[go: up one dir, main page]

JP2018027517A - Arsenite ion adsorbent - Google Patents

Arsenite ion adsorbent Download PDF

Info

Publication number
JP2018027517A
JP2018027517A JP2016159835A JP2016159835A JP2018027517A JP 2018027517 A JP2018027517 A JP 2018027517A JP 2016159835 A JP2016159835 A JP 2016159835A JP 2016159835 A JP2016159835 A JP 2016159835A JP 2018027517 A JP2018027517 A JP 2018027517A
Authority
JP
Japan
Prior art keywords
arsenite
arsenite ion
ions
acid
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016159835A
Other languages
Japanese (ja)
Inventor
暁 向井
Akira Mukai
暁 向井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Titanium Industry Co Ltd
Original Assignee
Fuji Titanium Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Titanium Industry Co Ltd filed Critical Fuji Titanium Industry Co Ltd
Priority to JP2016159835A priority Critical patent/JP2018027517A/en
Publication of JP2018027517A publication Critical patent/JP2018027517A/en
Pending legal-status Critical Current

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an arsenite ion adsorbent and an artefact for arsenite ion adsorption superior in balance such as function and production, and a facility for arsenite ion adsorption and an arsenite ion removal method.SOLUTION: An arsenite ion adsorbent and artefacts for adsorption use at least one compound chosen among orthotitanic acid, metatitanic acid and titanium oxide, or compounds provided by heat treatment of these compounds in 100-700°C.SELECTED DRAWING: None

Description

本発明、亜ヒ酸イオン吸着剤及び亜ヒ酸イオン吸着用加工品、並びに亜ヒ酸イオン吸着用設備、亜ヒ酸イオン除去方法に関する。 The present invention relates to an arsenite ion adsorbent, a processed product for arsenite ion adsorption, an arsenite ion adsorption facility, and a arsenite ion removal method.

環境水中に存在する高濃度のヒ素の起源は、多くの場合天然の地層、鉱物からの溶出である。地下水揚水のためのさく井や鉱物資源の採掘、精錬等の人間活動が高濃度の砒素を水源に導入する原因となる。海外では表流水の汚染のためにヒ素濃度が高い地下水を水源として使用せざるをえず、ヒ素中毒が深刻な問題となっている地域もある。国内でもヒ素を含む地下水のために閉鎖、放棄された井戸があり、地下水資源の有効利用のために高い除去率をもちかつ低コストなヒ素除去技術が重要である。   The origin of high concentrations of arsenic in environmental water is often elution from natural formations and minerals. Wells for groundwater pumping, mining of mineral resources, and human activities such as refining cause high concentrations of arsenic to be introduced into the water source. Overseas, groundwater with high arsenic concentration must be used as a water source due to surface water contamination, and in some areas arsenic poisoning has become a serious problem. There are wells closed and abandoned for groundwater containing arsenic in Japan, and arsenic removal technology with high removal rate and low cost is important for effective use of groundwater resources.

地下水中のヒ素は主にヒ酸イオンと亜ヒ酸イオンの形態で含まれている。地下水中のヒ素を除去する方法として、凝集沈殿法、活性アルミナ吸着法、二酸化マンガン吸着法、膜分離などが挙げられるが、これらの方法はヒ酸イオンには有効であるが、亜ヒ酸イオンに対しては有効ではない。これらの方法によって亜ヒ酸イオンを有効に除去するためには、曝気、塩素等の薬剤注入およびpH調整により亜ヒ酸イオンをヒ酸イオンへ前処理した上で行う必要がある(非特許文献1、2)。したがって、吸着設備が大きくなり、イニシャルコスト、ランニングコストとも増大するという欠点がある。   Arsenic in groundwater is mainly contained in the form of arsenate ion and arsenite ion. Methods for removing arsenic in groundwater include coagulation sedimentation, activated alumina adsorption, manganese dioxide adsorption, membrane separation, etc. These methods are effective for arsenate ions, but arsenite ions It is not effective for. In order to effectively remove arsenite ions by these methods, it is necessary to perform pretreatment of arsenite ions to arsenate ions by aeration, injection of chemicals such as chlorine, and pH adjustment (Non-Patent Documents). 1, 2). Therefore, there is a disadvantage that the adsorption equipment becomes large and both initial cost and running cost increase.

一方、前処理が不要な亜ヒ酸イオン吸着剤としてセリウム系の吸着剤が開発されている(特許文献1)。しかし、セリウムは希少金属であるため資源リスクを伴い、安定供給というに不安が残る。 On the other hand, a cerium-based adsorbent has been developed as an arsenite ion adsorbent that does not require pretreatment (Patent Document 1). However, since cerium is a rare metal, it involves resource risks and remains uneasy in terms of stable supply.

