of the chemical composition conditions defined in the present invention. The temperature and holding time of the isothermal transformation treatment as conditions are 450 ° C. and 4 minutes, respectively, which are also outside the conditions of the isothermal transformation step (ii) defined in the present invention. For this reason, although a total area reduction rate of 45.4% can be ensured without cracking, the fracture limit hydrogen concentration is as low as 0.32 ppm and the hydrogen embrittlement resistance is poor.
(実施例2)冷間加工工程が「板圧延加工」の場合:
先に述べた(実施例1)の室温まで冷却した直径25mmの丸棒の残りから、厚さ3mm、幅20mmで長さ300mmの板素材を切出した。次いで、上記の板素材に対して軟化熱処理を施すことなく、表3に示す総圧下率6.7〜50.0%(厚さ2.8〜1.5mm)になるまで複数パスの板圧延を施した。板圧延加工時の潤滑は、湿式潤滑油剤で行った。なお、表3中の「冷間板圧延前の引張強さ」は、(実施例1)にて求めた表2中の「冷間引抜加工前の引張強さ」をそのまま用いた。
(Example 2) When the cold working process is “sheet rolling”:
A plate material having a thickness of 3 mm, a width of 20 mm, and a length of 300 mm was cut out from the remainder of the round bar having a diameter of 25 mm cooled to room temperature as described in Example 1 above. Next, without subjecting the above plate material to softening heat treatment, a plurality of passes of plate rolling until the total rolling reduction shown in Table 3 is 6.7 to 50.0% (thickness 2.8 to 1.5 mm). Was given. Lubrication during plate rolling was performed with a wet lubricant. In addition, “tensile strength before cold drawing” in Table 2 obtained in (Example 1) was used as it is for “tensile strength before cold plate rolling” in Table 3.
なお、表3に示す試験番号2−13は、総圧下率を16.7%(厚さ2.5mm)とする過程で耳割れを生じた。 In Test No. 2-13 shown in Table 3, ear cracks occurred in the process of setting the total rolling reduction to 16.7% (thickness 2.5 mm).
上記の耳割れを生じた試験番号2−13を除いて、板圧延加工した後の各板について、下記の〈2−1〉に示す機械的特性および〈2−2〉に示す耐水素脆化特性を調査した。 Except for test number 2-13 which caused the above-mentioned ear cracking, the mechanical properties shown in the following <2-1> and the hydrogen embrittlement resistance shown in <2-2> for each plate after plate rolling. The characteristics were investigated.
〈2−1〉機械的特性:
各鋼について、板圧延加工を施した板について、その板幅中心部から、長手方向に、図2に示す平行部の幅が5mmで標点距離が20mm、厚さは板圧延後ままの板引張試験片を切り出し、室温で引張試験して、引張強さを求めた。
<2-1> Mechanical properties:
About each steel, about the plate which gave the plate rolling process, the width of the parallel part shown in FIG. 2 is 5 mm, the gauge distance is 20 mm, and the thickness is the plate after the plate rolling. A tensile test piece was cut out and subjected to a tensile test at room temperature to determine the tensile strength.
〈2−2〉耐水素脆化特性:
上記〈2−1〉の調査で1500MPa以上の引張強さが得られた板圧延加工を施した各板の板幅および厚さの中心部から、長手方向に、図3に示す形状の切欠き付引張試験片を切り出して、(実施例1)と同様の方法で、耐水素脆化特性を調査した。具体的には、先ず、3%NaCl溶液に1mA/cm2の電流密度で陰極チャージする条件下で、900MPaの応力を負荷した定荷重試験を200時間行った際の破断の有無を調査した。
<2-2> Hydrogen embrittlement resistance:
Notches having the shape shown in FIG. 3 in the longitudinal direction from the center of the plate width and thickness of each plate subjected to the plate rolling process in which the tensile strength of 1500 MPa or more was obtained in the investigation of <2-1> above. The attached tensile test piece was cut out and examined for hydrogen embrittlement resistance by the same method as in (Example 1). Specifically, first, the presence or absence of breakage was investigated when a constant load test with a stress of 900 MPa was performed for 200 hours under the condition of cathodic charging a 3% NaCl solution at a current density of 1 mA / cm 2 .
