JP2018056562A - RESISTANCE FILM FOR λ/4 TYPE RADIO WAVE ABSORBER AND λ/4 TYPE RADIO WAVE ABSORBER - Google Patents
RESISTANCE FILM FOR λ/4 TYPE RADIO WAVE ABSORBER AND λ/4 TYPE RADIO WAVE ABSORBER Download PDFInfo
- Publication number
- JP2018056562A JP2018056562A JP2017181609A JP2017181609A JP2018056562A JP 2018056562 A JP2018056562 A JP 2018056562A JP 2017181609 A JP2017181609 A JP 2017181609A JP 2017181609 A JP2017181609 A JP 2017181609A JP 2018056562 A JP2018056562 A JP 2018056562A
- Authority
- JP
- Japan
- Prior art keywords
- weight
- film
- wave absorber
- content
- radio wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000006096 absorbing agent Substances 0.000 title claims abstract description 63
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims abstract description 32
- 229910052750 molybdenum Inorganic materials 0.000 claims abstract description 32
- 239000011733 molybdenum Substances 0.000 claims abstract description 32
- 229910045601 alloy Inorganic materials 0.000 claims abstract description 29
- 239000000956 alloy Substances 0.000 claims abstract description 29
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 56
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 claims description 27
- 229910052804 chromium Inorganic materials 0.000 claims description 27
- 239000011651 chromium Substances 0.000 claims description 27
- 229910052759 nickel Inorganic materials 0.000 claims description 27
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 121
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 16
- 229920000139 polyethylene terephthalate Polymers 0.000 description 16
- 239000005020 polyethylene terephthalate Substances 0.000 description 16
- 229910052751 metal Inorganic materials 0.000 description 12
- 239000002184 metal Substances 0.000 description 12
- 229910000856 hastalloy Inorganic materials 0.000 description 10
- -1 polyethylene terephthalate Polymers 0.000 description 9
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 8
- 230000001747 exhibiting effect Effects 0.000 description 8
- 239000010936 titanium Substances 0.000 description 8
- 229910052719 titanium Inorganic materials 0.000 description 8
- 229920002799 BoPET Polymers 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 7
- 238000001755 magnetron sputter deposition Methods 0.000 description 7
- 229910052703 rhodium Inorganic materials 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229910052721 tungsten Inorganic materials 0.000 description 7
- 229910017052 cobalt Inorganic materials 0.000 description 6
- 239000010941 cobalt Substances 0.000 description 6
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 229910000623 nickel–chromium alloy Inorganic materials 0.000 description 6
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 6
- 239000010937 tungsten Substances 0.000 description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 5
- 238000000137 annealing Methods 0.000 description 5
- 229910052799 carbon Inorganic materials 0.000 description 5
- 238000000034 method Methods 0.000 description 5
- 229910052710 silicon Inorganic materials 0.000 description 5
- 239000010703 silicon Substances 0.000 description 5
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 4
- 229910052748 manganese Inorganic materials 0.000 description 4
- 239000011572 manganese Substances 0.000 description 4
- 238000004544 sputter deposition Methods 0.000 description 4
- 150000002739 metals Chemical class 0.000 description 3
- 229920006254 polymer film Polymers 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000010409 thin film Substances 0.000 description 3
- 229910000599 Cr alloy Inorganic materials 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000000788 chromium alloy Substances 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 229910052738 indium Inorganic materials 0.000 description 2
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 2
- 230000007257 malfunction Effects 0.000 description 2
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 2
- 229920000620 organic polymer Polymers 0.000 description 2
- 238000007740 vapor deposition Methods 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000640 Fe alloy Inorganic materials 0.000 description 1
- 229910000990 Ni alloy Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 230000007797 corrosion Effects 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 238000007733 ion plating Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
Landscapes
- Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)
- Aerials With Secondary Devices (AREA)
Abstract
Description
本発明は、優れた耐久性を発揮するλ/4型電波吸収体を製造することができるλ/4型電波吸収体用抵抗皮膜、及び該λ/4型電波吸収体用抵抗皮膜を含むλ/4型電波吸収体に関する。 The present invention provides a λ / 4 type wave absorber resistance film capable of producing a λ / 4 type wave absorber exhibiting excellent durability, and a λ / 4 type wave absorber resistance film. / 4 type electromagnetic wave absorber.
近年、携帯電話やスマートフォン等の携帯通信機器の普及が急速に進んでおり、また自動車等において多くの電子機器が搭載されるようになり、これらから発生する電波・ノイズが、電波障害、他の電子機器の誤動作等の問題が多発している。このような電波障害、誤動作等を防止する方策として、各種の電波吸収体が検討されている。例えば、特許文献1には、厚さがほぼλ/4(ここでλは、誘電体内での電波の波長を表す。)の誘電体スペーサの裏面に完全反射体を装着し、表面にイオンプレーティング、蒸着、スパッタ等によって作成した抵抗皮膜を有するλ/4型電波吸収体が開示されている。 In recent years, mobile communication devices such as mobile phones and smartphones have been rapidly spread, and many electronic devices have been installed in automobiles. There are many problems such as malfunction of electronic equipment. Various radio wave absorbers have been studied as measures for preventing such radio wave interference and malfunction. For example, in Patent Document 1, a complete reflector is mounted on the back surface of a dielectric spacer having a thickness of approximately λ / 4 (where λ represents the wavelength of a radio wave in the dielectric), and an ion plate is formed on the surface. A λ / 4 type wave absorber having a resistance film created by coating, vapor deposition, sputtering or the like is disclosed.
従来のλ/4型電波吸収体は、抵抗皮膜であるITO(スズドープ酸化インジウム)、誘電体及びアルミニウム等の導電層を積層させた構造である。このITOは、低コスト化等の理由からポリエチレンテレフタレート(PET)フィルム等の高分子フィルムに成膜されていることが多い。高分子フィルムは高い温度にて加熱することができないため、ITOを加熱成膜することができず、アモルファス状態での成膜となる。アモルファス膜は比抵抗が高く、大気中での耐久性・薬品安定性等が低い。このため、通常は成膜されたITO膜を後工程でアニールして結晶化させることにより膜物性を向上させる。 A conventional λ / 4 type wave absorber has a structure in which conductive layers such as ITO (tin-doped indium oxide), a dielectric, and aluminum, which are resistance films, are laminated. This ITO is often formed on a polymer film such as a polyethylene terephthalate (PET) film for reasons such as cost reduction. Since the polymer film cannot be heated at a high temperature, ITO cannot be heated to form a film in an amorphous state. Amorphous films have high specific resistance and low durability and chemical stability in the atmosphere. For this reason, the physical properties of the film are usually improved by annealing the formed ITO film in a later step to crystallize it.
