JP2018044138A5 - - Google Patents
Download PDFInfo
- Publication number
- JP2018044138A5 JP2018044138A5 JP2016196770A JP2016196770A JP2018044138A5 JP 2018044138 A5 JP2018044138 A5 JP 2018044138A5 JP 2016196770 A JP2016196770 A JP 2016196770A JP 2016196770 A JP2016196770 A JP 2016196770A JP 2018044138 A5 JP2018044138 A5 JP 2018044138A5
- Authority
- JP
- Japan
- Prior art keywords
- metal
- compound
- coating
- combustible material
- organic compound
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims description 97
- 229910052751 metal Inorganic materials 0.000 claims description 91
- 239000002184 metal Substances 0.000 claims description 91
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 claims description 84
- 239000003973 paint Substances 0.000 claims description 76
- 238000000576 coating method Methods 0.000 claims description 73
- 150000002894 organic compounds Chemical class 0.000 claims description 73
- 238000005979 thermal decomposition reaction Methods 0.000 claims description 70
- 239000011248 coating agent Substances 0.000 claims description 68
- -1 octylic acid metal compound Chemical class 0.000 claims description 66
- 239000010419 fine particle Substances 0.000 claims description 58
- 150000002736 metal compounds Chemical class 0.000 claims description 46
- 238000009835 boiling Methods 0.000 claims description 35
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 32
- 239000013078 crystal Substances 0.000 claims description 24
- 238000004519 manufacturing process Methods 0.000 claims description 19
- 238000002844 melting Methods 0.000 claims description 12
- 230000008018 melting Effects 0.000 claims description 12
- 239000006185 dispersion Substances 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000002923 metal particle Substances 0.000 claims description 7
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical class OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 claims description 6
- 239000002244 precipitate Substances 0.000 claims description 5
- 229910001111 Fine metal Inorganic materials 0.000 claims 1
- 239000011259 mixed solution Substances 0.000 claims 1
- 239000000126 substance Substances 0.000 description 71
- 239000011651 chromium Substances 0.000 description 49
- 229910052804 chromium Inorganic materials 0.000 description 38
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 32
- 239000012298 atmosphere Substances 0.000 description 29
- WWZKQHOCKIZLMA-UHFFFAOYSA-N octanoic acid Chemical compound CCCCCCCC(O)=O WWZKQHOCKIZLMA-UHFFFAOYSA-N 0.000 description 25
- 239000007789 gas Substances 0.000 description 22
- 229920005989 resin Polymers 0.000 description 22
- 239000011347 resin Substances 0.000 description 22
- DOIRQSBPFJWKBE-UHFFFAOYSA-N dibutyl phthalate Chemical compound CCCCOC(=O)C1=CC=CC=C1C(=O)OCCCC DOIRQSBPFJWKBE-UHFFFAOYSA-N 0.000 description 20
- 239000003063 flame retardant Substances 0.000 description 20
- 229920000877 Melamine resin Polymers 0.000 description 17
- 150000001845 chromium compounds Chemical class 0.000 description 17
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 15
- 229920003002 synthetic resin Polymers 0.000 description 15
- 239000000057 synthetic resin Substances 0.000 description 15
- JDSHMPZPIAZGSV-UHFFFAOYSA-N melamine Chemical compound NC1=NC(N)=NC(N)=N1 JDSHMPZPIAZGSV-UHFFFAOYSA-N 0.000 description 14
- 229910001430 chromium ion Inorganic materials 0.000 description 13
- 239000007788 liquid Substances 0.000 description 13
- 239000001301 oxygen Substances 0.000 description 13
- 229910052760 oxygen Inorganic materials 0.000 description 13
- 229920000642 polymer Polymers 0.000 description 13
- 239000002994 raw material Substances 0.000 description 13
- 238000010438 heat treatment Methods 0.000 description 11
- 239000011120 plywood Substances 0.000 description 11
- 238000000197 pyrolysis Methods 0.000 description 11
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 10
- 239000000839 emulsion Substances 0.000 description 10
- 239000000047 product Substances 0.000 description 10
- 239000002023 wood Substances 0.000 description 10
- RNFJDJUURJAICM-UHFFFAOYSA-N 2,2,4,4,6,6-hexaphenoxy-1,3,5-triaza-2$l^{5},4$l^{5},6$l^{5}-triphosphacyclohexa-1,3,5-triene Chemical compound N=1P(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP(OC=2C=CC=CC=2)(OC=2C=CC=CC=2)=NP=1(OC=1C=CC=CC=1)OC1=CC=CC=C1 RNFJDJUURJAICM-UHFFFAOYSA-N 0.000 description 9
- 150000004671 saturated fatty acids Chemical class 0.000 description 9
- 238000009834 vaporization Methods 0.000 description 9
- 230000008016 vaporization Effects 0.000 description 9
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- GXROCGVLAIXUAF-UHFFFAOYSA-N copper octan-1-ol Chemical compound [Cu].CCCCCCCCO GXROCGVLAIXUAF-UHFFFAOYSA-N 0.000 description 7
- 150000002500 ions Chemical class 0.000 description 7
- POULHZVOKOAJMA-UHFFFAOYSA-N methyl undecanoic acid Natural products CCCCCCCCCCCC(O)=O POULHZVOKOAJMA-UHFFFAOYSA-N 0.000 description 7
- 239000012299 nitrogen atmosphere Substances 0.000 description 7
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 7
- 239000000123 paper Substances 0.000 description 7
- 239000002245 particle Substances 0.000 description 7
- 239000000779 smoke Substances 0.000 description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 6
- 229910001882 dioxygen Inorganic materials 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000004014 plasticizer Substances 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 5
- 239000000440 bentonite Substances 0.000 description 5
- 229910000278 bentonite Inorganic materials 0.000 description 5
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 5
- 239000004566 building material Substances 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- 239000010949 copper Substances 0.000 description 5
- 229910021645 metal ion Inorganic materials 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000005639 Lauric acid Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 229910052802 copper Inorganic materials 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 239000012530 fluid Substances 0.000 description 4
- 239000012796 inorganic flame retardant Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 239000004640 Melamine resin Substances 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 235000021355 Stearic acid Nutrition 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- WGLPBDUCMAPZCE-UHFFFAOYSA-N Trioxochromium Chemical compound O=[Cr](=O)=O WGLPBDUCMAPZCE-UHFFFAOYSA-N 0.000 description 3
- 229910052783 alkali metal Inorganic materials 0.000 description 3
- 239000011362 coarse particle Substances 0.000 description 3
- 238000010894 electron beam technology Methods 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 239000003317 industrial substance Substances 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 229910052742 iron Inorganic materials 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 229910052759 nickel Inorganic materials 0.000 description 3
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 3
- 150000002902 organometallic compounds Chemical class 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 230000002265 prevention Effects 0.000 description 3
- 239000008117 stearic acid Substances 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 2
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 239000013543 active substance Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- LJCFOYOSGPHIOO-UHFFFAOYSA-N antimony pentoxide Chemical compound O=[Sb](=O)O[Sb](=O)=O LJCFOYOSGPHIOO-UHFFFAOYSA-N 0.000 description 2
- ADCOVFLJGNWWNZ-UHFFFAOYSA-N antimony trioxide Chemical compound O=[Sb]O[Sb]=O ADCOVFLJGNWWNZ-UHFFFAOYSA-N 0.000 description 2
- 239000002585 base Substances 0.000 description 2
- 230000033228 biological regulation Effects 0.000 description 2
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000004568 cement Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 229910000423 chromium oxide Inorganic materials 0.000 description 2
- PHFQLYPOURZARY-UHFFFAOYSA-N chromium trinitrate Chemical compound [Cr+3].[O-][N+]([O-])=O.[O-][N+]([O-])=O.[O-][N+]([O-])=O PHFQLYPOURZARY-UHFFFAOYSA-N 0.000 description 2
- GRWVQDDAKZFPFI-UHFFFAOYSA-H chromium(III) sulfate Chemical compound [Cr+3].[Cr+3].[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O.[O-]S([O-])(=O)=O GRWVQDDAKZFPFI-UHFFFAOYSA-H 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000151 deposition Methods 0.000 description 2
- VAROLYSFQDGFMV-UHFFFAOYSA-K di(octanoyloxy)alumanyl octanoate Chemical compound [Al+3].CCCCCCCC([O-])=O.CCCCCCCC([O-])=O.CCCCCCCC([O-])=O VAROLYSFQDGFMV-UHFFFAOYSA-K 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 238000003618 dip coating Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 239000004922 lacquer Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920001225 polyester resin Polymers 0.000 description 2
- 239000004645 polyester resin Substances 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920000915 polyvinyl chloride Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000007761 roller coating Methods 0.000 description 2
- 235000003441 saturated fatty acids Nutrition 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 2
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 2
- 230000004580 weight loss Effects 0.000 description 2
- ACRQLFSHISNWRY-UHFFFAOYSA-N 1,2,3,4,5-pentabromo-6-phenoxybenzene Chemical compound BrC1=C(Br)C(Br)=C(Br)C(Br)=C1OC1=CC=CC=C1 ACRQLFSHISNWRY-UHFFFAOYSA-N 0.000 description 1
- QTWJRLJHJPIABL-UHFFFAOYSA-N 2-methylphenol;3-methylphenol;4-methylphenol Chemical compound CC1=CC=C(O)C=C1.CC1=CC=CC(O)=C1.CC1=CC=CC=C1O QTWJRLJHJPIABL-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 240000001492 Carallia brachiata Species 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 229910021555 Chromium Chloride Inorganic materials 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 239000000020 Nitrocellulose Substances 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 239000000908 ammonium hydroxide Substances 0.000 description 1
- 230000003373 anti-fouling effect Effects 0.000 description 1
- 230000000843 anti-fungal effect Effects 0.000 description 1
- 230000002421 anti-septic effect Effects 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 229910052787 antimony Inorganic materials 0.000 description 1
- WATWJIUSRGPENY-UHFFFAOYSA-N antimony atom Chemical compound [Sb] WATWJIUSRGPENY-UHFFFAOYSA-N 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000013590 bulk material Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- QSWDMMVNRMROPK-UHFFFAOYSA-K chromium(3+) trichloride Chemical compound [Cl-].[Cl-].[Cl-].[Cr+3] QSWDMMVNRMROPK-UHFFFAOYSA-K 0.000 description 1
- WYYQVWLEPYFFLP-UHFFFAOYSA-K chromium(3+);triacetate Chemical compound [Cr+3].CC([O-])=O.CC([O-])=O.CC([O-])=O WYYQVWLEPYFFLP-UHFFFAOYSA-K 0.000 description 1
- 229910000151 chromium(III) phosphate Inorganic materials 0.000 description 1
- IKZBVTPSNGOVRJ-UHFFFAOYSA-K chromium(iii) phosphate Chemical compound [Cr+3].[O-]P([O-])([O-])=O IKZBVTPSNGOVRJ-UHFFFAOYSA-K 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 229930003836 cresol Natural products 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000004455 differential thermal analysis Methods 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000009408 flooring Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001307 helium Substances 0.000 description 1
- 229910052734 helium Inorganic materials 0.000 description 1
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 1
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 1
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 239000000976 ink Substances 0.000 description 1
- 239000002655 kraft paper Substances 0.000 description 1
- 238000003475 lamination Methods 0.000 description 1
- 239000003446 ligand Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 description 1
- 239000000347 magnesium hydroxide Substances 0.000 description 1
- 229910001862 magnesium hydroxide Inorganic materials 0.000 description 1
- 150000001247 metal acetylides Chemical class 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 239000013081 microcrystal Substances 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 229920001220 nitrocellulos Polymers 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229920003986 novolac Polymers 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 239000003495 polar organic solvent Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 239000013558 reference substance Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000004078 waterproofing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Description
本発明に係わる不燃性塗料を可燃性物質に塗布して熱処理すると、金属結合した金属微粒子の集まりが積層して多層構造を形成して可燃性物質を覆い、可燃性物質に酸素ガスが供給されない。このため、発火点以上に昇温されても、可燃性物質は自己発火せず着火しない。また、熱分解した可燃性物質が外部に排出されない。本発明は、このような作用効果をもたらす不燃性塗料の製造方法に係わる。なお、可燃性の物質は、基材、部品、製品など様々な形態を形成するため、本発明では可燃性物質としてひとくくりにする。 When the nonflammable coating according to the present invention is applied to a flammable material and heat-treated, a collection of metal-bonded metal fine particles is laminated to form a multilayer structure to cover the flammable material, and oxygen gas is not supplied to the flammable material . For this reason, even if it heats up more than an ignition point, a combustible substance does not self-ignite and does not ignite. Also, pyrolyzable combustible substances are not discharged to the outside. The present invention relates to a method for producing an incombustible coating material that provides such an effect. In addition, since a combustible substance forms various forms, such as a base material, components, and a product, it is grouped as a combustible substance in this invention.
