[go: up one dir, main page]

JP2018058727A - Water-based fireproof joint mortar - Google Patents

Water-based fireproof joint mortar Download PDF

Info

Publication number
JP2018058727A
JP2018058727A JP2016197390A JP2016197390A JP2018058727A JP 2018058727 A JP2018058727 A JP 2018058727A JP 2016197390 A JP2016197390 A JP 2016197390A JP 2016197390 A JP2016197390 A JP 2016197390A JP 2018058727 A JP2018058727 A JP 2018058727A
Authority
JP
Japan
Prior art keywords
metal
powder
refractory
raw material
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016197390A
Other languages
Japanese (ja)
Inventor
翔平 前野
Shohei Maeno
翔平 前野
吉富 丈記
Takenori Yoshitomi
丈記 吉富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Krosaki Harima Corp
Original Assignee
Krosaki Harima Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Krosaki Harima Corp filed Critical Krosaki Harima Corp
Priority to JP2016197390A priority Critical patent/JP2018058727A/en
Publication of JP2018058727A publication Critical patent/JP2018058727A/en
Pending legal-status Critical Current

Links

Landscapes

  • Ceramic Products (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To improve corrosion resistance while preventing hydration reaction of metal Al-containing powder from occurring, with a simple method, in an aqueous fire-proof mortar containing the metal Al-containing powder.SOLUTION: An aqueous fire-proof mortar comprises, in external addition to a fire-proof material: 0.1-10 mass% of a metal Al-containing powder; and 0.01-2 mass% of at least one of boric acid, borate, and carboxylic acid. The at least one of boric acid, borate, and carboxylic acid forms a protective colloid around the metal Al-containing powder, thereby preventing hydration reaction of the metal Al-containing powder from occurring.SELECTED DRAWING: None

Description

本発明は、製鉄業、産廃処理業などで使用される各種窯炉に好適に使用される水系耐火目地モルタルに関する。なお、水系耐火目地モルタルとは、混練時に水を使用する耐火目地モルタルのことをいう。   The present invention relates to a water-based refractory mortar suitable for use in various kilns used in the steel industry, the industrial waste treatment industry, and the like. The water-based refractory mortar means a refractory mortar that uses water during kneading.

従来、溶銑鍋、溶鋼取鍋、DH、RH、焼却炉などの窯炉用耐火物としては、定形耐火物、特に炭素含有定形耐火物が多用されている。この炭素含有定形耐火物には、強度及び耐食性の改善を目的として、耐火物配合中に、金属Al粉末、あるいは金属Al−Si粉末、金属Al−Mg粉末などの金属Al合金粉末が配合されることは、既によく知られているところである(本明細書では金属Al粉末と金属Al合金粉末を総称して金属Al含有粉末という。)。そして、これらの金属Al含有粉末の配合による性能改善の作用機構は、以下のとおりであると考えられている。
(a)使用中の高温雰囲気下で炭化アルミニウム(Al)の強化組織(ボンド)を生成する。
(b)金属Al含有粉末が高温雰囲気下で酸化されることにより、耐火物のマトリックスを緻密にする。
(c)金属Al含有粉末が炭素より優先的に酸化され、炭素の酸化防止剤として働く。
Conventionally, as refractories for kilns such as hot metal ladle, molten steel ladle, DH, RH, and incinerator, regular refractories, especially carbon-containing refractories, are frequently used. For the purpose of improving strength and corrosion resistance, this carbon-containing regular refractory is mixed with metal Al powder, or metal Al alloy powder such as metal Al-Si powder, metal Al-Mg powder, etc. during refractory blending. This is already well known (in this specification, metal Al powder and metal Al alloy powder are collectively referred to as metal Al-containing powder). And it is thought that the action mechanism of the performance improvement by mixing | blending of these metal Al containing powder is as follows.
(A) A strengthened structure (bond) of aluminum carbide (Al 4 C 3 ) is generated under a high temperature atmosphere during use.
(B) The metal Al-containing powder is oxidized in a high-temperature atmosphere to make the refractory matrix dense.
(C) The metal Al-containing powder is oxidized preferentially over carbon and acts as an antioxidant for carbon.

一方、定形耐火物を窯炉に内張りする際、一般的に耐火目地モルタルが使用される。ところが、従来の耐火目地モルタルは定形耐火物よりも耐食性に劣るため、その耐火目地モルタル部が先行溶損し、窯炉全体の寿命を低下させるという問題があった。   On the other hand, refractory joint mortar is generally used when lining a regular refractory in a kiln. However, since conventional refractory joint mortars are inferior in corrosion resistance to regular refractories, there is a problem that the refractory joint mortar part is premelted and the life of the entire furnace is reduced.

そこで、耐火目地モルタルにおいても前述の炭素含有定形耐火物と同様に金属Al含有粉末を配合し、前述の(a)〜(c)の作用機構により耐食性を向上させることが考えられる。   Therefore, it is conceivable that the metal Al-containing powder is blended in the refractory joint mortar similarly to the above-mentioned carbon-containing regular refractory, and the corrosion resistance is improved by the action mechanisms (a) to (c) described above.

しかしながら、水系耐火目地モルタルの場合、単に金属Al含有粉末を配合しても、十分な耐食性の向上効果は得られない。なぜなら、水系耐火目地モルタルの場合、ほとんど水を使用せずにプレス成形をする定形耐火物と異なり、混練時に水を使用するため、金属Al含有粉末が水と激しく反応(水和反応)し、水素ガスを発生するからである。   However, in the case of water-based refractory joint mortar, even if the metal Al-containing powder is simply blended, a sufficient effect of improving corrosion resistance cannot be obtained. Because, in the case of water-based refractory joint mortar, unlike the regular refractory that press-molds almost without using water, since water is used during kneading, the metal Al-containing powder reacts violently with water (hydration reaction), This is because hydrogen gas is generated.