しかしながら、高分子フィルムはアニール温度を高くすることができないため、例えば140℃で2時間というような、比較的低い温度で長い時間でのアニールが必要となる。従って、アニール工程の必要がない金属膜をITOの代わりに抵抗皮膜として用いることができれば、成膜後のアニールは必要なくなり、大幅な生産性の向上とコストの低減が期待できる。また、ITOは、インジウムを多く含むが、インジウムは埋蔵量よりも多い使用量が見込まれている金属であり、資源枯渇が懸念されている。このため、ITOに代わる抵抗皮膜材料の開発が期待されている。 However, since the annealing temperature of the polymer film cannot be increased, annealing for a long time at a relatively low temperature such as 2 hours at 140 ° C. is required. Therefore, if a metal film that does not require an annealing process can be used as a resistance film instead of ITO, annealing after film formation is not necessary, and a significant improvement in productivity and a reduction in cost can be expected. In addition, ITO contains a large amount of indium, but indium is a metal that is expected to be used in a larger amount than the reserve, and there is a concern about resource depletion. For this reason, development of a resistance film material replacing ITO is expected.
ただ、多くの金属膜は、376.7Ω/□を有するλ/4型電波吸収体用抵抗皮膜として用いた場合、大気中での耐久性に劣り、λ/4型電波吸収体の電波吸収性が経時的に低下してしまうことがあるという問題がある。λ/4型電波吸収体用抵抗皮膜は、表面抵抗値が376.7Ω/□±10%でなければならない。 However, when many metal films are used as a resistive film for a λ / 4 type wave absorber having 376.7Ω / □, the durability in the air is inferior, and the radio wave absorptivity of the λ / 4 type wave absorber is low. There is a problem that may decrease with time. The resistance film for the λ / 4 type wave absorber must have a surface resistance of 376.7Ω / □ ± 10%.
本発明は、上記現状に鑑み、優れた耐久性を発揮するλ/4型電波吸収体を製造することができるλ/4型電波吸収体用抵抗皮膜、及び、該λ/4型電波吸収体用抵抗皮膜を含むλ/4型電波吸収体を提供することを目的とする。 In view of the above-mentioned present situation, the present invention provides a λ / 4 type wave absorber resistance film capable of producing a λ / 4 type wave absorber exhibiting excellent durability, and the λ / 4 type wave absorber. An object of the present invention is to provide a λ / 4 type wave absorber including a resistance film.
本発明の一実施態様においては、モリブデンを5重量%以上含有する合金からなるλ/4型電波吸収体用抵抗皮膜が提供される。 In one embodiment of the present invention, there is provided a resistive film for a λ / 4 type wave absorber made of an alloy containing 5% by weight or more of molybdenum.
本発明の一実施態様によれば、優れた耐久性を発揮するλ/4型電波吸収体を製造することができるλ/4型電波吸収体用抵抗皮膜、及び該λ/4型電波吸収体用抵抗皮膜を含むλ/4型電波吸収体を提供できる。 According to one embodiment of the present invention, a resistive film for a λ / 4 type radio wave absorber capable of producing a λ / 4 type radio wave absorber exhibiting excellent durability, and the λ / 4 type radio wave absorber. A λ / 4 type wave absorber including a resistance film can be provided.
本発明者らは、金属膜をλ/4型電波吸収体の抵抗皮膜として用いた場合に耐久性が劣る原因について検討した。その結果、λ/4型電波吸収体を構成する抵抗皮膜の表面抵抗値が、経時的に大きく変動してしまうことが電波吸収性低下の一因となっていることを見出した。
これまでにITOに代わるλ/4型電波吸収体の抵抗皮膜としてステンレス鋼(鉄・クロム合金、SUS)やニッケル・クロム合金等の合金や、チタン等の金属が検討されてきた。例えば、抵抗皮膜としてSUSやニッケル・クロム合金を用いた場合、抵抗皮膜の表面には厚さ10nm以下の不動態皮膜が形成され、安定化する。しかしながら、このような抵抗皮膜を放置すると、大気中の塩分(塩素イオン)が表面に付着することにより、不動態皮膜が破壊され、抵抗皮膜自体も損傷して、表面抵抗値が変動してしまうものと考えられた。また、例えば、抵抗皮膜としてチタンを用いた場合には、チタンの膜厚が1nm程度と、薄くなりすぎるために、抵抗皮膜を放置すると、大気中の酸素によりチタンが酸化され、表面から酸化チタンに置換されて表面抵抗値が変動してしまうものと考えられた。
The present inventors have examined the cause of poor durability when a metal film is used as a resistive film of a λ / 4 type wave absorber. As a result, it was found that the surface resistance value of the resistance film constituting the λ / 4 type wave absorber greatly fluctuates with time, which contributes to a decrease in radio wave absorption.
So far, alloys such as stainless steel (iron / chromium alloy, SUS) and nickel / chromium alloy, and metals such as titanium have been studied as resistance films of λ / 4 type wave absorbers that replace ITO. For example, when SUS or nickel-chromium alloy is used as the resistance film, a passive film having a thickness of 10 nm or less is formed on the surface of the resistance film, and is stabilized. However, if such a resistance film is left as it is, salt (chlorine ions) in the atmosphere adheres to the surface, thereby destroying the passive film, damaging the resistance film itself, and changing the surface resistance value. It was considered a thing. Further, for example, when titanium is used as the resistance film, the film thickness of titanium is too thin, about 1 nm. Therefore, if the resistance film is left as it is, titanium is oxidized by oxygen in the atmosphere, and titanium oxide from the surface. It was thought that the surface resistance value fluctuated due to substitution.
本発明者らは、鋭意検討の結果、モリブデンを5重量%以上含有する合金を用いて抵抗皮膜を形成した場合には、大気下に放置したときにでも抵抗皮膜の表面抵抗値の変動を小さくして、優れた耐久性を発揮するλ/4型電波吸収体を製造できることを見出し、本発明を完成した。 As a result of intensive studies, the present inventors have found that when a resistance film is formed using an alloy containing 5% by weight or more of molybdenum, fluctuations in the surface resistance value of the resistance film are reduced even when left in the atmosphere. As a result, it was found that a λ / 4 type wave absorber exhibiting excellent durability could be manufactured, and the present invention was completed.