建築基準法には、建物の用途や規模に応じて、建物の主要部分を難燃性、不燃性の建材で構成しなければならない規定がある。不燃性能とその技術的基準について、第百八条の二で、「建築材料に通常の火災に依る加熱が加えられた場合に、加熱開始後二十分間次の各号に掲げる要件を満たしていることとする。(1)燃焼しないものであること。(2)防火上有害な変形、溶融、き裂その他の損傷を生じないものであること。(3)避難上有害な煙又はガスを発生しないものであること。」と規定されている。また、この法令では、加熱開始後10分間の間、3項目の要件を持たす材料を準不燃材料と規定し、加熱開始後5分間の間、3項目の要件を満たす材料を難燃材料と規定している。従って、不燃材料は難燃材料より燃えにくい材料であり、不燃性塗料の難燃性は、難燃性塗料の難燃性より高い。
こうした背景に基づいて、様々な不燃性塗料の開発が行われ商品化されている。いっぽう、建築や建材に用いられる塗料には、有機物質からなるエマルジョン樹脂と添加剤を含むため、火災時に燃焼する。なお、エマルジョン樹脂は、アクリル樹脂などからなる微細な粒子を溶剤に分散させたもので、溶剤が蒸発した後に、塗膜としての被膜を形成する。従って、可燃性の有機物質を含む塗膜を不燃化するには、塗料に難燃剤を添加する手法が一般的である。難燃剤は有機難燃剤と無機難燃剤とに二分される。さらに、有機難燃剤は、ペンタブロモジフェニルエーテルなどからなるハロゲン系の難燃剤と、リン酸エステルなどからなるリン系の難燃剤と、メラミンなどからなる複合型の難燃剤とに分類される。いっぽう、無機難燃剤は、水酸化アンモニウムや水酸化マグネシウムなどからなる金属水酸化物の難燃剤と、三酸化アンチモンや五酸化アンチモンなどからなるアンチモン系の難燃剤と、赤燐などからなる難燃剤とに分類される。このような難燃剤を、水中に分散させたエマルジョン樹脂と共に混合し、さらに、可塑剤や沈澱防止剤などからなる添加剤と、着色のための顔料とを加え、最後に、水で希釈して塗料として用いている。従って、無機系の難燃剤を用いる場合でも、有機物質からなるエマルジョン樹脂と可塑剤とが用いられる。こうした難燃剤の中で、ハロゲン系の難燃剤の不燃性の効果が最も大きく、かつ、最も安価な難燃剤である。しかしながら、ハロゲン系難燃剤の熱分解で発生する物質が、環境に与える影響が無視できない。
The Building Standards Law stipulates that the main part of the building must be composed of flame-retardant and non-flammable building materials according to the use and scale of the building. Regarding the nonflammability performance and its technical standards, Article 108-2 states, “When building materials are heated by a normal fire, they meet the requirements listed in the following items for 20 minutes after the start of heating. (1) It must not burn. (2) It shall not cause deformation, melting, cracking or other damage harmful to fire prevention. (3) Smoke or gas harmful to evacuation It shall not be generated ". In addition, this law stipulates materials that have the requirements of 3 items as quasi-incombustible materials for 10 minutes after the start of heating, and those that satisfy the requirements of 3 items as flame retardant materials for 5 minutes after the start of heating. doing. Therefore, the incombustible material is a material that is less flammable than the incombustible material, and the incombustible paint has a higher incombustibility than the incombustible paint.
Based on this background, various incombustible paints have been developed and commercialized. On the other hand, paints used for construction and building materials contain emulsion resins and additives made of organic substances, and therefore burn in the event of a fire. The emulsion resin is obtained by dispersing fine particles made of an acrylic resin or the like in a solvent, and forms a film as a coating film after the solvent evaporates. Therefore, a method of adding a flame retardant to a paint is generally used to incombust a coating film containing a flammable organic substance. The flame retardant is divided into an organic flame retardant and an inorganic flame retardant. Furthermore, organic flame retardants are classified into halogen-based flame retardants such as pentabromodiphenyl ether, phosphorus-based flame retardants such as phosphate esters, and composite flame retardants such as melamine. On the other hand, inorganic flame retardants include metal hydroxide flame retardants such as ammonium hydroxide and magnesium hydroxide, antimony flame retardants such as antimony trioxide and antimony pentoxide, and flame retardants such as red phosphorus. And classified. Such a flame retardant is mixed with an emulsion resin dispersed in water, and an additive comprising a plasticizer and an anti-precipitation agent and a pigment for coloring are added, and finally diluted with water. Used as paint. Therefore, even when an inorganic flame retardant is used, an emulsion resin made of an organic material and a plasticizer are used. Among these flame retardants, the halogen-based flame retardant has the greatest non-flammability effect and is the cheapest flame retardant. However, the environmental impact of substances generated by the thermal decomposition of halogenated flame retardants cannot be ignored.
従来の難燃剤とは異なる材料構成からなる様々の難燃剤の開発が行われている。例えば特許文献1には、高純度で生成したベントナイトと、ソープフリーのエマルジョン樹脂を主な成分とする難燃性の塗料が提案されている。しかし、ベントナイトは、400℃以上で分子構造が不安定になるため、400℃以上の高温環境下では、ベントナイトのガスバリア性が低下する問題点を持つ。また、モンモリロナイトの含有量が85重量%以上の微粉末として、ベントナイトを精製する製造コストは安価ではない。また、エマルジョン樹脂は、前記した建築基準法の不燃性、つまり、加熱開始後の20分間は燃焼しなくても、さらに長時間加熱されれば燃焼する。なお、ベントナイトは、粘土鉱物の一種からなる無機物で、従来は塗料の沈澱防止剤として用いている。
また、特許文献2には、ホワイトセメントに無機系骨材、不燃剤を配合して粉剤とし、この粉剤に水性エマルジョン樹脂よりなる液剤を混練した主な成分からなる無機系及び有機系ハイブリッド型不燃塗料が提案されている。しかしながら、このような組成からなる塗料の不燃性を高めるには、塗料中にホワイトセメント、無機系骨材、不燃材の配合割合を高めなければならない。しかしながら、無機系の難燃剤を高めるほど、取り扱いが複雑になり、塗膜形成の作業性が劣る。また、下時との密着性が劣り、塗膜物性の経時劣化がもたらされる。また、水性エマルジョン樹脂は、前記した建築基準法の不燃性、つまり、加熱開始後の20分間は燃焼しない性質を持っても、さらに長時間加熱されれば燃焼する。
なお、エマルジョン樹脂に用いられているアクリル樹脂は、大気雰囲気の370℃付近から熱分解が始まり、沸点が101℃で発火点が421℃であるメタクリル酸メチルと、沸点が80℃で発火点が468℃であるアクリル酸メチルと、これらの類縁化合物とに分解される。また、代表的な可塑剤であるフタル酸ジブチルは、沸点が340℃で、発火点が402℃である。従って、エマルジョン樹脂と可塑剤とを成分に持つ不燃性塗料が塗布された可燃性物質は、400℃より低い温度で塗膜が熱分解して不燃性が失われ、可燃性物質が発火する。
Various flame retardants having a material structure different from that of conventional flame retardants have been developed. For example, Patent Document 1 proposes a flame-retardant paint mainly composed of bentonite produced with high purity and a soap-free emulsion resin. However, since the molecular structure of bentonite becomes unstable at 400 ° C. or higher, there is a problem that the gas barrier property of bentonite is lowered under a high temperature environment of 400 ° C. or higher. Moreover, the manufacturing cost which refine | purifies bentonite as a fine powder whose content of montmorillonite is 85 weight% or more is not cheap. In addition, the emulsion resin does not burn in the above-mentioned Building Standards Act, that is, does not burn for 20 minutes after the start of heating, but burns if heated for a longer time. Bentonite is an inorganic substance made of a kind of clay mineral, and conventionally used as an anti-precipitation agent for paints.
Patent Document 2 discloses inorganic and organic hybrid incombustibles composed mainly of white cement mixed with an inorganic aggregate and an incombustible agent to form a powder, and this powder is mixed with a liquid agent composed of an aqueous emulsion resin. Paint has been proposed. However, in order to increase the incombustibility of a paint having such a composition, the blending ratio of white cement, inorganic aggregate, and incombustible material must be increased in the paint. However, the higher the inorganic flame retardant, the more complicated the handling and the poorer the workability of forming a coating film. Moreover, the adhesiveness with the bottom is inferior, and the coating film physical property is deteriorated with time. Moreover, even if the water-based emulsion resin has the nonflammability of the building standard method described above, that is, the property that it does not burn for 20 minutes after the start of heating, it burns if it is further heated.
The acrylic resin used in the emulsion resin begins to thermally decompose at around 370 ° C. in the atmosphere, and has a boiling point of 101 ° C. and an ignition point of 421 ° C., and a boiling point of 80 ° C. and an ignition point. It is decomposed into methyl acrylate at 468 ° C. and these related compounds. Further, dibutyl phthalate, which is a typical plasticizer, has a boiling point of 340 ° C. and an ignition point of 402 ° C. Therefore, the combustible material to which the incombustible paint having the emulsion resin and the plasticizer as components is applied, the coating film is thermally decomposed at a temperature lower than 400 ° C., the incombustibility is lost, and the combustible material is ignited.
前記した建築基準法に規定された不燃性は、火災発生時の当初の20分間だけは、3項目の要件を満たす規定であり、正確に言えば不燃性ではなく遅燃性の規定である。しかし、火災の発生から20分以内に燃えている建物から全ての人が避難できるとは限らない。また、不燃性塗料が火災の発生から20分以降に燃焼すると、不燃性塗料が塗布された可燃性物質が発火し、火災の延焼をもたらし、また、避難上有害な煙又はガスを発生する。従って、不燃性塗料が、可燃性物質を自己発火せず着火しない不燃性に変えられれば、どのような火災でも可燃性物質の不燃性が継続され、防災上の作用効果は大きい。
ここで、本発明における不燃性塗料を定義する。第一に、様々な可燃性物質が高温に晒されて熱分解しても、不燃性塗料によって形成した被膜が、熱分解で生成された全ての物質を外部に排出しなければ、熱分解に依る黒煙や有害ガスが排出されず、黒煙が視界を遮り、有害ガスが災害をもたらすことがない。また、熱分解で生成された可燃性物質が自己発火して火災の起点を作り、着火して火災を延焼させることもない。第二に、不燃性塗料によって形成した被膜が、様々な可燃性物質に酸素ガスを供給しなければ、可燃性物質が発火点を超える温度に昇温されても、酸素ガスとの酸化反応である燃焼が起こらず、可燃性物質は自己発火せず着火しない。従って、金属に近い耐熱性と気密性とを有する被膜で可燃性物質を被覆できれば、どのような規模の火災に長時間さらされても、可燃性物質は自己発火せず着火しない。また、熱分解された可燃性物質が、外部に排出されない。従って、金属に近い耐熱性と気密性とを有する被膜で可燃性物質を被覆する塗料を、本発明における不燃性塗料と定義する。
現在、全ての建物に、様々な可燃性物質、つまり、樹脂や木材や紙類などの有機物質を主成分とする製品が多く用いられている。このため、可燃性物質が、金属に近い耐熱性と気密性とを有する被膜で被覆される作用効果は極めて大きい。しかしながら、こうした作用効果をもたらす塗料は、現在のところ存在しない。
ところで、塗料には様々な塗料が存在する。使用目的から塗料の全般を分類すると、第一に、物質の表面を保護することを目的とする塗料がある。表面の保護としては、防食、防腐、防黴、防蟻、防汚、防水、耐薬品、耐火・耐熱などが挙げられる。第二に、物質の表面の美観を向上させることを目的とする塗料がある。美観として、表面の平滑化、光沢付与、彩色、模様、意匠、景観創出などが挙げられる。第三に、機能性を付与することを目的とする塗料がある。機能性として、遮熱、撥水、結露防止、蛍光、蓄光、光の反射、防音・防振、迷彩、有害化学物質の吸着、電気絶縁、滑り止めなどが挙げられる。
また、塗料は塗膜を形成する主成分によっても分類される。ワニスなどの乾性油を主成分とする油性塗料と、ニトロセルロースを主成分とするラッカーと、各種樹脂を主成分とする樹脂塗料と、セラミックを主成分とする酒精塗料とに分類される。さらに、これらの分類は、使用する材料の種類によって細分化される。
こうした塗料が塗布される対象は、建築物や建材、金属の基材、部品なしは製品、船舶、自動車、家具、木工品、プラスチック製品など様々であり、形状と大きさと材質が異なる。
従って、使用目的と使用環境と対象物とに応じて、形成される塗膜が変わる。このため、本発明における不燃性塗料は、すでに形成された塗膜の如何に拘わらず、また、塗膜の有無にかかわらず、全ての可燃性物質を金属に近い耐熱性と気密性とを有する被膜で覆えなければならない。つまり、可燃性物質の表面がどのような状態であれ、どのような材質と形状と大きさであれ、不燃性塗料によって塗膜が形成できなければならない。
以上に説明したように、本発明に係わる課題は、可燃性物質の表面の材質、大きさ、形状、また、表面の状態にかかわらず、全ての可燃性物質の表面を金属に近い耐熱性と気密性とを有する被膜で覆うことができる不燃性塗料を実現することにある。
The nonflammability prescribed in the Building Standards Act is a rule that satisfies the requirements of the three items only for the first 20 minutes at the time of the occurrence of a fire. To be precise, it is a rule of slow flame retardance rather than nonflammability. However, not all people can evacuate from buildings that are burning within 20 minutes of the fire. In addition, when the incombustible paint burns after 20 minutes from the occurrence of the fire, the combustible material to which the incombustible paint is applied ignites, causing the fire to spread, and generating smoke or gas harmful to evacuation. Therefore, if the incombustible paint can be changed to incombustibility that does not ignite the combustible material and does not ignite, the incombustibility of the combustible material will be continued in any fire, and the effect on disaster prevention is great.
Here, the nonflammable paint in the present invention is defined. First, even if various flammable materials are exposed to high temperatures and thermally decomposed, if the coating formed by the incombustible paint does not discharge all the materials generated by the thermal decomposition to the outside, it will be thermally decomposed. Reliable black smoke and harmful gases are not discharged, black smoke blocks the view, and harmful gases do not cause disasters. In addition, combustible substances generated by pyrolysis are self-ignited to create a starting point of fire, and are not ignited to spread the fire. Second, if the film formed of non-combustible paint does not supply oxygen gas to various flammable substances, it will not oxidize with oxygen gas even if the flammable substance is heated to a temperature above its ignition point. There is no combustion, and combustible materials do not ignite and do not ignite. Therefore, as long as the combustible material can be covered with a coating having heat resistance and airtightness close to metal, the combustible material does not ignite and does not ignite even if it is exposed to a fire of any scale for a long time. In addition, the thermally decomposed combustible material is not discharged to the outside. Therefore, a paint in which a combustible material is coated with a film having heat resistance and airtightness close to metal is defined as a non-combustible paint in the present invention.
At present, all buildings use many combustible substances, that is, products mainly composed of organic substances such as resin, wood and paper. For this reason, the effect which a combustible substance is coat | covered with the film which has the heat resistance close | similar to a metal, and airtightness is very large. However, there are currently no paints that provide these effects.
By the way, there are various paints. When classifying paints in general according to the purpose of use, firstly, there are paints intended to protect the surface of a substance. Examples of surface protection include anticorrosion, antiseptic, antifungal, antproof, antifouling, waterproofing, chemical resistance, fire resistance and heat resistance. Second, there are paints aimed at improving the aesthetics of the surface of a substance. Examples of aesthetics include smoothing the surface, imparting gloss, coloring, patterns, designs, and landscape creation. Thirdly, there are paints intended to impart functionality. Functionality includes heat shielding, water repellency, anti-condensation, fluorescence, phosphorescence, light reflection, sound / vibration prevention, camouflage, adsorption of harmful chemicals, electrical insulation, anti-slip, and the like.
The paints are also classified according to the main components that form the coating film. They are classified into oil-based paints mainly composed of dry oil such as varnish, lacquers mainly composed of nitrocellulose, resin paints mainly composed of various resins, and alcoholic paints composed mainly of ceramics. Furthermore, these classifications are subdivided according to the type of material used.