ここで、特許文献1には、水系耐火目地モルタルに金属Al含有粉末を配合することで、耐食性が向上することが示されている。しかし、水系耐火目地モルタルの実際的な使用状況としては、施工日より前の日に水と混練されて放置される場合もあるため、この場合、金属Al含有粉末は長時間にわたって水と接触する。その結果、金属Al含有粉末はこの放置時に激しく熱を伴いながら水和反応により水素ガスを発生させてしまい、耐火目地モルタルとして重要な特性である流動性を消失させてしまう。さらに、夏場などの暑い時期に放置されれば、前記水和反応は顕著に生じ、水素ガスによる爆発事故も起こりうるという点ではなはだ危険である。   Here, Patent Document 1 shows that the corrosion resistance is improved by adding metal Al-containing powder to the water-based refractory joint mortar. However, as a practical use situation of the water-based refractory joint mortar, since it may be left after being kneaded with water on the day before the construction date, the metal Al-containing powder is in contact with water for a long time. . As a result, the metal Al-containing powder generates hydrogen gas by a hydration reaction with intense heat when left standing, and loses fluidity, which is an important characteristic as a refractory joint mortar. Furthermore, if it is left in a hot season such as summer, the hydration reaction occurs remarkably, and an explosion accident due to hydrogen gas may occur.

また、特許文献2には、金属Al粉末の水との水和反応の抑制に、ホウ酸、ホウ酸塩、ケイ酸塩などが効果的であるとする記載がある.しかし、特許文献2は、キャスタブルの爆裂防止を目的として、そのキャスタブルに爆裂防止剤として金属Al粉末を添加するという主旨の内容であって、キャスタブルには自硬化性をもたせなければならないという都合上、凝膠剤(アルミン酸石灰:アルミナセメント)が添加されているような状況下で、最終的に金属Al粉末は水素ガスの発生を伴いながら発熱することによって当該文献の目的である爆裂防止剤として機能するものである。すなわち、特許文献2では、最終的には金属Al粉末を水和反応させて水素ガスを発生させることを前提としている。しかるに、金属Al粉末が水和反応により水酸化アルミニウムへ変化してしまうと、前述の(a)〜(c)の作用機構はもはや得られない。   Patent Document 2 describes that boric acid, borates, silicates, and the like are effective in suppressing the hydration reaction of metal Al powder with water. However, Patent Document 2 has the main content of adding metal Al powder as an anti-explosion agent to the castable for the purpose of preventing the explosion of the castable, and for the convenience that the castable must be self-curing. In the situation where a coagulant (lime aluminate: alumina cement) is added, the metal Al powder eventually generates heat while generating hydrogen gas, which is the purpose of this document. It functions as. That is, in Patent Document 2, it is premised that hydrogen gas is finally generated by hydrating a metal Al powder. However, when the metal Al powder is changed to aluminum hydroxide by the hydration reaction, the above-mentioned action mechanisms (a) to (c) can no longer be obtained.

このようなことから、特許文献3には、金属Al粉末の表面にベーマイト層を形成し、ベーマイト層の上に燐酸塩被覆膜を形成することで、水和反応を抑制して水素ガスの発生を抑える旨が記載されている。   For this reason, in Patent Document 3, a boehmite layer is formed on the surface of the metal Al powder, and a phosphate coating film is formed on the boehmite layer, thereby suppressing hydration reaction and It is stated that the occurrence is suppressed.

しかし、この特許文献3の手法ではベーマイト層を形成する工程を必要とするため、実用化に時間とコストを要するという問題があった。   However, since the method of Patent Document 3 requires a step of forming a boehmite layer, there is a problem that time and cost are required for practical use.

特開平8−283074号公報JP-A-8-283074 特開昭53−66917号公報JP-A-53-66917 特許第2909582号公報Japanese Patent No. 2909582

本発明が解決しようとする課題は、金属Al含有粉末を配合した水系耐火目地モルタルにおいて、簡単な手法で金属Al含有粉末の水和反応を抑制しつつ、耐食性を向上させることにある。   The problem to be solved by the present invention is to improve the corrosion resistance of a water-based refractory mortar containing a metal Al-containing powder while suppressing the hydration reaction of the metal Al-containing powder by a simple method.

本発明者らは、金属Al含有粉末を配合した水系耐火目地モルタルにおいて、ホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを適量配合することによって、金属Al含有粉末の水和反応をほぼ完全に防止できることを見出し、本発明を完成させるに至った。   In the water-based refractory joint mortar containing the metal Al-containing powder, the present inventors almost completely completed the hydration reaction of the metal Al-containing powder by adding an appropriate amount of at least one of boric acid, borate and carboxylic acid. The inventors have found that this can be prevented, and have completed the present invention.

すなわち、本発明によれば、次の(1)〜(4)の水系耐火目地モルタルが提供される。
(1)耐火材料に対して外掛けで、金属Al含有粉末を0.1〜10質量%、ホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを0.01〜2質量%配合している水系耐火目地モルタル。
(2)前記耐火材料に塩基性酸化物原料を含む、(1)に記載の水系耐火目地モルタル。
(3)前記耐火材料に中性酸化物原料を含む、(1)に記載の水系耐火目地モルタル。
(4)前記耐火材料に炭素原料及び炭化珪素原料の少なくとも1つを1〜20質量%含む、(1)から(3)のいずれかに記載の水系耐火目地モルタル。
That is, according to the present invention, the following water-based refractory joint mortars (1) to (4) are provided.
(1) 0.1 to 10% by mass of metal Al-containing powder and 0.01 to 2% by mass of at least one of boric acid, borate, and carboxylic acid are blended on the refractory material. Water-based fireproof joint mortar.
(2) The water-based refractory mortar according to (1), wherein the refractory material includes a basic oxide raw material.
(3) The water-based refractory joint mortar according to (1), wherein the refractory material contains a neutral oxide raw material.
(4) The water-based refractory joint mortar according to any one of (1) to (3), wherein the refractory material contains 1 to 20% by mass of at least one of a carbon raw material and a silicon carbide raw material.