本発明の一実施態様であるλ/4型電波吸収体用抵抗皮膜は、モリブデンを5重量%以上含有する合金からなる。これにより、大気下に放置したときにでも抵抗皮膜の表面抵抗値の変動を小さくして、優れた耐久性を発揮するλ/4型電波吸収体を製造できる。上記λ/4型電波吸収体用抵抗皮膜を構成する合金におけるモリブデンの含有量は、優れた耐久性を発揮するλ/4型電波吸収体を得る観点から、好ましくは7重量%以上、より好ましくは9重量%以上、さらに好ましくは11重量%以上、さらにより好ましくは13重量%以上、特に好ましくは15重量%以上、最も好ましくは16重量%以上である。また、モリブデンの含有量は、好ましくは30重量%以下、より好ましくは25重量%以下、さらに好ましくは20重量%以下である。 The resistance film for λ / 4 type wave absorber which is one embodiment of the present invention is made of an alloy containing 5 wt% or more of molybdenum. This makes it possible to manufacture a λ / 4-type radio wave absorber that exhibits excellent durability by reducing fluctuations in the surface resistance value of the resistance film even when left in the atmosphere. The content of molybdenum in the alloy constituting the resistance film for the λ / 4 wave absorber is preferably 7% by weight or more from the viewpoint of obtaining a λ / 4 wave absorber exhibiting excellent durability. Is 9% by weight or more, more preferably 11% by weight or more, still more preferably 13% by weight or more, particularly preferably 15% by weight or more, and most preferably 16% by weight or more. The molybdenum content is preferably 30% by weight or less, more preferably 25% by weight or less, and still more preferably 20% by weight or less.
上記の通り、本発明の一実施態様によれば、優れた耐久性を発揮するλ/4型電波吸収体を提供することができる。この理由については必ずしも明らかではないが、モリブデンを5重量%以上含有する合金では、酸化性雰囲気下のみならず、還元性雰囲気下においても耐食性が向上するためではないかと考えている。 As described above, according to one embodiment of the present invention, it is possible to provide a λ / 4 type wave absorber that exhibits excellent durability. The reason for this is not necessarily clear, but it is thought that an alloy containing 5% by weight or more of molybdenum improves corrosion resistance not only in an oxidizing atmosphere but also in a reducing atmosphere.
上記合金は、モリブデンを5重量%以上(好ましくは上記範囲内)含有するものであれば特に限定されないが、優れた耐久性を発揮するλ/4型電波吸収体を製造することができるλ/4型電波吸収体用抵抗皮膜を得る観点から、ニッケル、クロム及びモリブデンを含有する合金であることが好ましい。ニッケル、クロム及びモリブデンを含有する合金としては、例えば、ハステロイB−2、B−3、C−4、C−2000、C−22、C−276、G−30、N、W、X等の各種グレードが挙げられる。 The alloy is not particularly limited as long as it contains 5% by weight or more (preferably within the above range) of molybdenum. However, a λ / 4 type wave absorber that exhibits excellent durability can be manufactured. From the viewpoint of obtaining a resistance film for a type 4 electromagnetic wave absorber, an alloy containing nickel, chromium and molybdenum is preferred. Examples of alloys containing nickel, chromium, and molybdenum include Hastelloy B-2, B-3, C-4, C-2000, C-22, C-276, G-30, N, W, and X. There are various grades.
なかでも、より優れた耐久性を発揮するλ/4型電波吸収体を得る観点からは、ニッケル含有量が40重量%以上、クロム含有量が1重量%以上、かつ、モリブデン含有量が5重量%以上である合金がより好ましい。合金がニッケル、クロム、及びモリブデンを含む場合、同様の観点から、ニッケル含有量が45重量%以上、クロム含有量が3重量%以上、及び/又は、モリブデン含有量が7重量%以上であることがさらに好ましい。ニッケル含有量が47重量%以上、クロム含有量が5重量%以上、及び/又は、モリブデン含有量が9重量%以上であることがさらにより好ましい。ニッケル含有量が50重量%以上、クロム含有量が10重量%以上、及び/又は、モリブデン含有量が11重量%以上であることが特に好ましい。ニッケル含有量が53重量%以上、クロム含有量が12重量%以上、及び/又は、モリブデン含有量が13重量%以上であることが非常に好ましい。ニッケル含有量が55重量%以上、クロム含有量が15重量%以上、及び/又は、モリブデン含有量が15重量%以上であることがとりわけ好ましい。ニッケル含有量が57重量%以上、クロム含有量が16重量%以上、及び/又は、モリブデン含有量が16重量%以上であることが最も好ましい。
なお、上記合金がニッケル及びクロムを含む場合、より優れた耐久性を発揮するλ/4型電波吸収体を得る観点から、ニッケル含有量は好ましくは80重量%以下、より好ましくは70重量%以下、さらに好ましくは65重量%以下である。及び/又はクロム含有量は好ましくは50重量%以下、より好ましくは40重量%以下、さらに好ましくは35重量%以下である。
Among these, from the viewpoint of obtaining a λ / 4 type wave absorber exhibiting superior durability, the nickel content is 40% by weight or more, the chromium content is 1% by weight or more, and the molybdenum content is 5% by weight. % Or more of the alloy is more preferable. When the alloy contains nickel, chromium, and molybdenum, from the same viewpoint, the nickel content is 45% by weight or more, the chromium content is 3% by weight or more, and / or the molybdenum content is 7% by weight or more. Is more preferable. More preferably, the nickel content is 47% by weight or more, the chromium content is 5% by weight or more, and / or the molybdenum content is 9% by weight or more. It is particularly preferable that the nickel content is 50% by weight or more, the chromium content is 10% by weight or more, and / or the molybdenum content is 11% by weight or more. It is very preferable that the nickel content is 53% by weight or more, the chromium content is 12% by weight or more, and / or the molybdenum content is 13% by weight or more. It is particularly preferable that the nickel content is 55% by weight or more, the chromium content is 15% by weight or more, and / or the molybdenum content is 15% by weight or more. Most preferably, the nickel content is 57% by weight or more, the chromium content is 16% by weight or more, and / or the molybdenum content is 16% by weight or more.
When the alloy contains nickel and chromium, the nickel content is preferably 80% by weight or less, more preferably 70% by weight or less from the viewpoint of obtaining a λ / 4 type wave absorber that exhibits superior durability. More preferably, it is 65% by weight or less. And / or chromium content becomes like this. Preferably it is 50 weight% or less, More preferably, it is 40 weight% or less, More preferably, it is 35 weight% or less.