次いで、破断しなかった試験片について、図3に示す平行部8mmを低温切断機で切出し、昇温脱離装置により10℃/分で昇温した際に500℃までに放出される水素濃度を測定し、該水素濃度を「破断限界水素濃度」と見做した。 Next, for the test piece that did not break, the parallel portion 8 mm shown in FIG. The hydrogen concentration was measured and regarded as the “breaking limit hydrogen concentration”.
なお、上記の定荷重試験で破断せず、破断限界水素濃度が0.50ppm以上の場合に良好な耐水素脆化特性を有すると判定した。 In addition, it determined with having a favorable hydrogen embrittlement-proof characteristic, when it does not fracture | rupture by said constant load test and a fracture | rupture limit hydrogen concentration is 0.50 ppm or more.
表3に、上記の各調査結果をまとめて示す。 Table 3 summarizes the results of the above investigations.
表3から、化学組成が本発明で規定する範囲内にある(実施例1)の室温まで冷却した直径25mmの丸棒から切り出した板素材に、本発明で規定する工程を施して製造した本発明例の試験番号2−1〜2−10の板は、板圧延加工を施した際に割れが発生しなかったし、1500MPa以上という高い引張強さを有するにもかかわらず、陰極チャージ下での定荷重試験で破断が起こらず、その時の破断限界水素濃度も0.61ppm以上で、0.50ppmという基準を超えるものであり、良好な耐水素脆化特性を備えていることが明らかである。 From Table 3, a book produced by subjecting a plate material cut out from a round bar with a diameter of 25 mm cooled to room temperature (Example 1) whose chemical composition is within the range specified by the present invention, by subjecting it to the steps specified by the present invention. The plates of Test Nos. 2-1 to 2-10 of the invention example were not cracked when subjected to plate rolling, and had a high tensile strength of 1500 MPa or more, but under cathodic charge. In the constant load test, no breakage occurred, and the hydrogen concentration at break at that time was 0.61 ppm or more, exceeding the standard of 0.50 ppm, and it is clear that it has good hydrogen embrittlement resistance. .
これに対して、比較例の試験番号2−11〜2−22の板の場合は、板圧延加工を施した際に耳割れが発生したり、1500MPa以上という引張強さおよび良好な耐水素脆化特性という重要な特性の同時確保ができていない。 On the other hand, in the case of the plates having test numbers 2-11 to 2-22 of the comparative example, the ear cracks occurred when the plate rolling was performed, the tensile strength of 1500 MPa or more and the good hydrogen embrittlement resistance. At the same time, it is not possible to secure the important characteristic of the conversion characteristic.
試験番号2−11の板は、化学組成と(i)から(iii)までの熱処理工程は、本発明で規定する範囲内にあるものの、総圧下率が6.7%であって、本発明が規定する条件から外れるので、引張強度が1485MPaと低いことに加えて、破断限界水素濃度は0.42ppmと低く、耐水素脆化特性にも劣っている。 The plate of test number 2-11 had a chemical composition and a heat treatment step from (i) to (iii) within the range specified by the present invention, but the total rolling reduction was 6.7%, and the present invention Therefore, in addition to the low tensile strength of 1485 MPa, the fracture limit hydrogen concentration is as low as 0.42 ppm, and the hydrogen embrittlement resistance is inferior.
試験番号2−12の板は、化学組成と(i)から(iii)までの熱処理工程は、本発明で規定する範囲内にあるものの、総圧下率が50.0%であって、本発明が規定する条件から外れるので、陰極チャージ下での定荷重試験で破断し、耐水素脆化特性に劣っている。 Although the plate of test number 2-12 has the chemical composition and the heat treatment steps from (i) to (iii) within the range specified in the present invention, the total rolling reduction is 50.0%, and the present invention Therefore, it breaks in a constant load test under cathodic charge and is inferior in hydrogen embrittlement resistance.