The objects to which such paint is applied include buildings, building materials, metal bases, and parts without products such as products, ships, automobiles, furniture, woodwork, plastic products, etc., and the shapes, sizes and materials are different.
Therefore, the formed coating film changes depending on the purpose of use, the environment of use, and the object. For this reason, the incombustible paint in the present invention has heat resistance and airtightness close to metal for all combustible materials regardless of the coating film already formed and regardless of the presence or absence of the coating film. Must be covered with a coating. In other words, whatever the state of the surface of the combustible substance, whatever material, shape and size, it must be possible to form a coating film with a noncombustible paint.
As described above, the problem related to the present invention is that the surface of all flammable substances has heat resistance close to that of metal regardless of the material, size, shape, and surface state of the flammable substances. An object of the present invention is to realize a non-combustible paint that can be covered with a film having airtightness.
本発明における可燃性物質の表面に塗布することで該可燃性物質に不燃性をもたらす不燃性塗料を製造する製造方法は、熱分解で金属を析出する金属化合物をアルコールに分散し、該金属化合物が分子状態となってアルコールに分散したアルコール分散液を作成し、融点が20℃より低い第一の性質と、前記アルコールに溶解ないしは混和する第二の性質と、前記アルコールより20倍以上粘度が高い第三の性質と、沸点が前記金属化合物の熱分解温度より50℃以上高い第四の性質と、発火点が前記沸点より50℃以上高い第五の性質からなる5つの性質を兼備する有機化合物を、前記アルコール分散液に混合し、該有機化合物が前記アルコールに溶解ないしは混和し、該有機化合物が前記アルコール分散液と均一に混ざり合った混合液を作成する、これによって、該混合液を可燃性物質の表面に塗布することで該可燃性物質に不燃性をもたらす前記混合液からなる不燃性塗料が製造される、不燃性塗料の製造方法である。 Method of manufacturing a non-flammable paint bring incombustible to the combustible material by applying to the surface of the combustible material in the present invention, a metal compound to deposit metal by pyrolysis and dispersed in an alcohol, the metal compound Is prepared in a molecular state and is dispersed in alcohol. The first property has a melting point lower than 20 ° C., the second property which dissolves or mixes in the alcohol, and the viscosity is 20 times or more than that of the alcohol. Organic that has five properties: a high third property, a fourth property whose boiling point is 50 ° C. or more higher than the thermal decomposition temperature of the metal compound, and a fifth property whose ignition point is 50 ° C. or more higher than the boiling point. compounds were mixed in the alcohol dispersion, the organic compound is dissolved or mixed in the alcohol, a mixture organic compound mixed with the alcohol dispersion and uniformity To formed, thereby, non-flammable coating made from the mixture bring incombustible to the combustible material by applying the mixture on the surface of the combustible material is produced, is a method for producing a non-flammable paint .
つまり、本製造方法に依れば、最初に、熱分解で金属を析出する金属化合物をアルコールに分散すると、金属化合物が分子状態となってアルコールに分散される。これによって、金属の原料が液相化される。次に、有機化合物をアルコール分散液に混合すると、有機化合物がアルコールに溶解ないしは混和するため、有機化合物は金属化合物のアルコール分散液と均一に混ざり合い、可燃性物質に不燃性をもたらす液体から構成される不燃性塗料が製造される。この不燃性塗料の粘度は、有機化合物の粘度と有機化合物の混合割合とに応じて変わり、不燃性塗料を可燃性物質に塗布した塗膜の厚みは、不燃性塗料の粘度で決まる。従って、可燃性物質の材質、形状、大きさ、また、表面の状態に応じて、不燃性塗料の粘度を調整し、さらに、刷毛塗り、ローラー塗り、吹き付け塗装、ロールコーター、浸漬塗りなどの塗布の方法を選択することで、全ての可燃性物質に不燃性塗料からなる塗膜が形成できる。 That is, according to this production method, when a metal compound that deposits a metal by thermal decomposition is first dispersed in alcohol, the metal compound is converted into a molecular state and dispersed in the alcohol. As a result, the metal raw material is converted into a liquid phase. Next, when the organic compound is mixed with the alcohol dispersion, the organic compound dissolves or mixes with the alcohol, so the organic compound is uniformly mixed with the alcohol dispersion of the metal compound, and is composed of a liquid that causes incombustibility to the combustible substance. Incombustible paints are produced. The viscosity of the incombustible paint changes according to the viscosity of the organic compound and the mixing ratio of the organic compound, and the thickness of the coating film obtained by applying the incombustible paint to the combustible substance is determined by the viscosity of the incombustible paint. Therefore, adjust the viscosity of the non-combustible paint according to the material, shape, size, and surface condition of the combustible material, and apply brush coating, roller coating, spray coating, roll coater, dip coating, etc. By selecting this method, it is possible to form a coating film made of a non-combustible paint on all combustible substances.
前記した製造方法で製造した不燃性塗料を用いて可燃性物質に不燃性をもたらす気密性の被膜で該可燃性物質の表面を覆う方法は、前記した製造方法で製造した不燃性塗料を可燃性物質の表面に塗布し、該可燃性物質を昇温し、前記不燃性塗料を構成するアルコールを気化し、該不燃性塗料を構成する金属化合物の微細結晶の集まりが、該不燃性塗料を構成する有機化合物中に一斉に析出し、前記金属化合物の微細結晶が下層に沈み、前記有機化合物が前記金属化合物の微細結晶の上層に移動する、この後、前記金属化合物の微細結晶が熱分解し、粒状の金属微粒子の集まりが前記可燃性物質の表面に析出し、該金属微粒子が前記可燃性物質の表面の凹凸に入り込むとともに、隣接する前記金属微粒子同士が互いに金属結合し、該金属結合した金属微粒子の集まりが積層して多層構造を形成し、前記可燃性物質の表面が、前記多層構造からなる被膜で覆われるとともに、前記金属化合物の熱分解温度より沸点が高い前記有機化合物が、前記多層構造の被膜の表面を該有機化合物からなる被膜で覆い、前記可燃性物質が、前記多層構造からなる被膜と前記有機化合物とからなる被膜の2種類の気密性の被膜で覆われる、前記した製造方法で製造した不燃性塗料を用いて可燃性物質に不燃性をもたらす気密性の被膜で該可燃性物質の表面を覆う方法である。 The method of covering the surface of the flammable substance with an airtight coating that causes the flammable substance to be nonflammable using the nonflammable paint manufactured by the above-described manufacturing method is a flammable non-flammable paint manufactured by the above-described manufacturing method . It is applied to the surface of the substance, the temperature of the combustible substance is raised, the alcohol constituting the incombustible paint is vaporized , and a collection of fine crystals of the metal compound constituting the incombustible paint constitutes the incombustible paint. deposited simultaneously in an organic compound which, microcrystals sink to the lower layer of the metal compound, the organic compound to move to the upper layer of the fine crystals of the metal compounds, thereafter, fine crystals of the metal compound is thermally decomposed In addition, a collection of granular metal fine particles is deposited on the surface of the combustible substance, and the metal fine particles enter the irregularities on the surface of the combustible substance, and the adjacent metal fine particles are metal-bonded to each other. Collection of the metal fine particles are laminated to form a multilayer structure, the surface of the combustible material, with covered with a film made of the multilayer structure, boiling point than the thermal decomposition temperature is higher the organic compound of the metal compound, wherein covered with a film comprising the surface of the multilayer structure film from the organic compound, wherein the combustible material is, the comprising a coating of a multilayer structure and the organic compound are covered with two types of air-tightness of the coating film, and the In this method, the surface of the combustible material is covered with an airtight coating that causes the combustible material to be incombustible using the incombustible paint produced by the production method .
つまり、前記した不燃性塗料を塗布した可燃性物質を昇温すると、最初に不燃性塗料からアルコールが気化する。これによって、金属化合物はアルコールに分散するが、有機化合物に分散しないため、金属化合物の微細結晶の集まりが有機化合物中に一斉に析出する。この際、金属化合物の微細結晶は下層に沈み、液体の有機化合物が金属化合物の微細結晶の上層に移動する。なお、金属化合物の微細結晶は、熱分解で析出する金属微粒子の大きさに相当する。さらに昇温すると、金属化合物の熱分解が可燃性物質の表面で起こる。金属化合物は、最初に金属と有機物に分解し、さらに、有機物が気化熱を奪いながら気化し、有機物の微細な気泡が有機化合物の層を突き抜けて蒸発し、有機物の気化が完了した瞬間に、40−60nmの大きさからなる粒状の金属微粒子の集まりが、可燃性物質の表面の凹凸に入り込むとともに、互いに積み重なって表面に析出する。この際、金属微粒子が不純物を持たない活性状態で析出するため、隣接する金属微粒子同士が互いに金属結合し、金属結合した金属微粒子の集まりが積層して多層構造を形成し、この多層構造が可燃性物質の表面を被膜として覆う。いっぽう、融点が20℃より低い液体の有機化合物は、沸点が金属化合物の熱分解温度より50℃以上高いため、金属化合物が熱分解しても残存し、また、アルコールの粘度の20倍以上の粘度を持つため、金属微粒子の集まりからなる多層構造の表面を被膜で覆う。この結果、可燃性物質は、金属微粒子の集まりからなる多層構造の被膜と、液体の有機化合物からなる被膜との2重の被膜で覆われる。いっぽう、金属微粒子の多層構造は、複数の層が積み重なって金属微粒子の多層構造を形成するため、同層の隣接する金属微粒子同士が金属結合するとともに、上下の層間で隣接する金属微粒子同士も金属結合するため、金属微粒子の集まりからなる多層構造は気密性を持つ。また、液体の有機化合物が被膜を形成するため、有機化合物が気密性をもって金属微粒子の多層構造の被膜を覆う。この結果、可燃性物質は2種類の気密性の被膜で覆われる。
ところで、不燃性塗料を構成する有機化合物が次の5つの性質を持つことに依って、次の5つの作用効果がもたらされる。第一に、液体の有機化合物がアルコールに溶解ないしは混和し、第二に、有機化合物が一定の粘度を持つため、金属化合物のアルコール分散液と有機化合物との混合物からなる不燃性塗料は、可燃性物質の表面に塗料として塗布でき、塗膜が形成される。第三に、有機化合物は金属化合物に分散しないため、不燃性塗料からアルコールが気化すると、金属化合物の微細結晶の集まりが有機化合物中に析出し、微細結晶が下層に沈み、液体の有機化合物が上層に移動する。これによって、金属化合物の熱分解が、可燃性物質の表面で起こる。第四に、有機化合物の沸点が金属化合物の熱分解温度より50℃以上高いため、金属化合物の熱分解反応が可燃性物質の表面で先行して起こり、有機化合物の被膜の内側で、かつ、外界から遮断されて熱分解が進行し、金属微粒子の集まりからなる多層構造が、可燃性物質の表面に確実に形成される。第五に、2種類の気密性の被膜で覆われた可燃性物質が、火災によって有機化合物の沸点に昇温されると、有機化合物の発火点が沸点より50℃以上高いため、有機化合物の気化が進行し、有機化合物は発火しない。また、アルコールが気化した後の塗膜の厚みは1ミクロン程度であり、塗膜の面積に対する厚みの比率が極めて小さいため、有機化合物は希薄化したガスとなって気化し、爆発下限値の濃度より希薄化されるため、有機化合物のガスは引火しない。
いっぽう、可燃性物質は火災によって昇温される。可燃性物質の表面が、金属化合物の熱分解温度を超えると、金属微粒子は単位体積あたりの表面積である比表面積が大きいため、金属微粒子は熱エネルギーを得て再度活性化し、隣接する金属微粒子を取り込んで金属微粒子が成長し、僅かに粗大化する。粗大化した金属微粒子は、隣接する金属微粒子同士が金属結合し、金属結合した金属微粒子の集まりが多層構造を形成し、可燃性物質を依然として覆う。可燃性物質の表面が、有機化合物の沸点になると有機化合物の気化し、可燃性物質を覆う第二の被膜が蒸発する。この際、可燃性物質は、金属微粒子の多層構造で覆われているため、可燃性物質は依然として外界から遮断されている。また、有機化合物の発火点が沸点より50℃以上高いため、有機化合物の気化が先行し発火することはない。さらに昇温されると、金属微粒子の粗大化がさらに進む。なお、金属微粒子の粗大化に伴い、金属微粒子の数は減少する。金属の融点に近づくと、金属粒子としての境界が消滅し、金属のバルク材からなる被膜に変わる。このため、金属微粒子の多層構造は、金属の融点に近い耐熱性をもって、可燃性物質を気密性の被膜で覆い続け、可燃性物質は自己発火せず着火しない。また、可燃性物質は大気が供給されない状態で熱分解し、熱分解後の物質は、金属微粒子の集まりからなる気密性の被膜で覆われ、外部に排出しない。この結果、可燃性物質が、どのような規模の火災に長時間さらされても、自己発火せず着火しない。また、熱分解で生成された可燃性の物質は、外部に排出されない。なお、金属微粒子は温度が高くなるほど、粗大化し金属微粒子の数は減る。従って、積層した金属微粒子の層の数が少ない場合は、積層した金属微粒子に空隙、つまり、金属微粒子が存在しない空間が発生する。従って、可燃性物質が昇温される最高温度を考慮して、積層された金属微粒子の多層構造の層の厚みを予め増やすことが必要になる。
なお、塗膜が形成された可燃性物質は火災時に昇温されるため、前記した金属化合物の熱分解から始まる諸現象が塗膜で起こるため、事前に熱処理しなくてもよい。つまり、塗膜からアルコールのみを気化させ、この後、可燃性物質を通常の可燃性物質として用いることができる。すなわち、アルコールが気化した後の塗膜の厚みは1ミクロン程度であり、塗膜は可燃性物質の表面の凹凸に入り込んで脱落せず、また、人が塗膜に触れても塗膜の存在が感知できない。また、有機化合物は、大気雰囲気での蒸気圧が極めて小さく、蒸発しない。このため、塗膜が形成された可燃性物質を、通常の可燃性物質として用いて建物に設置し、あるいは、日用品として用いることができる。
以上に説明したように、不燃性塗料が塗布された可燃性物質は、表面を金属に近い耐熱性と気密性とを有する被膜で覆われ、5段落に記載した本発明における課題が解決された。
That is, when the temperature of the combustible material to which the above-described noncombustible coating is applied is raised, alcohol is first vaporized from the noncombustible coating. Thus, the metal compound is dispersed in an alcohol, for not dispersed in an organic compound, a collection of fine crystals of the metal compound is deposited simultaneously in the organic compound. At this time, the fine crystal of the metal compound sinks to the lower layer, and the liquid organic compound moves to the upper layer of the fine crystal of the metal compound. The fine crystal of the metal compound corresponds to the size of the metal fine particles precipitated by thermal decomposition. When the temperature is further increased, thermal decomposition of the metal compound occurs on the surface of the combustible substance. The metal compound first decomposes into a metal and an organic substance, and further, the organic substance evaporates while taking heat of vaporization, and the minute bubbles of the organic substance evaporate through the organic compound layer, and at the moment when the vaporization of the organic substance is completed, A collection of granular metal fine particles having a size of 40-60 nm enters the irregularities on the surface of the combustible substance, and accumulates on one another and precipitates on the surface. At this time, since the metal fine particles are precipitated in an active state having no impurities, adjacent metal fine particles are metal-bonded to each other, and a group of metal metal-bonded layers is laminated to form a multilayer structure. This multilayer structure is combustible. Cover the surface of the active substance as a film. On the other hand, a liquid organic compound having a melting point lower than 20 ° C. has a boiling point that is 50 ° C. or higher than the thermal decomposition temperature of the metal compound, and therefore remains even if the metal compound is thermally decomposed, and more than 20 times the viscosity of the alcohol. Because of its viscosity, the surface of the multilayer structure composed of a collection of metal fine particles is covered with a film. As a result, the flammable substance is covered with a double film of a multi-layered film composed of a collection of metal fine particles and a film composed of a liquid organic compound. On the other hand, in the multilayer structure of metal fine particles, a plurality of layers are stacked to form a multilayer structure of metal fine particles, so that adjacent metal fine particles in the same layer are metal-bonded and metal fine particles adjacent to each other between the upper and lower layers are also metal. In order to bond, the multilayer structure which consists of a collection of metal fine particles has airtightness. Further, since the liquid organic compound forms a film, the organic compound covers the multi-layered film of metal fine particles with airtightness. As a result, the combustible material is covered with two types of airtight coatings.