λ/4型電波吸収体用抵抗皮膜は、表面抵抗値が376.7Ω/□±10%でなければならない。この表面抵抗値に基づいて、λ/4型電波吸収体用抵抗皮膜の厚みは決定される。例えば、SUS、ニッケル・クロム合金を用いてこの表面抵抗値を得ようとすると抵抗皮膜の膜厚を1〜4nmとする必要があり、チタンを用いてこの表面抵抗値を得ようとすると抵抗皮膜の膜厚を1〜2nmとする必要がある。(なお、導電性が高い銅や銀では0.3nm程度の膜厚とする必要がある。)しかしながら、例えばスパッタ等の方法により抵抗皮膜を形成する場合、4nm以下の膜厚を安定して形成することは極めて困難である。
これに対して、ニッケル含有量が40重量%以上、クロム含有量が1重量%以上、かつ、モリブデン含有量が5重量%以上である合金(より好適には、ニッケル含有量、クロム含有量及びモリブデン含有量が上記範囲内である合金)では、膜厚を5〜6nmとすることにより表面抵抗値を376.7Ω/□±10%に調整できる。5〜6nmの膜厚であれば、スパッタ等により安定して皮膜を形成することができるため、製造上のメリットがあり、上記抵抗皮膜を安定的に製造できるため、各抵抗皮膜による性能ムラを抑制することができる。
The resistance film for the λ / 4 type wave absorber must have a surface resistance of 376.7Ω / □ ± 10%. Based on this surface resistance value, the thickness of the resistive film for the λ / 4 type wave absorber is determined. For example, if this surface resistance value is obtained using SUS or nickel-chromium alloy, the film thickness of the resistance film must be 1 to 4 nm. If this surface resistance value is obtained using titanium, the resistance film is required. It is necessary to make the film thickness of 1-2 nm. (It is necessary to have a film thickness of about 0.3 nm for copper or silver having high conductivity.) However, when a resistance film is formed by a method such as sputtering, the film thickness of 4 nm or less is stably formed. It is extremely difficult to do.
In contrast, an alloy having a nickel content of 40% by weight or more, a chromium content of 1% by weight or more, and a molybdenum content of 5% by weight or more (more preferably, nickel content, chromium content and In an alloy having a molybdenum content within the above range, the surface resistance can be adjusted to 376.7Ω / □ ± 10% by setting the film thickness to 5 to 6 nm. If the film thickness is 5 to 6 nm, a film can be stably formed by sputtering or the like, and thus there is a merit in manufacturing, and the above-mentioned resistance film can be stably manufactured. Can be suppressed.
本発明の一実施態様において、ニッケル、クロム及びモリブデン以外の、合金を構成し得る金属としては、例えば、鉄、コバルト、タングステン、マンガン、チタン等が挙げられる。上記合金がニッケル、クロム及びモリブデンを含有する場合、ニッケル、クロム及びモリブデン以外の金属の合計含有量の上限は、抵抗皮膜の耐久性の観点から、好ましくは45重量%、より好ましくは40重量%、さらに好ましくは35重量%、さらにより好ましくは30重量%、特に好ましくは25重量%、非常に好ましくは23重量%である。ニッケル、クロム及びモリブデン以外の金属の合計含有量は、例えば1重量%以上である。 In one embodiment of the present invention, examples of the metal that can form an alloy other than nickel, chromium, and molybdenum include iron, cobalt, tungsten, manganese, and titanium. When the above alloy contains nickel, chromium and molybdenum, the upper limit of the total content of metals other than nickel, chromium and molybdenum is preferably 45% by weight, more preferably 40% by weight, from the viewpoint of the durability of the resistance film. More preferably, it is 35% by weight, even more preferably 30% by weight, particularly preferably 25% by weight, very particularly preferably 23% by weight. The total content of metals other than nickel, chromium and molybdenum is, for example, 1% by weight or more.
上記抵抗皮膜を構成する合金が鉄を含有する場合、抵抗皮膜の耐久性の観点から、好ましくは25重量%以下、より好ましくは20重量%以下、さらに好ましくは15重量%以下であり、例えば1重量%以上である。上記抵抗皮膜を構成する合金がコバルト及び/又はマンガンを含有する場合、抵抗皮膜の耐久性の観点から、それぞれ独立して、好ましくは5重量%以下、より好ましくは4重量%以下、さらに好ましくは3重量%以下であり、例えば0.1重量%以上である。上記抵抗皮膜を構成する合金がタングステンを含有する場合、抵抗皮膜の耐久性の観点から、好ましくは8重量%以下、より好ましくは6重量%以下、さらに好ましくは4重量%以下であり、例えば1重量%以上である。 When the alloy constituting the resistance film contains iron, it is preferably 25% by weight or less, more preferably 20% by weight or less, still more preferably 15% by weight or less from the viewpoint of durability of the resistance film, for example, 1 % By weight or more. When the alloy constituting the resistance film contains cobalt and / or manganese, from the viewpoint of durability of the resistance film, each is preferably independently 5% by weight or less, more preferably 4% by weight or less, and still more preferably. 3% by weight or less, for example, 0.1% by weight or more. When the alloy constituting the resistance film contains tungsten, it is preferably 8% by weight or less, more preferably 6% by weight or less, still more preferably 4% by weight or less, from the viewpoint of durability of the resistance film. % By weight or more.
上記抵抗皮膜を構成する合金は、ケイ素及び/又は炭素を含有してもよく、その含有量は、それぞれ独立して、例えば1重量%以下または0.5重量%以下であり、例えば0.01重量%以上である。 The alloy constituting the resistance film may contain silicon and / or carbon, and the content thereof is independently, for example, 1% by weight or less or 0.5% by weight or less, for example, 0.01 % By weight or more.
本発明の一実施態様であるλ/4型電波吸収体用抵抗皮膜は、例えば、イオンプレーティング、蒸着、スパッタ等の方法により製造することができる。本発明の一実施態様において、ニッケル、クロム、及びモリブデンを上記範囲内で含有する合金の場合、抵抗皮膜の膜厚を5〜6nmとすることができるため、上記製造方法により抵抗皮膜を安定的に製造できるため、各抵抗皮膜による性能ムラを抑制することができる。 The resistive film for λ / 4 type wave absorber which is one embodiment of the present invention can be produced by a method such as ion plating, vapor deposition, sputtering, or the like. In an embodiment of the present invention, in the case of an alloy containing nickel, chromium, and molybdenum within the above range, the thickness of the resistance film can be set to 5 to 6 nm. Therefore, it is possible to suppress performance unevenness due to each resistance film.
本発明の一実施態様であるλ/4型電波吸収体用抵抗皮膜と、誘電体と、電波反射膜とを有し、上記λ/4型電波吸収体用抵抗皮膜と上記電波反射膜とが、上記誘電体を介してλ/4離れた位置に配置されているλ/4型電波吸収体は、本発明の別の実施態様である。 A resistive film for a λ / 4 type radio wave absorber according to an embodiment of the present invention, a dielectric, and a radio wave reflecting film, wherein the resistive film for the λ / 4 type radio wave absorber and the radio wave reflecting film include The λ / 4 type wave absorber disposed at a position separated by λ / 4 through the dielectric is another embodiment of the present invention.