本発明によれば、ホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを配合するという簡単な手法で金属Al含有粉末の水和反応を抑制することができ、これにより、金属Al含有粉末による前述の(a)〜(c)の作用機構をいかんなく発揮させ、耐食性を向上させることができる。   According to the present invention, the hydration reaction of the metal Al-containing powder can be suppressed by a simple method of blending at least one of boric acid, borate, and carboxylic acid. The mechanism of action (a) to (c) described above can be fully exhibited, and the corrosion resistance can be improved.

耐食性を評価するための回転侵食試験に供した供試試料を概念的に示す。The test sample used for the rotational erosion test for evaluating corrosion resistance is shown conceptually. 回転侵食試験後の侵食量を概念的に示す。The amount of erosion after the rotation erosion test is conceptually shown.

本発明の水系耐火目地モルタルは、耐火材料に対して外掛けで、金属Al含有粉末を0.1〜10質量%、ホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを0.01〜2質量%配合してなる。このようにホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを適量配合することによって、前述のとおり、金属Al含有粉末の水和反応をほぼ完全に防止できる。具体的には、ホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つが金属Al含有粉末の周りに保護コロイドを形成し、金属Al含有粉末の水和反応を抑制する。   The water-based refractory joint mortar of the present invention is an outer shell for the refractory material, 0.1 to 10% by mass of metal Al-containing powder, 0.01 to 2 of at least one of boric acid, borate and carboxylic acid. It is blended by mass%. Thus, by blending an appropriate amount of at least one of boric acid, borate and carboxylic acid, the hydration reaction of the metal Al-containing powder can be almost completely prevented as described above. Specifically, at least one of boric acid, borate, and carboxylic acid forms a protective colloid around the metal Al-containing powder, and suppresses the hydration reaction of the metal Al-containing powder.

本発明の水系耐火目地モルタルは、マグクロれんがが内張りされるRHなど二次精錬容器などのモルタルとして使用されるほか、炭素原料を配合したモルタルは、とりわけ炭素含有れんがの目地モルタルとして、優れた性能を発揮する。例えば、溶銑、溶鋼取鍋のMgO−C質れんが、MgO−Al−C質れんが、あるいはまた、混銑車などに内張りされるAl−SiC−Cれんがなどの炭素含有れんがの目地モルタルとして、好適である。 The water-based refractory joint mortar of the present invention is used as a mortar for secondary refining containers such as RH on which magcro bricks are lined, and a mortar blended with a carbon raw material is particularly excellent as a joint mortar for carbon-containing bricks. Demonstrate. For example, MgO-C bricks in hot metal and ladle, MgO-Al 2 O 3 -C bricks, or carbon-containing bricks such as Al 2 O 3 -SiC-C bricks lined on kneading cars etc. It is suitable as a joint mortar.

以下、本発明で使用する耐火原料、及び耐火原料に外掛けで配合する配合原料の具体例とその適切な配合割合などについて説明する。   Hereinafter, specific examples of the refractory raw materials used in the present invention, blended raw materials blended with the refractory raw materials, and appropriate blending ratios thereof will be described.

本発明で耐火原料に使用する塩基性酸化物原料は、典型的にはマグネシア原料であって、焼結品、電融品のいずれかを用い、純度的に90%以上であれば、マグネサイトなど天然品でも良い。また、粒度的には、従来のモルタルと同様、作業性などを阻害しないように、0.3mm以下に調整することが好ましい。塩基性酸化物原料は、耐火材料中に65〜99質量%含有するのが好ましい。   The basic oxide raw material used for the refractory raw material in the present invention is typically a magnesia raw material, and either a sintered product or an electromelted product is used. Natural products such as Further, in terms of particle size, it is preferable to adjust to 0.3 mm or less so as not to impair workability and the like, as in the case of conventional mortar. The basic oxide raw material is preferably contained in the refractory material in an amount of 65 to 99% by mass.

本発明で耐火原料に使用する中性酸化物原料は、典型的にはアルミナ原料であって、焼結品、電融品のいずれかを用い、純度的に90%以上であれば、ボーキサイトなど天然品でも良い。また、粒度的には、従来のモルタルと同様、作業性などを阻害しないように、0.3mm以下に調整することが好ましい。中性酸化物原料は、耐火材料中に65〜99質量%含有するのが好ましい。   The neutral oxide raw material used for the refractory raw material in the present invention is typically an alumina raw material, and either a sintered product or an electromelted product is used. Natural products may be used. Further, in terms of particle size, it is preferable to adjust to 0.3 mm or less so as not to impair workability and the like, as in the case of conventional mortar. The neutral oxide raw material is preferably contained in the refractory material in an amount of 65 to 99% by mass.