また、ヒ素を含む被処理水を膜モジュールとヒ素を除去する吸着剤を用いて浄化する方法において、ヒ素の吸着剤としてチタン酸系の吸着剤が知られている(特許文献2)。しかしながら、この方法ではチタン酸粉末を硫酸を用いて脱水縮合させたチタン酸系吸着剤と膜モジュールの併用が必要であり、且つこのチタン酸系吸着剤を用いた実施例2ではヒ素(V)、即ち、5価のヒ酸イオンの吸着であり、ヒ素(III)、即ち、3価の亜ヒ酸イオンの吸着については記載されていない。   In addition, a titanic acid-based adsorbent is known as an adsorbent for arsenic in a method for purifying water to be treated containing arsenic using a membrane module and an adsorbent that removes arsenic (Patent Document 2). However, in this method, it is necessary to use a titanic acid-based adsorbent obtained by dehydrating and condensing titanic acid powder with sulfuric acid and a membrane module. In Example 2 using this titanic acid-based adsorbent, arsenic (V) is used. That is, the adsorption of pentavalent arsenate ions, and the adsorption of arsenic (III), ie trivalent arsenite ions, is not described.

特開2005−288363号公報JP 2005-288363 A 特開平11−277050号公報JP-A-11-277050

水環境学会誌 Vol.37 No.5 pp.169-176Journal of Japan Society on Water Environment Vol.37 No.5 pp.169-176 環境技術 Vol.35 No.4 pp.43-47Environmental Technology Vol.35 No.4 pp.43-47

このような現状に鑑みて、本発明の課題は、機能面、生産面等のバランスに優れた亜ヒ酸イオン吸着剤及び亜ヒ酸イオン吸着用加工品、並びに亜ヒ酸イオン吸着用設備、亜ヒ酸イオン除去方法を提供することにある。   In view of such a current situation, the object of the present invention is to provide a arsenite ion adsorbent and a processed product for arsenite ion adsorption excellent in a balance of functions, production, etc., and an arsenite ion adsorption facility, The object is to provide a method for removing arsenite ions.

本発明は具体的には以下の通りである。
(1)オルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物を用いた亜ヒ酸イオン吸着剤。
(2)オルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物を、100〜700℃の温度で熱処理を施して得られる化合物を用いた亜ヒ酸イオン吸着剤。
(3)熱処理温度が200〜600℃である(2)に記載の亜ヒ酸イオン吸着剤。
(4)熱処理温度が300〜500℃である(3)に記載の亜ヒ酸イオン吸着剤。
(5)(1)〜(4)のいずれかに記載の亜ヒ酸イオン吸着剤を用いた亜ヒ酸イオン吸着用加工品。
(6)(1)〜(4)のいずれかに記載の亜ヒ酸イオン吸着剤を用いた亜ヒ酸イオン吸着用設備。
(7)(5)の亜ヒ酸イオン吸着用加工品を用いた亜ヒ酸イオン吸着用設備。
(8)(1)〜(4)のいずれかに記載の亜ヒ酸イオン吸着剤によって亜ヒ酸イオンを吸着させて亜ヒ酸イオンを除去する方法。
Specifically, the present invention is as follows.
(1) An arsenite ion adsorbent using at least one compound selected from orthotitanic acid, metatitanic acid, and titanium oxide.
(2) An arsenite ion adsorbent using a compound obtained by heat-treating at least one compound selected from orthotitanic acid, metatitanic acid and titanium oxide at a temperature of 100 to 700 ° C.
(3) The arsenite ion adsorbent according to (2), wherein the heat treatment temperature is 200 to 600 ° C.
(4) The arsenite ion adsorbent according to (3), wherein the heat treatment temperature is 300 to 500 ° C.
(5) A processed product for arsenite ion adsorption using the arsenite ion adsorbent according to any one of (1) to (4).
(6) Arsenite ion adsorption equipment using the arsenite ion adsorbent according to any one of (1) to (4).
(7) Arsenite ion adsorption equipment using the processed product for arsenite ion adsorption of (5).
(8) A method of removing arsenite ions by adsorbing arsenite ions with the arsenite ion adsorbent according to any one of (1) to (4).

本発明においては、オルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物、又はこれらを100〜700℃の温度で熱処理を施して得られる化合物を用いれば、地下水等の汚染水等に含まれる亜ヒ酸イオンに対する吸着能力に優れ、更に、チタンという資源リスクの少ない金属から構成されていることにより、安定して大量に製造可能であることを見出した。   In the present invention, if at least one compound selected from orthotitanic acid, metatitanic acid, and titanium oxide, or a compound obtained by heat-treating these at a temperature of 100 to 700 ° C. is used for contaminated water such as groundwater. It has been found that it can be stably manufactured in large quantities by being composed of a metal having a low resource risk, such as titanium, which is excellent in adsorption ability for contained arsenite ions.