By the way, the following five functions and effects are brought about by the fact that the organic compound constituting the incombustible paint has the following five properties. First, the liquid organic compound is dissolved or mixed in the alcohol, and secondly, since the organic compound has a certain viscosity, a nonflammable paint consisting of a mixture of a metal compound alcohol dispersion and the organic compound is flammable. It can be applied as a paint on the surface of the active substance, and a coating film is formed. Third, since the organic compound does not disperse in the metal compound, when alcohol is vaporized from the incombustible paint, a collection of fine crystals of the metal compound precipitates in the organic compound, the fine crystals sink to the lower layer, and the liquid organic compound Move up. Thereby, thermal decomposition of the metal compound occurs on the surface of the combustible substance. Fourth, since the boiling point of the organic compound is higher by 50 ° C. or more than the thermal decomposition temperature of the metal compound, the thermal decomposition reaction of the metal compound takes place on the surface of the combustible substance, inside the coating of the organic compound, and Thermal decomposition proceeds while being blocked from the outside, and a multilayer structure composed of a collection of metal fine particles is reliably formed on the surface of the combustible substance. Fifth, when a combustible material covered with two kinds of airtight coatings is heated to the boiling point of the organic compound by a fire, the ignition point of the organic compound is 50 ° C. higher than the boiling point. Vaporization proceeds and organic compounds do not ignite. In addition, the thickness of the coating after the alcohol is vaporized is about 1 micron, and the ratio of the thickness to the area of the coating is very small. Since it is more diluted, the organic compound gas does not ignite.
On the other hand, combustible substances are heated by a fire. If the surface of the combustible material exceeds the thermal decomposition temperature of the metal compound, the metal fine particles have a large specific surface area, which is the surface area per unit volume. Incorporated, metal fine particles grow and become slightly coarse. In the coarsened metal fine particles, adjacent metal fine particles are metal-bonded, and a group of metal particles that are metal-bonded forms a multilayer structure, and still covers the combustible substance. When the surface of the combustible material reaches the boiling point of the organic compound, the organic compound is vaporized, and the second film covering the combustible material evaporates. At this time, since the combustible material is covered with a multilayer structure of metal fine particles, the combustible material is still cut off from the outside. In addition, since the ignition point of the organic compound is 50 ° C. or more higher than the boiling point, the organic compound does not ignite in advance because of vaporization. When the temperature is further increased, the coarsening of the metal fine particles further proceeds. Note that the number of metal fine particles decreases as the metal fine particles become coarser. When the melting point of the metal is approached, the boundary as metal particles disappears, and the film is changed to a film made of a metal bulk material. For this reason, the multilayer structure of metal fine particles has heat resistance close to the melting point of the metal and continues to cover the combustible material with an airtight coating, and the combustible material does not self-ignite and does not ignite. In addition, the combustible material is thermally decomposed in a state where no air is supplied, and the material after the thermal decomposition is covered with an airtight coating made up of a collection of metal fine particles and is not discharged to the outside. As a result, the flammable substance does not ignite and does not ignite even if it is exposed to a fire of any scale for a long time. Moreover, the combustible substance produced | generated by thermal decomposition is not discharged | emitted outside. As the temperature of the metal fine particles increases, the metal fine particles become coarser and the number of metal fine particles decreases. Therefore, when the number of layers of the laminated metal fine particles is small, voids, that is, spaces where no metal fine particles exist are generated in the laminated metal fine particles. Therefore, in consideration of the maximum temperature at which the combustible substance is heated, it is necessary to increase the thickness of the multilayered layer of metal fine particles in advance.
In addition, since the combustible material in which the coating film is formed is heated in the event of a fire, various phenomena starting from the thermal decomposition of the metal compound described above occur in the coating film, and thus it is not necessary to heat-treat in advance. That is, only alcohol is vaporized from the coating film, and thereafter, the combustible substance can be used as a normal combustible substance. That is, after the alcohol is vaporized, the thickness of the coating is about 1 micron, and the coating does not fall off due to entering the irregularities on the surface of the flammable substance. Cannot be detected. Moreover, the organic compound has an extremely low vapor pressure in the air atmosphere and does not evaporate. For this reason, the combustible material in which the coating film was formed can be installed in a building using a normal combustible material, or can be used as daily necessities.
As described above, the flammable material to which the nonflammable paint is applied is covered with a film having heat resistance and airtightness close to metal, and the problems in the present invention described in the fifth paragraph have been solved. .
前記した不燃性塗料を製造する製造方法は、前記した金属化合物としてオクチル酸金属化合物を用い、前記したアルコールとしてメタノールを用い、前記した有機化合物として、芳香族カルボン酸エステル類に属する有機化合物を用い、前記した不燃性塗料を製造する製造方法に従って不燃性塗料を製造する、前記した不燃性塗料を製造する製造方法である。 Method of manufacturing an above mentioned non-flammable paint, with octyl acid metal compound as a metal compound mentioned above, methanol is used as the above-mentioned alcohol, an organic compound described above, an organic compound belonging to the aromatic carboxylic acid esters A manufacturing method for manufacturing the above-described non-flammable paint, which manufactures the non-flammable coating according to the above-described manufacturing method for manufacturing a non-flammable coating .
つまり、オクチル酸金属化合物は、290℃で熱分解して金属を析出する。また、メタノールに10重量%近くまで分散する。従って、オクチル酸金属化合物は、熱分解で金属を析出する原料になる。なお、有機化合物中に析出したオクチル酸金属化合物の微細結晶は、可燃性物質の表面で、大気が遮断された密閉された領域で熱分解するが、大気雰囲気と同様に、オクチル酸の沸点で熱分解が始まり、290℃で金属を析出して熱分解を完了する。
すなわち、オクチル酸金属化合物を構成するイオンの中で、金属イオンが最も大きい。従って、オクチル酸のカルボキシル基を構成する酸素イオンが金属イオンに共有結合するオクチル酸金属化合物は、カルボキシル基を構成する酸素イオンと金属イオンとの距離が、他のイオン同士の距離より長い。こうした分子構造を持つオクチル酸金属化合物を熱処理すると、オクチル酸の沸点を超えると、カルボキシル基を構成する酸素イオンと金属イオンとの結合部が最初に分断され、オクチル酸と金属とに分離する。さらに、オクチル酸が気化熱を奪って気化し、気化が完了すると金属が析出する。こうした有機金属化合物として、オクチル酸金属化合物の他に、ラウリン酸金属化合物、ステアリン酸金属化合物などのカルボン酸金属化合物が存在する。しかし、大気圧において、オクチル酸の沸点は228℃で、ラウリン酸の沸点は296℃で、ステアリン酸の沸点は361℃である。従って、沸点が最も低く熱分解温度が最も低いオクチル酸金属化合物が最も望ましい。
さらに、オクチル酸金属化合物は、容易に合成できる安価な工業用薬品である。すなわち、オクチル酸を強アルカリと反応させるとオクチル酸アルカリ金属化合物が生成される。この後、オクチル酸アルカリ金属化合物を無機金属化合物と反応させると、様々な金属からなるオクチル酸金属化合物が合成される。従って、有機金属化合物の中で最も安価な有機金属化合物である。
なお、合成樹脂からなる可燃性物質を、オクチル酸金属化合物の熱分解によって、2種類の気密性の被膜で覆う際に、可燃性物質は、オクチル酸金属化合物の微細結晶の集まりと有機化合物とで被覆された状態で290℃まで昇温される。この際、可燃性物質は、大気が遮断され、密閉された領域で290℃まで昇温されるため、合成樹脂の熱分解は起こらない。また、可燃性物質の表面に、予め塗膜が形成されていても、塗膜が発火することも、塗膜熱分解することもない。従って、合成樹脂の性質を不可逆変化させることなく、合成樹脂からなる可燃性物質の表面を、2種類の気密性の被膜で被覆することができる。
また、木材の大気雰囲気における発火点は400−460℃で、オクチル酸金属化合物の熱分解温度より高い。さらに、木材からなる可燃性物質の表面に、予め塗膜が形成されていても、オクチル酸金属化合物の微細結晶の集まりと有機化合物とで被覆された状態で290℃まで昇温されるため、塗膜が発火することも、塗膜が熱分解することもない。
さらに、大気雰囲気における新聞紙の発火点が290℃で、模造紙の発火点が450℃である。紙からなる可燃性物質も、オクチル酸金属化合物の微細結晶の集まりと有機化合物とで被覆された状態で290℃まで昇温されるため発火しない。また、可燃性物質の表面に、予め塗膜が形成されていても、塗膜が発火することも、塗膜が熱分解することもない。
いっぽう、芳香族カルボン酸エステル類に属する有機化合物に、融点が20℃より低く、メタノールに溶解ないしは混和し、メタノールの20倍以上の粘度を有し、沸点が340℃以上で、発火点が390℃以上である、これら5つの性質を兼備する有機化合物が存在する。このような有機化合物は汎用的な工業用薬品である。
従って、このような有機化合物を、オクチル酸金属化合物のメタノール分散液に混合すると、有機化合物がメタノールに溶解ないしは混和するため、有機化合物はオクチル酸金属化合物のメタノール分散液と均一に混ざり合い、不燃性塗料を形成する。この不燃性塗料を可燃性物質に塗布し、メタノールを気化させると、オクチル酸金属化合物はメタノールに分散するが有機化合物に分散しないため、オクチル酸金属化合物の微細結晶の集まりが有機化合物中に析出する。さらに、昇温してオクチル酸金属化合物を熱分解すると、微細結晶の大きさに応じた40−60nmの大きさからなる金属微粒子の集まりが析出し、金属微粒子の集まりからなる多層構造で、可燃性物質の表面が覆われる。いっぽう、沸点が340℃以上の有機化合物は、金属微粒子の多層構造からなる被膜の表面を覆う第二の被膜となって、可燃性物質を覆う。このため、有機化合物は不燃性塗料の原料になる。
以上に説明したように、オクチル酸金属化合物と、芳香族カルボン酸エステル類に属する有機化合物と、メタノールとは、不燃性塗料を製造する際の原料になり、また、安価な不燃性塗料を製造する原料である。
That is, the metal octylate is thermally decomposed at 290 ° C. to deposit a metal. Moreover, it disperse | distributes to methanol near 10weight%. Therefore, the metal octylate compound becomes a raw material for depositing metal by thermal decomposition. The fine crystals of the metal octylate precipitated in the organic compound are thermally decomposed on the surface of the flammable material in a sealed area where the atmosphere is shut off, but at the boiling point of octylic acid as in the atmosphere. Thermal decomposition begins, and metal is deposited at 290 ° C. to complete thermal decomposition.
That is, the metal ion is the largest among the ions constituting the metal octylate compound. Therefore, in the octylic acid metal compound in which the oxygen ion constituting the carboxyl group of octyl acid is covalently bonded to the metal ion, the distance between the oxygen ion constituting the carboxyl group and the metal ion is longer than the distance between other ions. When heat-treating the octylate metal compound having such a molecular structure, when the boiling point of octylate is exceeded, the bond between the oxygen ion and the metal ion constituting the carboxyl group is first divided and separated into octylate and metal. Furthermore, octylic acid takes the heat of vaporization and vaporizes, and when vaporization is completed, metal is deposited. As such organometallic compounds, there are carboxylic acid metal compounds such as lauric acid metal compounds and stearic acid metal compounds in addition to octylic acid metal compounds. However, at atmospheric pressure, octyl acid has a boiling point of 228 ° C., lauric acid has a boiling point of 296 ° C., and stearic acid has a boiling point of 361 ° C. Therefore, a metal octylate having the lowest boiling point and the lowest thermal decomposition temperature is most desirable.
Furthermore, octylic acid metal compounds are inexpensive industrial chemicals that can be easily synthesized. That is, when octylic acid is reacted with a strong alkali, an alkali metal octylate is produced. Thereafter, when the alkali metal octylate compound is reacted with an inorganic metal compound, metal octylate compounds composed of various metals are synthesized. Therefore, it is the cheapest organometallic compound among the organometallic compounds.