本発明で耐火原料に使用する炭素原料は、カーボンブラックのほか、人造黒鉛、コークス、土状黒鉛、鱗状黒鉛などであるが、おおむね純度が90%以上の炭素原料であれば良い。また、その粒子径は0.3mm以下が好ましく、0.1mm以下がより好ましい。また、本発明で耐火原料に使用する炭化珪素原料は、純度が90%以上の炭化珪素原料であれば問題なく使用でき、その粒子径は0.3mm以下が好ましく、0.1mm以下がより好ましい。これら炭素原料及び炭化珪素原料は、スラグの浸潤などを防止して耐食性を向上させる点から、耐火材料中に1〜20質量%含有するのが好ましい。   The carbon raw material used as the refractory raw material in the present invention is not only carbon black but also artificial graphite, coke, earthy graphite, scaly graphite, etc., but it is sufficient that the carbon raw material has a purity of 90% or more. Moreover, the particle diameter is preferably 0.3 mm or less, and more preferably 0.1 mm or less. Further, the silicon carbide raw material used as the refractory raw material in the present invention can be used without any problem as long as the silicon carbide raw material has a purity of 90% or more, and the particle diameter is preferably 0.3 mm or less, more preferably 0.1 mm or less. . These carbon raw materials and silicon carbide raw materials are preferably contained in the refractory material in an amount of 1 to 20% by mass from the viewpoint of improving the corrosion resistance by preventing infiltration of slag and the like.

本発明の水系耐火目地モルタルの耐火原料には前述の各原料のほか、通常のモルタルと同様に耐火粘土を使用する。耐火粘土とは、木節粘土、ボールクレー、ベントナイト等の可塑性粘土であり、施工時の鏝伸びなど、作業性付与のためにも有用である。また、メカニズムは定かではないが、耐火粘土の共存下において、前述のとおりホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを配合することにとり、これらのホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つが金属Al含有粉末の周りに保護コロイドを形成し、金属Al含有粉末の水和反応を抑制する効果が顕著に現れる。   As the refractory raw material for the water-based refractory joint mortar of the present invention, refractory clay is used in the same manner as ordinary mortar in addition to the above-mentioned raw materials. Refractory clay is plastic clay such as Kibushi clay, ball clay, bentonite, and the like, and is also useful for imparting workability such as elongation during construction. Further, although the mechanism is not clear, in the presence of refractory clay, as described above, at least one of boric acid, borate and carboxylic acid is added, and these boric acid, borate and carboxylic acid are mixed. At least one of them forms a protective colloid around the metal Al-containing powder, and the effect of suppressing the hydration reaction of the metal Al-containing powder is remarkable.

本発明で耐火原料に対して外掛けで配合するホウ酸、ホウ酸塩及びカルボン酸のうち、ホウ酸としては、オルトホウ酸、メタホウ酸、四ホウ酸などが挙げられるが、オルトホウ酸が好ましい。ホウ酸塩は、オルトホウ酸、メタホウ酸、四ホウ酸などの塩の総称であるが、ホウ砂などの天然品でも良い。また、カルボン酸は、クエン酸、リンゴ酸、シュウ酸、乳酸などのカルボキシル基を有する化合物であり、特にクエン酸が好ましい。   Among the boric acid, borate and carboxylic acid blended with the refractory raw material in the present invention, examples of boric acid include orthoboric acid, metaboric acid, and tetraboric acid, and orthoboric acid is preferred. The borate is a general term for salts such as orthoboric acid, metaboric acid, and tetraboric acid, but may be natural products such as borax. The carboxylic acid is a compound having a carboxyl group, such as citric acid, malic acid, oxalic acid, and lactic acid, and citric acid is particularly preferable.

これらホウ酸、ホウ酸塩及びカルボン酸の配合量は、前述の水和反応を抑制する効果を発揮するには0.01質量%以上が必要で、2質量%超であると、モルタルの主原料成分と反応して低融物を生成し、耐食性が低下してしまう。なお、ホウ酸、ホウ酸塩及びカルボン酸の好ましい配合量は、耐火材料に塩基性酸化物原料を使用する場合は0.2〜0.5質量%、耐火材料に中性酸化物原料を使用する場合は0.05〜0.3質量%である。   The blending amount of these boric acid, borate and carboxylic acid is required to be 0.01% by mass or more in order to exert the effect of suppressing the above-mentioned hydration reaction. It reacts with the raw material components to produce a low melt, resulting in a decrease in corrosion resistance. In addition, the preferable compounding amount of boric acid, borate and carboxylic acid is 0.2 to 0.5% by mass when a basic oxide raw material is used for the refractory material, and a neutral oxide raw material is used for the refractory material. When it does, it is 0.05-0.3 mass%.

本発明で耐火原料に対して外掛けで配合する金属Al含有粉末は、前述の(a)〜(c)の作用機構を発揮し、特に、高温域での自身の酸化あるいはモルタルの主原料成分と反応し、その反応により緻密化する機能と、炭素原料が共存した場合の酸化防止機能を発揮し、結果的に、耐食性の向上に寄与する。なお、金属Al含有粉末とは前述のとおりAl合金粉末を含む概念であり、Al合金には、Al−Mg合金、Al−Si合金、Al−Mg−Si合金、Al−Mg−Ca合金などがある。また、金属Al含有粉末の粒子径は0.3mm以下が好ましく、0.1mm以下がより好ましい。金属Al含有粉末の配合量としては、0.1質量%以下では、その効果が確認できず、10質量%を超えると耐食性の低下を招くとともにコストアップの要因となる.金属Al含有粉末の好ましい配合量は、0.5〜5質量%である。   The metal Al-containing powder blended externally to the refractory raw material in the present invention exhibits the above-mentioned action mechanisms (a) to (c), and is particularly a main raw material component of its own oxidation or mortar in a high temperature range. And the function of densification by the reaction and the anti-oxidation function when the carbon raw material coexists, thereby contributing to the improvement of corrosion resistance. The metal Al-containing powder is a concept including Al alloy powder as described above, and Al alloy includes Al-Mg alloy, Al-Si alloy, Al-Mg-Si alloy, Al-Mg-Ca alloy, and the like. is there. The particle diameter of the metal Al-containing powder is preferably 0.3 mm or less, more preferably 0.1 mm or less. If the amount of the metal Al-containing powder is 0.1% by mass or less, the effect cannot be confirmed, and if it exceeds 10% by mass, the corrosion resistance is lowered and the cost is increased. The preferable compounding quantity of metal Al containing powder is 0.5-5 mass%.