本発明の一実施態様であるλ/4型電波吸収体用抵抗皮膜を用いることにより、優れた耐久性を発揮するλ/4型電波吸収体を製造することができる。
具体的には、例えば、本発明の一実施態様であるλ/4型電波吸収体用抵抗皮膜と、誘電体と、電波反射膜とを用い、λ/4型電波吸収体用抵抗皮膜と電波反射膜とを、誘電体を介してλ/4離れた位置に配置することによりλ/4型電波吸収体を得ることができる。なお、ここでλは、上記誘電体内での電波の波長を表す。
By using the resistive film for λ / 4 type radio wave absorber which is one embodiment of the present invention, a λ / 4 type radio wave absorber exhibiting excellent durability can be produced.
Specifically, for example, a λ / 4 type wave absorber resistive film, a dielectric, and a radio wave reflecting film according to one embodiment of the present invention are used, and the λ / 4 type wave absorber resistive film and the radio wave are used. A λ / 4 wave absorber can be obtained by disposing the reflective film at a position separated by λ / 4 via a dielectric. Here, λ represents the wavelength of the radio wave in the dielectric.
上記誘電体としては特に限定されず、有機発泡体、有機高分子シート、有機高分子フィルム等の、従来公知のλ/4型電波吸収体に用いられる誘電体を用いることができる。
上記電波反射膜としては特に限定されず、アルミニウム薄膜等の、従来公知のλ/4型電波吸収体に用いられる電波反射膜を用いることができる。
It does not specifically limit as said dielectric material, The dielectric material used for a conventionally well-known (lambda) / 4 type | mold electromagnetic wave absorber, such as an organic foam, an organic polymer sheet, and an organic polymer film, can be used.
The radio wave reflection film is not particularly limited, and a radio wave reflection film used for a conventionally known λ / 4 type wave absorber such as an aluminum thin film can be used.
以下に実施例を挙げて本発明の態様を更に詳しく説明するが、本発明はこれら実施例にのみ限定されるものではない。 Hereinafter, embodiments of the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
なお、以下の実施例及び比較例において、厚みの測定は下記の通りに行った。蛍光X線分析装置により金属薄膜表面にX線を照射したときに発生する特性X線の強度を標準サンプルと比較して求めた単位面積当たりの金属含有量をその金属の密度で除して、金属薄膜の厚みを算出した。 In the following examples and comparative examples, the thickness was measured as follows. Dividing the metal content per unit area obtained by comparing the intensity of the characteristic X-rays generated when X-rays are irradiated onto the surface of the metal thin film with a fluorescent X-ray analyzer by the density of the metal, The thickness of the metal thin film was calculated.
(実施例1)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。該PETフィルム上に、ハステロイC−276ターゲットを使い、DCマグネトロンスパッタリングにより、出力2.4kWにて、厚みが5nmのハステロイC−276からなる抵抗皮膜を形成した。
なお、ハステロイC−276は、ニッケル含有量が57重量%、クロム含有量が16重量%、モリブデン含有量が16重量%、鉄含有量が6.5重量%、コバルト含有量が2.5重量%以下、タングステン含有量が4.3重量%、マンガン含有量が1重量%以下、ケイ素含有量が0.08重量%以下、炭素含有量が0.01重量%以下である。
Example 1
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. A resistive film made of Hastelloy C-276 having a thickness of 5 nm and an output of 2.4 kW was formed on the PET film by DC magnetron sputtering using a Hastelloy C-276 target.
Hastelloy C-276 has a nickel content of 57% by weight, a chromium content of 16% by weight, a molybdenum content of 16% by weight, an iron content of 6.5% by weight, and a cobalt content of 2.5% by weight. %, Tungsten content is 4.3% by weight, manganese content is 1% by weight or less, silicon content is 0.08% by weight or less, and carbon content is 0.01% by weight or less.
得られた抵抗皮膜について、表面抵抗計(MITSUBISHI CHEMICAL ANALYTECH社製、商品名「Loresta−EP」)を用いて、4端子法により表面抵抗値を測定したところ、355.0Ω/□であった(初期値)。 About the obtained resistance film, when a surface resistance value was measured by a four-terminal method using a surface resistance meter (trade name “Loresta-EP” manufactured by MITSUBISHI CHEMICAL ANALYTECH), it was 355.0Ω / □ ( initial value).
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を表面抵抗計(MITSUBISHI CHEMICAL ANALYTECH社製、商品名「Loresta−EP」)を用いて4端子法により測定した。結果を表1に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured by a four-terminal method using a surface resistance meter (manufactured by MITSUBISHI CHEMICAL ANALYTECH, trade name “Loresta-EP”) at every elapse of time from the start of standing. The results are shown in Table 1.
(実施例2)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。PETフィルム上に、ハステロイG−30ターゲットを使い、DCマグネトロンスパッタリングにより、出力2.4kWにて、厚みが5nmのハステロイXからなる抵抗皮膜を形成した。
なお、ハステロイXは、ニッケル含有量が43重量%、クロム含有量が30重量%、モリブデン含有量が5.5重量%、鉄含有量が15.0重量%、コバルト含有量が2重量%以下、タングステン含有量が2.5重量%、マンガン含有量が1.5重量%以下、ケイ素含有量が1重量%以下、炭素含有量が0.3重量%以下である。
(Example 2)
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. A resistance film made of Hastelloy X having a thickness of 5 nm was formed on a PET film by DC magnetron sputtering using a Hastelloy G-30 target and an output of 2.4 kW.
Hastelloy X has a nickel content of 43% by weight, a chromium content of 30% by weight, a molybdenum content of 5.5% by weight, an iron content of 15.0% by weight, and a cobalt content of 2% by weight or less. The tungsten content is 2.5% by weight, the manganese content is 1.5% by weight or less, the silicon content is 1% by weight or less, and the carbon content is 0.3% by weight or less.
得られた抵抗皮膜について、実施例1と同様にして表面抵抗値を測定したところ、353.2Ω/□であった(初期値)。 With respect to the obtained resistance film, the surface resistance value was measured in the same manner as in Example 1 and found to be 353.2 Ω / □ (initial value).
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を実施例1と同様にして測定した。結果を表2に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured in the same manner as in Example 1 every time after the start of standing. The results are shown in Table 2.
(実施例3)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。PETフィルム上に、ハステロイB−3ターゲットを使い、DCマグネトロンスパッタリングにより、出力2.4kWにて、厚みが5nmのハステロイB−3からなる抵抗皮膜を形成した。
なお、ハステロイB−3は、ニッケル含有量が67重量%、クロム含有量が1.5重量%、モリブデン含有量が28.5重量%、鉄含有量が1.5重量%、コバルト含有量が3重量%以下、タングステン含有量が3重量%以下、マンガン含有量が3重量%以下、ケイ素含有量が0.1重量%以下、炭素含有量が0.01重量%以下である。
(Example 3)
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. A resistance film made of Hastelloy B-3 having a thickness of 5 nm was formed on a PET film by DC magnetron sputtering using a Hastelloy B-3 target and an output of 2.4 kW.