When a combustible material made of a synthetic resin is covered with two kinds of airtight coatings by thermal decomposition of an octylate metal compound, the combustible material contains a collection of fine crystals of the octylate metal compound and an organic compound. The temperature is raised to 290 ° C. in a state where it is covered with. At this time, since the combustible substance is heated to 290 ° C. in a sealed region with the atmosphere blocked, thermal decomposition of the synthetic resin does not occur. In addition, even if a coating film is formed on the surface of the combustible material in advance, the coating film does not ignite or the coating film does not thermally decompose. Therefore, the surface of the combustible material made of the synthetic resin can be covered with the two kinds of airtight coatings without irreversibly changing the properties of the synthetic resin.
Moreover, the ignition point in the atmospheric air of wood is 400-460 degreeC, and is higher than the thermal decomposition temperature of an octylic acid metal compound. Furthermore, even if a coating film is formed in advance on the surface of the combustible material made of wood, the temperature is raised to 290 ° C. while being covered with a collection of fine crystals of the octylate metal compound and the organic compound, The coating film does not ignite and the coating film does not thermally decompose.
Furthermore, the ignition point of newspaper in the atmospheric atmosphere is 290 ° C., and the ignition point of imitation paper is 450 ° C. The flammable material made of paper does not ignite because it is heated to 290 ° C. while being covered with a collection of fine crystals of the metal octylate compound and the organic compound. Moreover, even if a coating film is previously formed on the surface of the combustible substance, the coating film does not ignite and the coating film does not thermally decompose.
Meanwhile, the organic compounds belonging to the aromatic carboxylic acid esters, the melting point is lower than 20 ° C., dissolved or mixed in methanol, having a viscosity of 20 times or more of methanol, a boiling point of 340 ° C. or higher, the ignition point 390 There are organic compounds having these five properties that are at or above ° C. Such organic compounds are general-purpose industrial chemicals.
Therefore, when such an organic compound is mixed with a methanol dispersion of an octylate metal compound, the organic compound dissolves or mixes in the methanol, so that the organic compound is uniformly mixed with the methanol dispersion of the octylate metal compound and is nonflammable. Forming a paint. When this incombustible paint is applied to a flammable substance and vaporizes methanol, the metal octylate compound is dispersed in methanol but not in the organic compound, so a collection of fine crystals of metal octylate is precipitated in the organic compound. To do. Furthermore, when the metal octylate compound is thermally decomposed at an elevated temperature, a collection of metal fine particles having a size of 40-60 nm corresponding to the size of the fine crystals is deposited, and a flammable structure having a multi-layer structure of metal fine particles is obtained. The surface of the sex substance is covered. On the other hand, the organic compound having a boiling point of 340 ° C. or more becomes a second film covering the surface of the film having a multilayer structure of metal fine particles, and covers the combustible substance. For this reason, an organic compound becomes a raw material of a nonflammable coating material.
As explained above, the octylic acid metal compound, the organic compound belonging to the aromatic carboxylic acid ester , and methanol are used as raw materials for producing the incombustible paint, and the inexpensive incombustible paint is produced. It is a raw material.
実施形態1
熱処理で金属を析出する金属化合物の実施形態として、オクチル酸金属化合物が適切であることを説明する。金属化合物は、第一にメタノールに分散し、第二に可燃性物質に塗布された金属化合物が昇温された際に、可燃性物質の表面で熱分解し、金属微粒子集まりを析出する2つの性質を兼備する。ここでは金属をクロムとし、2つの性質を兼備する物質として、オクチル酸クロム化合物が適切であることを説明する。
最初に、分子量が小さい無機クロム化合物のメタノール分散性を説明する。酸化第二クロムCr2O3、塩化クロムCrCl3、硝酸クロムCr(NO3)3などの無機クロム化合物はメタノールに溶解し、クロムイオンCr3+がメタノール中に溶出するため、メタノールを気化させると、無機クロム化合物の微細結晶は析出せず、無機クロム化合物がクロム微粒子の析出に参加できない。また、硫酸クロムCr(SO4)3、酢酸クロムCr(CH3COO)3、リン酸クロムCrPO4などの無機クロム化合物は、メタノールに分散しない。従って、こうした分子量が小さい無機クロム化合物は、メタノールに分散しないので、クロム化合物として適切でない。
ここで、有機クロム化合物について説明する。有機クロム化合物からクロムが生成される化学反応の中で、最も簡単な化学反応に熱分解反応がある。つまり、有機クロム化合物を昇温するだけで、熱分解でクロムが析出する。さらに、有機クロム化合物の熱分解温度が低ければ、熱分解温度が低い合成樹脂や、発火点が低い紙からなる可燃性物質を、自己発火せず着火しない性質に変えることができる。さらに、有機クロム化合物の合成が容易であれば、不燃性塗料の安価な原料になる。こうした性質を兼備する有機クロム化合物に、カルボン酸のカルボキシル基を構成する酸素イオンがクロムイオンに共有結合するカルボン酸クロム化合物があり、さらに、オクチル酸金属化合物がカルボン酸金属化合物の中で最も熱分解温度が低い。
すなわち、カルボン酸クロム化合物を構成するイオンの中で、最も大きいイオンはクロムイオンである。従って、カルボン酸のカルボキシル基を構成する酸素イオンが、クロムイオンに共有結合すれば、クロムイオンとカルボキシル基を構成する酸素イオンとの距離が、イオン同士の距離の中で最も長い。こうしたカルボン酸クロム化合物を大気雰囲気で昇温させると、カルボン酸の沸点を超えると、カルボン酸とクロムとに分解する。さらに昇温すると、カルボン酸が飽和脂肪酸で構成されれば、カルボン酸が気化熱を伴って気化し、カルボン酸の気化した後にクロムが析出する。また、カルボン酸が不飽和脂肪酸であれば、炭素原子が水素原子に対して過剰になるため、不飽和脂肪酸からなるカルボン酸クロム化合物が熱分解すると、酸化クロムが析出する。
いっぽう、カルボン酸クロム化合物の中で、カルボン酸のカルボキシル基を構成する酸素イオンが配位子となってクロムイオンに近づいて配位結合するカルボン酸クロム化合物は、クロムイオンと酸素イオンとの距離が短くなり、反対に、酸素イオンがクロムイオンと反対側で結合するイオンとの距離が最も長くなる。このような分子構造を持つカルボン酸クロム化合物の熱分解反応は、酸素イオンがクロムイオンと反対側で結合するイオンとの結合部が最初に分断され、この結果、酸化クロムが析出する。
さらに、カルボン酸クロム化合物は、カルボン酸が最も汎用的な有機酸であるため、合成が容易で最も安価な有機クロム化合物である。つまり、カルボン酸を水酸化ナトリウムなどの強アルカリ溶液中で反応させると、カルボン酸アルカリ金属化合物が生成される。このカルボン酸アルカリ金属化合物を、硫酸クロムなどの無機クロム化合物と反応させると、カルボン酸クロム化合物が生成される。このため、有機クロム化合物の中で最も安価な有機クロム化合物である。
すなわち、カルボン酸クロム化合物を構成する物質の中で、組成式の中央に位置するクロムイオンCr3+が最も大きい。従って、クロムイオンCr3+とカルボキシル基を構成する酸素イオンO−とが共有結合する場合は、クロムイオンCr3+と酸素イオンO−との距離が最大になる。この理由は、クロム原子の3重結合における共有結合半径は103pmであり、酸素原子の2重結合における共有結合半径は57pmであり、炭素原子の2重結合における共有結合半径は67pmであることによる。このような分子構造を持つカルボン酸クロム化合物は、カルボン酸の沸点を超えると、結合距離が最も長いクロムイオンとカルボキシル基を構成する酸素イオンとの結合部が最初に分断され、クロムとカルボン酸とに分離する。さらに昇温すると、カルボン酸が気化熱を伴って気化し、カルボン酸の気化が完了した後にクロムが析出する。
さらに、飽和脂肪酸を構成する炭化水素が長鎖構造である場合は、長鎖が長いほど、つまり、飽和脂肪酸の分子量が大きいほど、飽和脂肪酸の沸点が高く、熱分解温度が高くなる。ちなみに、分子量が200.3であるラウリン酸の大気圧での沸点は296℃であり、分子量が284.5であるステアリン酸の大気圧での沸点は361℃である。
いっぽう、分岐鎖構造を有する飽和脂肪酸は、直鎖構造の飽和脂肪酸より鎖の長さが短く、沸点が低い。さらに、分岐鎖構造を有する飽和脂肪酸は極性を持つため、分岐鎖構造を有する飽和脂肪酸からなるカルボン酸クロム化合物も極性を持ち、アルコールなどの極性を持つ有機溶剤に相対的に高い割合で分散する。このような分岐構造の飽和脂肪酸としてオクチル酸がある。オクチル酸は構造式がCH3(CH2)3CH(C2H5)COOHで示され、CHでCH3(CH2)3とC2H5とのアルカンに分岐され、CHにカルボキシル基COOHが結合する。このため、オクチル酸の大気圧での沸点は228℃で、ラウリン酸より沸点が68℃低い。従って、クロムを析出する原料として、オクチル酸クロムCr(C7H15COO)3が望ましい。オクチル酸クロムは、290℃で熱分解が完了してクロムが析出する。
同様に、銅の原料としてオクチル酸銅Cu(C7H15COO)2が、アルミニウムの原料としてオクチル酸アルミニウムAl(C7H15COO)3が、鉄の原料としてオクチル酸鉄Fe(C7H15COO)3が、ニッケルの原料としてオクチル酸ニッケルNi(C7H15COO)2が望ましい。このようにオクチル酸金属化合物は様々な金属で構成され、不燃性塗料を構成する金属化合物になる。
ここで、オクチル酸金属化合物としてオクチル酸銅を用い、大気雰囲気と窒素雰囲気との双方における熱分解反応を、5℃/分の昇温速度で昇温したTG−DTA特性から説明する。なお、TG特性は、昇温に伴うオクチル酸銅の重量変化を連続的に測定した結果であり、DTA特性は、昇温に伴ってオクチル酸銅に発生する熱変化を基準物質との温度差として検出する示差熱分析の結果である。大気雰囲気と窒素雰囲気との双方につて、水分の離脱に依る緩やかな重量減少が終了した後、オクチル酸の沸点である228℃を超えると、明確な重量減少が現れ、温度上昇と共に重量が急減し熱分解が進む。すなわち、大気雰囲気では、278.8℃で発熱量が急増し、発熱量のピークが280.7℃で現れ、285.4℃で発熱現象が終了し、重量が78.5%減少した。いっぽう、窒素雰囲気では、285.3℃で発熱量が急増し、発熱量のピークが289.0℃で現れ、291.3℃で発熱現象が終了し、重量が77.4%減少した。従って、オクチル酸銅の熱分解は、大気雰囲気と窒素雰囲気との双方について、オクチル酸の沸点で熱分解が始まり、290℃で熱分解が終了し、銅を析出すると考えて支障ない。また、オクチル酸銅の熱分解で銅が析出するオクチル酸銅の理論的な重量減少は、81.8重量%であるため、熱分解で銅が析出したと考えて支障ない。また、オクチル酸クロム、オクチル酸アルミニウム、オクチル酸鉄、オクチル酸ニッケルについても、オクチル酸銅と同様の熱分解反応を起こし、金属を析出する。
従って、オクチル酸金属化合物は、液体の有機化合物で外界から遮断された可燃性物質の表面で、オクチル酸金属化合物の微細結晶の熱分解が228℃で始まり、290℃で熱分解が終了し、可燃性物質の表面に金属微粒子の集まりが一斉に析出する。このため、オクチル酸金属化合物は、不燃性塗料の原料になる。
Embodiment 1
As an embodiment of a metal compound that deposits a metal by heat treatment, it will be described that an octylic acid metal compound is suitable. The metal compound is firstly dispersed in methanol, and secondly, when the metal compound applied to the combustible material is heated, the metal compound is thermally decomposed on the surface of the combustible material to deposit two metal fine particles. Combines nature. Here, it will be explained that a chromium octylate compound is appropriate as a substance having chromium and a metal having two properties.
First, the methanol dispersibility of an inorganic chromium compound having a low molecular weight will be described. Chromic oxide Cr 2 O 3, chromium chloride CrCl 3, inorganic chromium compound, such as chromium nitrate Cr (NO 3) 3 was dissolved in methanol, for chromium ions Cr 3+ is eluted into methanol and vaporize methanol In addition, fine crystals of the inorganic chromium compound do not precipitate, and the inorganic chromium compound cannot participate in the precipitation of the chromium fine particles. In addition, inorganic chromium compounds such as chromium sulfate Cr (SO 4 ) 3 , chromium acetate Cr (CH 3 COO) 3 , and chromium phosphate CrPO 4 are not dispersed in methanol. Therefore, such an inorganic chromium compound having a small molecular weight is not suitable as a chromium compound because it is not dispersed in methanol.
Here, the organic chromium compound will be described. Among chemical reactions in which chromium is generated from an organic chromium compound, the simplest chemical reaction is a thermal decomposition reaction. That is, chromium is deposited by thermal decomposition simply by raising the temperature of the organic chromium compound. Furthermore, if the pyrolysis temperature of the organic chromium compound is low, a combustible material made of synthetic resin having a low pyrolysis temperature or paper having a low ignition point can be changed to a property that does not ignite and does not ignite. Furthermore, if the synthesis of the organic chromium compound is easy, it becomes an inexpensive raw material for the incombustible paint. Among the organic chromium compounds that have these properties, there are chromium carboxylate compounds in which the oxygen ions constituting the carboxyl group of the carboxylic acid are covalently bonded to the chromium ions, and the octylate metal compound is the most hot metal carboxylic acid metal compound. The decomposition temperature is low.
That is, the largest ion among the ions constituting the carboxylic acid chromium compound is a chromium ion. Therefore, if the oxygen ion constituting the carboxyl group of the carboxylic acid is covalently bonded to the chromium ion, the distance between the chromium ion and the oxygen ion constituting the carboxyl group is the longest among the distances between the ions. When the temperature of such a carboxylic acid chromium compound is raised in the atmosphere, when the boiling point of the carboxylic acid is exceeded, it is decomposed into carboxylic acid and chromium. When the temperature is further increased, if the carboxylic acid is composed of a saturated fatty acid, the carboxylic acid is vaporized with heat of vaporization, and chromium is precipitated after the carboxylic acid is vaporized. Further, if the carboxylic acid is an unsaturated fatty acid, the carbon atoms are excessive with respect to the hydrogen atoms, and therefore, when the carboxylic acid chromium compound composed of the unsaturated fatty acid is thermally decomposed, chromium oxide is deposited.