本発明の吸着剤は、亜ヒ酸イオンを高効率に吸着することが可能であり、また、資源リスクの少ない金属から構成されていることにより、安定して大量に提供することが可能である。そのため、機能面、生産面等のバランスに優れた亜ヒ酸イオン吸着剤及び亜ヒ酸イオン吸着用加工品、並びに亜ヒ酸イオン吸着用設備、除去方法を提供することが可能である。   The adsorbent of the present invention can adsorb arsenite ions with high efficiency, and can be stably provided in large quantities by being composed of a metal with low resource risk. . Therefore, it is possible to provide an arsenite ion adsorbent and a processed product for adsorbing arsenite ions, a facility for adsorbing arsenite ions, and a removal method, which have an excellent balance of functions, production, and the like.

(オルトチタン酸の製造方法)
本発明のオルトチタン酸はチタン塩の溶液を液温50℃以下に保ちながらアルカリで中和することによって溶液中に生成する沈殿物を乾燥することによって得られる。
(Method for producing orthotitanic acid)
The orthotitanic acid of the present invention can be obtained by drying a precipitate formed in the solution by neutralizing the solution of the titanium salt with an alkali while keeping the solution temperature at 50 ° C. or lower.

チタン塩として具体的には、三塩化チタン、四塩化チタン、硫化チタン(IV)、硫化チタン(VI)、硫酸チタン(IV)などが挙げられる。また、チタン塩としては、1種のみが用いられてもよいし、2種以上が併用されてもよい。   Specific examples of titanium salts include titanium trichloride, titanium tetrachloride, titanium sulfide (IV), titanium sulfide (VI), and titanium sulfate (IV). Moreover, as a titanium salt, only 1 type may be used and 2 or more types may be used together.

本発明のオルトチタン酸を製造する際、使用するアルカリとしては、アンモニア水、水酸化アルカリ、炭酸アルカリ、炭酸アンモニウム等の水溶液などが挙げられる。また、アルカリとしては、1種のみが用いられてもよいし、2種以上が併用されてもよい。   In producing the orthotitanic acid of the present invention, examples of the alkali used include aqueous solutions of ammonia water, alkali hydroxide, alkali carbonate, ammonium carbonate, and the like. Moreover, as an alkali, only 1 type may be used and 2 or more types may be used together.

中和工程の反応時間は特に限定されないが、均一なオルトチタン酸を合成するため5分以上攪拌を維持することが望ましい。通常10〜30分撹拌すれば十分である。   The reaction time in the neutralization step is not particularly limited, but it is desirable to maintain stirring for 5 minutes or longer in order to synthesize uniform orthotitanic acid. Usually, stirring for 10 to 30 minutes is sufficient.

中和工程で得られたオルトチタン酸の沈殿物は必要に応じてろ過、水洗やデカンテーションによる洗浄によって不要な塩の除去を行う。   The orthotitanic acid precipitate obtained in the neutralization step is subjected to filtration, washing with water and washing by decantation to remove unnecessary salts as necessary.

本発明により合成されたオルトチタン酸の乾燥温度は100〜500℃が好ましい。乾燥工程においては、バット乾燥、スプレー乾燥、ろ過乾燥等の一般的な乾燥設備のうち、いずれの方法を選択してもよい。   The drying temperature of the orthotitanic acid synthesized according to the present invention is preferably 100 to 500 ° C. In the drying process, any method may be selected from general drying equipment such as vat drying, spray drying, and filtration drying.

(メタチタン酸の製造方法)
本発明のメタチタン酸はチタン塩を液温50℃以上の硫酸酸性の溶液中で熱加水分解させることによって溶液中に生成する沈殿物を乾燥することによって得られる。
(Method for producing metatitanic acid)
The metatitanic acid of the present invention can be obtained by drying a precipitate formed in a solution by thermally hydrolyzing a titanium salt in a sulfuric acid solution having a liquid temperature of 50 ° C. or higher.

チタン塩として具体的には、硫化チタン(IV)、硫化チタン(VI)、硫酸チタン(IV)、硫酸チタニル(IV)などが挙げられる。また、チタン塩としては、1種のみが用いられてもよいし、2種以上が併用されてもよい。   Specific examples of the titanium salt include titanium sulfide (IV), titanium sulfide (VI), titanium sulfate (IV), and titanyl sulfate (IV). Moreover, as a titanium salt, only 1 type may be used and 2 or more types may be used together.

熱加水分解工程の反応時間は特に限定されないが、均一なメタチタン酸を合成するため5分以上攪拌を維持することが望ましい。通常10〜30分撹拌すれば十分である。   The reaction time in the thermal hydrolysis step is not particularly limited, but it is desirable to maintain stirring for 5 minutes or longer in order to synthesize uniform metatitanic acid. Usually, stirring for 10 to 30 minutes is sufficient.

熱加水分解工程で得られたメタチタン酸の沈殿物は必要に応じてろ過、水洗やデカンテーションによる洗浄によって不要な塩の除去を行う。   The metatitanic acid precipitate obtained in the thermal hydrolysis step removes unnecessary salts by filtration, washing with water or decantation as necessary.