Hastelloy B-3 has a nickel content of 67% by weight, a chromium content of 1.5% by weight, a molybdenum content of 28.5% by weight, an iron content of 1.5% by weight, and a cobalt content of 3% by weight or less, tungsten content is 3% by weight or less, manganese content is 3% by weight or less, silicon content is 0.1% by weight or less, and carbon content is 0.01% by weight or less.
得られた抵抗皮膜について、実施例1と同様にして表面抵抗値を測定したところ、340.1Ω/□であった(初期値)。 With respect to the obtained resistance film, the surface resistance value was measured in the same manner as in Example 1 and found to be 340.1 Ω / □ (initial value).
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を実施例1と同様にして測定した。結果を表3に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured in the same manner as in Example 1 every time after the start of standing. The results are shown in Table 3.
(比較例1)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。PETフィルム上に、SUS310Sターゲットを使い、DCマグネトロンスパッタリングにより、出力6.5kWにて、厚みが2nmのSUS310S(鉄含有量が51重量%、クロム含有量が25重量%、ニッケル含流量が20重量%)からなる抵抗皮膜を形成した。
(Comparative Example 1)
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. Using a SUS310S target on a PET film, DC magnetron sputtering and an output of 6.5 kW and a thickness of 2 nm SUS310S (iron content is 51 wt%, chromium content is 25 wt%, nickel content flow rate is 20 wt% %) Was formed.
得られた抵抗皮膜について、実施例1と同様にして表面抵抗値を測定したところ、335.0Ω/□であった(初期値)。 With respect to the obtained resistance film, the surface resistance value was measured in the same manner as in Example 1, and it was 335.0Ω / □ (initial value).
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を実施例1と同様にして測定した。結果を表4に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured in the same manner as in Example 1 every time after the start of standing. The results are shown in Table 4.
(比較例2)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。PETフィルム上に、ニッケル・クロム合金ターゲットを使い、DCマグネトロンスパッタリングにより、出力0.5kWにて、厚みが3.9nmのニッケル・クロム合金(ニッケル含有量が80重量%、クロム含有量が20重量%)からなる抵抗皮膜を形成した。
(Comparative Example 2)
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. A nickel-chromium alloy having a thickness of 3.9 nm and a thickness of 3.9 nm by DC magnetron sputtering using a nickel-chromium alloy target on a PET film (nickel content is 80 wt%, chromium content is 20 wt%) %) Was formed.
得られた抵抗皮膜について、実施例1と同様にして表面抵抗値を測定したところ、500.8Ω/□であった(初期値)。なお、ニッケル・クロム合金の場合、厚みの調整が困難となり、初期の表面抵抗値が高くなった。 With respect to the obtained resistance film, the surface resistance value was measured in the same manner as in Example 1 and found to be 500.8Ω / □ (initial value). In the case of a nickel-chromium alloy, it was difficult to adjust the thickness, and the initial surface resistance value was high.
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を実施例1と同様にして測定した。結果を表5に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured in the same manner as in Example 1 every time after the start of standing. The results are shown in Table 5.
(比較例3)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。PETフィルム上に、チタンターゲットを使い、DCマグネトロンスパッタリングにより、出力3.6kWにて、厚みが1nmのチタンからなる抵抗皮膜を形成した。
(Comparative Example 3)
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. A resistance film made of titanium having a thickness of 1 nm was formed on a PET film by DC magnetron sputtering using a titanium target at an output of 3.6 kW.
得られた抵抗皮膜について、実施例1と同様にして表面抵抗値を測定したところ、365.4Ω/□であった(初期値)。 When the surface resistance value of the obtained resistance film was measured in the same manner as in Example 1, it was 365.4Ω / □ (initial value).
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を実施例1と同様にして測定した。結果を表6に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured in the same manner as in Example 1 every time after the start of standing. The results are shown in Table 6.
(比較例4)
基材として、厚み125μmのポリエチレンテレフタレート(PET)フィルムを用意した。PETフィルム上に、合金ターゲットを使い、DCマグネトロンスパッタリングにより、出力2.4kWにて、厚みが5nmの合金からなる抵抗皮膜を形成した。
なお、上記合金は、ニッケル含有量が43重量%、クロム含有量が31重量%、モリブデン含有量が4.5重量%、鉄含有量が15.0重量%、コバルト含有量が2重量%以下、タングステン含有量が2.5重量%、マンガン含有量が1.5重量%以下、ケイ素含有量が1重量%以下、炭素含有量が0.3重量%以下である。
(Comparative Example 4)
As a substrate, a polyethylene terephthalate (PET) film having a thickness of 125 μm was prepared. A resistance film made of an alloy having a thickness of 5 nm and an output of 2.4 kW was formed on the PET film by DC magnetron sputtering using an alloy target.
The alloy has a nickel content of 43% by weight, a chromium content of 31% by weight, a molybdenum content of 4.5% by weight, an iron content of 15.0% by weight, and a cobalt content of 2% by weight or less. The tungsten content is 2.5% by weight, the manganese content is 1.5% by weight or less, the silicon content is 1% by weight or less, and the carbon content is 0.3% by weight or less.
得られた抵抗皮膜について、実施例1と同様にして表面抵抗値を測定したところ、351.9Ω/□であった(初期値)。 With respect to the obtained resistance film, the surface resistance value was measured in the same manner as in Example 1 and found to be 351.9Ω / □ (initial value).
成膜直後の抵抗皮膜を、温度25℃、湿度40%Rhの大気下に放置した。放置開始から時間経過毎に抵抗皮膜の表面抵抗値を実施例1と同様にして測定した。結果を表7に示す。 The resistive film immediately after film formation was left in the atmosphere at a temperature of 25 ° C. and a humidity of 40% Rh. The surface resistance value of the resistance film was measured in the same manner as in Example 1 every time after the start of standing. The results are shown in Table 7.
上記の結果より、実施例1〜3における抵抗皮膜は、放置開始26日以降でもほとんど表面抵抗値が変化していないことがわかる。一方、比較例1〜4の抵抗皮膜は、時間を経るごとに表面抵抗値が上昇してしまうことがわかる。
さらには、ニッケル・クロム合金の場合、厚みの調整が困難となり、初期の表面抵抗値が高くなった。
From the above results, it can be seen that the surface resistance values of the resistance films in Examples 1 to 3 hardly change even after 26 days from the start of standing. On the other hand, it can be seen that the resistance films of Comparative Examples 1 to 4 increase in surface resistance value over time.
Furthermore, in the case of a nickel-chromium alloy, it was difficult to adjust the thickness, and the initial surface resistance value was high.