これらのほか、本発明の水系耐火目地モルタルには、酸化防止剤として、炭化ホウ素(BC)、ホウ化ジルコニウム(ZrB)など、ホウ酸及びホウ酸塩以外のホウ素化合物を耐火材料に対して外掛けで配合してもよく、本発明の効果を阻害するものではない。また、作業付与剤として、デキストリン、アラビアゴム、CMC、リグニンスルフォン酸ソーダなどを適宜選択使用してもよい。 In addition to these, the water-based refractory mortar of the present invention uses boron compounds other than boric acid and borate as refractory materials, such as boron carbide (B 4 C) and zirconium boride (ZrB 2 ), as antioxidants. On the other hand, it may be blended with an outer shell and does not inhibit the effect of the present invention. Moreover, dextrin, gum arabic, CMC, sodium lignin sulfonate and the like may be appropriately selected and used as the work imparting agent.

一方、本発明の水系耐火目地モルタルには、アルミナセメントなどの結合剤は配合しない。   On the other hand, the water-based refractory joint mortar of the present invention does not contain a binder such as alumina cement.

表1及び表2に示す各例の水系耐火目地モルタルについて、次の要領で発ガス状態及び耐食性を評価し、これらの評価結果に基づき総合評価を行った。   About the water-system refractory joint mortar of each example shown in Table 1 and Table 2, the gas generation state and corrosion resistance were evaluated in the following way, and comprehensive evaluation was performed based on these evaluation results.

発ガス状態
表1及び表2に示す各例の配合に対して適量(外掛けで15〜35質量%程度)の施工水を添加して混練し、この混練物(モルタル)を円筒の容器中に詰め、20℃の条件下において1日放置し、ガス発生の有無を目視観察して評価した。
Gas evolution state An appropriate amount (about 15 to 35% by mass) of construction water is added and kneaded with respect to the composition of each example shown in Tables 1 and 2, and this kneaded product (mortar) is placed in a cylindrical container. And left for 1 day under the condition of 20 ° C. and evaluated by visually observing the presence or absence of gas generation.

耐食性試験
耐食性は、回転侵食試験にて評価した。具体的には、表1及び表2に示す各例の配合に対して適量(外がけで15〜35質量%程度)の施工水を添加して混練し、この混練物(モルタル)を稼動面に対して垂直に25φ×35mmの円柱状の孔を空けた定形耐火物(表1に記載の例ではMgO−Cれんがを、また、表2に記載の例ではAl−SiC−Cれんがを使用)へ鋳込み、供試試料とした(図1)。なお、本来は実際的な使用状況を模擬するため、混練後、1日放置した後のモルタルを使用したかったが、比較例に示したホウ酸無添加系では前述のように水素ガスの発生によって流動性が消失して鋳込むことが不可能であったことから、前述のとおり流動性を有している混練直後のモルタルを定形耐火物に鋳込み、20℃の条件下において1日放置した後に、ガスの発生によって水平面から盛り上がった部分をそぎ落とし、乾燥させて図1の供試試料とした。
これらの供試試料を水平の回転軸を有するドラムの内面にライニングし、スラグを投入、加熱してモルタル表面を侵食させた。加熱源は酸素−プロパンバーナーとし、試験温度は1500℃、スラグ組成はCaO/SiO=1.0、FeO=1.5質量%とし、スラグの排出、投入を30分毎に10回繰り返した。
試験終了後、試料を中央で切断し、各モルタルの最大溶損部の寸法を計測して侵食量を算出し(図2)、塩基性酸化物原料(焼結マグネシア粉末)を主とした表1の各例の場合は表1中の「比較例1」の侵食量を100とする溶損指数で表示した(表1の溶損指数=100×各例の侵食量(cm)/比較例1の侵食量(cm))。また、中性酸化物原料(焼結アルミナ粉末)を主とした表2の各例の場合は表2中の「比較例11」の侵食量を100とする溶損指数で表示した(表2の溶損指数=100×各例の侵食量(cm)/比較例11の侵食量(cm))。この溶損指数は数値の小さいものほど耐食性に優れることを示す。
Corrosion resistance test Corrosion resistance was evaluated by a rotational erosion test. Specifically, an appropriate amount (about 15 to 35% by mass) of construction water is added and kneaded with respect to the formulation of each example shown in Table 1 and Table 2, and this kneaded product (mortar) is operated. A refractory having a shape of a cylinder having a diameter of 25φ × 35 mm perpendicular to (a MgO—C brick in the example shown in Table 1 and Al 2 O 3 —SiC—C in the example shown in Table 2. Brick was used) and used as a test sample (Fig. 1). Originally, in order to simulate actual use conditions, we wanted to use mortar after standing for one day after kneading, but in the boric acid-free system shown in the comparative example, generation of hydrogen gas as mentioned above As described above, the mortar immediately after kneading having fluidity was cast into a regular refractory and left to stand at 20 ° C. for 1 day. Later, the portion raised from the horizontal surface due to the generation of gas was scraped off and dried to obtain the test sample of FIG.
These test samples were lined on the inner surface of a drum having a horizontal rotating shaft, slag was added, and the mortar surface was eroded by heating. The heating source was an oxygen-propane burner, the test temperature was 1500 ° C., the slag composition was CaO / SiO 2 = 1.0, FeO = 1.5 mass%, and slag discharge and charging were repeated 10 times every 30 minutes. .
After the test is completed, the sample is cut at the center, and the erosion amount is calculated by measuring the size of the maximum erosion part of each mortar (Fig. 2). In the case of each example 1, the erosion amount of “Comparative Example 1” in Table 1 was expressed as a erosion index with 100 (the erosion index in Table 1 = 100 × the erosion amount (cm 3 ) of each example / comparison. Erosion amount of Example 1 (cm 3 )). In addition, in each case of Table 2 mainly composed of a neutral oxide raw material (sintered alumina powder), the erosion amount of “Comparative Example 11” in Table 2 was expressed as a erosion index with 100 (Table 2). Index of erosion = 100 × the amount of erosion in each example (cm 3 ) / the amount of erosion in Comparative Example 11 (cm 3 )). This melting loss index indicates that the smaller the numerical value, the better the corrosion resistance.