本発明により合成されたメタチタン酸の乾燥温度は100〜500℃が好ましい。乾燥工程においては、バット乾燥、スプレー乾燥、ろ過乾燥等の一般的な乾燥設備のうち、いずれの方法を選択してもよい。   The drying temperature of the metatitanic acid synthesized according to the present invention is preferably 100 to 500 ° C. In the drying process, any method may be selected from general drying equipment such as vat drying, spray drying, and filtration drying.

(酸化チタンの製造方法)
本発明の酸化チタンはオルトチタン酸、メタチタン酸、またはそれら二つの混合物を500℃以上の温度、好ましくは500〜700℃で熱処理することによって得られる。
(Production method of titanium oxide)
The titanium oxide of the present invention can be obtained by heat-treating orthotitanic acid, metatitanic acid, or a mixture of the two at a temperature of 500 ° C. or higher, preferably 500 to 700 ° C.

本発明では上記のオルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物をそのまま亜ヒ酸イオン吸着剤として用いることができる。
また、上記のオルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物を、更に熱処理を施した化合物を亜ヒ酸イオン吸着剤として用いることができる。
熱処理温度は100〜700℃が好ましく、200〜600℃がより好ましく、300〜500℃が特に好ましい。熱処理を施すことにより、結晶化が進み、亜ヒ酸イオン吸着能が向上する。しかし、あまり高温で加熱すると、粒子表面のシンタリングが生じ吸着能が低下する。
In the present invention, at least one compound selected from the above orthotitanic acid, metatitanic acid, and titanium oxide can be used as it is as an arsenite ion adsorbent.
Further, at least one compound selected from the above orthotitanic acid, metatitanic acid, and titanium oxide, and a compound that has been further heat-treated can be used as the arsenite ion adsorbent.
The heat treatment temperature is preferably from 100 to 700 ° C, more preferably from 200 to 600 ° C, particularly preferably from 300 to 500 ° C. By performing the heat treatment, crystallization proceeds and arsenite ion adsorption ability is improved. However, if heated at too high a temperature, sintering of the particle surface occurs and the adsorptive capacity decreases.

本発明により合成された、又は更に熱処理を施されたオルトチタン酸、メタチタン酸、酸化チタンまたはそれらの混合物の最終形態は粉状、粒状、分散物でもよく、その利用用途に応じて選択される。   The final form of orthotitanic acid, metatitanic acid, titanium oxide or a mixture thereof synthesized according to the present invention or further subjected to heat treatment may be powdery, granular or dispersed, and is selected according to its application. .

本発明により合成された、又は更に熱処理を施されたオルトチタン酸、メタチタン酸、酸化チタンまたはそれらの混合物を粉状等にしたものを更に成形や造粒等して所望する形状にした亜ヒ酸イオン吸着剤として利用することもできる。成形や造粒等する際、シリカゾルやアルミナセメントといった無機バインダ、ポリビニルアルコールやポリビニルブチラールといった有機バインダのうちの1種または2種以上を併用することもできる。   Sublimation of orthotitanic acid, metatitanic acid, titanium oxide or a mixture thereof synthesized according to the present invention or further heat-treated into powder or the like to obtain a desired shape It can also be used as an acid ion adsorbent. When molding or granulating, one or more of inorganic binders such as silica sol and alumina cement and organic binders such as polyvinyl alcohol and polyvinyl butyral can be used in combination.

また、本発明により合成された、又は更に熱処理を施されたオルトチタン酸、メタチタン酸、酸化チタンまたはそれらの混合物をフィルター、シート、カラム等のような亜ヒ酸イオン吸着用加工品とすることもできる。   Further, orthotitanic acid, metatitanic acid, titanium oxide or a mixture thereof synthesized according to the present invention or further subjected to heat treatment is used as a processed product for adsorption of arsenite ions such as a filter, a sheet, and a column. You can also.

更に、本発明の亜ヒ酸イオン吸着剤や亜ヒ酸イオン吸着用加工品は、亜ヒ酸イオン吸着用装置や亜ヒ酸イオン吸着用設備に利用することができる。   Furthermore, the arsenite ion adsorbent and the processed product for adsorbing arsenite ions of the present invention can be used in an apparatus for adsorbing arsenite ions and an equipment for adsorbing arsenite ions.

以下に本発明の実施例を説明するが、本発明はこれらに限定されるものではない。   Examples of the present invention will be described below, but the present invention is not limited thereto.

実施例1
石原産業株式会社製の四塩化チタン水溶液「TC−36」400mlをガラス製ビーカーに入れ、撹拌しながら48重量%の水酸化ナトリウム水溶液を添加し、pH7.0になるまで中和した。得られたスラリーをろ過によって固液分離し、得られたろ過ケーキを100℃で24時間乾燥し、ハンマーミルで粉状に粉砕し、オルトチタン酸粉末を得た。
Example 1
400 ml of a titanium tetrachloride aqueous solution “TC-36” manufactured by Ishihara Sangyo Co., Ltd. was placed in a glass beaker, and a 48% by weight aqueous sodium hydroxide solution was added while stirring to neutralize to pH 7.0. The obtained slurry was subjected to solid-liquid separation by filtration, and the obtained filter cake was dried at 100 ° C. for 24 hours and pulverized into a powder with a hammer mill to obtain orthotitanic acid powder.