On the other hand, among the chromium carboxylate compounds, the oxygen ion composing the carboxyl group of the carboxylic acid acts as a ligand, and the chromium carboxylate compound that coordinates to the chromium ion is the distance between the chromium ion and the oxygen ion. On the other hand, the distance between the oxygen ion and the ion bonded to the chromium ion on the opposite side is the longest. In the thermal decomposition reaction of the carboxylic acid chromium compound having such a molecular structure, the bond portion between the oxygen ion and the ion bonded on the opposite side of the chromium ion is first divided, and as a result, chromium oxide is deposited.
Further, the chromium carboxylate compound is an organic chromium compound that is easy to synthesize and cheapest because carboxylic acid is the most versatile organic acid. That is, when a carboxylic acid is reacted in a strong alkali solution such as sodium hydroxide, a carboxylic acid alkali metal compound is produced. When this alkali metal carboxylate compound is reacted with an inorganic chromium compound such as chromium sulfate, a chromium carboxylate compound is produced. For this reason, it is the cheapest organic chromium compound among the organic chromium compounds.
That is, among the substances constituting the chromium carboxylate compound, the chromium ion Cr 3+ located at the center of the composition formula is the largest. Therefore, when the chromium ion Cr 3+ and the oxygen ion O − constituting the carboxyl group are covalently bonded, the distance between the chromium ion Cr 3+ and the oxygen ion O − is maximized. This is because the covalent bond radius in the triple bond of chromium atom is 103 pm, the covalent bond radius in the double bond of oxygen atom is 57 pm, and the covalent bond radius in the double bond of carbon atom is 67 pm. . When the carboxylic acid chromium compound having such a molecular structure exceeds the boiling point of the carboxylic acid, the bond portion between the chromium ion having the longest bond distance and the oxygen ion constituting the carboxyl group is first divided, and the chromium and carboxylic acid are separated. And to separate. When the temperature is further increased, the carboxylic acid is vaporized with heat of vaporization, and chromium is deposited after vaporization of the carboxylic acid is completed.
Further, when the hydrocarbon constituting the saturated fatty acid has a long chain structure, the longer the long chain, that is, the larger the molecular weight of the saturated fatty acid, the higher the boiling point of the saturated fatty acid and the higher the thermal decomposition temperature. Incidentally, the boiling point at atmospheric pressure of lauric acid having a molecular weight of 200.3 is 296 ° C., and the boiling point of stearic acid having a molecular weight of 284.5 at 361 ° C. is 361 ° C.
On the other hand, a saturated fatty acid having a branched chain structure has a shorter chain length and a lower boiling point than a saturated fatty acid having a straight chain structure. Furthermore, since saturated fatty acids having a branched chain structure have polarity, chromium carboxylate compounds composed of saturated fatty acids having a branched chain structure also have polarity, and are dispersed at a relatively high rate in polar organic solvents such as alcohol. . Octyl acid is a saturated fatty acid having such a branched structure. Octyl acid is represented by the structural formula CH 3 (CH 2 ) 3 CH (C 2 H 5 ) COOH, branched to an alkane of CH 3 (CH 2 ) 3 and C 2 H 5 with CH, and carboxyl group to CH COOH binds. For this reason, the boiling point of octylic acid at atmospheric pressure is 228 ° C., which is 68 ° C. lower than that of lauric acid. Therefore, chromium octylate Cr (C 7 H 15 COO) 3 is desirable as a raw material for depositing chromium. Chromium octylate is thermally decomposed at 290 ° C. to deposit chromium.
Similarly, copper octylate Cu (C 7 H 15 COO) 2 as a raw material of copper, aluminum octylate Al (C 7 H 15 COO) 3 as a raw material of aluminum, and iron octylate Fe (C 7 ) as a raw material of iron H 15 COO) 3 is preferably nickel octylate Ni (C 7 H 15 COO) 2 as a nickel raw material. Thus, an octylic acid metal compound is comprised with various metals, and turns into a metal compound which comprises a nonflammable coating material.
Here, using octylate copper as octyl acid metal compound, a thermal decomposition reaction in both the air atmosphere and a nitrogen atmosphere, illustrating the TG-DTA characteristic temperature was raised at a heating rate of 5 ° C. / min. The TG characteristic is a result of continuously measuring the weight change of copper octylate accompanying a temperature rise, and the DTA characteristic is a temperature difference between the reference substance and a thermal change generated in copper octylate with a temperature rise. Is the result of differential thermal analysis detected as In both the air and nitrogen atmospheres, after the gradual weight loss due to the removal of moisture is finished, when the boiling point of octyl acid exceeds 228 ° C, a clear weight loss appears, and the weight rapidly decreases with increasing temperature. Pyrolysis proceeds. That is, in the air atmosphere, the calorific value increased rapidly at 278.8 ° C., the peak of the calorific value appeared at 280.7 ° C., the exothermic phenomenon ended at 285.4 ° C., and the weight decreased by 78.5%. On the other hand, in the nitrogen atmosphere, the calorific value increased rapidly at 285.3 ° C., the peak of the calorific value appeared at 289.0 ° C., the exothermic phenomenon ended at 291.3 ° C., and the weight decreased by 77.4%. Therefore, the thermal decomposition of copper octylate has no problem in considering that the thermal decomposition starts at the boiling point of octylic acid and ends at 290 ° C. and precipitates copper in both the air atmosphere and the nitrogen atmosphere. Moreover, since the theoretical weight reduction | decrease of the copper octylate which copper precipitates by thermal decomposition of copper octylate is 81.8 weight%, it is safe to think that copper precipitated by thermal decomposition. Further, chromium octylate, aluminum octylate, iron octylate, and nickel octylate also cause the same thermal decomposition reaction as copper octylate, and deposit metal.
Therefore, the metal octylate compound is a flammable material surface that is blocked from the outside by a liquid organic compound, and the thermal decomposition of fine crystals of the metal octylate compound starts at 228 ° C. and ends at 290 ° C. A collection of metal fine particles is deposited all at once on the surface of the combustible substance. For this reason, an octylic acid metal compound becomes a raw material of a nonflammable coating material.
実施形態2
第一に融点が20℃より低く、第二にメタノールに溶解ないしは混和し、第三にメタノールの粘度の20倍以上の粘度を有し、第四に沸点が340℃以上で、第五に発火点が390℃以上である、これら5つの性質を兼備する有機化合物に関する実施形態である。これら5つの性質を兼備する有機化合物として、芳香族カルボン酸エステル類に属する有機化合物が存在する。なお、メタノールは20℃で0.59mPa秒の粘度を持つ。
フタル酸ジブチルC6H4(COO(CH2)3CH3)2は、融点が−35℃で、メタノールに溶解し、沸点が340℃で、発火点が402℃で、粘度が38℃で9.7mPa秒である。フタル酸ジ(2−エチルヘキシル)C6H4(COOC8H17)2は、融点が−50℃で、メタノールに混和し、沸点が386℃で、発火点が400℃で、粘度が20℃で81mPa秒である。なお、こうした芳香族カルボン酸エステルは、プラスチック樹脂やポリマー中の可塑剤、ラッカー、接着剤、塗料、工業用インクなどの可塑剤として使用されている汎用的な工業用薬品である。
Embodiment 2
First, the melting point is lower than 20 ° C, secondly, it is dissolved or mixed in methanol, third, it has a viscosity of 20 times or more of that of methanol, fourth is boiling point above 340 ° C, and fifth is ignition This is an embodiment relating to an organic compound having these five properties, the point being 390 ° C. or higher. As an organic compound having both of these five characteristics, there are organic compounds belonging to the aromatic carboxylic acid esters. Methanol has a viscosity of 0.59 mPa seconds at 20 ° C.
Dibutyl phthalate C 6 H 4 (COO (CH 2 ) 3 CH 3 ) 2 has a melting point of −35 ° C., dissolves in methanol, has a boiling point of 340 ° C., an ignition point of 402 ° C., and a viscosity of 38 ° C. It is 9.7 mPa seconds. Di (2-ethylhexyl) phthalate C 6 H 4 (COOC 8 H 17 ) 2 has a melting point of −50 ° C., is miscible with methanol, has a boiling point of 386 ° C., an ignition point of 400 ° C., and a viscosity of 20 ° C. 81 mPa seconds. These aromatic carboxylic acid esters are general-purpose industrial chemicals used as plasticizers in plastic resins and polymers, lacquers, adhesives, paints, industrial inks and the like.
実施形態3
様々な材質の合成樹脂からなる可燃性物質を、2種類の気密性の被膜で覆う実施形態を、合成樹脂の熱分解から説明する。つまり、オクチル酸金属化合物の微細結晶が熱分解する際に、合成樹脂を構成する高分子の熱分解が始まると、高分子の分子構造が不可逆変化し、合成樹脂からなる可燃性物質が変質し、可燃性物質の商品性が損なわれる。
合成樹脂からなる可燃性物質は、オクチル酸金属化合物の微細結晶の集まりと有機化合物との混合物で被覆された状態で290℃まで昇温される。この際、可燃性物質は、大気が遮断され、密閉された領域で290℃まで昇温される。
ところで、合成樹脂を構成する高分子の熱分解反応は、酸素ガスが存在する雰囲気と、窒素雰囲気とでは大きく異なる。つまり、酸素ガスが存在する雰囲気での高分子の熱分解は、酸化反応に依る熱分解であるため発熱を伴う。この発熱現象が、酸化されやすい有機物質からなる高分子の熱分解を促進させ、また、熱分解の途上で生成される可燃性ガスが自己発火する。これに対し、窒素雰囲気での熱分解では酸化反応が起こらず、吸熱反応に依る熱分解が起こり、発熱現象が生じない。このため、高分子が熱分解を開始する温度は、酸素ガスが存在する雰囲気に比べて大幅に遅れて高温側にシフトする。例えば、高密度ポリエチレン樹脂を構成する高分子の熱分解は、大気雰囲気では250℃付近で開始するのに対し、窒素雰囲気では400℃付近で開始し、150℃も高温側にシフトする。
窒素雰囲気における他の高分子の熱分解は、ポリアセタール樹脂POMが280℃で熱分解が始まり420℃で終了する。ポリスチレン樹脂PSは350℃で熱分解が始まり460℃付近で終了する。ポリエチレンテレフタレート樹脂PETが425℃で熱分解が始まり480℃付近で終了する。ポリプロピレン樹脂PPが370℃で熱分解が始まり500℃付近で終了する。高密度ポリエチレン樹脂HDPEが400℃で熱分解が始まり520℃付近で終了する。ポリテトラフルオルエチレン樹脂PTFEは490℃で熱分解が始まり640℃付近で終了する。
また、ヘリウムガス雰囲気でポリ塩化ビニル樹脂PVCは、不燃性で有害の塩化水素ガスと、可燃性ガスのベンゼンとナフタレンとの離脱が、吸熱反応を伴って220℃付近から始まり260℃付近で急激に進行し360℃まで続く。この後、420℃付近から吸熱を伴う高分子の熱分解が始まり、可燃性ガスのトルエンとキシレンとを離脱して550℃付近で終了し、固体の残査(灰分)を10%残す。さらに、大気が遮断された高温流体でのノボラック型フェノール樹脂は、260℃付近から可燃性の可塑剤の脱離が始まり、360℃付近まで続き、この後、390℃から吸熱を伴う高分子の熱分解が始まり、可燃性ガスのフェノールやクレゾールなどを生成し、700℃付近で終了し、固体の残査(灰分)を65%残す。
これに対し、本発明における合成樹脂の可燃性物質は、大気が遮断され、密閉された領域で290℃まで昇温される。このため、高分子の熱分解は、窒素ガスや不活性ガスや高温流体での熱分解とは全く異なる。つまり、窒素ガスや不活性ガスや高温流体では、熱分解で生成されたガスは雰囲気中あるいは高温流体中に順次放出されるため、温度の上昇に伴ってガスが生成される熱分解が進む。いっぽう、本発明における合成樹脂は、大気が遮断され、密閉された領域で昇温されるため、熱分解で生成される最初のガスは、極めて狭い領域に閉じ込められ、狭い領域におけるガスの分圧が増大し、その温度での飽和圧力となって熱分解が停止する。従って、熱分解を進めるには、開放された雰囲気における熱分解より大きな熱エネルギーを高分子に与える必要がある。このため、ごく微量のガスが生成された時点で、狭い領域内におけるガスの分圧がその温度での飽和圧力になり、開放された雰囲気に比べて生成されるガスの量は極めて少ない。また、熱分解で生成される2番目以降のガスは、最初のガスが閉じ込められているため、さらに大きな熱エネルギーが供給されないと熱分解が進まない。この結果、大気が遮断され、密閉された領域における合成樹脂は、前記した雰囲気における熱分解温度より、著しく高温側で熱分解が進み、オクチル酸金属化合物の熱分解温度より高い温度で熱分解する。従って、オクチル酸金属化合物の微細結晶が熱分解しても、高分子は熱分解せず、合成樹脂の性質は変わらない。
Embodiment 3
An embodiment in which a combustible material made of various types of synthetic resin is covered with two kinds of airtight coatings will be described from the thermal decomposition of the synthetic resin. In other words, when the thermal decomposition of the polymer constituting the synthetic resin begins when the fine crystals of the metal octylate are thermally decomposed, the molecular structure of the polymer is irreversibly changed, and the combustible material made of the synthetic resin is altered. The merchantability of combustible substances is impaired.
The combustible material made of a synthetic resin is heated to 290 ° C. while being covered with a mixture of fine crystals of metal octylate and an organic compound. At this time, the combustible substance is heated up to 290 ° C. in a sealed region where the atmosphere is blocked.
By the way, the thermal decomposition reaction of the polymer constituting the synthetic resin is greatly different between an atmosphere in which oxygen gas exists and a nitrogen atmosphere. That is, the thermal decomposition of the polymer in the atmosphere in which oxygen gas is present is accompanied by heat generation because it is thermal decomposition due to an oxidation reaction. This exothermic phenomenon promotes thermal decomposition of a polymer made of an organic substance that is easily oxidized, and a combustible gas generated during the thermal decomposition self-ignites. On the other hand, in the thermal decomposition in a nitrogen atmosphere, no oxidation reaction occurs, thermal decomposition due to endothermic reaction occurs, and no exothermic phenomenon occurs. For this reason, the temperature at which the polymer starts thermal decomposition shifts to the high temperature side with a significant delay compared to the atmosphere in which oxygen gas exists. For example, the thermal decomposition of the polymer constituting the high-density polyethylene resin starts near 250 ° C. in the air atmosphere, but starts near 400 ° C. in the nitrogen atmosphere, and shifts to 150 ° C. on the high temperature side.
