[go: up one dir, main page]

JP2018031334A - Laminate structure and machine component including laminate structure - Google Patents

Laminate structure and machine component including laminate structure Download PDF

Info

Publication number
JP2018031334A
JP2018031334A JP2016165291A JP2016165291A JP2018031334A JP 2018031334 A JP2018031334 A JP 2018031334A JP 2016165291 A JP2016165291 A JP 2016165291A JP 2016165291 A JP2016165291 A JP 2016165291A JP 2018031334 A JP2018031334 A JP 2018031334A
Authority
JP
Japan
Prior art keywords
layer
base material
dlc
nitride layer
hardness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016165291A
Other languages
Japanese (ja)
Inventor
勇哉 紺野
Yuya Konno
勇哉 紺野
安井 豊明
Toyoaki Yasui
豊明 安井
河野 将樹
Masaki Kawano
将樹 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Compressor Corp
Original Assignee
Mitsubishi Heavy Industries Ltd
Mitsubishi Heavy Industries Compressor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd, Mitsubishi Heavy Industries Compressor Corp filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2016165291A priority Critical patent/JP2018031334A/en
Priority to PCT/JP2017/030096 priority patent/WO2018038151A1/en
Priority to US16/097,945 priority patent/US10906270B2/en
Publication of JP2018031334A publication Critical patent/JP2018031334A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/06Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases
    • C23C8/36Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals using gases using ionised gases, e.g. ionitriding
    • C23C8/38Treatment of ferrous surfaces
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/046Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material with at least one amorphous inorganic material layer, e.g. DLC, a-C:H, a-C:Me, the layer being doped or not
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C8/00Solid state diffusion of only non-metal elements into metallic material surfaces; Chemical surface treatment of metallic material by reaction of the surface with a reactive gas, leaving reaction products of surface material in the coating, e.g. conversion coatings, passivation of metals
    • C23C8/80After-treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/28Selecting particular materials; Particular measures relating thereto; Measures against erosion or corrosion
    • F01D5/288Protective coatings for blades
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04CROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
    • F04C15/00Component parts, details or accessories of machines, pumps or pumping installations, not provided for in groups F04C2/00 - F04C14/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/313Layer deposition by physical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/30Manufacture with deposition of material
    • F05D2230/31Layer deposition
    • F05D2230/314Layer deposition by chemical vapour deposition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/224Carbon, e.g. graphite
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/226Carbides
    • F05D2300/2261Carbides of silicon
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/20Oxide or non-oxide ceramics
    • F05D2300/22Non-oxide ceramics
    • F05D2300/228Nitrides
    • F05D2300/2283Nitrides of silicon
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Chemical Vapour Deposition (AREA)
  • Laminated Bodies (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Details And Applications Of Rotary Liquid Pumps (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a laminate structure that strikes a balance between erosion resistance and fouling resistance, and to provide a rotary machine component including such the laminate structure.SOLUTION: A laminate structure 1 includes: a nitrided layer 5 formed by nitriding a base metal 3 on a surface of the base metal 3; an intermediate layer 6 formed at a surface of the nitrided layer 5; and DLC layer (diamond-like carbon layer) 7 formed at a surface of the intermediate layer 6. The laminate structure 1 can be applied to a component used for a rotary machine such as a steam turbine.SELECTED DRAWING: Figure 1

Description

本発明は、積層構造及び積層構造を有する機械部品に関する。   The present invention relates to a laminated structure and a mechanical component having a laminated structure.

従来、例えば、蒸気タービンやコンプレッサポンプ等の回転機械に用いられるブレードを含む回転部品においては、耐熱性や耐食性を考慮した表面処理が施されている。蒸気タービンは、作動流体である蒸気がタービンの動翼に噴射されて駆動されるものであり、動翼である蒸気タービンブレードやロータ等の回転機械の部品が、直接蒸気と接触する。また、化学プラントで用いられ、各種流体を圧縮する圧縮機であるコンプレッサポンプは、外部から動力を与えられてインペラが回転し、当該流体を圧縮する。このようなコンプレッサポンプにおいても、インペラやロータといった回転機械の部品が直接気体に接触する。   Conventionally, for example, rotating parts including blades used in rotating machines such as steam turbines and compressor pumps have been subjected to surface treatment in consideration of heat resistance and corrosion resistance. In the steam turbine, steam, which is a working fluid, is driven by being injected onto the rotor blades of the turbine, and components of a rotating machine such as steam turbine blades and rotors that are the rotor blades are in direct contact with the steam. In addition, a compressor pump that is used in a chemical plant and is a compressor that compresses various fluids receives power from the outside and rotates an impeller to compress the fluids. Even in such a compressor pump, components of a rotating machine such as an impeller and a rotor are in direct contact with the gas.

ここで、気体に含まれる水滴が高速で衝突する部品、例えば、蒸気タービンのブレードや、コンプレッサポンプのインペラにおいては、衝突する水滴によって表面にエロージョン(erosion)摩耗が発生する。エロージョン磨耗が生じると部品が振動し、この振動によって部品が破損するおそれがある。   Here, in parts where water droplets contained in the gas collide at high speed, such as blades of a steam turbine and impellers of compressor pumps, erosion wear occurs on the surface due to the colliding water droplets. When erosion wear occurs, the component vibrates, and the vibration may damage the component.

また、上述のような回転機械に用いられる部品においては、気体中に含まれるセラミックス成分、例えばSiOが付着する、所謂ファウリングと呼ばれる現象が発生することがある。このように、部品にセラミック成分が付着した場合には、作動効率が低下するため、装置全体の効率が低下する。 Further, in the parts used in the rotary machine as described above, a so-called fouling phenomenon may occur in which a ceramic component contained in the gas, for example, SiO 2 adheres. Thus, when a ceramic component adheres to a part, since the operating efficiency is lowered, the efficiency of the entire apparatus is lowered.

エロージョン磨耗やファウリングを防止するための対策として、母材の表面に皮膜を形成することが広く検討されており、その中で、DLC(Diamond-Like Carbon:ダイヤモンドライクカーボン)膜を用いた皮膜が提案されている。
例えば、特許文献1は、気体が直接接する部位に表面平滑化皮膜を有する回転機械において、表面平滑化皮膜はその表面粗さの最大高さRyが1.0μmを超えない炭素層であるDLC層で形成することを提案している。特許文献1は、母材の表面に、例えば窒化クロム(CrN)からなる硬質窒化層を形成し、その表面に表面平滑化皮膜を形成することも提案している。
また、特許文献2及び特許文献3は、母材の表面上に、TiN、TiAlNなどの硬質皮膜と、フッ素を含有するDLC膜からなるファウリング防止膜とを順に積層することを提案している。
さらに、特許文献4は、金属母材に接着することができる接着ベース層と約Ra0.0254μm以下の表面粗さを有する上面層を含み、接着ベース層の少なくとも1つはダイヤモンドライクカーボンである多層コーティングを形成することを提案している。
As a measure to prevent erosion wear and fouling, it has been widely studied to form a film on the surface of the base material. Among them, a film using a DLC (Diamond-Like Carbon) film. Has been proposed.
For example, Patent Document 1 discloses a DLC layer in which a surface smoothing film is a carbon layer whose maximum surface roughness Ry does not exceed 1.0 μm in a rotating machine having a surface smoothing film at a portion in direct contact with gas. It is proposed to form with. Patent Document 1 also proposes forming a hard nitride layer made of, for example, chromium nitride (CrN) on the surface of a base material, and forming a surface smoothing film on the surface.
Patent Document 2 and Patent Document 3 propose to sequentially stack a hard film such as TiN and TiAlN and a fouling prevention film made of a DLC film containing fluorine on the surface of the base material. .
Furthermore, Patent Document 4 includes a multi-layer in which an adhesive base layer that can be bonded to a metal base material and a top surface layer having a surface roughness of about Ra 0.0254 μm or less, and at least one of the adhesive base layers is diamond-like carbon. It is proposed to form a coating.

特開2007−162613号公報JP 2007-162613 A 特開2010−37613号公報JP 2010-37613 A 特開2011−74797号公報JP 2011-74797 A 特開2015−10278号公報Japanese Patent Laying-Open No. 2015-10278

ところが、本発明者らの検討によると、以下の通りである。
はじめに、特許文献1は、DLC膜の硬質窒化層への密着性が不十分であり、特許文献2及び特許文献3も、フッ素含有DLC膜の硬質皮膜への密着性が不十分である。
また、特許文献4は、最上層のDLC層にドレンが衝突すると、その衝撃が母材にまで及んでしまい、母材に微小なへこみが生じ、DLC層がこのへこみに追従できずに、DLC層に亀裂が生ずるおそれがある。そうすると、DLC層が剥離してしまう。
However, according to the study by the present inventors, it is as follows.
First, Patent Document 1 has insufficient adhesion of the DLC film to the hard nitride layer, and Patent Documents 2 and 3 also have insufficient adhesion to the hard film of the fluorine-containing DLC film.
Further, in Patent Document 4, when a drain collides with the uppermost DLC layer, the impact reaches the base material, a minute dent is generated in the base material, and the DLC layer cannot follow this dent. The layer may crack. As a result, the DLC layer is peeled off.