実施例2
キシダ化学株式会社製の硫酸チタニル(IV)40gをイオン交換水400mlに添加し、撹拌しながら液温100℃にて加水分解を行った。得られたスラリーをろ過によって固液分離し、得られたろ過ケーキを200℃で24時間乾燥し、ハンマーミルで粉状に粉砕し、メタチタン酸粉末を得た。
Example 2
40 g of titanyl sulfate (IV) manufactured by Kishida Chemical Co., Ltd. was added to 400 ml of ion-exchanged water, and hydrolysis was performed at a liquid temperature of 100 ° C. while stirring. The obtained slurry was subjected to solid-liquid separation by filtration, and the obtained filter cake was dried at 200 ° C. for 24 hours and pulverized into a powder form with a hammer mill to obtain a metatitanic acid powder.

実施例3
石原産業株式会社製の四塩化チタン水溶液「TC−36」400mlをガラス製ビーカーに入れ、撹拌しながら48重量%の水酸化ナトリウム水溶液を添加し、pH7.0になるまで中和した。得られたスラリーをろ過によって固液分離し、得られたろ過ケーキを300℃で24時間乾燥し、ハンマーミルで粉状に粉砕し、オルトチタン酸粉末を得た。
Example 3
400 ml of a titanium tetrachloride aqueous solution “TC-36” manufactured by Ishihara Sangyo Co., Ltd. was placed in a glass beaker, and a 48% by weight aqueous sodium hydroxide solution was added while stirring to neutralize to pH 7.0. The obtained slurry was subjected to solid-liquid separation by filtration, and the obtained filter cake was dried at 300 ° C. for 24 hours and pulverized into a powder with a hammer mill to obtain orthotitanic acid powder.

実施例4
キシダ化学株式会社製の硫酸チタニル(IV)40gをイオン交換水400mlに添加し、撹拌しながら液温100℃にて加水分解を行った。得られたスラリーをろ過によって固液分離し、得られたろ過ケーキを400℃で24時間乾燥し、ハンマーミルで粉状に粉砕し、メタチタン酸粉末を得た。
Example 4
40 g of titanyl sulfate (IV) manufactured by Kishida Chemical Co., Ltd. was added to 400 ml of ion-exchanged water, and hydrolysis was performed at a liquid temperature of 100 ° C. while stirring. The obtained slurry was subjected to solid-liquid separation by filtration, and the obtained filter cake was dried at 400 ° C. for 24 hours and pulverized into a powder form with a hammer mill to obtain a metatitanic acid powder.

実施例5
実施例1のオルトチタン酸粉末と実施例2のメタチタン酸粉末を等量混合し、箱型電気炉で500℃、3時間熱処理し、その後室温まで放冷して酸化チタン粉末を得た。
Example 5
An equal amount of the orthotitanic acid powder of Example 1 and the metatitanic acid powder of Example 2 were mixed, heat-treated in a box-type electric furnace at 500 ° C. for 3 hours, and then allowed to cool to room temperature to obtain titanium oxide powder.

実施例6
実施例1のオルトチタン酸粉末を箱型電気炉で600℃、3時間熱処理し、その後室温まで放冷してする事で酸化チタン粉末を得た。
Example 6
The ortho titanic acid powder of Example 1 was heat-treated at 600 ° C. for 3 hours in a box-type electric furnace, and then allowed to cool to room temperature to obtain titanium oxide powder.

実施例7
実施例2のメタチタン酸粉末を箱型電気炉で700℃、3時間熱処理し、その後室温まで放冷して酸化チタン粉末を得た。
Example 7
The metatitanic acid powder of Example 2 was heat-treated at 700 ° C. for 3 hours in a box-type electric furnace, and then allowed to cool to room temperature to obtain a titanium oxide powder.

比較例1
実施例1のオルトチタン酸粉末を箱型電気炉で800℃、3時間熱処理し、その後室温まで放冷して酸化チタン粉末を得た。
Comparative Example 1
The orthotitanic acid powder of Example 1 was heat-treated at 800 ° C. for 3 hours in a box-type electric furnace, and then allowed to cool to room temperature to obtain a titanium oxide powder.

比較例2
実施例2のメタチタン酸粉末を箱型電気炉で900℃、3時間熱処理し、その後室温まで放冷して酸化チタン粉末を得た。
Comparative Example 2
The metatitanic acid powder of Example 2 was heat-treated at 900 ° C. for 3 hours in a box-type electric furnace, and then allowed to cool to room temperature to obtain a titanium oxide powder.