試験番号2−13の板は、用いた鋼Aの化学組成は本発明で規定する範囲内にあるものの、等温変態処理温度が250℃であって、本発明が規定する条件から外れるので、総圧下率16.7%の板圧延加工を施した際に耳割れが生じた。 The plate of test number 2-13 has the chemical composition of steel A used within the range specified in the present invention, but the isothermal transformation treatment temperature is 250 ° C., which is outside the conditions specified by the present invention. Ear cracks occurred when a plate rolling process with a rolling reduction of 16.7% was performed.
試験番号2−14の板は、用いた鋼Aの化学組成は本発明で規定する範囲内にあるものの、等温変態処理温度が250℃であるので、総圧下率が本発明で規定する条件を下回る6.7%で耳割れを生じることなく1500MPaを超える引張強さが得られたが、破断限界水素濃度が0.38ppmと低く、耐水素脆化特性に劣っている。 The plate of Test No. 2-14 has the chemical composition of Steel A used within the range specified by the present invention, but the isothermal transformation temperature is 250 ° C. Tensile strength exceeding 1500 MPa was obtained without causing ear cracks at 6.7% below, but the hydrogen concentration at break was as low as 0.38 ppm, and the hydrogen embrittlement resistance was inferior.
試験番号2−15の板は、用いた鋼Cの化学組成と板圧延加工の工程は本発明で規定する範囲内にあるものの、オーステナイト化後の冷却速度が本発明が規定する条件から外れるので、引張強さが1457MPaと低く、1500MPaに満たなかった。 Although the plate of Test No. 2-15 has the chemical composition of Steel C used and the plate rolling process within the range specified by the present invention, the cooling rate after austenitization deviates from the conditions specified by the present invention. The tensile strength was as low as 1457 MPa and was less than 1500 MPa.
試験番号2−16の板は、用いた鋼Fの化学組成は本発明で規定する範囲内にあるものの、オーステナイト化温度が1100℃であって、本発明が規定する条件から外れるので、旧オーステナイト粒径が大きくなり、陰極チャージ下での定荷重試験で破断し、耐水素脆化特性に劣っている。 The plate of Test No. 2-16 has a chemical composition of Steel F used within the range specified by the present invention, but the austenitizing temperature is 1100 ° C. and deviates from the conditions specified by the present invention. The particle size becomes large, it is broken in a constant load test under a cathode charge, and the hydrogen embrittlement resistance is inferior.
試験番号2−17の板は、本発明で規定する工程を施して製造したものであるが、用いた鋼JのC含有量が0.47%と少なく、本発明で規定する条件から外れるため、破断限界水素濃度が0.41ppmと低く、耐水素脆化特性に劣っている。 The plate of Test No. 2-17 was manufactured by performing the process specified in the present invention, but the C content of the steel J used was as low as 0.47%, which is outside the conditions specified in the present invention. In addition, the fracture limit hydrogen concentration is as low as 0.41 ppm, and the hydrogen embrittlement resistance is inferior.
試験番号2−18の板は、本発明で規定する工程を施して製造したものであるが、用いた鋼KのSi含有量が0.89%と少なく、本発明で規定する条件から外れるので、破断限界水素濃度が0.36ppmと低く、耐水素脆化特性に劣っている。 The plate of test number 2-18 was manufactured by performing the process specified in the present invention, but the Si content of the steel K used was as low as 0.89%, and thus deviated from the conditions specified in the present invention. In addition, the fracture limit hydrogen concentration is as low as 0.36 ppm, and the hydrogen embrittlement resistance is inferior.