以上より、本発明は、DLC層の密着性を向上するとともに、耐エロージョン性及び耐ファウリング性を確保できる積層構造を提供することを目的とする。また、本発明は、そのような積層構造を備える回転機械用部品を提供とすることを目的とする。   Accordingly, an object of the present invention is to provide a laminated structure capable of improving the adhesion of a DLC layer and ensuring erosion resistance and fouling resistance. Moreover, an object of this invention is to provide the components for rotary machines provided with such a laminated structure.

本発明の積層構造は、鉄系の金属材料からなる母材と、母材を窒化処理することによって、母材の表面に形成される窒化層と、窒化層の表面に形成される中間層と、中間層の表面に形成されるDLC層と、を備えることを特徴とする。   The laminated structure of the present invention includes a base material made of an iron-based metal material, a nitride layer formed on the surface of the base material by nitriding the base material, and an intermediate layer formed on the surface of the nitride layer. And a DLC layer formed on the surface of the intermediate layer.

本発明の積層構造は、窒化層が、母材とDLC層の中間の硬さを有し、母材からDLC層に向けて、連続的に硬さが高くなることが好ましい。   In the laminated structure of the present invention, it is preferable that the nitride layer has an intermediate hardness between the base material and the DLC layer, and the hardness increases continuously from the base material toward the DLC layer.

本発明の積層構造は、窒化層の厚さが10〜100μmであることが好ましい。   In the laminated structure of the present invention, the nitride layer preferably has a thickness of 10 to 100 μm.

本発明の積層構造は、中間層の厚さが0.5〜2μmであることが好ましい。
本発明の積層構造は、中間層がSiC及びSiの一種又は二種からなることが好ましい。
In the laminated structure of the present invention, the thickness of the intermediate layer is preferably 0.5 to 2 μm.
In the laminated structure of the present invention, the intermediate layer is preferably composed of one or two of SiC and Si 3 N 4 .

本発明の積層構造は、DLC層の厚さが1〜10μmであることが好ましい。   In the laminated structure of the present invention, the thickness of the DLC layer is preferably 1 to 10 μm.

本発明の積層構造は、母材を窒化処理することによって母材の表面に窒化層を設け、その窒化層の上に中間層を設け、その中間層の上にDLC層を形成した積層構造を有するものである。本発明の積層構造は、窒化層及び中間層を介在させることで、DLC層に加えられた内部応力が緩和されるので、DLC層にドレンが衝突して衝撃が加わっても、DLC層に剥がれや割れが起こり難く、密着性の優れた積層構造にすることができる。また、DLC層は、耐エロージョン性を備えるとともに、それ自体の表面エネルギが小さいために、十分な耐ファウリング性を有している。つまり、本発明の積層構造を採用することにより、密着性が優れるとともに、耐エロージョン性と耐ファウリング性を兼ね備えた回転機械用部品を提供することができる。   The laminated structure of the present invention is a laminated structure in which a nitride layer is provided on the surface of the matrix by nitriding the matrix, an intermediate layer is provided on the nitride layer, and a DLC layer is formed on the intermediate layer. It is what you have. In the laminated structure of the present invention, the internal stress applied to the DLC layer is relieved by interposing the nitride layer and the intermediate layer. Therefore, even if a drain collides with the DLC layer and an impact is applied, the DLC layer peels off. It is difficult to cause cracks and a laminated structure with excellent adhesion can be obtained. Moreover, since the DLC layer has erosion resistance and its own surface energy is small, it has sufficient fouling resistance. That is, by adopting the laminated structure of the present invention, it is possible to provide a rotating machine component that has excellent adhesion and has both erosion resistance and fouling resistance.

本発明の実施形態に係る積層構造の断面の模式図である。It is a schematic diagram of the cross section of the laminated structure which concerns on embodiment of this invention. 本発明の実施形態に係る積層構造の硬さの分布を示す図である。It is a figure which shows distribution of the hardness of the laminated structure which concerns on embodiment of this invention. DLC膜の密着性に関する実験の結果を示すグラフである。It is a graph which shows the result of the experiment regarding the adhesiveness of a DLC film. (a)及び(b)は本発明の耐ドレンエロージョン性の評価方法を説明するための説明図である。(A) And (b) is explanatory drawing for demonstrating the drain-erosion-proof evaluation method of this invention. 本発明の実施例1〜4と比較例1〜4の組成と密着性の評価の結果を示すものである。The result of the evaluation of the composition and adhesion of Examples 1 to 4 and Comparative Examples 1 to 4 of the present invention is shown. 本発明の実施例5〜8と比較例5〜7の体積摩耗速度を示すものである。The volume abrasion rate of Examples 5-8 of this invention and Comparative Examples 5-7 is shown.

以下、添付図面を参照しながら、本発明の実施形態について説明する。
本実施形態に係る積層構造1は、図1に示すように、母材3と、母材3の表面に形成される窒化層5と、窒化層5の表面に形成される中間層6と、中間層6の表面に形成されるDLC層7と、を有し、後述する回転機械に適用されることで、耐エロージョン性及び耐ファウリング性を発揮する。
積層構造1は、母材3の表面を窒化して形成される窒化層5と中間層6を介してDLC層7を積層することで、DLC層7の密着性を向上させる。
以下、母材3、窒化層5及びDLC層7の順に説明し、その後、積層構造1を評価した結果を説明する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
As shown in FIG. 1, the laminated structure 1 according to this embodiment includes a base material 3, a nitride layer 5 formed on the surface of the base material 3, an intermediate layer 6 formed on the surface of the nitride layer 5, It has a DLC layer 7 formed on the surface of the intermediate layer 6 and exhibits erosion resistance and fouling resistance by being applied to a rotating machine described later.
The laminated structure 1 improves the adhesion of the DLC layer 7 by laminating the DLC layer 7 via the nitride layer 5 formed by nitriding the surface of the base material 3 and the intermediate layer 6.
Hereinafter, the base material 3, the nitride layer 5, and the DLC layer 7 will be described in this order, and then the results of evaluating the laminated structure 1 will be described.

[母材3]
積層構造1の母材3は、回転機械の各種部品を構成する鉄系の金属材料からなる。母材3の例としては、SUS403やSUS410J1に代表されるマルテンサイト系ステンレス鋼、SUS301やSUS301J1に代表されるオーステナイト系ステンレス鋼、SUS430やSUS410Lに代表されるフェライト系ステンレス鋼、SUS329J1に代表される二相ステンレス鋼、SUS630に代表される析出軟化系ステンレス鋼、等がある。この他にも、回転機械において一般に用いられている鉄系の金属材料にも制限なく適用することができる。
母材3は、用いる金属材料により異なるが、上述したステンレス鋼であれば、概ねビッカース硬さ(Hv)で200〜500の硬さを有する。本実施形態における母材3は、その表面に形成された窒化層5を除いた部分をいう。
なお、硬さHv及びその測定は、後述する実施例も含めてJIS Z 2244に準拠する。
[Base material 3]
The base material 3 of the laminated structure 1 is made of an iron-based metal material that constitutes various parts of the rotary machine. Examples of the base material 3 include martensitic stainless steel typified by SUS403 and SUS410J1, austenitic stainless steel typified by SUS301 and SUS301J1, ferritic stainless steel typified by SUS430 and SUS410L, and SUS329J1. There are duplex stainless steel, precipitation softening stainless steel represented by SUS630, and the like. In addition, the present invention can be applied without limitation to ferrous metal materials generally used in rotating machines.
Although the base material 3 changes with metal materials to be used, if it is stainless steel mentioned above, it will generally have a hardness of 200-500 in Vickers hardness (Hv). The base material 3 in the present embodiment refers to a portion excluding the nitride layer 5 formed on the surface thereof.
In addition, hardness Hv and its measurement are based on JISZ2244 including the Example mentioned later.

[窒化層5]
窒化層5は、後述するDLC層7の密着性の向上と、ドレンが衝突することによる衝撃を緩衝するために形成される。
窒化層5は、母材3の主成分である鉄(Fe)の窒化物を主体とする化合物からなるが、母材3との界面には窒素が拡散した拡散層が形成される。
窒化層5は、母材3とDLC層7の間に介在し、その硬さが母材3とDLC層7の中間を示すが、母材3を窒化処理して得られるものである。したがって、窒化層5の拡散層は、母材3との界面付近で母材3と同等の硬さを有し、母材3の上に形成された窒化物に比べて、母材3に対する密着性が高い。
[Nitride layer 5]
The nitride layer 5 is formed in order to improve the adhesion of the DLC layer 7 described later and buffer the impact caused by the collision of the drain.
The nitride layer 5 is made of a compound mainly composed of nitride of iron (Fe), which is the main component of the base material 3, but a diffusion layer in which nitrogen diffuses is formed at the interface with the base material 3.
The nitride layer 5 is interposed between the base material 3 and the DLC layer 7, and the hardness thereof is intermediate between the base material 3 and the DLC layer 7, but is obtained by nitriding the base material 3. Therefore, the diffusion layer of the nitride layer 5 has a hardness equivalent to that of the base material 3 in the vicinity of the interface with the base material 3, and is more closely attached to the base material 3 than the nitride formed on the base material 3. High nature.