総合評価
発ガス状態の評価でガス発生無であって、かつ溶損指数が90未満の場合を○(良好)、発ガス状態の評価でガス発生有又は溶損指数が90以上の場合を×(不良)とした。
Comprehensive evaluation O (good) when no gas is generated in the evaluation of the gas generation state and the erosion index is less than 90, and X is when the gas generation is present or the erosion index is 90 or more in the evaluation of the gas generation state. (Defect).

表1の各例は、耐火原料に塩基性酸化物原料(焼結マグネシア粉末)を使用したものである。以下、表1を(1−1)〜(1-4)に分けて説明する。   Each example in Table 1 uses a basic oxide raw material (sintered magnesia powder) as a refractory raw material. Hereinafter, Table 1 will be described by dividing into (1-1) to (1-4).

(1−1)
比較例2は、金属Al粉末を配合していない比較例1に対し金属Al粉末を配合した例であるが、ホウ酸、ホウ酸塩及びカルボン酸のいずれも配合していないため、金属Al粉末から水素ガスが発生し、気孔率が大きくなった結果、耐食性が著しく低下した。これに対して実施例1〜3では、ホウ酸、ホウ酸塩又はカルボン酸を配合しているため、比較例2と異なり水素ガスの発生がなく、気孔率が大きくならないので、耐食性は大幅に向上した。
(1-1)
Comparative Example 2 is an example in which metal Al powder is blended with respect to Comparative Example 1 in which metal Al powder is not blended, but since none of boric acid, borate and carboxylic acid is blended, metal Al powder As a result of the generation of hydrogen gas and an increase in porosity, the corrosion resistance decreased significantly. On the other hand, in Examples 1 to 3, since boric acid, borate or carboxylic acid is blended, unlike Comparative Example 2, there is no generation of hydrogen gas and the porosity does not increase, so the corrosion resistance is greatly increased. Improved.

(1−2)
比較例3はホウ酸の配合量が少なすぎる例で、金属Al粉末からの水素ガスの発生を招き、気孔率が大きくなってしまうので耐食性は低下した。一方、比較例4はホウ酸の配合量が多すぎる例で、金属Al粉末から水素ガスは発生しないものの、ホウ酸自身あるいは焼結マグネシア粉末と反応して低融物を生成してしまうため、耐食性の向上は認められなかった。これに対して、ホウ酸の配合量が本発明の範囲にある実施例4、5では、水素ガスの発生がなく、かつ、低融物の生成も少ないため耐食性が向上した。
(1-2)
Comparative Example 3 is an example in which the amount of boric acid is too small, which causes generation of hydrogen gas from the metal Al powder and increases the porosity, so that the corrosion resistance is lowered. On the other hand, Comparative Example 4 is an example in which the amount of boric acid is too large, and although hydrogen gas is not generated from the metal Al powder, it reacts with boric acid itself or sintered magnesia powder to produce a low melt. No improvement in corrosion resistance was observed. On the other hand, in Examples 4 and 5 in which the blending amount of boric acid is within the range of the present invention, the generation of hydrogen gas is not generated, and the production of low melt is small, so the corrosion resistance is improved.

(1−3)
比較例5は金属Al粉末の配合量が少なすぎる例で、金属Al粉末による耐食性の向上効果は見られなかった。一方、比較例6は金属Al粉末の配合量が多すぎる例で、金属Al粉末が焼結マグネシア粉末と反応して過剰なスピネルを生成し、成分的な関係から耐食性は低下した。これに対して、金属Al粉末の配合量が本発明の範囲にある実施例6、7では、熱間で金属Al粉末がボンドを形成して緻密化し、過剰なスピネルも生成することがないので、耐食性は向上した。
(1-3)
Comparative Example 5 is an example in which the blending amount of the metal Al powder is too small, and the effect of improving the corrosion resistance by the metal Al powder was not observed. On the other hand, Comparative Example 6 is an example in which the blending amount of the metal Al powder is too large, and the metal Al powder reacts with the sintered magnesia powder to generate excessive spinel, and the corrosion resistance is lowered due to the component relationship. On the other hand, in Examples 6 and 7 in which the blending amount of the metal Al powder is within the range of the present invention, the metal Al powder forms a bond with heat to be densified, and excessive spinel is not generated. Corrosion resistance improved.