試験番号2−19の板は、本発明で規定する工程を施して製造したものであるが、用いた鋼LのMn含有量が1.22%と多く、本発明で規定する条件から外れるため、陰極チャージ下での定荷重試験で破断し、耐水素脆化特性に劣っている。 The plate of test number 2-19 was manufactured by performing the process specified in the present invention, but the Mn content of the steel L used was as large as 1.22%, and thus deviated from the conditions specified in the present invention. It breaks in a constant load test under a cathode charge, and is inferior in hydrogen embrittlement resistance.
試験番号2−20の板は、本発明で規定する工程を施して製造したものであるが、用いた鋼MのCr含有量が0.36%と少なく、本発明で規定する条件から外れて焼入れ性に劣るので、引張強さが1418MPaと低く、1500MPaに満たなかった。 The plate of test number 2-20 was manufactured by performing the process specified in the present invention, but the Cr content of the steel M used was as low as 0.36%, which deviated from the conditions specified in the present invention. Since it was inferior in hardenability, the tensile strength was as low as 1418 MPa and was less than 1500 MPa.
試験番号2−21の板は、本発明で規定する工程を施して製造したものであるが、用いた鋼Nの不純物中のPとSの含有量がそれぞれ、0.042%および0.040%と多く、本発明で規定する条件から外れるため、陰極チャージ下での定荷重試験で破断し、耐水素脆化特性に劣っている。 The plate of test number 2-21 was manufactured by performing the process specified in the present invention, and the contents of P and S in the impurities of steel N used were 0.042% and 0.040, respectively. %, Which is outside the conditions specified in the present invention, it was broken in a constant load test under a cathode charge, and was inferior in hydrogen embrittlement resistance.
試験番号2−22の板は、用いた鋼OのSiの含有量が0.19%と低いうえにCrを含有しておらず、本発明で規定する化学組成条件から外れ、さらに、製造条件としての等温変態処理の温度および保持時間がそれぞれ、450℃および4分であり、本発明で規定する(ii)の等温変態工程の条件からも外れている。このため、本発明の規定を満たす総圧下率33.3%の板圧延を施しても引張強度が1479MPaと低く、1500MPaに満たなかった。 The plate of test No. 2-22 has a low Si content of 0.19% in steel O used, and does not contain Cr, deviating from the chemical composition conditions defined in the present invention, and further manufacturing conditions The temperature and holding time of the isothermal transformation treatment are 450 ° C. and 4 minutes, respectively, which are also outside the conditions of the isothermal transformation step (ii) defined in the present invention. For this reason, the tensile strength was as low as 1479 MPa and less than 1500 MPa even when sheet rolling with a total rolling reduction of 33.3% satisfying the provisions of the present invention was performed.
本発明によれば、高価な合金元素の含有量が低く、耐水素脆化特性に優れて、自動車、産業機械、建築構造物等に好適に用いることができる、引張強さが1500MPa以上の高強度低合金鋼材を、高い生産性の下に製造することができる。
According to the present invention, the content of expensive alloy elements is low, the hydrogen embrittlement resistance is excellent, and the tensile strength is 1500 MPa or more, which can be suitably used for automobiles, industrial machines, building structures and the like. High strength low alloy steel can be manufactured with high productivity.