窒化層5は、母材3が局部的に変形するのを防止するために設けられ、母材3とDLC層7の中間の硬さを有する。もっとも、後述するように、窒化層5は、その硬さが母材3からDLC層7に向けて連続的に高くなる傾斜構造を有しており、具体的な硬さは、窒化処理する母材3の材質により定まるものであり、例えば、SUS410J1が母材3を構成するものとすると、窒化層5の厚さ方向と直交する断面方向から硬さを測定した場合に、400〜1200Hv程度である。もっとも、後述するように、窒化層5は、その硬さが母材3からDLC層7に向けて連続的に高くなる傾斜構造を有しており、その硬さは厚さ方向において変動する。   The nitride layer 5 is provided to prevent the base material 3 from being locally deformed, and has a hardness intermediate between the base material 3 and the DLC layer 7. However, as will be described later, the nitride layer 5 has an inclined structure in which the hardness thereof continuously increases from the base material 3 toward the DLC layer 7. For example, assuming that SUS410J1 constitutes the base material 3, when the hardness is measured from a cross-sectional direction orthogonal to the thickness direction of the nitride layer 5, the thickness is about 400 to 1200 Hv. is there. However, as will be described later, the nitride layer 5 has an inclined structure in which the hardness continuously increases from the base material 3 toward the DLC layer 7, and the hardness varies in the thickness direction.

窒化層5は、母材3の表面を後述する方法で窒化処理することにより、母材3の当初の表面から厚さ方向に形成されるものである。窒化層5は、窒化処理を施す時間、その他の条件によって、図2の一点鎖線のように厚さを厚くしたり、逆に厚さを薄くしたり調整することができる。窒化層5が薄すぎると、窒化層5を設けることによる効果を十分に得られないことがある。また、窒化層5を必要以上に厚くしても、その効果は飽和する一方、処理時間が長くなり経済性を損ねる。これらのことを考慮すると、窒化層5は、厚さを10〜100μmとするのが好ましく、20〜90μmとするのがより好ましく、25〜80μmとするのがさらに好ましい。
なお、窒化層5の厚さは、前述した拡散層を含む厚さで定義され(JIS B 6905)、後述する実施例の厚さの測定も同様である。窒化層5は、拡散層を有することにより、図2に示すように、DLC層7の表面71から厚さ方向に硬度が低くなる傾斜構造になっている。
The nitride layer 5 is formed in the thickness direction from the original surface of the base material 3 by nitriding the surface of the base material 3 by a method described later. The nitride layer 5 can be adjusted to be thicker as shown by the alternate long and short dash line in FIG. 2 or to be thinner, depending on the time for performing the nitriding treatment and other conditions. If the nitride layer 5 is too thin, the effect of providing the nitride layer 5 may not be sufficiently obtained. Further, even if the nitride layer 5 is made thicker than necessary, the effect is saturated, but the processing time becomes long and the economy is impaired. Considering these matters, the nitride layer 5 preferably has a thickness of 10 to 100 μm, more preferably 20 to 90 μm, and even more preferably 25 to 80 μm.
Note that the thickness of the nitride layer 5 is defined by the thickness including the diffusion layer described above (JIS B 6905), and the measurement of the thickness in Examples described later is the same. Since the nitride layer 5 has a diffusion layer, as shown in FIG. 2, the nitride layer 5 has an inclined structure in which the hardness decreases from the surface 71 of the DLC layer 7 in the thickness direction.

窒化層5を介在させないで、母材3の表面にDLC層7を形成させると、母材3とDLC層7の硬さの差が大きいために、ドレンが衝突することによりDLC層7に発生する衝撃が母材3に直接的に伝わり、硬さの低い母材3がドレン衝突に対応して局部的に変形する。そうすると、DLC層7にも変形が生じて、DLC層7に割れや剥離が生じやすい。これに対し、母材3よりも硬い窒化層5が母材3の表面に形成されて、母材3とDLC層7との間に介在すると、DLC層7にドレンが衝突しても、窒化層5がその衝撃に抵抗するので、DLC層7に加わった衝撃を窒化層5が緩和するので、母材3の変形を抑えることができる。このように、窒化層5は、DLC層7に割れや剥離が生じるのを抑制する。つまり、窒化層5は応力緩和によって、DLC層7の密着性を向上させる。
さらに、窒化層5が、母材3からDLC層7の方向に連続的に硬さを上昇させてなる傾斜構造であることで、せん断力に対し急激な形状の変化を防ぐことができるので、応力集中を抑制することが可能であり、DLC層7の割れを防止できる。
When the DLC layer 7 is formed on the surface of the base material 3 without interposing the nitride layer 5, the difference in hardness between the base material 3 and the DLC layer 7 is large, so that the drain collides with the DLC layer 7. The impact is transmitted directly to the base material 3, and the base material 3 having low hardness is locally deformed in response to the drain collision. If it does so, a deformation | transformation will arise also in the DLC layer 7, and it will be easy to produce a crack and peeling in the DLC layer 7. FIG. In contrast, if a nitride layer 5 that is harder than the base material 3 is formed on the surface of the base material 3 and interposed between the base material 3 and the DLC layer 7, the nitridation is performed even if the drain collides with the DLC layer 7. Since the layer 5 resists the impact, the nitride layer 5 relaxes the impact applied to the DLC layer 7, so that deformation of the base material 3 can be suppressed. As described above, the nitride layer 5 suppresses the occurrence of cracking or peeling in the DLC layer 7. That is, the nitride layer 5 improves the adhesion of the DLC layer 7 by stress relaxation.
Furthermore, since the nitride layer 5 has an inclined structure in which the hardness is continuously increased in the direction from the base material 3 to the DLC layer 7, it is possible to prevent a sudden change in shape with respect to the shearing force. Stress concentration can be suppressed and cracking of the DLC layer 7 can be prevented.

[窒化層5の形成方法]
窒化層5を形成する手段は任意であり、公知の窒化処理を適用できる。窒化処理としては、イオン窒化処理及びラジカル窒化処理が適用できる。
[Method of forming nitride layer 5]
The means for forming the nitride layer 5 is arbitrary, and a known nitriding treatment can be applied. As the nitriding treatment, ion nitriding treatment and radical nitriding treatment can be applied.

イオン窒化は、減圧された真空炉槽中に母材3を陰極、炉体を陽極にして、炉内に窒素と水素を反応ガスとして導入して数百ボルトの直流電圧を印加すると陰極側でグロー放電を生じさせる。これによって+(プラス)に帯電した窒素イオンと水素イオンは、陰極である母材3に衝突するが、この衝突によって母材3は昇温し、窒化物が生成され母材3の内部に拡散して、窒化層5が形成される。プラズマ窒化処理によって形成される窒化層5の厚さは、処理温度、バイアス電圧、処理時間、水素ガスに対する窒素ガスの分圧比を変えることによって調整することができる。   In ion nitriding, when a base material 3 is used as a cathode and a furnace body is used as an anode in a decompressed vacuum furnace and nitrogen and hydrogen are introduced as reaction gases in the furnace and a DC voltage of several hundred volts is applied, Causes glow discharge. As a result, + (plus) charged nitrogen ions and hydrogen ions collide with the base material 3 which is a cathode, but due to this collision, the base material 3 is heated and nitride is generated and diffuses inside the base material 3. Thus, the nitride layer 5 is formed. The thickness of the nitride layer 5 formed by the plasma nitriding process can be adjusted by changing the processing temperature, the bias voltage, the processing time, and the partial pressure ratio of nitrogen gas to hydrogen gas.

ラジカル窒化処理は、プラズマ窒化法の一種であり、炉内にアンモニアガスと水素ガスの混合ガスを導入して、炉体と母材3の間にグロー放電を生じさせ、プラズマ中の窒素イオンを母材3の金属と反応させて表に窒化層5を形成するものである。ラジカル窒化処理によって形成される窒化層5の厚さは、処理温度、バイアス電圧、処理時間、水素ガスとアンモニアガスの分圧比を変えることによって調整することができる。   Radical nitriding is a kind of plasma nitriding method. A mixed gas of ammonia gas and hydrogen gas is introduced into the furnace to cause glow discharge between the furnace body and the base material 3, and nitrogen ions in the plasma are removed. The nitride layer 5 is formed on the surface by reacting with the metal of the base material 3. The thickness of the nitride layer 5 formed by radical nitridation treatment can be adjusted by changing the treatment temperature, bias voltage, treatment time, and partial pressure ratio of hydrogen gas and ammonia gas.