(1−4)
比較例7は耐火原料に炭化珪素粉末(炭化珪素原料)及び土状黒鉛粉末(炭素原料)を使用した例であるが、耐食性は殆んど向上しなかった。また、比較例8は比較例7の耐火原料に金属Al粉末を配合した例で、金属Al粉末の配合により耐食性が向上すると思いきや、発ガスの影響で気孔率が大きくなって、むしろ劣化した。これに対して、実施例8〜10では、ホウ酸、ホウ酸塩又はカルボン酸を配合しているため、比較例8と異なり水素ガスの発生がなく、気孔率が大きくならないことに加え、炭素原料の十分な酸化防止効果とマトリクス部の緻密化効果が得られ、耐食性は大きく向上した。
(1-4)
Comparative Example 7 is an example in which silicon carbide powder (silicon carbide raw material) and earthy graphite powder (carbon raw material) were used as the refractory raw material, but the corrosion resistance was hardly improved. Further, Comparative Example 8 is an example in which metal Al powder is blended with the refractory raw material of Comparative Example 7, and it seems that the corrosion resistance is improved by blending of the metal Al powder. did. On the other hand, in Examples 8 to 10, since boric acid, borate or carboxylic acid is blended, unlike Comparative Example 8, there is no generation of hydrogen gas, and the porosity is not increased. A sufficient antioxidant effect of the raw material and a densification effect of the matrix portion were obtained, and the corrosion resistance was greatly improved.

表2の各例は、耐火原料に中性酸化物原料(焼結アルミナ粉末)を使用したものである。以下、表2を(2−1)〜(2-4)に分けて説明する。   Each example in Table 2 uses a neutral oxide raw material (sintered alumina powder) as a refractory raw material. Hereinafter, Table 2 will be described by dividing into (2-1) to (2-4).

(2−1)
比較例12は、金属Al粉末を配合していない比較例11に対し金属Al粉末を配合した例であるが、ホウ酸、ホウ酸塩及びカルボン酸のいずれも配合していないため、金属Al粉末から水素ガスが発生し、気孔率が大きくなった結果、耐食性が著しく低下した。これに対して実施例11〜13では、ホウ酸、ホウ酸塩又はカルボン酸を配合しているため、比較例12と異なり水素ガスの発生がなく、気孔率が大きくならないので、耐食性は大幅に向上した。
(2-1)
Comparative Example 12 is an example in which a metallic Al powder is blended with respect to Comparative Example 11 in which a metallic Al powder is not blended, but since none of boric acid, borate and carboxylic acid is blended, the metallic Al powder As a result of the generation of hydrogen gas and an increase in porosity, the corrosion resistance decreased significantly. On the other hand, in Examples 11 to 13, since boric acid, borate or carboxylic acid is blended, unlike Comparative Example 12, there is no generation of hydrogen gas and the porosity does not increase, so the corrosion resistance is greatly increased. Improved.

(2−2)
比較例13はホウ酸の配合量が少なすぎる例で、金属Al粉末からの水素ガスの発生を招き、気孔率が大きくなってしまうので耐食性は低下した。一方、比較例14はホウ酸の配合量が多すぎる例で、金属Al粉末から水素ガスは発生しないものの、ホウ酸自身あるいは焼結アルミナ粉末と反応して低融物を生成してしまうため、耐食性の向上は認められなかった。これに対して、ホウ酸の配合量が本発明の範囲にある実施例14、15では、水素ガスの発生がなく、かつ、低融物の生成も少ないため耐食性が向上した。
(2-2)
Comparative Example 13 is an example in which the amount of boric acid is too small, which causes generation of hydrogen gas from the metal Al powder and increases the porosity, so that the corrosion resistance is lowered. On the other hand, Comparative Example 14 is an example in which the amount of boric acid is too large, and although hydrogen gas is not generated from the metal Al powder, it reacts with boric acid itself or sintered alumina powder to produce a low melt. No improvement in corrosion resistance was observed. On the other hand, in Examples 14 and 15 in which the blending amount of boric acid is within the range of the present invention, there is no generation of hydrogen gas, and the production of low melt is small, so the corrosion resistance is improved.

(2−3)
比較例15は金属Al粉末の配合量が少なすぎる例で、金属Al粉末による耐食性の向上効果は見られなかった。一方、比較例16は金属Al粉末の配合量が多すぎる例で、耐食性の向上効果はみられなかった。これに対して、金属Al粉末の配合量が本発明の範囲にある実施例16、17では、熱間で金属Al粉末がボンドを形成して緻密化し、耐食性は向上した。
(2-3)
Comparative Example 15 is an example in which the blending amount of the metal Al powder is too small, and the effect of improving the corrosion resistance by the metal Al powder was not seen. On the other hand, Comparative Example 16 is an example in which the blending amount of the metal Al powder is too large, and the effect of improving the corrosion resistance was not observed. On the other hand, in Examples 16 and 17 in which the blending amount of the metal Al powder was within the range of the present invention, the metal Al powder formed a bond hot and densified, and the corrosion resistance was improved.

(2−4)
比較例17は耐火原料に炭化珪素粉末(炭化珪素原料)及び土状黒鉛粉末(炭素原料)を使用した例であるが、耐食性は殆んど向上しなかった。また、比較例18は比較例17の耐火原料に金属Al粉末を配合した例で、金属Al粉末の配合により耐食性が向上すると思いきや、発ガスの影響で気孔率が大きくなって、むしろ劣化した。これに対して、実施例18〜20では、ホウ酸、ホウ酸塩又はカルボン酸を配合しているため、比較例18と異なり水素ガスの発生がなく、気孔率が大きくならないことに加え、炭素原料の十分な酸化防止効果とマトリクス部の緻密化効果が得られ、耐食性は大きく向上した。
(2-4)
Comparative Example 17 is an example in which silicon carbide powder (silicon carbide raw material) and earthy graphite powder (carbon raw material) were used as the refractory raw material, but the corrosion resistance was hardly improved. Further, Comparative Example 18 is an example in which metal Al powder is blended with the refractory raw material of Comparative Example 17, and it seems that the corrosion resistance is improved by blending of the metal Al powder, but the porosity is increased due to the effect of gas generation, rather it is deteriorated. did. On the other hand, in Examples 18 to 20, since boric acid, borate or carboxylic acid is blended, unlike Comparative Example 18, there is no generation of hydrogen gas, and the porosity does not increase. A sufficient antioxidant effect of the raw material and a densification effect of the matrix portion were obtained, and the corrosion resistance was greatly improved.