比較例3
実施例1のオルトチタン酸粉末を箱型電気炉で1000℃、3時間熱処理し、その後室温まで放冷して酸化チタン粉末を得た。
Comparative Example 3
The orthotitanic acid powder of Example 1 was heat-treated at 1000 ° C. for 3 hours in a box-type electric furnace, and then allowed to cool to room temperature to obtain a titanium oxide powder.

(亜ヒ酸イオン吸着能の評価)
和光純薬工業株式会社製の三酸化二ヒ素をイオン交換水に溶かして亜ヒ酸イオン0.1ppmの溶液を作成した。ビーカーに上記実施例及び比較例の各種粉体試料を0.1g秤量し、上記亜ヒ酸イオン0.1ppm溶液を100ml加えた。撹拌機を用いて10分間撹拌した後、10分間静置した。これらの溶液を、5Bの濾紙を用いて濾過した。濾液をICP−MS(アジレント・テクノロジー・インターナショナル株式会社製 Agilent 7700x)で測定を行った。処理前の溶液を基準として除去率を以下の計算式で評価し、それをその吸着能(吸着率)とした。
(計算式)
除去率(%)=吸着能(%)=(処理前溶液の亜ヒ酸イオン濃度<ppm>−濾液の亜ヒ酸イオン濃度<ppm>)/処理前溶液の亜ヒ酸イオン濃度<ppm>×100
その結果は表1に示す。
(Evaluation of arsenite ion adsorption capacity)
Arsenic trioxide manufactured by Wako Pure Chemical Industries, Ltd. was dissolved in ion-exchanged water to prepare a solution containing arsenite ions of 0.1 ppm. In a beaker, 0.1 g of the various powder samples of the above examples and comparative examples were weighed, and 100 ml of the above-mentioned arsenite ion 0.1 ppm solution was added. The mixture was stirred for 10 minutes using a stirrer and then allowed to stand for 10 minutes. These solutions were filtered using 5B filter paper. The filtrate was measured by ICP-MS (Agilent Technology International Co., Ltd. Agilent 7700x). The removal rate was evaluated by the following calculation formula using the solution before treatment as a reference, and it was defined as its adsorption capacity (adsorption rate).
(a formula)
Removal rate (%) = Adsorption capacity (%) = (Arsenite ion concentration <ppm> of the solution before treatment <ppm> −Arsenite ion concentration <ppm> of the filtrate) / Arsenite ion concentration <ppm> of the solution before treatment × 100
The results are shown in Table 1.

(ヒ酸イオン吸着能の評価)
和光純薬工業株式会社製の五酸化二ヒ素をイオン交換水に溶かしてヒ酸イオン0.1ppmの溶液を作成した。ビーカーに上記実施例及び比較例の各種粉体試料を0.1g秤量し、上記ヒ酸イオン0.1ppm溶液を100ml加えた。撹拌機を用いて10分間撹拌した後、10分間静置した。これらの溶液を、5Bの濾紙を用いて濾過した。濾液をICP−MS(アジレント・テクノロジー・インターナショナル株式会社製 Agilent 7700x)で測定を行った。処理前の溶液を基準として除去率を以下の計算式で評価し、それをその吸着能(吸着率)とした。
(計算式)
除去率(%)=吸着能(%)=(処理前溶液のヒ酸イオン濃度<ppm>−濾液のヒ酸イオン濃度<ppm>)/処理前溶液のヒ酸イオン濃度<ppm>×100
その結果は表1に示す。
(Evaluation of arsenate ion adsorption capacity)
Arsenic pentoxide manufactured by Wako Pure Chemical Industries, Ltd. was dissolved in ion-exchanged water to prepare a solution of arsenate ions at 0.1 ppm. In a beaker, 0.1 g of the various powder samples of the above examples and comparative examples were weighed, and 100 ml of the above 0.1 ppm arsenate ion solution was added. The mixture was stirred for 10 minutes using a stirrer and then allowed to stand for 10 minutes. These solutions were filtered using 5B filter paper. The filtrate was measured by ICP-MS (Agilent Technology International Co., Ltd. Agilent 7700x). The removal rate was evaluated by the following calculation formula using the solution before treatment as a reference, and it was defined as its adsorption capacity (adsorption rate).
(a formula)
Removal rate (%) = adsorption capacity (%) = (arsenate ion concentration of pre-treatment solution <ppm> −arsenate ion concentration of filtrate <ppm>) / arsenate ion concentration of pre-treatment solution <ppm> × 100
The results are shown in Table 1.