[中間層6]
中間層6は、上述した窒化層5の表面に形成される。窒化層5とともにDLC層7の密着性を向上させるためのものである。
中間層6は、SiC(炭化ケイ素)、Si(窒化ケイ素)、及びSiCN(炭窒化ケイ素)の何れか一種、又は、二種以上の層が積層化されている。これらのうち、SiC及びSiの一種、又は、二種の層が積層化されているものが好ましい。
中間層6の硬さは、中間層6がSiC、Si、及びSiCNの何れからなるかにより異なる。例えば、中間層6がSiCからなる場合は、硬さが2000〜2200Hv程度であり、図2に示すように、窒化層5より硬くすることができる。一方、中間層6がSiからなる場合は、硬さを、1400〜1600Hv程度にすることができる。なお、上述したSiCからなる中間層6の硬さは、中間層6の厚さ方向と直交する断面方向からナノインデンテーションで測定したナノインデンテーション硬さを、ビッカース硬さに換算したものである。
なお、中間層6の硬さは、後述する実施例においても断面方向から測定しているが、中間層6の表面が特定される場合には、DLC層7が中間層6の表面に積層されているか否かに関わらず、中間層6の表面と直交する表面方向から測定することも可能である。
[Intermediate layer 6]
The intermediate layer 6 is formed on the surface of the nitride layer 5 described above. This is to improve the adhesion of the DLC layer 7 together with the nitride layer 5.
The intermediate layer 6, SiC (silicon carbide), any one of Si 3 N 4 (silicon nitride), and SiCN (silicon carbon nitride), or, two or more layers are laminated. Among these, one in which one or two layers of SiC and Si 3 N 4 are laminated is preferable.
The hardness of the intermediate layer 6 differs depending on whether the intermediate layer 6 is made of SiC, Si 3 N 4 , or SiCN. For example, when the intermediate layer 6 is made of SiC, the hardness is about 2000 to 2200 Hv and can be harder than the nitride layer 5 as shown in FIG. On the other hand, when the intermediate layer 6 is made of Si 3 N 4 , the hardness can be about 1400 to 1600 Hv. The above-described hardness of the intermediate layer 6 made of SiC is obtained by converting the nanoindentation hardness measured by nanoindentation from the cross-sectional direction orthogonal to the thickness direction of the intermediate layer 6 into Vickers hardness. .
The hardness of the intermediate layer 6 is also measured from the cross-sectional direction in the examples described later. However, when the surface of the intermediate layer 6 is specified, the DLC layer 7 is laminated on the surface of the intermediate layer 6. It is also possible to measure from the surface direction orthogonal to the surface of the intermediate layer 6 regardless of whether or not it is present.

中間層6を窒化層5とDLC層7の間に配備することで、DLC層7の構成成分である炭素と窒化層5の構成成分である窒素の存在により、DLC層7の密着性が向上することにより耐エロージョン性が向上する。   By disposing the intermediate layer 6 between the nitride layer 5 and the DLC layer 7, the adhesion of the DLC layer 7 is improved by the presence of carbon, which is a constituent component of the DLC layer 7, and nitrogen, which is a constituent component of the nitride layer 5. By doing so, the erosion resistance is improved.

中間層6は、後述する中間層6の形成方法において、適宜条件を設定することにより、所望の厚さにすることができるが、厚さが0.5〜2μmであることが好ましい。   The intermediate layer 6 can be made to have a desired thickness by appropriately setting conditions in the method for forming the intermediate layer 6 described later, but the thickness is preferably 0.5 to 2 μm.

[中間層6の形成方法]
中間層6を形成する手段は、イオン窒化処理及びラジカル窒化処理に継続して、プラズマ処理で行われる。
[Method for Forming Intermediate Layer 6]
The means for forming the intermediate layer 6 is performed by plasma treatment following the ion nitriding treatment and radical nitriding treatment.

窒化層5がイオン窒化により形成されている場合に、SiCからなる中間層6を形成させる場合は、まず、真空炉槽中の窒化処理時に導入された窒素と水素を徐々に低下させるとともに、真空炉槽中に、Si系ガス(例えば、ヘキサメチルジシロキサンのガス)と、DLCの原料ガス(例えば、アセチレンのガス)を導入する。そして、SiCからなる中間層6は、真空炉槽中にSi系ガスとDLCの原料ガスが存在している状態で、窒化層5が形成されている母材3にプラズマ処理を行うことにより成膜される。
また、Siからなる中間層6は、真空炉槽中にSi系ガス(例えば、ヘキサメチルジシロキサンのガス)を導入して、真空炉槽中に、Si系ガスと窒化処理時に導入された窒素が存在する状態で、窒化層5が形成されている母材3にプラズマ処理を行うことにより成膜される。
さらに、SiCNからなる中間層6は、真空炉槽中に、Si系ガス(例えば、ヘキサメチルジシロキサンのガス)と、DLCの原料ガス(例えば、アセチレンのガス)を導入して、真空炉槽中に、Si系ガスとDLCの原料ガスと窒化処理時に導入された窒素が存在する状態で、窒化層5が形成されている母材3にプラズマ処理を行うことにより成膜される。
When the intermediate layer 6 made of SiC is formed when the nitride layer 5 is formed by ion nitriding, first, nitrogen and hydrogen introduced during the nitriding process in the vacuum furnace are gradually reduced and vacuum is applied. A Si-based gas (for example, hexamethyldisiloxane gas) and a DLC source gas (for example, acetylene gas) are introduced into the furnace tank. Then, the intermediate layer 6 made of SiC is formed by performing plasma treatment on the base material 3 on which the nitride layer 5 is formed in a state where the Si-based gas and the DLC source gas are present in the vacuum furnace. Be filmed.
Further, the intermediate layer 6 made of Si 3 N 4 is introduced with Si-based gas (for example, hexamethyldisiloxane gas) into the vacuum furnace and introduced into the vacuum furnace with Si-based gas and nitriding treatment. A film is formed by performing plasma treatment on the base material 3 on which the nitride layer 5 is formed in the presence of the nitrogen thus formed.
Further, the intermediate layer 6 made of SiCN introduces a Si-based gas (for example, hexamethyldisiloxane gas) and a DLC source gas (for example, acetylene gas) into the vacuum furnace tank. A film is formed by performing plasma treatment on the base material 3 on which the nitride layer 5 is formed in the presence of Si-based gas, DLC source gas, and nitrogen introduced during nitriding.

窒化層5がラジカル窒化により形成されている場合に、SiCからなる中間層6を形成させる場合は、まず、真空炉槽中の窒化処理時のアンモニアと水素ガスを徐々に低下させるとともに、真空炉槽中に、Si系ガス(例えばヘキサメチルジシロキサンのガス)とDLCの原料ガス(例えば、アセチレンのガス)を導入する。そして、SiCからなる中間層6は、真空炉槽中にSi系ガスとDLCの原料ガスが存在している状態で、窒化層5が形成されている母材3にプラズマ処理を行うことのより成膜される。
また、Siからなる中間層6は、真空炉槽中に、Si系ガス(例えばヘキサメチルジシロキサンのガス)を導入して、真空炉槽中に、Si系ガスと窒化処理時に導入されたアンモニアガスが存在する状態で、窒化層5が形成されている母材3にプラズマ処理を行うことにより成膜される。
さらに、SiCNからなる中間層6は、真空炉槽中に、Si系ガス(例えばヘキサメチルジシロキサンのガス)とDLCの原料ガス(例えば、アセチレンのガス)を導入して、真空炉槽中に、Si系ガスとDLCの原料ガスと窒化処理時に導入されたアンモニアガスが存在する状態で、窒化層5が形成されている母材3にプラズマ処理を行うことにより成膜される。
When the intermediate layer 6 made of SiC is formed when the nitride layer 5 is formed by radical nitridation, first, the ammonia and hydrogen gas during the nitriding treatment in the vacuum furnace tank are gradually lowered, and the vacuum furnace Si-based gas (for example, hexamethyldisiloxane gas) and DLC source gas (for example, acetylene gas) are introduced into the tank. Then, the intermediate layer 6 made of SiC is obtained by performing plasma treatment on the base material 3 on which the nitride layer 5 is formed in a state where the Si-based gas and the DLC source gas are present in the vacuum furnace. A film is formed.
Further, the intermediate layer 6 made of Si 3 N 4 is introduced into the vacuum furnace tank by introducing Si-based gas (for example, hexamethyldisiloxane gas), and introduced into the vacuum furnace tank at the time of nitriding with the Si-based gas. A film is formed by performing plasma treatment on the base material 3 on which the nitride layer 5 is formed in the presence of the ammonia gas.
Furthermore, the intermediate layer 6 made of SiCN introduces a Si-based gas (for example, hexamethyldisiloxane gas) and a DLC source gas (for example, acetylene gas) into the vacuum furnace tank. A film is formed by performing plasma treatment on the base material 3 on which the nitride layer 5 is formed in the presence of Si-based gas, DLC source gas, and ammonia gas introduced during nitriding.

[DLC層7]
次に、DLC層7について説明する。
DLC層7は、窒化層5の表面に形成され、積層構造1の最表面(最表層)に位置することで、積層構造1に耐エロージョン性及び耐ファウリング性を付与する。
DLC(Diamond Like Carbon)は、結晶構造が六方晶のグラファイトと立方晶のダイヤモンドの中間的な物性をもつ非晶質のカーボン膜であり、硬さがHvで1000〜5000の範囲を示す硬質膜である。同じDLCでも硬さに範囲があるのは、主にDLCの構成元素の相違による。つまり、DLCは、大きく分けると、構成元素が炭素と水素からなるものと、炭素のみからなるものに区分され、この差は、DLCを成膜する際の製法の違いによる。さらに、水素を含有するDLCでも水素含有量の違いで、硬さ、その他の性質が相違する。一般に、DLC層は、水素含有量を減らすことによって硬さを増加させる方向に制御することができる。
[DLC layer 7]
Next, the DLC layer 7 will be described.
The DLC layer 7 is formed on the surface of the nitride layer 5 and is positioned on the outermost surface (outermost layer) of the multilayer structure 1, thereby imparting erosion resistance and fouling resistance to the multilayer structure 1.
DLC (Diamond Like Carbon) is an amorphous carbon film having an intermediate physical property between hexagonal graphite and cubic diamond, and has a hardness of 1000 to 5000 in terms of Hv. It is. The range of hardness in the same DLC is mainly due to the difference in the constituent elements of DLC. That is, DLC can be broadly divided into constituent elements composed of carbon and hydrogen and constituent elements composed of only carbon, and this difference is due to the difference in the manufacturing method when forming DLC. Furthermore, even in DLC containing hydrogen, hardness and other properties are different due to the difference in hydrogen content. In general, the DLC layer can be controlled to increase the hardness by reducing the hydrogen content.