Claims (4)

耐火材料に対して外掛けで、金属Al含有粉末を0.1〜10質量%、ホウ酸、ホウ酸塩及びカルボン酸の少なくとも1つを0.01〜2質量%配合している水系耐火目地モルタル。   A water-based fireproof joint containing 0.1 to 10% by mass of metal Al-containing powder and 0.01 to 2% by mass of boric acid, borate and carboxylic acid as an outer shell with respect to the refractory material. mortar. 前記耐火材料に塩基性酸化物原料を含む、請求項1に記載の水系耐火目地モルタル。   The water-based refractory joint mortar according to claim 1, wherein the refractory material includes a basic oxide raw material. 前記耐火材料に中性酸化物原料を含む、請求項1に記載の水系耐火目地モルタル。   The water-based refractory joint mortar according to claim 1, wherein the refractory material contains a neutral oxide raw material. 前記耐火材料に炭素原料及び炭化珪素原料の少なくとも1つを1〜20質量%含む、 請求項1から3のいずれかに記載の水系耐火目地モルタル。   The water-based refractory joint mortar according to any one of claims 1 to 3, wherein the refractory material contains 1 to 20 mass% of at least one of a carbon raw material and a silicon carbide raw material.
JP2016197390A 2016-10-05 2016-10-05 Water-based fireproof joint mortar Pending JP2018058727A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016197390A JP2018058727A (en) 2016-10-05 2016-10-05 Water-based fireproof joint mortar

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016197390A JP2018058727A (en) 2016-10-05 2016-10-05 Water-based fireproof joint mortar

Publications (1)

Publication Number Publication Date
JP2018058727A true JP2018058727A (en) 2018-04-12

Family

ID=61909707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016197390A Pending JP2018058727A (en) 2016-10-05 2016-10-05 Water-based fireproof joint mortar

Country Status (1)

Country Link
JP (1) JP2018058727A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366917A (en) * 1976-11-26 1978-06-14 Taiko Refractories Indefinite form refractories
JPS63117975A (en) * 1986-05-22 1988-05-21 九州耐火煉瓦株式会社 Water system monolithic refractories for molten iron pretreatment vessel
JPH0416567A (en) * 1990-05-02 1992-01-21 Kurosaki Refract Co Ltd Mixed pig iron car interior lining monolithic refractories
JPH08283074A (en) * 1995-04-14 1996-10-29 Nippon Steel Corp Refractory mortar for use in bricks for molten metal and its use
JPH10279371A (en) * 1997-03-31 1998-10-20 Kawasaki Steel Corp Graphite-containing refractory

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5366917A (en) * 1976-11-26 1978-06-14 Taiko Refractories Indefinite form refractories
JPS63117975A (en) * 1986-05-22 1988-05-21 九州耐火煉瓦株式会社 Water system monolithic refractories for molten iron pretreatment vessel
JPH0416567A (en) * 1990-05-02 1992-01-21 Kurosaki Refract Co Ltd Mixed pig iron car interior lining monolithic refractories
JPH08283074A (en) * 1995-04-14 1996-10-29 Nippon Steel Corp Refractory mortar for use in bricks for molten metal and its use
JPH10279371A (en) * 1997-03-31 1998-10-20 Kawasaki Steel Corp Graphite-containing refractory

Similar Documents

Publication Publication Date Title
JP4796170B2 (en) Chromium castable refractories and precast blocks using the same
JP2001114571A (en) Castable refractories for blast furnace gutters
JP2014152092A (en) Castable refractory for blast furnace trough
JP4102065B2 (en) Refractory for casting construction
JP2018058727A (en) Water-based fireproof joint mortar
JP2562767B2 (en) Pouring refractories
JP2004203702A (en) Irregular refractories and construction bodies containing serpentine or talc, and kilns lined with these
JPH07330452A (en) Cast refractories for molten steel processing equipment
JPH08259340A (en) Magnesia-carbon-based castable refractory
JP4576367B2 (en) Chrome-free amorphous refractory for waste melting furnace and waste melting furnace using the same for lining
JPH06256064A (en) Dense castable refractory low in water content and capable of being cast
JP4956044B2 (en) Magnesia brick without lime as a mineral phase and its production method
JP2019137561A (en) Monolithic refractory composition
JP6609389B1 (en) Unshaped refractory for blast furnace
JP6098834B2 (en) Amorphous refractories for molten aluminum alloys
TWI478892B (en) No carbon and aluminum magnesium does not burn bricks
JPH06144939A (en) Basic castable refractory
JP2747734B2 (en) Carbon containing refractories
JPH0725668A (en) Refractory for pouring construction
JPH07291715A (en) Spinel refractory brick
KR100446871B1 (en) Batch composition of refractories for preventing oxidation of back surface in carbon contained basic refractory brick
JP4205926B2 (en) Unshaped refractory for waste melting furnace and waste melting furnace lined with it
JP3438215B2 (en) Magnesia spinel refractories
JP2003226583A (en) Irregular refractories for hot metal
JPH09278543A (en) Castable refractories for lining vacuum degassing equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200825

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20210309