The thermal decomposition of other polymers in a nitrogen atmosphere starts at 280 ° C. and ends at 420 ° C. for the polyacetal resin POM. The polystyrene resin PS starts thermal decomposition at 350 ° C. and ends at around 460 ° C. Polyethylene terephthalate resin PET starts thermal decomposition at 425 ° C. and ends at around 480 ° C. The polypropylene resin PP begins to decompose at 370 ° C. and ends at around 500 ° C. The high-density polyethylene resin HDPE starts thermal decomposition at 400 ° C. and ends at around 520 ° C. The polytetrafluoroethylene resin PTFE starts thermal decomposition at 490 ° C. and ends at around 640 ° C.
Polyvinyl chloride resin PVC in a helium gas atmosphere starts from around 220 ° C. with an endothermic reaction, and the flammable and harmful hydrogen chloride gas and the flammable gases benzene and naphthalene start off at around 260 ° C. And continue to 360 ° C. Thereafter, thermal decomposition of the polymer with endotherm starts from around 420 ° C., and the combustible gases toluene and xylene are removed and the reaction is terminated at around 550 ° C., leaving a solid residue (ash content) of 10%. Furthermore, the novolak type phenolic resin in the high temperature fluid in which the atmosphere is shut off begins to desorb the flammable plasticizer from around 260 ° C. and continues to around 360 ° C., and thereafter, from 390 ° C. Pyrolysis begins, combustible gases such as phenol and cresol are generated, and the process ends at around 700 ° C., leaving a solid residue (ash content) of 65%.
On the other hand, the combustible material of the synthetic resin in the present invention is heated to 290 ° C. in a sealed region where the atmosphere is shut off. For this reason, thermal decomposition of polymers is completely different from thermal decomposition with nitrogen gas, inert gas, or high-temperature fluid. That is, in the case of nitrogen gas, inert gas, or high-temperature fluid, the gas generated by the thermal decomposition is sequentially released into the atmosphere or the high-temperature fluid, so that the thermal decomposition in which the gas is generated proceeds as the temperature rises. On the other hand, since the synthetic resin in the present invention is shielded from the atmosphere and heated in a sealed region, the first gas generated by pyrolysis is confined in a very narrow region, and the partial pressure of the gas in the narrow region is Increases to a saturation pressure at that temperature, and thermal decomposition stops. Therefore, in order to proceed with the thermal decomposition, it is necessary to give the polymer a higher thermal energy than the thermal decomposition in an open atmosphere. For this reason, when a very small amount of gas is generated, the partial pressure of the gas in the narrow region becomes the saturation pressure at that temperature, and the amount of gas generated is extremely small compared to the open atmosphere. Moreover, since the first gas is confined in the second and subsequent gases generated by the thermal decomposition, the thermal decomposition does not proceed unless larger thermal energy is supplied. As a result, the synthetic resin in the sealed area where the atmosphere is shut off is thermally decomposed at a temperature significantly higher than the thermal decomposition temperature in the above-described atmosphere, and is thermally decomposed at a temperature higher than the thermal decomposition temperature of the octylate metal compound. . Therefore, even if the fine crystals of the metal octylate are thermally decomposed, the polymer is not thermally decomposed and the properties of the synthetic resin are not changed.
実施例1
オクチル酸クロム(輸入品)とフタル酸ジブチル(昭和エーテル株式会社の製品)とメタノール(試薬一級品)とを原料として用い、不燃性塗料を製造する。最初に、オクチル酸クロムの144.5g(0.3モルに相当)をメタノールに10重量%で分散した。この分散液にフタル酸ジブチルを5重量%の割合で混合して不燃性塗料を製造した。
Example 1
Produces non-combustible paint using chromium octylate (imported product), dibutyl phthalate (product of Showa Ether Co., Ltd.) and methanol (first grade reagent) as raw materials. First, 144.5 g (corresponding to 0.3 mol) of chromium octylate was dispersed in methanol at 10% by weight. This dispersion was mixed with 5% by weight of dibutyl phthalate to produce a non-combustible paint.
実施例2
厚みが0.95mmのメラミン化粧板(アイカ工業株紙会社の製品XJN2085KV04)を5cm×5cmの大きさで切り出し、実施例1で製造した不燃性塗料に浸漬し、試料を引き上げてメタノールを気化させた。この後、290℃まで昇温し、1分間放置した後に冷却した。この試料を試料1とする。
なおメラミン化粧板は、家具・什器・建具等の強度が必要な部分に使用する表面材料の一種で、メラミン樹脂とフェノール樹脂とをそれぞれ印刷紙・クラフト紙に含浸させ、乾燥させた含浸紙を重ね合わせ、150℃で100kg/cm2の圧力を加えて積層成形する。メラミン樹脂は大気雰囲気の230−320℃で低分子量の炭化物に分解し、320−475℃において炭化残渣物の熱分解がゆっくり進み、475−570℃において炭化残渣物が燃焼する。従って、フェノール樹脂と同様にメラミン樹脂も、熱分解に伴って燃焼する。
試料1を切断し、切断面を電子顕微鏡で観察した。電子顕微鏡は、JFEテクノリサーチ株式会社が所有する極低加速電圧SEMを用いた。この装置は100Vからの極低加速電圧による表面観察が可能で、導電性の被膜を形成せずに直接表面が観察できる。
最初に、試料1の断面からの反射電子線について、900−1000Vの間にある2次電子線を取り出して画像処理を行った。フタル酸ジブチルの層の内側に、40−60nmの大きさからなる粒状の微粒子が9層前後の厚みで積み重なって結合していた。
次に、試料1の断面からの反射電子線について、900−1000Vの間にあるエネルギーを抽出して画像処理を行い、画像の濃淡で粒子の材質を分析した。いずれの粒状微粒子にも濃淡が認められず、微粒子は単一原子から構成されていることが分かった。
さらに、試料1の断面からの特性エックス線のエネルギーとその強度を画像処理し、粒子を構成する元素の種類を分析した。粒状微粒子はクロム原子のみで構成されていたため、試料1は、クロムの粒状微粒子が9層前後の厚みで積層してメラミン化粧板を覆い、この上をフタル酸ジブチルが1μmの厚みからなる被膜を形成して覆ったことが分かった。図1に試料1の断面を模式的に図示する。メラミン化粧板1の表面に、クロム微粒子2が9層前後の厚みで積み重なって結合し、さらにその表面を、フタル酸ジブチル3の被膜が覆った。
Example 2
A melamine decorative board having a thickness of 0.95 mm (product XJN2085KV04 from Aika Kogyo Co., Ltd.) was cut out in a size of 5 cm × 5 cm, immersed in the nonflammable paint produced in Example 1, and the sample was pulled up to vaporize methanol. It was. Thereafter, the temperature was raised to 290 ° C., left for 1 minute, and then cooled. This sample is designated as Sample 1.
Melamine decorative board is a type of surface material used for furniture, furniture, fittings, etc. where strength is required, and impregnated paper that has been impregnated with melamine resin and phenolic resin is impregnated into printing paper and kraft paper, respectively. Lamination is performed by applying a pressure of 100 kg / cm 2 at 150 ° C. The melamine resin decomposes into low molecular weight carbides at 230-320 ° C. in the atmospheric air, thermal decomposition of the carbonized residue proceeds slowly at 320-475 ° C., and the carbonized residue burns at 475-570 ° C. Therefore, melamine resin burns with thermal decomposition as well as phenol resin.
Sample 1 was cut and the cut surface was observed with an electron microscope. As the electron microscope, an extremely low acceleration voltage SEM owned by JFE Techno-Research Corporation was used. This apparatus can observe the surface with an extremely low acceleration voltage from 100 V, and can directly observe the surface without forming a conductive film.
First, with respect to the reflected electron beam from the cross section of the sample 1, a secondary electron beam between 900-1000 V was taken out and image processing was performed. Inside the dibutyl phthalate layer, granular fine particles having a size of 40-60 nm were stacked and bonded with a thickness of about 9 layers.
Next, with respect to the reflected electron beam from the cross section of the sample 1, energy between 900-1000 V was extracted and image processing was performed, and the material of the particles was analyzed based on the density of the image. No granular fine particles were observed, and it was found that the fine particles were composed of a single atom.
Further, the energy and intensity of the characteristic X- ray from the cross section of the sample 1 were image-processed, and the types of elements constituting the particles were analyzed. Since the particulate fine particles consisted of only chromium atoms, the sample 1 was coated with a granular layer of chromium having a thickness of about 9 layers to cover the melamine decorative board, and a coating of 1 μm thick dibutyl phthalate thereon. I found that it formed and covered. FIG. 1 schematically shows a cross section of the sample 1. The fine chrome particles 2 were stacked and bonded to the surface of the melamine decorative board 1 with a thickness of about 9 layers, and a coating of dibutyl phthalate 3 covered the surface.
実施例3
実施例2で作成した試料1を、840℃の大気雰囲気に5分間放置した。この際、試料1からは火炎や黒煙や異臭は一切発生しなかった。この熱処理後の試料1を試料2として取り出し、試料2の一部を切り出し、表面と切断面とを電子顕微鏡で観察した。試料2の表面は緑色がかり、表面は酸化第二クロムCr2O3で構成されていた。また、試料2におけるメラミン化粧板は、黒色がかった液状物質と固体の灰分とに分解され、また、メラミン化粧板を覆うクロム微粒子が200nm近くに粗大化し、粗大化した粒子が3層の厚みで熱分解後のメラミン化粧板を覆っていた。図2に試料2の断面の一部を模式的に図示する。熱分解後のメラミン化粧板4の表面が、クロムの粗粒子5で覆われている状態を示した。
Example 3
Sample 1 prepared in Example 2 was left in an air atmosphere at 840 ° C. for 5 minutes. At this time, no flame, black smoke, or off-flavor was generated from Sample 1. Sample 1 after this heat treatment was taken out as sample 2, a part of sample 2 was cut out, and the surface and the cut surface were observed with an electron microscope. The surface of the sample 2 is green Gakari surface was composed of chromic Cr 2 O 3 oxide. Further, the melamine decorative board in Sample 2 is decomposed into a blackish liquid substance and solid ash, and the chromium fine particles covering the melamine decorative board are coarsened to near 200 nm, and the coarsened particles have a thickness of three layers. The melamine decorative board after thermal decomposition was covered. FIG. 2 schematically shows a part of the cross section of the sample 2. The state in which the surface of the melamine decorative board 4 after pyrolysis is covered with coarse chromium particles 5 is shown.
実施例4
厚みが2.5mmの天然木突板化粧合板(松本合板株式会社のタモ柾目製品)を、5cm×5cmの大きさで切り出し、実施例1で製造した不燃性塗料に浸漬し、試料を引き上げてメタノールを気化させた。この後、試料を290℃まで昇温し、1分間放置した後に冷却した。この試料を試料3とする。天然木突板化粧板は、床材や建具などの建材や、家具の表面化粧材に用いられており、木材を0.2−0.6mmの厚みで薄くスライスした突板の複数枚を合板に貼合わせ、100℃を超えた温度で接着剤を乾燥する。なお、木材は大気雰囲気で、400−460℃の温度で発火する。
試料3を切断し、切断面を試料1と同様に、電子顕微鏡で観察した。試料3は、試料1と同様に、天然木突板化粧合板の表面を、クロムの粒状微粒子が9層前後の厚みで積み重なって結合し、さらにその表面を、フタル酸ジブチルが1μmの厚みからなる被膜で覆った。
Example 4
Cut out a natural wood veneer veneer with a thickness of 2.5 mm (Tamo-chome product of Matsumoto Plywood Co., Ltd.) in a size of 5 cm × 5 cm, immerse it in the non-combustible paint produced in Example 1, pull up the sample and methanol Vaporized. Thereafter, the sample was heated to 290 ° C., allowed to stand for 1 minute, and then cooled. This sample is designated as Sample 3. Natural wood veneer veneer is used for building materials such as flooring and joinery, and furniture surface veneer, and a plurality of veneer veneer sliced thinly with a thickness of 0.2-0.6mm is pasted on plywood. Combine and dry the adhesive at a temperature above 100 ° C. Wood is ignited at a temperature of 400 to 460 ° C. in an air atmosphere.
Sample 3 was cut, and the cut surface was observed with an electron microscope in the same manner as Sample 1. Sample 3 is the same as Sample 1, but the surface of natural wood veneer veneer plywood is bonded by stacking granular fine particles of chromium with a thickness of about 9 layers, and the surface is coated with 1 μm thick dibutyl phthalate. Covered with.
実施例5
実施例4で作成した試料3を、840℃の大気雰囲気に5分間放置した。この際、試料3からは火炎や黒煙や異臭は一切発生しなかった。この熱処理後の試料3を試料4として取り出し、試料4の一部を切り出し、表面と切断面とを電子顕微鏡で観察した。試料4の表面は、試料2と同様に緑色がかり、表面は酸化第二クロムCr2O3で構成されていた。また、試料4における天然木突板化粧合板は、黒色がかった液状物質と固体の灰分とに分解され、また、天然木突板化粧合板を覆うクロム微粒子が200nm近くに粗大化し、粗大化した粒子が3層の厚みで熱分解後の天然木突板化粧合板を覆っていた。
Example 5
Sample 3 prepared in Example 4 was left in an air atmosphere at 840 ° C. for 5 minutes. At this time, no flame, black smoke, or off-flavor was generated from Sample 3. Sample 3 after the heat treatment was taken out as sample 4, a part of sample 4 was cut out, and the surface and the cut surface were observed with an electron microscope. The surface of the sample 4, green Gakari as Sample 2, the surface was composed of chromic Cr 2 O 3 oxide. In addition, the natural wood veneer decorative plywood in Sample 4 is decomposed into a blackish liquid substance and solid ash, and the chromium fine particles covering the natural wood veneer decorative veneer are coarsened to near 200 nm, resulting in 3 coarse particles. The thickness of the layer covered the natural wood veneer decorative plywood after pyrolysis.