本実施形態におけるDLC層7は、硬さが低い場合も逆に高い場合も耐エロージョン性が劣る傾向にある。
DLC層7の硬さは、薄膜の硬度測定に適用されるナノインデンテーション(Nano Indentation)により特定することができる。後述する実施例に示すように、耐エロージョン性を評価する上で、ナノインデンテーション硬さが有効だからである。具体的には、DLC層7の表面と直交する表面方向から硬さを測定した場合に、DLC層7のナノインデンテーション硬さは、13〜30GPaであることが好ましく、14〜27GPaであることがより好ましく、15〜25GPaであることがさらに好ましい。
なお、DLC層7の硬さは、後述する実施例においても表面方向から測定しているが、DLC層7の厚さ方向と直交する断面方向から測定することも可能である。
The DLC layer 7 in the present embodiment tends to be inferior in erosion resistance both when the hardness is low and when it is high.
The hardness of the DLC layer 7 can be specified by nano indentation applied to thin film hardness measurement. This is because nanoindentation hardness is effective in evaluating erosion resistance, as shown in the examples described later. Specifically, when the hardness is measured from the surface direction orthogonal to the surface of the DLC layer 7, the nanoindentation hardness of the DLC layer 7 is preferably 13 to 30 GPa, and preferably 14 to 27 GPa. Is more preferable, and it is still more preferable that it is 15-25GPa.
In addition, although the hardness of the DLC layer 7 is measured from the surface direction also in the Example mentioned later, it is also possible to measure from the cross-sectional direction orthogonal to the thickness direction of the DLC layer 7.

DLC層7は、後述する積層構造1を有する回転機械用部品の交換の期間を考慮して厚さを設定できるが、その厚さは、1〜10μmであることが好ましく、1〜8μmであることがより好ましく、2〜5μmであることがさらに好ましい。   The thickness of the DLC layer 7 can be set in consideration of the replacement period of the rotating machine component having the laminated structure 1 to be described later, but the thickness is preferably 1 to 10 μm, and preferably 1 to 8 μm. It is more preferable that the thickness is 2 to 5 μm.

[DLC層7の形成方法]
所望するDLC層7が形成される限り、DLC層7を形成する手段は任意であり、公知のDLCの成膜方法を適用できる。
DLCの成膜方法は、固体の炭素からスパッタリングや陰極アーク放電を利用して成膜するPVD法(Physical Vapor Deposition,物理気相成長法)と、CVD法(Chemical Vapor Deposition,化学気相成長法)の2種に大別される。さらに、CVD法は、成分元素を分子状にガス化し化学反応によって成膜する熱CVD法と、メタン(CH)やアセチレン(C)等の炭化水素系ガスをプラズマ化して成膜するプラズマCVD法、等がある。プラズマCVD法は、熱CVD法に比べて処理温度を低くできる利点がある。
[Method of forming DLC layer 7]
As long as the desired DLC layer 7 is formed, a means for forming the DLC layer 7 is arbitrary, and a known DLC film forming method can be applied.
DLC film deposition methods include PVD (Physical Vapor Deposition), which uses sputtering or cathodic arc discharge, and CVD (Chemical Vapor Deposition). ) Are roughly divided into two types. Furthermore, the CVD method is a thermal CVD method in which component elements are gasified into molecules to form a film by a chemical reaction, and a hydrocarbon gas such as methane (CH 4 ) or acetylene (C 2 H 2 ) is converted into a plasma to form a film. There is a plasma CVD method. The plasma CVD method has an advantage that the processing temperature can be lowered as compared with the thermal CVD method.

本実施形態におけるDLC層7は、PVD法及びCVD法のいずれによっても形成できるが、適用する回転機械用部品によっては、PVD法よりもCVD法によりDLC層7を形成することがある。つまり、特に、プラズマCVD法は、狭小空間でもつきまわり性が良好であり、コンプレッサのダイヤフラム、クローズドインペラ内部、蒸気タービンの仕切板などの狭隘な空間を有する部品に成膜するのに好適である。
この際に、プラズマを生成させる方法としてはECR(Electron Cyclotron Resonance:電子サイクロトロン共鳴)プラズマや、マイクロ波を内面に沿って伝搬させて内面で高密度プラズマを作用させるMVP(Microwave-sheath Voltage combination Plasma)を、適用することも可能である。
The DLC layer 7 in the present embodiment can be formed by either the PVD method or the CVD method. However, depending on the rotating machine component to be applied, the DLC layer 7 may be formed by the CVD method rather than the PVD method. In other words, the plasma CVD method has particularly good throwing power even in a narrow space, and is suitable for forming a film on a part having a narrow space such as a compressor diaphragm, a closed impeller, and a steam turbine partition plate. .
At this time, as a method of generating plasma, ECR (Electron Cyclotron Resonance) plasma, or MVP (Microwave-sheath Voltage combination Plasma) in which microwaves propagate along the inner surface and high-density plasma acts on the inner surface. ) Can also be applied.

本実施形態のDLC層7は、表面エネルギが小さいために、セラミックス成分が付着しにくい性質を有するので、フッ素を含有しなくても、耐ファウリング性に優れている。   Since the DLC layer 7 of the present embodiment has a property that the ceramic component is difficult to adhere because the surface energy is small, the DLC layer 7 is excellent in fouling resistance even if it does not contain fluorine.

上記のように構成される本実施形態の積層構造1は、母材3と、母材3の表面に窒化層5と、窒化層5の表面に形成される中間層6と、中間層6の表面にDLC層7と、を有し、後述する回転機械用部品に適用されることで、耐エロージョン性及び耐ファウリング性を発揮する。
積層構造1は、図2に示す硬さの分布を示す。積層構造1は、母材3が図2の横軸で示される厚さ方向において、ほぼ等しい硬さを有するが、窒化層5は母材3のとの境界から中間層6との境界に向けて硬さが上昇する。窒化層5は、母材3を窒化して形成されたものであるから、母材3と窒化層5はその境界において、硬さが連続性を有している。一方、中間層6は窒化層5の表面に形成されたものであり、DLC層7は中間層6の表面に形成されたものであるから、窒化層5、中間層6及びDLC層7の境界における硬さが不連続である。
積層構造1は、硬さに相当の差がある母材3とDLC層7の間に、両者の中間の硬さを有する窒化層5を備えている。したがって、ドレンが衝突してDLC層7に衝撃が生じても、窒化層5が緩衝となり衝撃が母材3に伝わるのを阻止するか、少なくとも軽減するので、母材3に局部的な変形が生じるのを抑制する。
また、中間層6により、DLC層7の密着性が向上することにより耐エロージョン性が向上する。
The laminated structure 1 of the present embodiment configured as described above includes a base material 3, a nitride layer 5 on the surface of the base material 3, an intermediate layer 6 formed on the surface of the nitride layer 5, and an intermediate layer 6. It has a DLC layer 7 on the surface, and exhibits erosion resistance and fouling resistance by being applied to a rotating machine component to be described later.
The laminated structure 1 shows the hardness distribution shown in FIG. In the laminated structure 1, the base material 3 has substantially the same hardness in the thickness direction indicated by the horizontal axis in FIG. 2, but the nitrided layer 5 faces the boundary with the intermediate layer 6 from the boundary with the base material 3. The hardness increases. Since the nitride layer 5 is formed by nitriding the base material 3, the base material 3 and the nitride layer 5 have continuity in hardness at the boundary. On the other hand, since the intermediate layer 6 is formed on the surface of the nitride layer 5 and the DLC layer 7 is formed on the surface of the intermediate layer 6, the boundary between the nitride layer 5, the intermediate layer 6 and the DLC layer 7. The hardness at is discontinuous.
The laminated structure 1 includes a nitride layer 5 having a hardness intermediate between the base material 3 and the DLC layer 7 having a considerable difference in hardness. Therefore, even if the drain collides and an impact occurs in the DLC layer 7, the nitrided layer 5 acts as a buffer to prevent or at least reduce the impact from being transmitted to the base material 3. Suppresses the occurrence.
Moreover, the erosion resistance is improved by improving the adhesion of the DLC layer 7 by the intermediate layer 6.

母材3の材質や、積層構造1が適用される回転機械用部品が用いられる環境によって、窒化層5及びDLC層7の、相互の厚さと硬さを適宜調整することができる。なお、窒化層5は、DLC層7よりも厚くなっていることが好ましい。具体的には、窒化層5の厚さとDLC層7の厚さの比は、10:1〜100:1であることが好ましく、10:1〜90:1であることがより好ましく、12:1〜40:1であることが特に好ましい。   The mutual thickness and hardness of the nitride layer 5 and the DLC layer 7 can be appropriately adjusted depending on the material of the base material 3 and the environment in which the rotating machine component to which the laminated structure 1 is applied is used. The nitride layer 5 is preferably thicker than the DLC layer 7. Specifically, the ratio of the thickness of the nitride layer 5 to the thickness of the DLC layer 7 is preferably 10: 1 to 100: 1, more preferably 10: 1 to 90: 1, and 12: A ratio of 1 to 40: 1 is particularly preferred.

以下、本発明を具体的な実施例を挙げて詳細に説明する。ただし、本発明は以下に示す実施例に限定されるものではない。
以下に示す実施例1〜実施例4、及び、比較例1〜比較例4による積層構造を作製し、窒化層5、中間層6及びDLC層7の厚さ及び硬さを測定するとともに、DLC層7の密着性の評価(評価1)と、実施例5〜実施例8による積層構造を作製し、耐ドレンエロージョン性の評価(評価2)を行った。
Hereinafter, the present invention will be described in detail with specific examples. However, the present invention is not limited to the following examples.
A laminated structure according to Examples 1 to 4 and Comparative Examples 1 to 4 shown below is manufactured, and the thickness and hardness of the nitride layer 5, the intermediate layer 6, and the DLC layer 7 are measured, and the DLC is measured. Evaluation of adhesion of layer 7 (Evaluation 1) and a laminated structure according to Examples 5 to 8 were made, and drain erosion resistance was evaluated (Evaluation 2).

(実施例1)
JIS SUS410J1からなる母材3を、ラジカル窒化処理を行うことにより、母材3の表面に窒化層5を形成した。形成された窒化層5の表面に、プラズマCVD法により、SiCからなる中間層6を形成した。そして、形成された中間層6の表面に、プラズマCVD法により、DLC層7を形成して実施例1を製造した。この積層構造1は、母材3の表面から、窒化層5、中間層6及びDLC層7の順に積層されている。形成させた窒化層5及びDLC層7の厚さと硬さと、中間層6の厚さを図5に示す。
Example 1
By performing radical nitriding treatment on the base material 3 made of JIS SUS410J1, a nitride layer 5 was formed on the surface of the base material 3. An intermediate layer 6 made of SiC was formed on the surface of the formed nitride layer 5 by plasma CVD. Then, Example 1 was manufactured by forming the DLC layer 7 on the surface of the formed intermediate layer 6 by the plasma CVD method. In this laminated structure 1, the nitride layer 5, the intermediate layer 6, and the DLC layer 7 are laminated in this order from the surface of the base material 3. FIG. 5 shows the thickness and hardness of the formed nitride layer 5 and DLC layer 7 and the thickness of the intermediate layer 6.

(実施例2)
窒化層5、中間層6及びDLC層7を形成させるための条件を変えたこと以外は、実施例1と同様に製造して実施例2を製造した。形成させた窒化層5及びDLC層7の厚さ及び硬さと、中間層6の厚さを図5に示す。
(Example 2)
Example 2 was produced in the same manner as in Example 1 except that the conditions for forming the nitride layer 5, the intermediate layer 6, and the DLC layer 7 were changed. FIG. 5 shows the thickness and hardness of the formed nitride layer 5 and DLC layer 7 and the thickness of the intermediate layer 6.

(実施例3)
実施例2と同じ母材3に、イオン窒化処理を行って窒化層5を形成した以外は、実施例2と同様にして実施例3を製造した。形成させた窒化層5及びDLC層7の厚さ及び硬さと、中間層6の厚さを図5に示す。
(Example 3)
Example 3 was produced in the same manner as in Example 2 except that the same base material 3 as in Example 2 was subjected to ion nitriding to form a nitrided layer 5. FIG. 5 shows the thickness and hardness of the formed nitride layer 5 and DLC layer 7 and the thickness of the intermediate layer 6.

(実施例4)
実施例2と同じ母材3の表面に形成された窒化層5の表面に、プラズマCVD法により、Siからなる中間層6を形成した以外は、実施例2と同様に製造して実施例4を製造した。形成させた窒化層5及びDLC層7の厚さ及び硬さと、中間層6の厚さを図5に示す。
Example 4
It is manufactured in the same manner as in Example 2 except that the intermediate layer 6 made of Si 3 N 4 is formed on the surface of the nitride layer 5 formed on the surface of the same base material 3 as in Example 2 by the plasma CVD method. Example 4 was prepared. FIG. 5 shows the thickness and hardness of the formed nitride layer 5 and DLC layer 7 and the thickness of the intermediate layer 6.

(比較例1)
窒化層5を設けないこと以外は、実施例1と同様にして比較例1を得た。つまり、比較例1は、実施例1と同じ母材3の表面に、実施例1と同様の方法により、DLC層7を形成した。形成されたDLC層7の厚さと硬さを図5に示す。
(比較例2)
実施例1と同じ母材3に、実施例1と同じ方法で、SiCからなる中間層6を形成した。形成された中間層6の表面に、実施例1と同じ方法で、DLC層7を形成した。DLC層7の厚さ及び硬さと、中間層6の厚さを図5に示す。
(Comparative Example 1)
Comparative Example 1 was obtained in the same manner as Example 1 except that the nitride layer 5 was not provided. That is, in Comparative Example 1, the DLC layer 7 was formed on the surface of the same base material 3 as in Example 1 by the same method as in Example 1. The thickness and hardness of the formed DLC layer 7 are shown in FIG.
(Comparative Example 2)
An intermediate layer 6 made of SiC was formed on the same base material 3 as in Example 1 by the same method as in Example 1. A DLC layer 7 was formed on the surface of the formed intermediate layer 6 by the same method as in Example 1. The thickness and hardness of the DLC layer 7 and the thickness of the intermediate layer 6 are shown in FIG.

(比較例3)
実施例1と同じ母材3を、ラジカル窒化処理を行うことにより、母材3の表面に窒化層5を形成した。形成された窒化層5の表面に、プラズマCVD法により、DLC層7を形成して比較例3を製造した。形成された窒化層5とDLC層7の厚さ及び硬さを図5に示す。
(比較例4)
実施例1と同じ母材3を、窒化処理を行う処理時間を半分にしてイオン窒化処理を行って窒化層5を形成した以外は、比較例3と同様に製造して比較例4を製造した。形成された窒化層5とDLC層7の厚さ及び硬さを図5に示す。
(Comparative Example 3)
The same base material 3 as in Example 1 was subjected to radical nitridation treatment to form a nitride layer 5 on the surface of the base material 3. Comparative Example 3 was manufactured by forming the DLC layer 7 on the surface of the formed nitride layer 5 by plasma CVD. FIG. 5 shows the thickness and hardness of the formed nitride layer 5 and DLC layer 7.
(Comparative Example 4)
Comparative Example 4 was manufactured in the same manner as Comparative Example 3 except that the same base material 3 as in Example 1 was subjected to ion nitriding treatment by halving the nitriding treatment time to form a nitrided layer 5. . FIG. 5 shows the thickness and hardness of the formed nitride layer 5 and DLC layer 7.

実施例1〜4及び比較例1〜4を用いて、以下に説明する評価試験を実施した。評価結果を図5に示す。
[評価1:積層構造の密着性評価]
以下の条件で、スクラッチ試験を行い、積層構造1の特にDLC層7の密着性を評価した。
具体的には、固定した実施例及び比較例の表面に対し、先端にダイヤモンドチップが備わった圧子を押し付け、印加する荷重を徐々に大きくしながら引っ掻くことで意図的にカケ(Chipping)を生じさせた。実施例及び比較例のカケが生じた点をAE(Acoustic Emission)チャートから読み取った。AEチャートから読み取った結果より、剥離発生荷重(単位:N)によって密着性を評価した。その評価結果を図3及図5に示す。密着性は、剥離発生荷重(N)が大きいほど高くなる。
・装置:AEセンサー付き自動スクラッチ試験機(CSM Instruments社製)
・直動試料テーブル移動速度:10mm/min
・荷重負荷レート:100N/min(=10N/mm)
The evaluation test demonstrated below was implemented using Examples 1-4 and Comparative Examples 1-4. The evaluation results are shown in FIG.
[Evaluation 1: Evaluation of adhesion of laminated structure]
A scratch test was performed under the following conditions to evaluate the adhesion of the laminated structure 1, particularly the DLC layer 7.
Specifically, a chip (chip) is intentionally generated by pressing an indenter with a diamond tip at the tip against the surface of the fixed example and comparative example, and scratching while gradually increasing the applied load. It was. The point where the chip of Example and the comparative example occurred was read from the AE (Acoustic Emission) chart. From the result read from the AE chart, the adhesion was evaluated by the peel generation load (unit: N). The evaluation results are shown in FIGS. The adhesion becomes higher as the peeling generation load (N) is larger.
・ Device: Automatic scratch testing machine with AE sensor (CSM Instruments)
・ Linear sample table moving speed: 10 mm / min
・ Loading rate: 100 N / min (= 10 N / mm)

実施例1〜4は、図3に示すように、比較例1〜4よりも優れた密着性を有している。
実施例1〜4の密着性は、母材3の表面にDLC層7が形成された比較例1、及び母材3の表面に中間層6が形成され、その表面にDLC層7が形成された比較例2との対比から、窒化層5が形成されていることによるものであることが示唆される。一方、母材3の表面に窒化層5が形成されている比較例3及び比較例4は、剥離荷重が、比較例1及び比較例2よりも大きいが、実施例1〜4よりも小さい。
このように、母材3の表面に窒化層5させ、さらに窒化層5の表面に中間層6を形成させることにより、優れた密着性を得ることができ、さらにその密着性を窒化層5の厚さや硬さを変更することで調節することができる。
なお、密着性は、耐エロージョン性の向上にも寄与している。
Examples 1-4 have the adhesiveness superior to Comparative Examples 1-4, as shown in FIG.
The adhesion of Examples 1 to 4 is that Comparative Example 1 in which the DLC layer 7 is formed on the surface of the base material 3, and the intermediate layer 6 is formed on the surface of the base material 3, and the DLC layer 7 is formed on the surface. The comparison with Comparative Example 2 suggests that the nitride layer 5 is formed. On the other hand, Comparative Example 3 and Comparative Example 4 in which the nitride layer 5 is formed on the surface of the base material 3 have a larger peeling load than Comparative Examples 1 and 2, but smaller than Examples 1-4.
As described above, by forming the nitride layer 5 on the surface of the base material 3 and further forming the intermediate layer 6 on the surface of the nitride layer 5, excellent adhesion can be obtained. It can be adjusted by changing the thickness and hardness.
The adhesion also contributes to the improvement of erosion resistance.

[評価2:耐ドレンエロージョン性の評価]
積層構造1の耐ドレンエロージョン性の評価をするため、実施例5〜8に係る積層構造1を、実施例1〜4の層構成になるように作製し、JIS R 1646(ASTM G32−77)に準じて、キャビテーションエロージョン試験を行った。また、評価1で用いた比較例2〜3の層構成で作成した比較例5〜7についても、同様にキャビテーションエロージョン試験を行った。実施例5〜8及び比較例5〜7の耐ドレンエロージョン性の評価を図6に示す。
[Evaluation 2: Evaluation of drain erosion resistance]
In order to evaluate the drain erosion resistance of the laminated structure 1, the laminated structures 1 according to Examples 5 to 8 were prepared so as to have the layer structure of Examples 1 to 4, and JIS R 1646 (ASTM G32-77). The cavitation erosion test was conducted according to the above. Moreover, the cavitation erosion test was similarly done about Comparative Examples 5-7 created by the layer structure of Comparative Examples 2-3 used in Evaluation 1. Evaluation of the drain erosion resistance of Examples 5 to 8 and Comparative Examples 5 to 7 is shown in FIG.

図4(a)に、本評価で用いたキャビテーションエロージョン試験装置80の構成図を示す。
本評価においては、超音波発信器86にて振動子81を発振させ、ホーン82によって振幅を拡大させて、図4(a)に示すように、ホーン82の先端に取付けた試験片A(実施例5〜8)を振動させる方法で評価試験を行った。試験片Aは、図4(b)に示すように、ホーン82に固定されるものであり、円柱状に形成されており、DLC層7がその先端に配置される。
FIG. 4A shows a configuration diagram of the cavitation erosion test apparatus 80 used in this evaluation.
In this evaluation, the vibrator 81 is oscillated by the ultrasonic transmitter 86, the amplitude is enlarged by the horn 82, and the test piece A attached to the tip of the horn 82 as shown in FIG. An evaluation test was performed by the method of vibrating Examples 5 to 8. As shown in FIG. 4B, the test piece A is fixed to the horn 82, is formed in a columnar shape, and the DLC layer 7 is disposed at the tip thereof.

評価は、試験片Aの先端を試験片液85に浸漬しながら振動させて気泡を発生させ、この気泡が崩壊する際の衝撃圧力や液ジェットにより、エロージョンを発生させた。この試験条件は、以下の通りである。
・振動数:18.5KHz
・振幅:25μm
・試験液:イオン交換水
・試験片浸漬深さ:5mm
・試験液温度:20℃
・試験時間:2時間
In the evaluation, the tip of the test piece A was vibrated while being immersed in the test piece liquid 85 to generate bubbles, and erosion was generated by impact pressure and liquid jet when the bubbles collapsed. The test conditions are as follows.
・ Frequency: 18.5KHz
・ Amplitude: 25 μm
・ Test solution: Ion exchange water ・ Test specimen immersion depth: 5 mm
・ Test solution temperature: 20 ° C
・ Test time: 2 hours

上記の試験環境でキャビテーションエロージョン試験を2時間行った後に、実施例5〜8の乾燥重量を電子天秤(精度:0.1mg)によって測定して、重量減少量(エロージョン量)を求めて、耐ドレンエロージョン性を評価した。結果を図6に示す。   After performing the cavitation erosion test for 2 hours in the above test environment, the dry weight of Examples 5 to 8 was measured with an electronic balance (accuracy: 0.1 mg), and the weight loss (erosion amount) was determined. The drain erosion property was evaluated. The results are shown in FIG.

図6は、実施例5〜8及び比較例5〜7の体積摩耗速度(単位:mm/hr)を示している。体積摩耗速度(mm/hr)が小さいほど耐エロージョン性が高いことを示している。
図6より、実施例5〜8は、比較例5〜7よりも耐エロージョン性が高いことから、母材3と、母材3の表面に窒化層5が形成され、窒化層5の表面に中間層6が形成され、中間層6の表面にDLC層7が形成されていることにより、耐エロージョン性と耐ファウリング性を得られることが示唆される。
FIG. 6 shows the volume wear rate (unit: mm 3 / hr) of Examples 5 to 8 and Comparative Examples 5 to 7. The smaller the volume wear rate (mm 3 / hr), the higher the erosion resistance.
From FIG. 6, since Examples 5-8 have higher erosion resistance than Comparative Examples 5-7, a nitride layer 5 is formed on the surface of the base material 3 and the base material 3, and the surface of the nitride layer 5 is formed. It is suggested that erosion resistance and fouling resistance can be obtained by forming the intermediate layer 6 and forming the DLC layer 7 on the surface of the intermediate layer 6.

以上説明したように、耐エロージョン性と耐ファウリング性を兼ね備えた積層構造1を提供することができる。また、積層構造1を有する回転機械用部品の種類や、その回転機械用部品の交換の期間に応じて、DLC層7と窒化層5の厚さ及び硬さや層6の厚さを調節することや、中間層6の種類を選択することで、密着性と耐エロージョン性を調節することもできる。   As described above, the laminated structure 1 having both erosion resistance and fouling resistance can be provided. Further, the thickness and hardness of the DLC layer 7 and the nitride layer 5 and the thickness of the layer 6 are adjusted according to the type of the rotating machine component having the laminated structure 1 and the replacement period of the rotating machine component. Alternatively, the adhesion and erosion resistance can be adjusted by selecting the type of the intermediate layer 6.

本発明の積層構造1を適用する用途としては、例えば、蒸気タービン等の回転機械に用いられるブレードやロータ等、直接蒸気と接触する回転機械の部品が挙げられる。また、自動車及び航空機分野の機械部品であるクランク軸、シンクロナイザハブ、ロッカアーム、ロッカシャフトバルブ、バルブガイド、インペラ、シリンダーガイド、カム軸、等が挙げられる。また、化学プラント等で用いられる各種流体を圧縮する圧縮機(コンプレッサポンプ)のインペラ、ロータ、ピストン、バルブ、高圧ニードル弁、シリンダチューブ、シリンダロッド等の部品が挙げられる。また、スパーギア、ヘリカルギア、ウォーム&ウォームホイール等のギア類、シャフト、ソケット、カム、等の一般機械部品が挙げられる。更には、ダイカスト、プラスチック、アルミ押出等の各種金型、及び、ドリル、タップ、カッター等の各種工具類、及び、カメラ、時計、ミシン等の精密機器部品等、が挙げられる。   As an application to which the laminated structure 1 of the present invention is applied, for example, a rotary machine component that directly contacts steam such as a blade or a rotor used in a rotary machine such as a steam turbine can be cited. Further, there are a crankshaft, a synchronizer hub, a rocker arm, a rocker shaft valve, a valve guide, an impeller, a cylinder guide, a camshaft, etc., which are machine parts in the automobile and aircraft fields. Moreover, components such as an impeller, a rotor, a piston, a valve, a high pressure needle valve, a cylinder tube, and a cylinder rod of a compressor (compressor pump) that compresses various fluids used in a chemical plant or the like can be given. Moreover, general machine parts, such as gears, such as a spur gear, a helical gear, and a worm & worm wheel, a shaft, a socket, and a cam, are mentioned. Furthermore, various molds such as die casting, plastic, and aluminum extrusion, various tools such as a drill, a tap, and a cutter, and precision instrument parts such as a camera, a watch, and a sewing machine are included.

上記以外にも、本発明の主旨を逸脱しない限り、上記実施形態で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。   In addition to the above, as long as the gist of the present invention is not deviated, the configuration described in the above embodiment can be selected or changed to another configuration as appropriate.

1 積層構造
3 母材
5 窒化層
6 中間層
7 DLC層
71 表面
80 キャビテーションエロージョン試験装置
81 振動子
82 ホーン
85 試験片液
86 超音波発信器
DESCRIPTION OF SYMBOLS 1 Laminated structure 3 Base material 5 Nitride layer 6 Intermediate layer 7 DLC layer 71 Surface 80 Cavitation erosion test apparatus 81 Vibrator 82 Horn 85 Test piece liquid 86 Ultrasonic transmitter

Claims (8)

鉄系の金属材料からなる母材と、
前記母材を窒化処理することによって、前記母材の表面に形成される窒化層と、
前記窒化層の表面に形成される中間層と、
前記中間層の表面に形成されるDLC層と、を備えること、
を特徴とする積層構造。
A base material made of an iron-based metal material;
A nitriding layer formed on a surface of the base material by nitriding the base material;
An intermediate layer formed on the surface of the nitride layer;
A DLC layer formed on the surface of the intermediate layer,
A laminated structure characterized by
前記窒化層は、
前記母材と前記DLC層の中間の硬さを有し、前記母材から前記DLC層に向けて、連続的に硬さが高くなる、
請求項1に記載の積層構造。
The nitride layer is
It has a hardness intermediate between the base material and the DLC layer, and the hardness increases continuously from the base material toward the DLC layer.
The laminated structure according to claim 1.
前記窒化層は、
厚さが10〜100μmである、
請求項1又は請求項2に記載の積層構造。
The nitride layer is
The thickness is 10-100 μm,
The laminated structure according to claim 1 or 2.
前記中間層は、
厚さが0.5〜2μmである、
請求項1〜3のいずれか一項に記載の積層構造。
The intermediate layer is
The thickness is 0.5-2 μm,
The laminated structure as described in any one of Claims 1-3.
前記中間層は、
SiC及びSiの一種又は二種からなる、
請求項1〜4のいずれか一項に記載の積層構造。
The intermediate layer is
Consisting of one or two of SiC and Si 3 N 4 ,
The laminated structure as described in any one of Claims 1-4.
前記DLC層は、
厚さが1〜10μmである、
請求項1〜請求項5のいずれか一項に記載の積層構造。
The DLC layer is
The thickness is 1-10 μm,
The laminated structure as described in any one of Claims 1-5.
請求項1〜請求項6のいずれか一項に記載の積層構造を有する回転機械用部品。   A rotating machine component having the laminated structure according to any one of claims 1 to 6. 前記回転機械用部品は、蒸気タービン又はコンプレッサの部品である請求項7に記載の回転機械用部品。   The rotating machine component according to claim 7, wherein the rotating machine component is a component of a steam turbine or a compressor.
JP2016165291A 2016-08-26 2016-08-26 Laminate structure and machine component including laminate structure Pending JP2018031334A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016165291A JP2018031334A (en) 2016-08-26 2016-08-26 Laminate structure and machine component including laminate structure
PCT/JP2017/030096 WO2018038151A1 (en) 2016-08-26 2017-08-23 Multilayer structure and machine component having multilayer structure
US16/097,945 US10906270B2 (en) 2016-08-26 2017-08-23 Multilayer structure and machine component having multilayer structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016165291A JP2018031334A (en) 2016-08-26 2016-08-26 Laminate structure and machine component including laminate structure

Publications (1)

Publication Number Publication Date
JP2018031334A true JP2018031334A (en) 2018-03-01

Family

ID=61245164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016165291A Pending JP2018031334A (en) 2016-08-26 2016-08-26 Laminate structure and machine component including laminate structure

Country Status (3)

Country Link
US (1) US10906270B2 (en)
JP (1) JP2018031334A (en)
WO (1) WO2018038151A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022507435A (en) * 2018-11-14 2022-01-18 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーン Coating to improve performance and life in plastic processing applications
JPWO2022107467A1 (en) * 2020-11-19 2022-05-27
JP2023007018A (en) * 2021-07-01 2023-01-18 川崎重工業株式会社 gear pump device

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4218831B2 (en) * 2003-12-01 2009-02-04 株式会社紀和マシナリー Machine tool guide device and coating method thereof
US7247348B2 (en) * 2004-02-25 2007-07-24 Honeywell International, Inc. Method for manufacturing a erosion preventative diamond-like coating for a turbine engine compressor blade
JP4918253B2 (en) * 2005-12-15 2012-04-18 三菱重工業株式会社 Rotating machine with surface smoothing film
JP4704950B2 (en) * 2006-04-27 2011-06-22 株式会社神戸製鋼所 Amorphous carbon-based hard multilayer film and hard surface member having this film on the surface
JP2008163430A (en) * 2006-12-28 2008-07-17 Jtekt Corp High corrosion-resistant member and its manufacturing method
US20090246243A1 (en) * 2008-03-25 2009-10-01 La Corporation De I'ecole Polytechnique Carbonaceous Protective Multifunctional Coatings
JP5244495B2 (en) 2008-08-06 2013-07-24 三菱重工業株式会社 Parts for rotating machinery
JP2010121846A (en) 2008-11-19 2010-06-03 Sanden Corp Vapor compression type refrigerating cycle
JP5222764B2 (en) * 2009-03-24 2013-06-26 株式会社神戸製鋼所 Multilayer coating and multilayer coating covering member
JP2011074797A (en) 2009-09-30 2011-04-14 Mitsubishi Heavy Ind Ltd Blade, manufacturing method therefor, and rotary machine
JP5792986B2 (en) * 2011-04-21 2015-10-14 神港精機株式会社 Surface treatment apparatus and surface treatment method
US20150004362A1 (en) 2013-07-01 2015-01-01 General Electric Company Multilayered coatings with diamond-like carbon

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022507435A (en) * 2018-11-14 2022-01-18 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーン Coating to improve performance and life in plastic processing applications
JP7482863B2 (en) 2018-11-14 2024-05-14 エリコン・サーフェス・ソリューションズ・アクチェンゲゼルシャフト,プフェフィコーン Coatings for improved performance and life in plastics processing applications
US12173410B2 (en) 2018-11-14 2024-12-24 Oerlikon Surface Solutions Ag, Pfäffikon Coating for enhanced performance and lifetime in plastic processing applications
JPWO2022107467A1 (en) * 2020-11-19 2022-05-27
WO2022107467A1 (en) * 2020-11-19 2022-05-27 富士電機株式会社 Steam turbine member
JP7498439B2 (en) 2020-11-19 2024-06-12 富士電機株式会社 Steam Turbine Components
JP2023007018A (en) * 2021-07-01 2023-01-18 川崎重工業株式会社 gear pump device
JP7702825B2 (en) 2021-07-01 2025-07-04 川崎重工業株式会社 Gear Pump Equipment

Also Published As

Publication number Publication date
US20190143644A1 (en) 2019-05-16
WO2018038151A1 (en) 2018-03-01
US10906270B2 (en) 2021-02-02

Similar Documents

Publication Publication Date Title
Li et al. Continuously growing ultrathick CrN coating to achieve high load-bearing capacity and good tribological property
Miorin et al. Al rich PVD protective coatings: A promising approach to prevent T91 steel corrosion in stagnant liquid lead
Sharifahmadian et al. Comparison between corrosion behaviour of DLC and N-DLC coatings deposited by DC-pulsed PACVD technique
WO2018038151A1 (en) Multilayer structure and machine component having multilayer structure
Kolawole et al. The improvement of diamond-like carbon coatings for tribological and tribo-corrosion applications in automobile engines: an updated review study
JP4839120B2 (en) Piston ring with laminated coating
GB2568063B (en) Water droplet erosion resistant coatings for turbine blades and other components
JP4076169B2 (en) Piston ring, piston, cylinder, piston pin with amorphous hard carbon film
JP2014129826A (en) Combination of cylinder and piston ring
Kulesh et al. Boron-carbon coatings: structure, morphology and mechanical properties
Qin et al. Cavitation erosion behavior of nanocomposite Ti–Si–C–N and Ti/Ti–Si–C–N coatings deposited on 2Cr13 stainless steel using a plasma enhanced magnetron sputtering process
Li et al. Structural, mechanical, and tribological properties of GLC film on a nitrided layer prepared in a glow-discharge plasma nitriding system
Wu et al. Microstructure, mechanical and tribological properties of CrSiC coatings sliding against SiC and Al2O3 balls in water
CN107400874A (en) Method for preparing diamond film on surface of stainless steel
JP4087349B2 (en) Pulse laser surface treatment method
JP2009035584A (en) Sliding member
JP2011122226A (en) Thick dlc film coated member and method of preparing the same
RU2418883C2 (en) Thin-film multi-layer structure, component including such structure and procedure for its sedimentation
JP5360603B2 (en) Method for producing amorphous carbon-coated member
JP4307912B2 (en) Composite surface modification method
JP2009052081A (en) Hard carbon coating
JP5200849B2 (en) Low-chromium-containing DLC film substantially free of hydrogen and sliding parts
KR20190081122A (en) Punch tool with dlc diamond and thin film double-coated and manufacturing method there of
Nguyen et al. Effects of Hybrid Surface Treatment Composed of Plasma Nitriding and CrN Coating on Friction-Wear Properties of Stainless Steel
CN105525243B (en) A kind of high-strength titanium alloy pipes case hardening process

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20180426