Figure 2018027517
Figure 2018027517

表1に示すように、乾燥又は熱処理温度が100℃〜700℃の範囲内ではオルトチタン酸、メタチタン酸、酸化チタンのいずれも亜ヒ酸イオン吸着能を示す(実施例1〜7)。しかし、熱処理温度が800℃以上になるとオルトチタン酸、メタチタン酸、酸化チタンのいずれも亜ヒ酸イオン吸着能が不十分となる(比較例1〜3)。
表1にヒ酸イオン吸着能も併せて記載したが、その吸着能は60〜79%であり、亜ヒ酸イオン吸着能の81〜100%にはおよばなかった。しかし、本発明の吸着剤は亜ヒ酸イオンとヒ酸イオンの両方の吸着能を具備することが判明し、極めて有効である。
As shown in Table 1, all of orthotitanic acid, metatitanic acid, and titanium oxide exhibit arsenite ion adsorption ability when the drying or heat treatment temperature is in the range of 100 ° C to 700 ° C (Examples 1 to 7). However, when the heat treatment temperature is 800 ° C. or higher, all of orthotitanic acid, metatitanic acid, and titanium oxide have insufficient arsenite ion adsorption ability (Comparative Examples 1 to 3).
Table 1 also describes the arsenate ion adsorption capacity, but the adsorption capacity was 60 to 79%, which was less than 81 to 100% of the arsenite ion adsorption capacity. However, it has been found that the adsorbent of the present invention has the ability to adsorb both arsenite ions and arsenate ions, which is extremely effective.

本発明の吸着剤は、亜ヒ酸イオンに対して高い吸着能力を有するため、亜ヒ酸イオンの分離に利用可能である。特に、地下水中の亜ヒ酸イオンの除去に有効に利用可能である。また同時にヒ酸イオンの吸着能も具備し、極めて有効である。
本発明の吸着剤は、低コストで安定して大量に製造可能であるので、機能面、生産面、費用面等のバランスに優れた新規な特に亜ヒ酸イオン吸着剤として利用可能であり、地下水質改善のような技術分野のみならず、様々な技術分野での利用や応用も期待できる。
Since the adsorbent of the present invention has a high adsorption ability for arsenite ions, it can be used for separation of arsenite ions. In particular, it can be effectively used to remove arsenite ions in groundwater. At the same time, it also has the ability to adsorb arsenate ions and is extremely effective.
Since the adsorbent of the present invention can be stably produced in a large amount at a low cost, it can be used as a novel arsenite ion adsorbent that is excellent in the balance of function, production, cost, etc. It can be expected to be used and applied not only in technical fields such as groundwater quality improvement but also in various technical fields.

Claims (8)

オルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物を用いた亜ヒ酸イオン吸着剤。   An arsenite ion adsorbent using at least one compound selected from orthotitanic acid, metatitanic acid, and titanium oxide. オルトチタン酸、メタチタン酸及び酸化チタンから選ばれる少なくとも1つの化合物を、100〜700℃の温度で熱処理を施して得られる化合物を用いた亜ヒ酸イオン吸着剤。   An arsenite ion adsorbent using a compound obtained by heat-treating at least one compound selected from orthotitanic acid, metatitanic acid and titanium oxide at a temperature of 100 to 700 ° C. 熱処理温度が200〜600℃である請求項2に記載の亜ヒ酸イオン吸着剤。   The arsenite ion adsorbent according to claim 2, wherein the heat treatment temperature is 200 to 600 ° C. 熱処理温度が300〜500℃である請求項3に記載の亜ヒ酸イオン吸着剤。   The arsenite ion adsorbent according to claim 3, wherein the heat treatment temperature is 300 to 500 ° C. 請求項1〜4のいずれか1項に記載の亜ヒ酸イオン吸着剤を用いた亜ヒ酸イオン吸着用加工品。   A processed product for arsenite ion adsorption using the arsenite ion adsorbent according to any one of claims 1 to 4. 請求項1〜4のいずれか1項に記載の亜ヒ酸イオン吸着剤を用いた亜ヒ酸イオン吸着用設備。   Arsenite ion adsorption equipment using the arsenite ion adsorbent according to any one of claims 1 to 4. 請求項5に記載の亜ヒ酸イオン吸着用加工品を用いた亜ヒ酸イオン吸着用設備。   A facility for adsorbing arsenite ions using the processed product for adsorbing arsenite ions according to claim 5. 請求項1〜4のいずれか1項に記載の亜ヒ酸イオン吸着剤によって亜ヒ酸イオンを吸着させて亜ヒ酸イオンを除去する方法。   A method for removing arsenite ions by adsorbing arsenite ions with the arsenite ion adsorbent according to claim 1.
JP2016159835A 2016-08-17 2016-08-17 Arsenite ion adsorbent Pending JP2018027517A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016159835A JP2018027517A (en) 2016-08-17 2016-08-17 Arsenite ion adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016159835A JP2018027517A (en) 2016-08-17 2016-08-17 Arsenite ion adsorbent

Publications (1)

Publication Number Publication Date
JP2018027517A true JP2018027517A (en) 2018-02-22

Family

ID=61248094

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016159835A Pending JP2018027517A (en) 2016-08-17 2016-08-17 Arsenite ion adsorbent