Claims (5)
化学組成が、質量%で、
C:0.60%を超えて1.0%以下、
Si:1.2〜2.0%、
Mn:0.30%以上1.0%未満、
Cr:0.5〜1.5%、
Al:0.005〜0.10%、
Mo:0〜0.30%未満、
Ti:0〜0.10%、
Nb:0〜0.10%、
V:0〜0.10%、
Zr:0〜0.20%、
残部がFeおよび不純物であり、
不純物としてのP、S、NおよびOが、P:0.030%以下、S:0.030%以下、N:0.030%以下およびO:0.010%以下である鋼材に、
下記の(i)から(iv)までの工程を順に施す、
引張強さが1500MPa以上の高強度低合金鋼材の製造方法。
(i):850〜1050℃で20〜60分加熱する、オーステナイト化工程
(ii):30℃/秒以上の冷却速度で400〜300℃の温度域まで冷却し、該温度域で10〜100分保持する、等温変態工程
(iii):室温まで冷却する、冷却工程
(iv):総加工率10.0%以上で冷間加工を施す、冷間加工工程 A method for producing a high strength low alloy steel material,
Chemical composition is mass%,
C: more than 0.60% and 1.0% or less,
Si: 1.2-2.0%,
Mn: 0.30% or more and less than 1.0%,
Cr: 0.5 to 1.5%
Al: 0.005 to 0.10%,
Mo: 0 to less than 0.30%,
Ti: 0 to 0.10%,
Nb: 0 to 0.10%,
V: 0 to 0.10%,
Zr: 0 to 0.20%,
The balance is Fe and impurities,
In steel materials in which P, S, N and O as impurities are P: 0.030% or less, S: 0.030% or less, N: 0.030% or less and O: 0.010% or less,
The following steps (i) to (iv) are sequentially performed.
A method for producing a high-strength low-alloy steel material having a tensile strength of 1500 MPa or more.
(I): Austenitizing step of heating at 850 to 1050 ° C. for 20 to 60 minutes (ii): Cooling to a temperature range of 400 to 300 ° C. at a cooling rate of 30 ° C./second or more, and 10 to 100 in the temperature range Isothermal transformation step (iii): cooling to room temperature, cooling step (iv): cold working step for cold working at a total working rate of 10.0% or more
Mo:0.05%以上で0.30%未満を含有する、請求項1から3までのいずれかに記載の、引張強さが1500MPa以上の高強度低合金鋼材の製造方法。 The chemical composition of steel is mass%,
Mo: 0.05% or more and less than 0.30%, The manufacturing method of the high strength low alloy steel materials in any one of Claim 1 to 3 whose tensile strength is 1500 Mpa or more.
Ti:0.005〜0.10%、
Nb:0.005〜0.10%、
V:0.005〜0.10%、および、
Zr:0.010〜0.20%、
から選択される1種以上を含有する、請求項1から4までのいずれかに記載の、引張強さが1500MPa以上の高強度低合金鋼材の製造方法。
The chemical composition of steel is mass%,
Ti: 0.005 to 0.10%,
Nb: 0.005 to 0.10%,
V: 0.005 to 0.10%, and
Zr: 0.010 to 0.20%,
The manufacturing method of the high intensity | strength low alloy steel material in which tensile strength is 1500 Mpa or more in any one of Claim 1 to 4 containing 1 or more types selected from these.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016195677 | 2016-10-03 | ||
JP2016195677 | 2016-10-03 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018059193A true JP2018059193A (en) | 2018-04-12 |
JP6879145B2 JP6879145B2 (en) | 2021-06-02 |
Family
ID=61907607
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017183133A Active JP6879145B2 (en) | 2016-10-03 | 2017-09-25 | Manufacturing method of high-strength low-alloy steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6879145B2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020041837A (en) * | 2018-09-07 | 2020-03-19 | 日本製鉄株式会社 | Hydrogen embrittlement property evaluation method |
CN114803188A (en) * | 2021-01-28 | 2022-07-29 | 合同会社箱一 | Container and method for manufacturing container |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03215623A (en) * | 1990-01-19 | 1991-09-20 | Nisshin Steel Co Ltd | Production of tough high strength steel |
JPH05320749A (en) * | 1992-05-20 | 1993-12-03 | Nisshin Steel Co Ltd | Production of ultrahigh strength steel |
JPH06271930A (en) * | 1993-03-18 | 1994-09-27 | Nisshin Steel Co Ltd | Production of high strength and high toughness steel excellent in fatigue property |
JPH07268464A (en) * | 1994-03-31 | 1995-10-17 | Nippon Steel Corp | Method for producing bainite wire or steel wire for wire drawing |
JP2010180446A (en) * | 2009-02-04 | 2010-08-19 | Jfe Steel Corp | High-strength hot-rolled steel plate and method for manufacturing the same |
-
2017
- 2017-09-25 JP JP2017183133A patent/JP6879145B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH03215623A (en) * | 1990-01-19 | 1991-09-20 | Nisshin Steel Co Ltd | Production of tough high strength steel |