実施例6
本実施例では、ポリエステル化粧合板を用いた。ポリエステル化粧合板は、メラミン化粧板より耐摩擦性と耐水性とに劣るが安価であるため、家具や建具に用いられている。化粧紙と合板とを貼り合わせたうえにポリエステル樹脂を塗布し、さらにフィルムを掛けてロールで樹脂を伸ばして硬化させたものである。ポリエステル化粧板(アイカ工業株式会社の製品ハイボードRB−5112G)を5cm×5cmの大きさで切り出し、実施例1で製造した不燃性塗料に浸漬し、試料を引き上げてメタノールを気化させた。この後、試料を290℃まで昇温し、1分間放置した後に冷却した。これを試料5とする。なお、ポリエステル樹脂は、大気雰囲気の400℃を超えた温度で熱分解が始まり、可燃性ガスの発生で燃焼する。
試料5を切断し、切断面を試料1と同様に、電子顕微鏡で観察した。試料5は、試料1と同様に、ポリエステル化粧合板の表面を、クロムの粒状微粒子が9層前後の厚みで積み重なって結合し、さらにその表面を、フタル酸ジブチルが1μmの厚みの被膜で覆った。
Example 6
In this example, a polyester decorative plywood was used. Polyester decorative plywood is inferior in friction resistance and water resistance to melamine decorative board, but is cheaper and therefore used in furniture and fittings. A decorative paper and plywood are bonded together, a polyester resin is applied, a film is applied, the resin is stretched by a roll and cured. A polyester decorative board (product high board RB-5112G manufactured by Aika Kogyo Co., Ltd.) was cut out in a size of 5 cm × 5 cm, dipped in the incombustible paint produced in Example 1, and the sample was pulled up to vaporize methanol. Thereafter, the sample was heated to 290 ° C., allowed to stand for 1 minute, and then cooled. This is designated as Sample 5. The polyester resin begins to thermally decompose at a temperature exceeding 400 ° C. in the atmospheric air and burns when flammable gas is generated.
Sample 5 was cut, and the cut surface was observed with an electron microscope in the same manner as Sample 1. In the sample 5, the surface of the polyester decorative plywood was bonded by stacking the fine particles of chromium with a thickness of about 9 layers, and the surface was covered with a film having a thickness of 1 μm of dibutyl phthalate. .
実施例7
実施例6で作成した試料5を、840℃の大気雰囲気に5分間放置した。この際、試料5からは火炎や黒煙や異臭は一切発生しなかった。この熱処理後の試料5を試料6として取り出し、試料6の一部を切り出し、表面と切断面とを電子顕微鏡で観察した。試料6の表面は、試料2と同様に緑色がかり、表面は酸化第二クロムCr2O3で構成されていた。また、試料6におけるポリエステル化粧合板は、黒色がかった液状物質と固体の灰分とに分解され、また、ポリエステル化粧合板を覆うクロム微粒子が200nm近くに粗大化し、粗大化した粒子が3層の厚みで熱分解後の天然木突板化粧合板を覆っていた。
Example 7
Sample 5 prepared in Example 6 was left in an air atmosphere at 840 ° C. for 5 minutes. At this time, no flame, black smoke, or odor was generated from Sample 5. Sample 5 after the heat treatment was taken out as sample 6, a part of sample 6 was cut out, and the surface and the cut surface were observed with an electron microscope. Surface of the sample 6, green Gakari as Sample 2, the surface was composed of chromic Cr 2 O 3 oxide. Further, the polyester decorative plywood in Sample 6 is decomposed into a blackish liquid substance and solid ash, and the chromium fine particles covering the polyester decorative plywood are coarsened to near 200 nm, and the coarsened particles have a thickness of three layers. It covered natural wood veneer plywood after pyrolysis.
以上に説明した化粧板は、840℃に昇温しても発火せず、熱分解後の化粧板は、クロム粒子の被膜の内部に留められ、外部に放出されなかった。従って、化粧板は少なくとも840℃の耐熱性と気密性とを有する被膜で覆われた。なお、耐火性の規定の中で最も厳しい規定に、耐火電線の耐火層の絶縁性能がある。この規定は、火災時の非常用電源を確保するために耐火層の絶縁性能が一定時間保たれ、消防法および建築基準法で定める各種非常用設備の配線に規定されている。この規定は、30分間で840℃に達する火災温度曲線による加熱に耐える絶縁性能を持つことが定められている。この最も厳しい規定に基づいて、化粧板を840℃に昇温した。つまり、火災を想定した耐火性の規定の中で840℃が最も高いため、化粧板を大気雰囲気の840℃で燃焼させた。なお、クロムの融点は1907℃と高い。
前記した実施例は、一部の事例に過ぎない。つまり、オクチル酸金属化合物は、クロムに限らず、様々な金属イオンからなるオクチル酸金属化合物を用いることで、可燃性物質の表面を様々な金属微粒子の集まりからなる多層構造で覆う事ができる。
また、可燃性物質は実施例で示した化粧板に限らない。つまり、不燃性塗料は液体で構成され、粘度は、有機化合物の粘度と有機化合物の混合割合に応じて自在に変えられる。このため、可燃性物質の材質、形状、大きさ、また、表面の状態に応じて、粘度を調整し、さらに、刷毛塗り、ローラー塗り、吹き付け塗装、ロールコーター、浸漬塗りなどの塗布の方法を選択すれば、全ての可燃性物質に塗膜が形成できる。また、可燃性物質に塗布した塗膜の厚みは、不燃性塗料の粘度で決まる。さらに、不燃性塗料におけるオクチル酸金属化合物の濃度に応じて、可燃性物質を覆う金属微粒子の多層構造における層の厚みが自在に変えられる。可燃性物質が晒される温度が高温になるほど、金属微粒子の多層構造の層の厚みを厚くすれば、金属微粒子が粗大化しても、粗大化した金属粒子の金属結合で多層構造が形成され、高温時における多層構造の気密性が保たれる。従って、不燃性塗料は、可燃性物質の材質、形状、大きさまた、表面の状態に拘わらず、金属の融点に近い温度まで、可燃性物質が自己発火せず着火しない。また、可燃性物質の熱分解物質が外部に排出されない。こうした画期的な性質を全ての可燃性物質に付与できる不燃性塗料である。
The decorative board described above did not ignite even when the temperature was raised to 840 ° C., and the thermally decomposed decorative board was retained inside the coating of chromium particles and was not released to the outside. Therefore, the decorative board was covered with a film having at least 840 ° C. heat resistance and airtightness. The strictest rule among the fire resistance rules is the insulation performance of the fireproof layer of the fireproof wire. This provision is stipulated for the wiring of various emergency facilities defined by the Fire Service Act and the Building Standards Act, in order to ensure the insulation performance of the refractory layer for a certain period of time in order to ensure an emergency power supply in the event of a fire. This regulation stipulates that the insulation performance can withstand heating by a fire temperature curve that reaches 840 ° C. in 30 minutes. Based on this strictest rule, the decorative board was heated to 840 ° C. In other words, since 840 ° C. is the highest among the fire resistance regulations assuming a fire, the decorative board was burned at 840 ° C. in the air atmosphere. Note that the melting point of chromium is as high as 1907 ° C.
The embodiments described above are only some examples. That is, the octylate metal compound is not limited to chromium, and the octylate metal compound composed of various metal ions can be used to cover the surface of the combustible material with a multilayer structure composed of a collection of various metal fine particles.
The combustible material is not limited to the decorative board shown in the examples. That is, the incombustible paint is composed of a liquid, and the viscosity can be freely changed according to the viscosity of the organic compound and the mixing ratio of the organic compound. For this reason, the viscosity is adjusted according to the material, shape and size of the combustible substance, and the surface condition, and further, the application method such as brush coating, roller coating, spray coating, roll coater, dip coating, etc. If selected, a coating can be formed on all combustible materials. Moreover, the thickness of the coating film applied to the combustible substance is determined by the viscosity of the noncombustible paint. Furthermore, the thickness of the layer in the multilayer structure of the metal fine particles covering the combustible substance can be freely changed according to the concentration of the metal octylate compound in the incombustible paint. The higher the temperature at which the combustible substance is exposed, the thicker the layer of the multilayer structure of metal fine particles, the more the metal fine particles become coarse, the multi-layer structure is formed by the metal bonds of the coarse metal particles. The airtightness of the multilayer structure at the time is maintained. Accordingly, the incombustible paint does not ignite and does not ignite the combustible substance up to a temperature close to the melting point of the metal regardless of the material, shape, size, and surface state of the combustible substance. In addition, pyrolytic substances of combustible substances are not discharged to the outside. It is a non-flammable paint that can impart such breakthrough properties to all flammable substances.
1 メラミン化粧板 2 クロムの微粒子 3 フタル酸ジブチル
4 熱分解後のメラミン化粧板 5 クロムの粗粒子
1 Melamine decorative board 2 Fine particles of chromium 3 Dibutyl phthalate
4 Pyrolysis melamine decorative board 5 Coarse particles of chromium
Claims (3)
The manufacturing method for producing the nonflammable coating material according to claim 1 uses an octylic acid metal compound as the metal compound according to claim 1, and methanol as the alcohol according to claim 1. as the organic compound, an organic compound belonging to the aromatic carboxylic acid esters, to produce a non-flammable coating according to the production method for producing a non-flammable coating according to claim 1, producing a non-flammable paint according to claim 1 How to do .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016196770A JP6792833B2 (en) | 2016-09-14 | 2016-09-14 | A method of covering a flammable substance with an airtight film to make the flammable substance nonflammable. |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016196770A JP6792833B2 (en) | 2016-09-14 | 2016-09-14 | A method of covering a flammable substance with an airtight film to make the flammable substance nonflammable. |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018044138A JP2018044138A (en) | 2018-03-22 |
JP2018044138A5 true JP2018044138A5 (en) | 2019-04-11 |
JP6792833B2 JP6792833B2 (en) | 2020-12-02 |
Family
ID=61694367
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016196770A Expired - Fee Related JP6792833B2 (en) | 2016-09-14 | 2016-09-14 | A method of covering a flammable substance with an airtight film to make the flammable substance nonflammable. |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6792833B2 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7095941B2 (en) * | 2018-09-17 | 2022-07-05 | 博 小林 | A method for molding a molded product made of a thermoplastic elastomer that combines the properties of a metal or alloy with the non-combustibility that does not ignite and ignite. |
CN114069116B (en) * | 2021-11-16 | 2024-02-13 | 吉林大学 | Encapsulation method of lithium ion capsule battery flame-retardant encapsulation package |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4341333B2 (en) * | 2003-07-23 | 2009-10-07 | トヨタ自動車株式会社 | Resin substrate having resin-metal composite layer and method for producing the same |
US20060123723A1 (en) * | 2004-12-09 | 2006-06-15 | Weir Charles R | Wall finishing panel system |
JP2011068740A (en) * | 2009-09-25 | 2011-04-07 | Yamagata Univ | Low-temperature flame retardant and flame-retardant material |
JP2014201831A (en) * | 2013-04-08 | 2014-10-27 | 小林 博 | Modification of property of part, substrate or material |
JP2016160531A (en) * | 2015-03-02 | 2016-09-05 | 小林 博 | Production and production method of a collection of fine particles dispersed in an organic compound |
JP6675130B2 (en) * | 2015-03-18 | 2020-04-01 | 小林 博 | Production method for producing a paste in which fine particles made of any material of a metal, an alloy, and a metal oxide are dispersed in a liquid-phase organic compound as a number of moles larger than the number of moles of the organic compound |
JP6715450B2 (en) * | 2016-01-13 | 2020-07-01 | 小林 博 | Production method for producing a suspension in which individual nanoparticles of a metal or a metal oxide are surrounded by a liquid organic compound and dispersed in the organic compound |
JP6748392B2 (en) * | 2016-05-18 | 2020-09-02 | 小林 博 | Method for producing transparent noncombustible sheet having properties of not self-igniting and not igniting |
-
2016
- 2016-09-14 JP JP2016196770A patent/JP6792833B2/en not_active Expired - Fee Related
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Mao et al. | Facile and green fabrication of flame-retardant Ti3C2Tx MXene networks for ultrafast, reusable and weather-resistant fire warning | |
Zhang et al. | Temperature-responsive resistance sensitivity controlled by L-ascorbic acid and silane co-functionalization in flame-retardant GO network for efficient fire early-warning response | |
Pereira et al. | Preparation and properties of new flame retardant unsaturated polyester nanocomposites based on layered double hydroxides | |
Gallo et al. | Tailoring the flame retardant and mechanical performances of natural fiber-reinforced biopolymer by multi-component laminate | |
Williams et al. | Highly efficient polyvinyl alcohol/montmorillonite flame retardant nanocoating for corrugated cardboard | |
JP4810418B2 (en) | Refractory wire / cable | |
Hu et al. | Nano CaAlCO3-layered double hydroxide-doped intumescent fire-retardant coating for mitigating wood fire hazards | |
Wang et al. | Highly thermally stable zirconium oxide deposited layered double hydroxide for enhancing flame retardancy of waterborne epoxy coatings | |
Lian et al. | A green organic-inorganic PAbz@ ZIF hybrid towards efficient flame-retardant and smoke-suppressive epoxy coatings with enhanced mechanical properties | |
JP6792833B2 (en) | A method of covering a flammable substance with an airtight film to make the flammable substance nonflammable. | |
WO2016186361A1 (en) | Nonflammable film coating agent comprising expanded graphite, preparation method therefor, and use thereof | |
JP2018044138A5 (en) | ||
KR100773394B1 (en) | Flame retardant coating liquid composition and preparation method thereof | |
Catarina et al. | Development of acrylic‐based powder coatings with incorporation of montmorillonite clays | |
Lian et al. | A novel bio-based PAbz@ PBA maize structure for improving fire protection, toxic gas suppression and mechanical performance of intumescent flame-retardant epoxy coatings | |
US7560178B2 (en) | Aqueous inorganic expandable refractory composition and refractory board comprising the same | |
CN102311648B (en) | A kind of Environmental-protection asphalt antiflaming smoke suppression modifier | |
Wang et al. | Synergistic enhancement of flame retardancy of epoxy resin by layered zirconium phenylphosphate modified layered double hydroxides | |
CN108795201A (en) | A kind of environment-friendly fireproof decorative panel | |
Huang et al. | Phosphotungstic acid intercalated Zn, Al-layered double hydroxides/nanocellulose based 3D lightweight foam thermal insulation materials | |
JP6748392B2 (en) | Method for producing transparent noncombustible sheet having properties of not self-igniting and not igniting | |
Kong et al. | Graphene oxide nanocoating prevents flame spread on polyurethane sponge | |
JP2021045714A (en) | Method for converting flammable or flame-retardant base material or component into non-flammable one by covering with aggregate of two kinds of fine particles composed of aluminum oxide fine particles and maghemite fine particles | |
Yin et al. | The development and application of contemporary phosphorus flame retardants: a review | |
Yildirim et al. | Production and characterization of the halogen-free and nanostructured flame retardant reinforced composite coatings |