Country Status (1)

Country Link
JP (1) JP2018027517A (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313844A (en) * 1979-10-09 1982-02-02 Mitsubishi Rayon Company, Ltd. Inorganic ion exchanger
JPS57150477A (en) * 1981-03-10 1982-09-17 Mitsubishi Rayon Co Ltd Treatment of arsenic-containing water
JP2003165721A (en) * 2001-11-27 2003-06-10 National Institute Of Advanced Industrial & Technology Smectite-titanium oxide porous material and method for synthesizing the same
JP2005517521A (en) * 2002-02-14 2005-06-16 トラスティーズ オブ スティーブンス インスティテュート オブ テクノロジー Method for producing a titanium oxide product having an active surface and method for using the titanium oxide product in a water treatment process
US20060144793A1 (en) * 2004-07-13 2006-07-06 Mazakhir Dadachov Novel adsorbents and process of making and using same
CN102107907A (en) * 2009-12-28 2011-06-29 中国科学院金属研究所 Porous nano hydrated titanium dioxide dearsenifying material and preparation method thereof
JP2013192816A (en) * 2012-03-21 2013-09-30 Nippon Sheet Glass Co Ltd Method for treating substance to be treated containing toxic compound

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4313844A (en) * 1979-10-09 1982-02-02 Mitsubishi Rayon Company, Ltd. Inorganic ion exchanger
JPS57150477A (en) * 1981-03-10 1982-09-17 Mitsubishi Rayon Co Ltd Treatment of arsenic-containing water
JP2003165721A (en) * 2001-11-27 2003-06-10 National Institute Of Advanced Industrial & Technology Smectite-titanium oxide porous material and method for synthesizing the same
JP2005517521A (en) * 2002-02-14 2005-06-16 トラスティーズ オブ スティーブンス インスティテュート オブ テクノロジー Method for producing a titanium oxide product having an active surface and method for using the titanium oxide product in a water treatment process
US20060144793A1 (en) * 2004-07-13 2006-07-06 Mazakhir Dadachov Novel adsorbents and process of making and using same
CN102107907A (en) * 2009-12-28 2011-06-29 中国科学院金属研究所 Porous nano hydrated titanium dioxide dearsenifying material and preparation method thereof
JP2013192816A (en) * 2012-03-21 2013-09-30 Nippon Sheet Glass Co Ltd Method for treating substance to be treated containing toxic compound

Similar Documents

Publication Publication Date Title
Khodadoust et al. Photocatalytic degradation of monoethanolamine in wastewater using nanosized TiO2 loaded on clinoptilolite
US11577215B2 (en) Method for producing absorbent
JP7256493B2 (en) Method for producing adsorbent containing fine hydrotalcite
WO2014110014A1 (en) Strontium and cesium specific ion-exchange media
Mendiola-Alvarez et al. Phosphorous-doped TiO2 nanoparticles: synthesis, characterization, and visible photocatalytic evaluation on sulfamethazine degradation
Prajapati et al. Removal of Phosphate Using Red Mud: An Environmentally Hazardous Waste By‐Product of Alumina Industry
Pataquiva-Mateus et al. Degradation of Orange II by Fenton reaction using ilmenite as catalyst
CN102553516A (en) Chemical adsorbent for treating arsenic-containing wastewater and preparation method for chemical adsorbent
CN103771531A (en) Method for efficiently preparing ferrate based on nascent interfacial activity
WO2010137321A1 (en) Water purification material, water purification method, phosphate fertilizer precursor, and method for manufacturing a phosphate fertilizer precursor
JP5603394B2 (en) Method for treating waste liquid containing cesium
WO2019194688A1 (en) Methods of preparing modified biopolymer-silica nanocomposite materials for arsenic removal from contaminated water and compositions therefrom
WO2018168558A1 (en) Water treatment method, magnesium agent for water treatment, and method for producing magnesium agent for water treatment
Sharma Synthesis, characterization and sorption behavior of zirconium (IV) antimonotungstate: an inorganic ion exchanger
JP5137232B2 (en) Method for producing porous iron oxide and method for treating water to be treated
JP6719214B2 (en) Oxo acid ion adsorbent
JP2018027517A (en) Arsenite ion adsorbent
CN102992387A (en) Method for removing iron ion impurities in copper salt at high efficiency
JP5561490B2 (en) Adsorbent containing low crystalline or amorphous titanium hydroxide, method for producing the same, and method for treating aqueous solution containing cesium ions
JPH0657354B2 (en) Simultaneous removal method of arsenic and silicon
JP4617476B2 (en) Method for removing potassium ions
Mironyuk et al. Adsorption of azo dye Congo red on the Sn-doped TiO2 surface
RU2596744C1 (en) Sorbent for purifying waste water from chromium (vi)
JP4189652B2 (en) Adsorbent
RU2367605C1 (en) Method for processing of titanium-containing concentrate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190722

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208