本発明によれば、優れた耐久性を発揮するλ/4型電波吸収体を製造することができるλ/4型電波吸収体用抵抗皮膜、及び、該λ/4型電波吸収体用抵抗皮膜を用いてなるλ/4型電波吸収体、即ち、該λ/4型電波吸収体用抵抗皮膜を含むλ/4型電波吸収体を提供できる。 According to the present invention, a λ / 4 type wave absorber resistance film capable of producing a λ / 4 type wave absorber exhibiting excellent durability, and the λ / 4 type wave absorber resistance film Can be provided, that is, a λ / 4 type wave absorber including the resistance film for the λ / 4 type wave absorber.
Claims (4)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016186015 | 2016-09-23 | ||
JP2016186015 | 2016-09-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018056562A true JP2018056562A (en) | 2018-04-05 |
JP6943704B2 JP6943704B2 (en) | 2021-10-06 |
Family
ID=61834307
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017181609A Active JP6943704B2 (en) | 2016-09-23 | 2017-09-21 | Resistor film for λ / 4 type radio wave absorber and λ / 4 type radio wave absorber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6943704B2 (en) |
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019182002A1 (en) * | 2018-03-20 | 2019-09-26 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
WO2020067145A1 (en) * | 2018-09-25 | 2020-04-02 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
WO2020122150A1 (en) | 2018-12-12 | 2020-06-18 | 日東電工株式会社 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber |
WO2020138190A1 (en) * | 2018-12-25 | 2020-07-02 | 積水化学工業株式会社 | Wave absorber |
WO2020138194A1 (en) * | 2018-12-25 | 2020-07-02 | 積水化学工業株式会社 | Wave absorber |
JPWO2020196368A1 (en) * | 2019-03-26 | 2020-10-01 | ||
WO2020196356A1 (en) * | 2019-03-26 | 2020-10-01 | 積水化学工業株式会社 | λ/4 TYPE RADIOWAVE ABSORBER |
WO2020246608A1 (en) * | 2019-06-07 | 2020-12-10 | 日東電工株式会社 | Radio wave absorbing member, radio wave absorbing structure, and inspection device |
JPWO2021060352A1 (en) * | 2019-09-25 | 2021-04-01 | ||
JP2021052102A (en) * | 2019-09-25 | 2021-04-01 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
CN113615329A (en) * | 2019-03-29 | 2021-11-05 | 日东电工株式会社 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, and laminate for radio wave absorber |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0818272A (en) * | 1994-06-29 | 1996-01-19 | Toshiba Corp | Magnetic clad material and magnetic shield parts using it |
JP2004311743A (en) * | 2003-04-08 | 2004-11-04 | Nippon Electric Glass Co Ltd | Temperature measurement resistor film |
JP2007266509A (en) * | 2006-03-29 | 2007-10-11 | Fujitsu Ltd | Radio wave absorber |
JP2008168585A (en) * | 2007-01-15 | 2008-07-24 | Mitsubishi Shindoh Co Ltd | Flexible laminate |
US20100090879A1 (en) * | 2006-10-19 | 2010-04-15 | Jaenis Anna | Microwave absorber, especially for high temperature applications |
-
2017
- 2017-09-21 JP JP2017181609A patent/JP6943704B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0818272A (en) * | 1994-06-29 | 1996-01-19 | Toshiba Corp | Magnetic clad material and magnetic shield parts using it |
JP2004311743A (en) * | 2003-04-08 | 2004-11-04 | Nippon Electric Glass Co Ltd | Temperature measurement resistor film |
JP2007266509A (en) * | 2006-03-29 | 2007-10-11 | Fujitsu Ltd | Radio wave absorber |
US20100090879A1 (en) * | 2006-10-19 | 2010-04-15 | Jaenis Anna | Microwave absorber, especially for high temperature applications |
JP2008168585A (en) * | 2007-01-15 | 2008-07-24 | Mitsubishi Shindoh Co Ltd | Flexible laminate |
Cited By (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019182002A1 (en) * | 2018-03-20 | 2019-09-26 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
KR102677227B1 (en) * | 2018-09-25 | 2024-06-20 | 세키스이가가쿠 고교가부시키가이샤 | λ/4 type radio wave absorber |
JP2021015988A (en) * | 2018-09-25 | 2021-02-12 | 積水化学工業株式会社 | λ/4 TYPE ELECTROMAGNETIC WAVE ABSORBER |
JP7642344B2 (en) | 2018-09-25 | 2025-03-10 | 積水化学工業株式会社 | λ/4 type radio wave absorber |
CN112753290B (en) * | 2018-09-25 | 2024-07-16 | 积水化学工业株式会社 | Lambda/4 type radio wave absorber |
WO2020067145A1 (en) * | 2018-09-25 | 2020-04-02 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
US11978959B2 (en) | 2018-09-25 | 2024-05-07 | Sekisui Chemical Co., Ltd. | λ/4 type radio wave absorber |
EP3860326A4 (en) * | 2018-09-25 | 2022-09-14 | Sekisui Chemical Co., Ltd. | Lambda/4 type radio wave absorber |
KR20210063326A (en) * | 2018-09-25 | 2021-06-01 | 세키스이가가쿠 고교가부시키가이샤 | λ/4 type radio wave absorber |
CN112753290A (en) * | 2018-09-25 | 2021-05-04 | 积水化学工业株式会社 | Lambda/4 type radio wave absorber |
JPWO2020067145A1 (en) * | 2018-09-25 | 2021-01-07 | 積水化学工業株式会社 | λ / 4 type radio wave absorber |
US11991871B2 (en) | 2018-12-12 | 2024-05-21 | Nitto Denko Corporation | Impedance matching film for radio wave absorber, impedance matching film-attached film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber |
WO2020122150A1 (en) | 2018-12-12 | 2020-06-18 | 日東電工株式会社 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber |
KR20210102292A (en) | 2018-12-12 | 2021-08-19 | 닛토덴코 가부시키가이샤 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber and laminate for radio wave absorber |
US12137544B2 (en) | 2018-12-25 | 2024-11-05 | Sekisui Chemical Co., Ltd. | Wave absorber |
EP3905439A4 (en) * | 2018-12-25 | 2022-09-28 | Sekisui Chemical Co., Ltd. | Wave absorber |
WO2020138194A1 (en) * | 2018-12-25 | 2020-07-02 | 積水化学工業株式会社 | Wave absorber |
JP7534997B2 (en) | 2018-12-25 | 2024-08-15 | 積水化学工業株式会社 | Radio wave absorber |
CN113273034A (en) * | 2018-12-25 | 2021-08-17 | 积水化学工业株式会社 | Radio wave absorber |
JP7554146B2 (en) | 2018-12-25 | 2024-09-19 | 積水化学工業株式会社 | Radio wave absorber |
CN113261158A (en) * | 2018-12-25 | 2021-08-13 | 积水化学工业株式会社 | Radio wave absorber |
US12126084B2 (en) | 2018-12-25 | 2024-10-22 | Sekisui Chemical Co., Ltd. | Wave absorber |
WO2020138190A1 (en) * | 2018-12-25 | 2020-07-02 | 積水化学工業株式会社 | Wave absorber |