JPH05320749A (en) * | 1992-05-20 | 1993-12-03 | Nisshin Steel Co Ltd | Production of ultrahigh strength steel |
JPH06271930A (en) * | 1993-03-18 | 1994-09-27 | Nisshin Steel Co Ltd | Production of high strength and high toughness steel excellent in fatigue property |
JPH07268464A (en) * | 1994-03-31 | 1995-10-17 | Nippon Steel Corp | Method for producing bainite wire or steel wire for wire drawing |
JP2010180446A (en) * | 2009-02-04 | 2010-08-19 | Jfe Steel Corp | High-strength hot-rolled steel plate and method for manufacturing the same |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020041837A (en) * | 2018-09-07 | 2020-03-19 | 日本製鉄株式会社 | Hydrogen embrittlement property evaluation method |
JP7234544B2 (en) | 2018-09-07 | 2023-03-08 | 日本製鉄株式会社 | Hydrogen embrittlement property evaluation method |
CN114803188A (en) * | 2021-01-28 | 2022-07-29 | 合同会社箱一 | Container and method for manufacturing container |
Also Published As
Publication number | Publication date |
---|---|
JP6879145B2 (en) | 2021-06-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6465266B1 (en) | Hot rolled steel sheet and manufacturing method thereof | |
TWI609975B (en) | A wire rod for non-heat treated mechanical parts, a steel wire for non-heat treated mechanical parts, and a non-heat treated mechanical part | |
JP5590246B2 (en) | Non-tempered machine part wire, non-tempered machine part steel wire, non-tempered machine part and manufacturing method thereof | |
JP5846080B2 (en) | High-strength steel with excellent delayed fracture resistance | |
CN102971442A (en) | Ultrahigh-strength cold-rolled steel sheet with excellent ductility and delayed-fracture resistance, and process for producing same | |
JP6737338B2 (en) | Steel plate | |
JP6811694B2 (en) | Steel plate and its manufacturing method | |
JP2014159610A (en) | High strength cold rolled steel sheet excellent in bendability | |
TWI535860B (en) | High-strength spring roll material and high-strength spring steel wire using this rolled material | |
JP6062352B2 (en) | Hot press parts | |
JP5671400B2 (en) | Steel wire for springs excellent in wire drawing workability and fatigue properties after wire drawing, and steel wire for springs excellent in fatigue properties and spring workability | |
JP6288265B2 (en) | Steel wire | |
JP2015183266A (en) | High strength bolt steel and high strength bolts with excellent delayed fracture resistance | |
JP6879145B2 (en) | Manufacturing method of high-strength low-alloy steel | |
JP6844342B2 (en) | High-strength low-alloy steel | |
JP6292366B1 (en) | Seamless steel pipe and manufacturing method thereof | |
JP2013129885A (en) | Method of producing high-strength thick steel plate excellent in brittle crack propagation arrest property | |
CN109072376B (en) | Steel wire with excellent delayed fracture resistance | |
JP2004292876A (en) | High-strength forged parts superior in drawing characteristic, and manufacturing method therefor | |
JP6453140B2 (en) | High strength steel sheet with excellent delayed fracture resistance of cut end face and method for producing the same | |
JPH05255738A (en) | Production of steel for machine structural use excellent in delayed fracture resistance | |
JP2005350736A (en) | High-strength steel having superior corrosion resistance and fatigue characteristics for spring, and manufacturing method therefor | |
JP2017057458A (en) | High strength low alloy steel material | |
JP2014019904A (en) | Hardened steel material, method for producing the same and, steel material for hardening | |
JP5360544B2 (en) | Steel plate and steel plate coil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200513 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20201224 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210301 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210330 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210412 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6879145 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |