[go: up one dir, main page]

JP2018027599A - Method for correcting machining error of machine tool - Google Patents

Method for correcting machining error of machine tool Download PDF

Info

Publication number
JP2018027599A
JP2018027599A JP2016160735A JP2016160735A JP2018027599A JP 2018027599 A JP2018027599 A JP 2018027599A JP 2016160735 A JP2016160735 A JP 2016160735A JP 2016160735 A JP2016160735 A JP 2016160735A JP 2018027599 A JP2018027599 A JP 2018027599A
Authority
JP
Japan
Prior art keywords
tool
contact
machining error
detection
detection rod
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016160735A
Other languages
Japanese (ja)
Other versions
JP6842146B2 (en
Inventor
賢一 中西
Kenichi Nakanishi
賢一 中西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nakamura Tome Precision Industry Co Ltd
Original Assignee
Nakamura Tome Precision Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nakamura Tome Precision Industry Co Ltd filed Critical Nakamura Tome Precision Industry Co Ltd
Priority to JP2016160735A priority Critical patent/JP6842146B2/en
Publication of JP2018027599A publication Critical patent/JP2018027599A/en
Application granted granted Critical
Publication of JP6842146B2 publication Critical patent/JP6842146B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Machine Tool Sensing Apparatuses (AREA)
  • Numerical Control (AREA)
  • Automatic Control Of Machine Tools (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a technical means capable of more appropriately correcting a machining error based on thermal deformation of a machine tool, in particular a lathe, without lowering the productivity.SOLUTION: A method for correcting a machining error of a machine tool, comprises: bringing the outer circumference 5 of a work chuck 4 attached to a main spindle into contact with a contact detection sensor 3a or a detection rod 3b attached at the tool attachment position 7 of a tool rest 14, 24; and by detecting a change in the relative positional relationship between the main spindle and the tool attachment position of the tool rest from the coordinates of the tool rest 14, 24 at the time of detecting the contact, determining a correction value with respect to the position of the tool rest 14, 24. The contact of the detection rod 3b with the chuck outer circumference 5 can be detected by detecting the rising of a position deviation, which is a difference signal between the position command given to a tool rest feed motor and a feedback signal by using the detection rod processed with high accuracy instead of using the contact detection sensor 3a.SELECTED DRAWING: Figure 6

Description

この発明は、工作機械の熱変形によるワークの加工誤差を補正する手段に関するものである。   The present invention relates to a means for correcting a machining error of a workpiece due to thermal deformation of a machine tool.

工作機械でワークを加工すると、機械の運転に伴って生ずる発熱により、機械各部の温度が変化し、それに伴う機械各部の熱変形の変化により、加工されるワークの加工精度が変化(一般的には低下)する。   When a workpiece is machined with a machine tool, the temperature of each part of the machine changes due to the heat generated by the operation of the machine, and the machining accuracy of the workpiece to be machined changes due to the change in the thermal deformation of each part of the machine. Will fall).

この機械自体の経時的な温度変化による加工精度の変化を補正するために、機械の各所に温度センサを取り付け、各センサの検出温度に実験により求めた係数を乗じた演算式により補正値を求めて、この補正値で刃物台の移動位置などを補正して加工を行うということが行われている。   In order to correct the change in machining accuracy due to the temperature change of the machine itself over time, temperature sensors are attached to various parts of the machine, and a correction value is obtained by an arithmetic expression obtained by multiplying the detected temperature of each sensor by a coefficient obtained through experiments. Thus, machining is performed by correcting the moving position of the tool post with this correction value.

例えば、旋盤の本体にn個の温度センサをそれぞれ適切と考えられる箇所に取り付け、種々のワークを加工した際の加工精度のデータと加工中に検出された各温度センサの検出温度のデータとを用いて、
Δx=a1x1+a2x2+a3x3+・・・+anxn
Δy=a1y1+a2y2+a3y3+・・・+anyn
Δz=a1z1+a2z2+a3z3+・・・+anzn
のような計算式でX、Y、Z軸方向の補正値Δx、Δy、Δzを求め、加工プログラムで指定されるX、Y、Z軸方向の刃物台の位置をその時々に演算された補正値で補正して加工を行うのである。
For example, n temperature sensors are attached to the lathe body where they are considered appropriate, and processing accuracy data when processing various workpieces and detected temperature data of each temperature sensor detected during processing. make use of,
Δx = a 1x t 1 + a 2x t 2 + a 3x t 3 +... + A nx t n
Δy = a 1y t 1 + a 2y t 2 + a 3y t 3 +... + A ny t n
Δz = a 1z t 1 + a 2z t 2 + a 3z t 3 +... + A nz t n
The correction values Δx, Δy, and Δz in the X, Y, and Z axis directions are calculated using the following formula, and the position of the tool post in the X, Y, and Z axis directions specified by the machining program is calculated from time to time. Processing is performed by correcting with values.

なお、上式中
1,t2,t3・・・tnは機械に設けたn個の温度センサの検出温度、
1x,a2x,a3x・・・anx、a1y,a2y,a3y・・・any及びa1z,a2z,a3z・・・anは、それぞれの温度センサの検出温度に乗ずるX、Y及びZ軸方向の係数で、実際にワークの加工を行って求めた値である。
In the above formula, t 1 , t 2 , t 3 ... T n are detected temperatures of n temperature sensors provided in the machine,
a 1x, a 2x, a 3x ··· a nx, a 1y, a 2y, a 3y ··· a ny and a 1z, a 2z, a 3z ··· a n is the detected temperature of each temperature sensor Is a coefficient in the X, Y, and Z axis directions multiplied by the value obtained by actually machining the workpiece.

特開平6−55415号公報JP-A-6-55415

工作機械で加工されるワークの種類、その加工手順、環境温度などは多種多様で、経時的にも変化する。そのため、上述のようにして機械各部の温度から補正値を演算して加工を行っても、機械の熱変形に起因する加工誤差を完全に補正することは不可能である。一方、生産性と加工精度の向上は、工作機械に求められる一般的な要求であり、常に更なる向上が求められている。   The types of workpieces processed by machine tools, their processing procedures, environmental temperatures, etc. are diverse and change over time. Therefore, even if processing is performed by calculating a correction value from the temperature of each part of the machine as described above, it is impossible to completely correct a processing error caused by thermal deformation of the machine. On the other hand, improvement in productivity and machining accuracy is a general requirement for machine tools, and further improvement is always required.

この発明は、生産性を低下させることなく、工作機械、特に旋盤における機械の熱変形に基づく加工誤差をより適切に補正することができる技術手段を提供することにより、ワークの加工精度を更に向上させることを課題としている。   This invention further improves the machining accuracy of a workpiece by providing technical means that can more appropriately correct machining errors based on thermal deformation of a machine tool, particularly a lathe, without reducing productivity. The challenge is to make it happen.

この発明は、旋盤の主軸と刃物台の工具取付位置との相対位置関係の変化を適時計測することにより、ワークの径方向の加工誤差をより的確に補正することができるようにしたものである。この発明では、主軸に取り付けられているワークチャック4の外周5と、刃物台14、24の工具取付位置7に取り付けた接触検出センサ3aないし検出棒3bとを接触させ、その接触検出時における刃物台14、24の座標から主軸と刃物台の工具取付位置との主軸直角方向の相対位置関係の変化を検出し、その検出値を含む演算に基づいて加工プログラムから指令される刃物台14、24の位置に対する補正値を求めている。   This invention is capable of more accurately correcting a machining error in the radial direction of a workpiece by measuring a change in the relative positional relationship between the lathe spindle and the tool mounting position of the tool post in a timely manner. . In the present invention, the outer periphery 5 of the work chuck 4 attached to the spindle is brought into contact with the contact detection sensor 3a or the detection rod 3b attached to the tool attachment position 7 of the tool rests 14 and 24, and the tool at the time of contact detection. A change in the relative positional relationship between the spindle and the tool mounting position of the tool rest in the direction perpendicular to the spindle is detected from the coordinates of the stands 14, 24, and the tool rests 14, 24 instructed from the machining program based on the calculation including the detected value. The correction value for the position is obtained.

接触検出センサ3aとしては、一般的にタッチセンサと呼ばれている周知のセンサを使用することができる。また、このようなセンサを用いる代わりに高精度に加工した検出棒(好ましくは高精度の加工が容易な丸棒)を用いて特許文献1などで提案されている位置偏差、すなわち刃物台送り時に刃物台送りモータに与える位置指令と刃物台送りモータから返されるフィードバック信号との差信号である位置偏差の立ち上がりを検出することで、検出棒3bとチャック外周5との接触を検出することができる。後者の手段によれば、高価な接触検出センサを用いないで、この発明を実施することができる。   As the contact detection sensor 3a, a known sensor generally called a touch sensor can be used. Further, instead of using such a sensor, a position deviation proposed in Patent Document 1 using a detection rod processed with high precision (preferably a round bar that is easy to process with high precision), that is, at the time of tool post feeding. The contact between the detection rod 3b and the chuck outer periphery 5 can be detected by detecting the rise of the position deviation, which is the difference signal between the position command given to the tool post feed motor and the feedback signal returned from the tool post feed motor. . According to the latter means, the present invention can be implemented without using an expensive contact detection sensor.

チャック外周の真円度の誤差に基づく検出誤差を避けるために、主軸を予め定めた所定の位相で停止して、接触検出センサ3aないし検出棒3bを接触させるのが好ましい。また、チャックの外周に切削油や切粉が付着して検出誤差が生ずるのを避けるために、2箇所以上の主軸停止位相を設定し、第1の停止位相における検出値がしきい値を超えたときに次候補として定めた停止位相で主軸を停止して検出を行うという制御も可能である。   In order to avoid detection errors based on errors in the roundness of the outer periphery of the chuck, it is preferable to stop the spindle at a predetermined phase and bring the contact detection sensors 3a to 3b into contact. Also, in order to avoid detection error due to cutting oil or chips adhering to the outer periphery of the chuck, two or more spindle stop phases are set, and the detection value in the first stop phase exceeds the threshold value. It is also possible to perform control by stopping the spindle at the stop phase determined as the next candidate.

この発明は、主軸に取り付けたワークチャックの外周5と刃物台の工具取付位置7との主軸直角方向の寸法の変化を検出して補正をするものであるから、機械の熱変形に基づくワークの径方向の加工誤差を補正するものである。刃物台のZ軸方向の位置によって主軸直角方向の熱変形も変化するので、一般的には、検出したチャック外周と刃物台の工具取付位置との相対位置関係の変化を含む演算式で補正値を演算すべきである。すなわち、従来公知の演算式に本発明の方法で検出したチャック外周と刃物台の工具取付位置との主軸直角方向の位置関係の変化を変数δとして含む項を含ませた演算式で補正値を演算する。   Since the present invention detects and corrects a change in dimension in the direction perpendicular to the spindle between the outer periphery 5 of the work chuck attached to the spindle and the tool mounting position 7 of the tool post, the workpiece is deformed based on the thermal deformation of the machine. It corrects machining errors in the radial direction. Since thermal deformation in the direction perpendicular to the spindle also changes depending on the position of the tool post in the Z-axis direction, the correction value is generally calculated using an arithmetic expression that includes a change in the relative positional relationship between the detected chuck outer periphery and the tool mounting position of the tool post. Should be computed. That is, the correction value is calculated by a calculation formula including a term including a change in the positional relationship between the chuck outer periphery and the tool mounting position of the tool rest in the direction perpendicular to the spindle detected by the method of the present invention as a variable δ in a conventionally known calculation formula. Calculate.

ワークの加工誤差は、機械自体の熱変形による主軸中心と工具刃先との相対位置関係の変化により生ずる。旋削加工時の主軸回転に伴う主軸軸受けの温度上昇は、機械を熱変形させる主要な熱源の一つである。主軸を軸支している主軸台18、28は、ベッド11、21上面が立ち上がっており、主軸軸受けの発熱により主軸台18、28の立ち上がり方向の熱変形が大きくなる。   The workpiece machining error is caused by a change in the relative positional relationship between the spindle center and the tool edge due to thermal deformation of the machine itself. The rise in the temperature of the spindle bearing accompanying the rotation of the spindle during turning is one of the main heat sources that cause thermal deformation of the machine. The headstocks 18 and 28 that support the main shaft are raised on the upper surfaces of the beds 11 and 21, and heat deformation in the rising direction of the main shaft stocks 18 and 28 increases due to heat generation of the main shaft bearings.

主軸台18、28が工具の切り込み方向(旋盤のX軸方向)と直交する方向に立ち上がっている構造では、主軸台18、28の立ち上がり方向の変位がワークの径方向の加工誤差に与える影響は小さい。しかし、図2、図5に示すような主軸台18、28の立ち上がり方向が工具の切り込み方向Xと同方向ないし斜めに交叉する構造の旋盤においては、主軸台の立ち上がり方向の変位が加工誤差に直接影響する。   In the structure in which the headstocks 18 and 28 rise in a direction perpendicular to the cutting direction of the tool (X-axis direction of the lathe), the influence of the displacement in the rising direction of the headstocks 18 and 28 on the machining error in the radial direction of the workpiece is small. However, in a lathe having a structure in which the rising directions of the headstocks 18 and 28 intersect with the cutting direction X of the tool as shown in FIGS. Directly affects.

また、刃物台14、24がY軸方向にも移動して平面加工、溝加工、孔開け加工などを行う複合旋盤では、刃物台14、24の立ち上がり方向の変位がY軸方向の加工誤差に大きく影響する。   Further, in a compound lathe in which the tool rests 14 and 24 are moved also in the Y-axis direction to perform planar machining, grooving, drilling, etc., the displacement in the rising direction of the tool rests 14 and 24 becomes a machining error in the Y-axis direction. A big influence.

この発明においては、刃物台の工具取付位置7に装着した接触検出センサ3aないし検出棒3bとワークチャック外周5の同一箇所との間隔を直接検出するので、ワークの加工径の誤差やY軸方向の加工位置の誤差を高い精度で補正できる。   In this invention, since the distance between the contact detection sensor 3a or the detection rod 3b mounted at the tool mounting position 7 of the tool post and the same location on the outer periphery 5 of the work chuck is directly detected, an error in the work diameter of the work and the Y-axis direction are detected. The machining position error can be corrected with high accuracy.

従って、本発明の手段と従来の補正手段とを併用することで、旋盤におけるワークの加工精度をより高めることができる。   Therefore, by using both the means of the present invention and the conventional correction means, it is possible to further increase the machining accuracy of the workpiece on the lathe.

第1例の旋盤の要部の正面図Front view of the main part of the lathe of the first example 第1例の旋盤の模式的な側面図Schematic side view of the lathe of the first example 第1例の旋盤における補正値の設定手順を示すフローチャートThe flowchart which shows the setting procedure of the correction value in the lathe of the first example 第2例の旋盤の要部の正面図Front view of the main part of the lathe of the second example 第2例の旋盤の模式的な側面図Schematic side view of the lathe of the second example 第2例の旋盤における補正値の設定手順を示すフローチャートThe flowchart which shows the setting procedure of the correction value in the lathe of the 2nd example

以下、この発明の実施例を示す図面を参照して、この発明を具体的に説明する。図1及び図2に示す第1実施例の旋盤1は、鉛直方向をX軸方向とした旋盤である。   Hereinafter, the present invention will be described in detail with reference to the drawings illustrating embodiments of the present invention. A lathe 1 of the first embodiment shown in FIGS. 1 and 2 is a lathe whose vertical direction is the X-axis direction.

図2において、ベッド11の上面にZ軸方向(図2の紙面直角方向)に移動位置決め自在にZ軸移動台12が搭載され、当該Z軸移動台にY軸方向(図2の左右方向)に移動位置決め自在に背の高いY軸移動台13が搭載され、当該Y軸移動台の前面にX軸方向(図2の上下方向)に移動位置決め自在に刃物台14が搭載され、当該刃物台にB軸(Y軸回り)方向に旋回位置決め自在に工具モータ15が搭載されている。工具モータ15の回転子軸(工具軸)は、Y軸と直交する方向を向いている。工具(旋削工具及び回転工具)は、図示しない自動工具交換装置により、工具モータ15の回転子軸の先端に設けた工具チャック17に装着される。図1に示したタッチセンサ3aは、工具マガジンに搭載しておいて、適時、工具交換装置により工具チャック17に装着される。   In FIG. 2, a Z-axis moving table 12 is mounted on the upper surface of a bed 11 so as to be movable and positionable in the Z-axis direction (perpendicular to the plane of FIG. 2). A tall Y-axis moving table 13 is mounted so as to be movable and positionable, and a tool rest 14 is mounted on the front surface of the Y-axis moving table so as to be movable and positionable in the X-axis direction (vertical direction in FIG. 2). A tool motor 15 is mounted so as to be capable of swivel positioning in the direction of the B axis (around the Y axis). The rotor shaft (tool axis) of the tool motor 15 is oriented in a direction perpendicular to the Y axis. Tools (turning tools and rotary tools) are mounted on a tool chuck 17 provided at the tip of the rotor shaft of the tool motor 15 by an automatic tool changer (not shown). The touch sensor 3a shown in FIG. 1 is mounted on a tool magazine, and is attached to the tool chuck 17 by a tool changer at an appropriate time.

第1実施例の旋盤の主軸を軸支する主軸台18は、下方部背面をベッド11の前面に固定されて上方に立ち上がっている。図には表れていない主軸は、主軸台18の上部に軸支されている。主軸を回転駆動する主軸モータは、加工プログラムなどから指令された任意の位置で位相(角度位置)を固定することができる。また、工具モータ15は、少なくとも原点位相で回転子軸を固定可能である。ワークの旋削加工は、原点位相で固定した回転子軸の工具チャック17に旋削工具を装着して行われる。   The headstock 18 that supports the main shaft of the lathe according to the first embodiment rises upward with the lower back surface fixed to the front surface of the bed 11. The spindle not shown in the figure is pivotally supported on the upper part of the spindle stock 18. The spindle motor that rotates the spindle can fix the phase (angular position) at an arbitrary position instructed by a machining program or the like. The tool motor 15 can fix the rotor shaft at least at the origin phase. The workpiece is turned by attaching a turning tool to the tool chuck 17 of the rotor shaft fixed at the origin phase.

主軸を高速回転する旋削加工時の主軸軸受は、ワーク加工時における大きな発熱源の一つである。主軸軸受で発生した熱は、主軸台18を熱膨張させる。図2に示した構造の旋盤では、主軸台18の熱膨張による主軸軸心cの偏倚方向は、概ね図2に矢印dで示した方向になると考えられる。主軸軸心cの矢印d方向への変位は、ワークと工具とのX軸方向及びY軸方向の相対位置関係を変化させる。   A spindle bearing during turning that rotates the spindle at a high speed is one of the large heat sources during workpiece machining. The heat generated in the spindle bearing causes the spindle stock 18 to thermally expand. In the lathe having the structure shown in FIG. 2, it is considered that the direction of deviation of the spindle axis c due to the thermal expansion of the spindle stock 18 is substantially the direction indicated by the arrow d in FIG. The displacement of the spindle axis c in the arrow d direction changes the relative positional relationship between the workpiece and the tool in the X-axis direction and the Y-axis direction.

旋盤を制御するNC装置には、図3に示す補正値更新手順と刃物台の接触時基準座標、すなわち、基準状態において工具チャック17に装着したタッチセンサ3aをワークチャック4の外周5に接触したときの刃物台14の座標とが登録されている。ワークの加工開始時及び連続自動加工を行う場合の所定のワーク加工数ごとに、図3の補正値の更新手順が呼び出される。   In the NC device that controls the lathe, the correction value update procedure shown in FIG. 3 and the reference coordinates at the time of contact with the tool post, that is, the touch sensor 3 a mounted on the tool chuck 17 in the reference state is brought into contact with the outer periphery 5 of the work chuck 4. The coordinates of the tool post 14 are registered. The correction value update procedure shown in FIG. 3 is called at the start of workpiece machining and for each predetermined workpiece machining number when continuous automatic machining is performed.

呼び出された補正値更新手順は、自動工具交換装置により、工具チャック17にタッチセンサ3aを装着し、主軸を設定された位相で停止し、刃物台を接触検出開始位置に急速接近させる。接触検出開始位置は、タッチセンサ3aの先端6とワークチャック4の外周5との間に僅かな間隙を隔てた位置として設定された位置である(図1参照)。次にZ軸及びY軸方向の送りモータを停止し、刃物台14をX軸マイナス方向(刃物台が主軸軸心cに接近する方向)に低速移動させる。この移動中にタッチセンサ3aから接触検出信号が出力されたら、そのときの刃物台14のX軸座標を記憶して刃物台14を停止する。   In the called correction value update procedure, the touch sensor 3a is mounted on the tool chuck 17 by the automatic tool changer, the spindle is stopped at the set phase, and the tool post is rapidly brought close to the contact detection start position. The contact detection start position is a position set as a position with a slight gap between the tip 6 of the touch sensor 3a and the outer periphery 5 of the work chuck 4 (see FIG. 1). Next, the feed motors in the Z-axis and Y-axis directions are stopped, and the tool post 14 is moved at a low speed in the X-axis minus direction (direction in which the tool post approaches the spindle axis c). If a touch detection signal is output from the touch sensor 3a during this movement, the X-axis coordinates of the tool rest 14 at that time are stored, and the tool rest 14 is stopped.

検出された刃物台14の座標と記憶している接触時基準座標との差δが予め定めたしきい値以内であれば、その後、刃物台は、工具交換位置に移動し、次の加工のための工具を工具チャック17に装着する。   If the difference δ between the detected coordinates of the tool rest 14 and the stored reference coordinates at the time of contact is within a predetermined threshold value, then the tool rest moves to the tool change position and the next machining is performed. A tool for mounting is mounted on the tool chuck 17.

検出した座標と接触時基準座標との差δがしきい値を超えているときは、ワークチャック外周の検出対象となる位置に切削液や切粉が付着していると推定して、主軸位相を次候補の主軸位相に変換して再度タッチセンサ3aとワークチャック外周5との接触検出動作を行う。   If the difference δ between the detected coordinates and the reference coordinates at the time of contact exceeds the threshold value, it is estimated that cutting fluid or chips are attached to the position to be detected on the outer periphery of the work chuck, and the spindle phase Is converted into the next candidate spindle phase, and the contact detection operation between the touch sensor 3a and the work chuck outer periphery 5 is performed again.

NC装置が内蔵するコンピュータは、検出された刃物台の座標と接触時基準座標との差δと検出手順実行時に検出した機械各部の温度センサの検出温度t1,t2,t3・・・tnを用いて新しい補正値Δx,Δyを例えば次式で計算する。
Δx=a1x1+a2x2+a3x3+・・・+anxn+bxδ
Δy=a1y1+a2y2+a3y3+・・・+anyn+byδ
The computer incorporated in the NC unit is configured to detect the difference δ between the detected tool post coordinates and the reference coordinates at the time of contact and the detected temperatures t 1 , t 2 , t 3. Using t n , new correction values Δx and Δy are calculated by, for example, the following equations.
Δx = a 1x t 1 + a 2x t 2 + a 3x t 3 +... + A nx t n + b x δ
Δy = a 1y t 1 + a 2y t 2 + a 3y t 3 + ··· + a ny t n + b y δ

ここで、t1,t2,t3・・・tn、a1x,a2x,a3x・・・anx及びa1y,a2y,a3y・・・anyは、背景技術の欄で説明した機械各部に設置した温度センサの検出温度と補正値を演算する際にそれらの温度に乗ずる係数であり、bx及びbyは、補正値更新手順で検出された刃物台の座標と接触時基準座標との差δに乗ずるX軸方向及びY軸方向の係数である。なお、Z軸方向の補正値Δzは、従来と同じ演算式で求めてやれば良い。 Here, t 1, t 2, t 3 ··· t n, a 1x, a 2x, a 3x ··· a nx and a 1y, a 2y, a 3y ··· a ny is the background section in a coefficient multiplied to their temperature when calculating the detected temperature and the correction value of the temperature sensor installed in the machine each unit described, b x and b y are the detected tool rest coordinate correction value updating step It is a coefficient in the X-axis direction and the Y-axis direction multiplied by the difference δ from the reference coordinate at the time of contact. The correction value Δz in the Z-axis direction may be obtained using the same arithmetic expression as before.

上記のようにして新たな補正値が演算されたら、NC装置に設定されている補正値を更新して、刃物台14のX軸送りモータ及びY軸送りモータ及びZ軸送りモータに与える指令値を更新後の補正値で補正して、その後の加工を行う。   When new correction values are calculated as described above, the correction values set in the NC device are updated, and command values given to the X-axis feed motor, Y-axis feed motor, and Z-axis feed motor of the tool post 14 Is corrected with the updated correction value, and the subsequent processing is performed.

図4及び図5に示す第2実施例の旋盤2は、いわゆるスラント型のベッド21とタレット刃物台24とを備えた旋盤である。図示には表れていない主軸は、鉛直方向に立ち上がる主軸台28の上部に軸支されている。この第2実施例の旋盤2では、主軸軸受の発熱による主軸台の熱変形は、主軸軸心cを図の矢印d方向、すなわち上方向に変位させると考えられる。   The lathe 2 of the second embodiment shown in FIGS. 4 and 5 is a lathe provided with a so-called slant type bed 21 and a turret tool post 24. A spindle not shown in the figure is pivotally supported on the upper part of a spindle stock 28 that rises in the vertical direction. In the lathe 2 of the second embodiment, the thermal deformation of the headstock due to the heat generated by the main shaft bearing is considered to displace the main shaft axis c in the direction indicated by the arrow d in FIG.

第2実施例の旋盤2における刃物台24は、ベッド21の上面と平行なX軸方向と、図5の紙面直角方向であるZ軸方向にのみ移動位置決め可能で、Y軸方向の移動手段は備えていない。刃物台のタレット26の工具取付位置の一箇所7にアングルホルダ27を介して精密に加工した円形断面の棒材からなる検出棒3bが装着されている。   The tool post 24 in the lathe 2 of the second embodiment can be moved and positioned only in the X-axis direction parallel to the upper surface of the bed 21 and the Z-axis direction which is the direction perpendicular to the paper surface of FIG. I do not have. A detection rod 3b made of a rod having a circular cross section precisely machined through an angle holder 27 is attached to one place 7 of the tool mounting position of the turret 26 of the tool post.

図6は、第2実施例の旋盤における補正値更新手続のフローチャートである。図6の手続が図3の手続と相違は、タッチセンサに代えて円形断面の金属棒材からなる検出棒3bを用いていること、検出棒3bとワークチャック4の外周5との接触を刃物台24をX軸方向に送る送りモータのサーボ装置の位置偏差を監視することによって検出していること、タレットの割出回転によって検出棒3bを選択できること、及びB軸及びY軸を備えていないことによる相違である。   FIG. 6 is a flowchart of the correction value update procedure in the lathe according to the second embodiment. The procedure of FIG. 6 differs from the procedure of FIG. 3 in that a detection bar 3b made of a metal bar having a circular cross section is used in place of the touch sensor, and the contact between the detection bar 3b and the outer periphery 5 of the work chuck 4 is determined as a blade. It is detected by monitoring the position deviation of the servo device of the feed motor that sends the table 24 in the X-axis direction, the detection rod 3b can be selected by the indexing rotation of the turret, and the B-axis and the Y-axis are not provided This is a difference.

呼び出された図6の補正値更新手順は、タレット26を回動して検出棒3bを割出し、主軸を設定された位相で停止し、刃物台を接触検出開始位置に急速接近させ、Z軸方向の送りモータを停止し、X軸送りモータにトルク制限をかけ、当該送りモータに与える位置指令と当該送りモータから返されるフィードバック信号との差信号である位置偏差を監視しながら刃物台24をX軸マイナス方向に低速移動させる。   The called correction value update procedure in FIG. 6 is such that the turret 26 is rotated to index the detection rod 3b, the spindle is stopped at the set phase, the tool post is brought close to the contact detection start position, and the Z axis The direction feed motor is stopped, the X-axis feed motor is torque limited, and the tool post 24 is monitored while monitoring the position deviation which is the difference signal between the position command given to the feed motor and the feedback signal returned from the feed motor. Move at a low speed in the negative direction of the X-axis.

そして、この低速移動中に位置偏差の立ち上がり(急上昇)が検出されたら、直ちに刃物台を停止し、そのときの刃物台のX座標を読み取る。刃物台の座標を読み取った後の手順は、Y軸方向の補正値の演算を行わない点を除き、図3の手順と同じである。そして、新たの補正値を設定した後、タレット26の回動によって続く工程で使用される工具を割り出してその後の加工を開始する。   Then, if a rising (abrupt increase) in position deviation is detected during this low speed movement, the tool rest is immediately stopped and the X coordinate of the tool rest at that time is read. The procedure after reading the tool post coordinates is the same as the procedure in FIG. 3 except that the correction value in the Y-axis direction is not calculated. Then, after setting a new correction value, the tool used in the subsequent process is determined by the rotation of the turret 26 and subsequent machining is started.

この発明を実施する工作機械の例として、2種類の構造の旋盤を例示したが、もちろんこの2種類の構造の旋盤に限られる訳ではなく、ワークを把持して回転するチャックと工具を装着する刃物台とを備えた工作機械であれば、必要に応じてこの発明を採用して加工精度の向上を図ることができる。   As an example of a machine tool for carrying out the present invention, a lathe having two types of structures is illustrated, but of course, the lathe is not limited to these two types of structures, and a chuck and a tool that grips and rotates a workpiece are mounted. If it is a machine tool provided with a tool post, the present invention can be adopted as necessary to improve the machining accuracy.

3a 接触検出センサ
3b 検出棒
4 ワークチャック
5 ワークチャックの外周
7 工具取付位置
14、24 刃物台
3a Contact detection sensor 3b Detection rod 4 Work chuck 5 Work chuck outer periphery 7 Tool mounting position 14, 24 Tool post

Claims (4)

刃物台の工具取り付け位置に装着した接触検出センサないし検出棒とワークを把持するチャックの外周の定位置との接触を検出したときの刃物台の座標の基準座標からの差を変数として含む演算式により演算した補正値で刃物台に与える位置指令を補正することを特徴とする、工作機械の加工誤差の補正方法。   An arithmetic expression that includes as a variable the difference from the reference coordinate of the tool rest coordinate when detecting contact between the contact detection sensor or detection rod attached to the tool mounting position of the tool rest and the fixed position on the outer periphery of the chuck that holds the workpiece A method for correcting a machining error of a machine tool, wherein the position command given to the tool post is corrected with the correction value calculated by the above. 前記検出棒が、金属丸棒であり、当該検出棒とワークチャックの外周の接触が、刃物台の送りモータに与える位置指令と当該送りモータから返されるフィードバック信号との差信号である位置偏差の急激な上昇を検知することによって検出する、請求項1記載の工作機械の加工誤差の補正方法。   The detection rod is a metal round bar, and the contact between the detection rod and the outer periphery of the work chuck is a difference signal between a position command given to the feed motor of the tool post and a feedback signal returned from the feed motor. The method for correcting a machining error of a machine tool according to claim 1, which is detected by detecting a sudden rise. 接触検出センサないし検出棒とワークチャックの外周との接触が、当該ワークチャックを装着した主軸を予め定めた位相で停止させた状態で行われる、請求項1又は2記載の工作機械の加工誤差の補正方法。   3. The machining error of the machine tool according to claim 1 or 2, wherein the contact between the contact detection sensor or detection rod and the outer periphery of the work chuck is performed in a state where the spindle on which the work chuck is mounted is stopped at a predetermined phase. Correction method. 前記演算式が、前記接触検出センサないし検出棒とワークチャックの外周との接触検出を行う際の機械の各部に装着した温度センサの検出温度とを含む演算式である、請求項1、2又は3記載の工作機械の加工誤差の補正方法。   The calculation formula includes a detection temperature of a temperature sensor attached to each part of a machine when contact detection between the contact detection sensor or detection rod and the outer periphery of the work chuck is performed. 3. A method for correcting a machining error of a machine tool according to 3.
JP2016160735A 2016-08-18 2016-08-18 How to correct machine tool machining errors Active JP6842146B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016160735A JP6842146B2 (en) 2016-08-18 2016-08-18 How to correct machine tool machining errors

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016160735A JP6842146B2 (en) 2016-08-18 2016-08-18 How to correct machine tool machining errors

Publications (2)

Publication Number Publication Date
JP2018027599A true JP2018027599A (en) 2018-02-22
JP6842146B2 JP6842146B2 (en) 2021-03-17

Family

ID=61248242

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016160735A Active JP6842146B2 (en) 2016-08-18 2016-08-18 How to correct machine tool machining errors

Country Status (1)

Country Link
JP (1) JP6842146B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283890A (en) * 2018-11-20 2019-01-29 陕西海力特精密机械有限公司 Numerically-controlled machine tool supporting plate Thermal Error autocompensation installation
CN109623493A (en) * 2019-01-31 2019-04-16 大连理工大学 A method of determining the real-time thermal deformation posture of main shaft
WO2023203632A1 (en) * 2022-04-19 2023-10-26 株式会社Fuji Position correction device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922510B1 (en) * 1969-12-30 1974-06-08
JPH04102760U (en) * 1991-02-06 1992-09-04 三菱重工業株式会社 Thermal displacement measurement correction device
JPH0569276A (en) * 1991-09-11 1993-03-23 Murata Mach Ltd Thermal displacement correcting method for lathe
JPH0655415A (en) * 1992-08-11 1994-03-01 Nakamura Tome Precision Ind Co Ltd Measuring method for and secular change of machine tool
JPH11212618A (en) * 1998-01-23 1999-08-06 Nakamura Tome Precision Ind Co Ltd Work machining method for nc lathe
JP2002120130A (en) * 2000-10-11 2002-04-23 Fuji Seiko Ltd Tool position control method and device in machine tool
JP2006062021A (en) * 2004-08-26 2006-03-09 Nakamura Tome Precision Ind Co Ltd Turret lathe with rotating tool turret
JP2006102922A (en) * 2004-10-08 2006-04-20 Nakamura Tome Precision Ind Co Ltd Interaction region setting method of machine tool
JP2009172716A (en) * 2008-01-24 2009-08-06 Nakamura Tome Precision Ind Co Ltd Lathe equipped with a plurality of main spindle
JP2017061012A (en) * 2015-09-24 2017-03-30 オークマ株式会社 Geometric error identification method and geometric error identification program for machine tools

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4922510B1 (en) * 1969-12-30 1974-06-08
JPH04102760U (en) * 1991-02-06 1992-09-04 三菱重工業株式会社 Thermal displacement measurement correction device
JPH0569276A (en) * 1991-09-11 1993-03-23 Murata Mach Ltd Thermal displacement correcting method for lathe
JPH0655415A (en) * 1992-08-11 1994-03-01 Nakamura Tome Precision Ind Co Ltd Measuring method for and secular change of machine tool
JPH11212618A (en) * 1998-01-23 1999-08-06 Nakamura Tome Precision Ind Co Ltd Work machining method for nc lathe
JP2002120130A (en) * 2000-10-11 2002-04-23 Fuji Seiko Ltd Tool position control method and device in machine tool
JP2006062021A (en) * 2004-08-26 2006-03-09 Nakamura Tome Precision Ind Co Ltd Turret lathe with rotating tool turret
JP2006102922A (en) * 2004-10-08 2006-04-20 Nakamura Tome Precision Ind Co Ltd Interaction region setting method of machine tool
JP2009172716A (en) * 2008-01-24 2009-08-06 Nakamura Tome Precision Ind Co Ltd Lathe equipped with a plurality of main spindle
JP2017061012A (en) * 2015-09-24 2017-03-30 オークマ株式会社 Geometric error identification method and geometric error identification program for machine tools

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109283890A (en) * 2018-11-20 2019-01-29 陕西海力特精密机械有限公司 Numerically-controlled machine tool supporting plate Thermal Error autocompensation installation
CN109283890B (en) * 2018-11-20 2023-11-03 东莞市义信精密模具科技有限公司 Automatic thermal error compensation device for numerical control machine tool supporting plate
CN109623493A (en) * 2019-01-31 2019-04-16 大连理工大学 A method of determining the real-time thermal deformation posture of main shaft
WO2023203632A1 (en) * 2022-04-19 2023-10-26 株式会社Fuji Position correction device

Also Published As

Publication number Publication date
JP6842146B2 (en) 2021-03-17

Similar Documents

Publication Publication Date Title
JP6982291B2 (en) Machine tool work processing method
CA2537155C (en) Grinding machine with concentricity correction
JP5673855B2 (en) Machine Tools
WO2011052442A1 (en) Machine tool
JP5545025B2 (en) Machine Tools
JP2011192232A (en) Machine tool
JP6842146B2 (en) How to correct machine tool machining errors
KR100704050B1 (en) Tool positioning error correction method
WO2011052441A1 (en) Machine tool and displacement measuring instrument
JP6168396B2 (en) Machine Tools
JP2001030141A (en) Thin pipe machining method and its device
JP2013255982A (en) Machine tool, and correction method of thermal deformation thereof
JP5846400B2 (en) Machine tool and its thermal deformation correction method
JP6913920B2 (en) Machine tool work processing method
JPH10309653A (en) Method for detecting displacement of cutting edge position, machine tool provided with cutting edge position displacement detecting function, and tool holder for machine tool
JP6623061B2 (en) Machine tool and control method of machine tool
JP7090018B2 (en) Machine Tools
JP2020015130A (en) Work moving positioning device
JP2011093065A (en) Machine tool
JP5266020B2 (en) Machine tool and error correction method in machine tool
JP6946104B2 (en) Control device and control method for tool cutting direction in machine tools
JP4242229B2 (en) Method and apparatus for correcting thermal displacement of machine tool
JP7611720B2 (en) Machine Tools
EP4219048B1 (en) Turning method, machining system, and machining program
TWI886335B (en) Working machine, position information correction method, and position information correction program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20201027

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210210

R150 Certificate of patent or registration of utility model

Ref document number: 6842146

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250