JPWO2020138194A1 (en) * | 2018-12-25 | 2021-02-18 | 積水化学工業株式会社 | Radio wave absorber |
JPWO2020138190A1 (en) * | 2018-12-25 | 2021-02-18 | 積水化学工業株式会社 | Radio wave absorber |
EP3905440A4 (en) * | 2018-12-25 | 2022-09-28 | Sekisui Chemical Co., Ltd. | Wave absorber |
WO2020196368A1 (en) * | 2019-03-26 | 2020-10-01 | 積水化学工業株式会社 | λ/4 RADIOWAVE ABSORBER |
JP7642529B2 (en) | 2019-03-26 | 2025-03-10 | 積水化学工業株式会社 | λ/4 type radio wave absorber |
WO2020196356A1 (en) * | 2019-03-26 | 2020-10-01 | 積水化学工業株式会社 | λ/4 TYPE RADIOWAVE ABSORBER |
JPWO2020196356A1 (en) * | 2019-03-26 | 2020-10-01 | ||
JPWO2020196368A1 (en) * | 2019-03-26 | 2020-10-01 | ||
JP7575197B2 (en) | 2019-03-29 | 2024-10-29 | 日東電工株式会社 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber |
CN113615329A (en) * | 2019-03-29 | 2021-11-05 | 日东电工株式会社 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, and laminate for radio wave absorber |
US12132254B2 (en) | 2019-03-29 | 2024-10-29 | Nitto Denko Corporation | Impedance matching film for radio wave absorber, impedance matching film-attached film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber |
CN113615329B (en) * | 2019-03-29 | 2025-02-14 | 日东电工株式会社 | Impedance matching film for radio wave absorber, film with impedance matching film for radio wave absorber, radio wave absorber, and laminate for radio wave absorber |
US11476586B2 (en) | 2019-06-07 | 2022-10-18 | Nitto Denko Corporation | Radio wave absorbing member, radio wave absorbing structure, and inspection apparatus |
WO2020246608A1 (en) * | 2019-06-07 | 2020-12-10 | 日東電工株式会社 | Radio wave absorbing member, radio wave absorbing structure, and inspection device |
CN112585009A (en) * | 2019-06-07 | 2021-03-30 | 日东电工株式会社 | Radio wave absorbing member, radio wave absorbing structure, and inspection device |
JP7547209B2 (en) | 2019-09-25 | 2024-09-09 | 積水化学工業株式会社 | λ/4 type radio wave absorber |
JP7479811B2 (en) | 2019-09-25 | 2024-05-09 | 積水化学工業株式会社 | λ/4 type radio wave absorber |
EP4037101A4 (en) * | 2019-09-25 | 2023-09-13 | Sekisui Chemical Co., Ltd. | Lambda/4 type radio wave absorber |
CN114467370A (en) * | 2019-09-25 | 2022-05-10 | 积水化学工业株式会社 | Lambda/4 type radio wave absorber |
WO2021060352A1 (en) * | 2019-09-25 | 2021-04-01 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
JP2021052102A (en) * | 2019-09-25 | 2021-04-01 | 積水化学工業株式会社 | λ/4 TYPE RADIO WAVE ABSORBER |
JPWO2021060352A1 (en) * | 2019-09-25 | 2021-04-01 |
Also Published As
Publication number | Publication date |
---|---|
JP6943704B2 (en) | 2021-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6943704B2 (en) | Resistor film for λ / 4 type radio wave absorber and λ / 4 type radio wave absorber | |
CN104685577B (en) | Metallic nanostructured network and transparent conductive material | |
JP2009151963A (en) | Transparent electrode and manufacturing method thereof | |
Boscarino et al. | TCO/Ag/TCO transparent electrodes for solar cells application | |
CN107210092B (en) | Substrate, touch panel with the conductive layer substrate with transparent electrode and their manufacturing method | |
Lee et al. | Effect of AlOx protection layer on AgNWs for flexible transparent heater | |
CN111176047B (en) | Flexible electrorheological emissivity device and preparation method thereof | |
WO2020067145A1 (en) | λ/4 TYPE RADIO WAVE ABSORBER | |
KR101849449B1 (en) | Conductive structure body and method for manufacturing the same | |
KR101519888B1 (en) | Hybrid transparent electrode and the fabricating method thereof | |
JP2013177667A (en) | Ag ALLOY FILM USED FOR REFLECTIVE FILM AND/OR PENETRATION FILM, OR ELECTRICAL WIRING AND/OR ELECTRODE, AND AG ALLOY SPUTTERING TARGET AND AG ALLOY FILLER | |
Kim et al. | Double‐layer effect on electrothermal properties of transparent heaters | |
WO2022080011A1 (en) | Metal layer, touch sensor, dimmer element, photoelectric conversion element, hot-wire control member, antenna, electromagnetic wave shield member, image display apparatus, and method for producing metal layer | |
JP5818383B2 (en) | ORGANIC LIGHT EMITTING DIODE DISPLAY HAVING CONDUCTIVE FILM FORMED WITH OXIDE FILM AND MANUFACTURING METHOD | |
JP2020115578A (en) | λ/4 TYPE RADIO WAVE ABSORBER | |
KR20180007209A (en) | Transparent electrode and its fabrication method | |
Song et al. | Fabrication of junction-free Cu nanowire networks via Ru-catalyzed electroless deposition and their application to transparent conducting electrodes | |
Lin et al. | The electro-optical characteristics of AZO/Mo/AZO transparent conductive film | |
JP6209459B2 (en) | Transparent conductive laminate, method for producing transparent conductive laminate, and electronic device using transparent conductive laminate | |
Tran et al. | Highly transparent and conductive ITO/ultra-thin silver/ITO/glass sandwich structure for optical coatings and optoelectronic devices | |
You et al. | Fabrication of ZnO/Ag nanowire/ZnO thin films for optoelectronic applications | |
Lee et al. | Optical and electrical properties of multilayer grid electrodes for highly durable transparent conductive electrodes | |
CN101904232B (en) | Transparent plastic film for shielding electromagnetic waves and method for producing a plastic film of this type | |
JP6379402B2 (en) | Antibacterial membrane and antibacterial agent | |
US20180215660A1 (en) | Method for the Fabrication of a Reduced Reflectance Metal Mesh |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20200518 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20210422 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20210518 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20210714 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20210817 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20210909 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6943704 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |