JP2018016925A - Sea-island type composite fiber - Google Patents
Sea-island type composite fiber Download PDFInfo
- Publication number
- JP2018016925A JP2018016925A JP2016150885A JP2016150885A JP2018016925A JP 2018016925 A JP2018016925 A JP 2018016925A JP 2016150885 A JP2016150885 A JP 2016150885A JP 2016150885 A JP2016150885 A JP 2016150885A JP 2018016925 A JP2018016925 A JP 2018016925A
- Authority
- JP
- Japan
- Prior art keywords
- sea
- island
- fiber
- composite fiber
- type composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 171
- 239000002131 composite material Substances 0.000 title claims abstract description 84
- -1 polypropylene Polymers 0.000 claims abstract description 40
- 229920001155 polypropylene Polymers 0.000 claims abstract description 35
- 239000004743 Polypropylene Substances 0.000 claims abstract description 34
- 238000004043 dyeing Methods 0.000 claims abstract description 23
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 22
- 229920005989 resin Polymers 0.000 claims abstract description 21
- 239000011347 resin Substances 0.000 claims abstract description 21
- 238000010438 heat treatment Methods 0.000 claims description 22
- 229920001225 polyester resin Polymers 0.000 claims description 9
- 239000004645 polyester resin Substances 0.000 claims description 9
- 229920006122 polyamide resin Polymers 0.000 claims description 8
- 239000012298 atmosphere Substances 0.000 claims description 2
- 238000000034 method Methods 0.000 abstract description 17
- 238000009987 spinning Methods 0.000 abstract description 9
- 229920000098 polyolefin Polymers 0.000 abstract description 4
- 239000000306 component Substances 0.000 description 43
- 239000004744 fabric Substances 0.000 description 19
- 230000002087 whitening effect Effects 0.000 description 18
- 238000002844 melting Methods 0.000 description 15
- 230000008018 melting Effects 0.000 description 15
- 230000004927 fusion Effects 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 10
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 6
- 230000006866 deterioration Effects 0.000 description 6
- 229920000728 polyester Polymers 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000002245 particle Substances 0.000 description 5
- 239000004952 Polyamide Substances 0.000 description 4
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 4
- 229920001577 copolymer Polymers 0.000 description 4
- 239000008358 core component Substances 0.000 description 4
- 229920002647 polyamide Polymers 0.000 description 4
- 229920000139 polyethylene terephthalate Polymers 0.000 description 4
- 239000005020 polyethylene terephthalate Substances 0.000 description 4
- 238000012805 post-processing Methods 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 4
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000000654 additive Substances 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000002074 melt spinning Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 3
- 229910001887 tin oxide Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 238000009941 weaving Methods 0.000 description 3
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 150000002009 diols Chemical class 0.000 description 2
- KZTYYGOKRVBIMI-UHFFFAOYSA-N diphenyl sulfone Chemical compound C=1C=CC=CC=1S(=O)(=O)C1=CC=CC=C1 KZTYYGOKRVBIMI-UHFFFAOYSA-N 0.000 description 2
- 239000000986 disperse dye Substances 0.000 description 2
- 239000012770 industrial material Substances 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 238000009940 knitting Methods 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920001515 polyalkylene glycol Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000011514 reflex Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 2
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 1
- 239000005977 Ethylene Substances 0.000 description 1
- 229920000299 Nylon 12 Polymers 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002302 Nylon 6,6 Polymers 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- BWVAOONFBYYRHY-UHFFFAOYSA-N [4-(hydroxymethyl)phenyl]methanol Chemical compound OCC1=CC=C(CO)C=C1 BWVAOONFBYYRHY-UHFFFAOYSA-N 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 238000004220 aggregation Methods 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 230000003078 antioxidant effect Effects 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 238000012790 confirmation Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 150000001991 dicarboxylic acids Chemical class 0.000 description 1
- VPXSRGLTQINCRV-UHFFFAOYSA-N dicesium;dioxido(dioxo)tungsten Chemical compound [Cs+].[Cs+].[O-][W]([O-])(=O)=O VPXSRGLTQINCRV-UHFFFAOYSA-N 0.000 description 1
- 238000010036 direct spinning Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 239000006081 fluorescent whitening agent Substances 0.000 description 1
- 239000012760 heat stabilizer Substances 0.000 description 1
- 238000005338 heat storage Methods 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- 229910052746 lanthanum Inorganic materials 0.000 description 1
- FZLIPJUXYLNCLC-UHFFFAOYSA-N lanthanum atom Chemical compound [La] FZLIPJUXYLNCLC-UHFFFAOYSA-N 0.000 description 1
- 238000012538 light obscuration Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- RXOHFPCZGPKIRD-UHFFFAOYSA-N naphthalene-2,6-dicarboxylic acid Chemical compound C1=C(C(O)=O)C=CC2=CC(C(=O)O)=CC=C21 RXOHFPCZGPKIRD-UHFFFAOYSA-N 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 229920003207 poly(ethylene-2,6-naphthalate) Polymers 0.000 description 1
- 229920000747 poly(lactic acid) Polymers 0.000 description 1
- 229920001707 polybutylene terephthalate Polymers 0.000 description 1
- 238000006068 polycondensation reaction Methods 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000011112 polyethylene naphthalate Substances 0.000 description 1
- 239000004626 polylactic acid Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- 229920005606 polypropylene copolymer Polymers 0.000 description 1
- 229920002215 polytrimethylene terephthalate Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 230000000630 rising effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000009751 slip forming Methods 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 238000009864 tensile test Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 235000005074 zinc chloride Nutrition 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
Images
Landscapes
- Multicomponent Fibers (AREA)
Abstract
Description
本発明は、ポリプロピレン樹脂と熱可塑性樹脂を用いた染色性、耐熱性に優れる海島型複合繊維に関する。 The present invention relates to a sea-island type composite fiber that is excellent in dyeability and heat resistance using a polypropylene resin and a thermoplastic resin.
ポリオレフィン繊維は軽量性や撥水性等に優れているため、産業用途に幅広く用いられている。その中でもポリプロピレン繊維が多く用いられているが、ポリプロピレン繊維は染料により染色されにくいため、衣料用途に適用することは困難であった。
染色性を改善するために、特許文献1では、芯成分に分散染料で染色することが可能なポリエステル樹脂、鞘成分にポリプロピレン樹脂を配置したポリプロピレン複合繊維が提案されている。このような構成とすることにより繊維を濃色に染色できるうえ、耐光・耐塩素堅牢度も良好なポリプロピレン繊維が得られることが記載されている。
一方、ポリオレフィン樹脂と、ポリエステル樹脂やポリアミド樹脂等の熱可塑性樹脂とからなる繊維は、相溶性が低いため、樹脂の接合面で剥離し易く、製糸安定性や染色性の悪化が生じ、取り扱いが難しいという問題があった。
そこで、特許文献2では、芯成分にポリプロピレン樹脂、鞘成分にポリエステル樹脂を配置し、ポリプロピレン樹脂のメルトフローレート(MFR)が28g/minを超えて60g/min未満の芯鞘型複合繊維とすることで、糸切れがなく安定して紡糸でき、染色性も良好な芯鞘型複合繊維が得られることが記載されている。また、この文献には、比較的低温の温水浴中で湿熱延伸するなど、穏やかな延伸条件により芯成分と鞘成分の剥離を起こさないようにすることが記載されている。
Polyolefin fibers are widely used in industrial applications because they are excellent in light weight and water repellency. Among them, polypropylene fibers are often used. However, since polypropylene fibers are difficult to be dyed with dyes, it is difficult to apply them to clothing applications.
In order to improve dyeability, Patent Document 1 proposes a polyester composite fiber that can be dyed with a disperse dye as a core component and a polypropylene composite fiber in which a polypropylene resin is arranged as a sheath component. It is described that by using such a structure, the fiber can be dyed in a dark color, and a polypropylene fiber having good light fastness and chlorine fastness can be obtained.
On the other hand, fibers made of a polyolefin resin and a thermoplastic resin such as a polyester resin or a polyamide resin are low in compatibility, so that they are easily peeled off at the joint surface of the resin, resulting in deterioration of yarn-making stability and dyeability, and handling. There was a problem that it was difficult.
Therefore, in Patent Document 2, a polypropylene resin is disposed as the core component, and a polyester resin is disposed as the sheath component, so that the melt flow rate (MFR) of the polypropylene resin exceeds 28 g / min and is less than 60 g / min. Therefore, it is described that a core-sheath type composite fiber that can be stably spun without yarn breakage and has good dyeability can be obtained. Further, this document describes that the core component and the sheath component are prevented from being peeled off under a mild stretching condition such as wet heat stretching in a relatively low temperature hot water bath.
しかしながら、特許文献1記載の繊維は、染色できるものの、芯鞘剥離が生じ易いため、製糸安定性に問題があり、色斑が生じ易いものとなる。また、製織、製編された生地は、通常、プレセットやファイナルセット等の乾熱処理を行う。ポリプロピレン樹脂を用いた繊維は、ポリエステル樹脂やポリアミド樹脂を用いた繊維と比べて融点が低く、乾熱処理の際、融着が生じる。このため、ポリエステル繊維やナイロン繊維等との併用が困難であった。
また、特許文献2は、低温での湿熱処理を行うなどの穏やかな延伸条件とすることによって、繊維の芯鞘剥離を生じにくくすることが記載されているものの、具体的には不織布や紡績糸に用いており、長繊維での使用は記載されていない。
したがって、本発明は、ポリプロピレン樹脂と可染性の熱可塑性樹脂とからなる複合繊維において、特別な延伸方法をとらなくとも、耐剥離性、製糸安定性及び耐熱性が良好で染色斑の少ない、長繊維として使用できるポリオレフィン複合繊維を得ることを目的としたものである。
However, although the fiber described in Patent Document 1 can be dyed, core-sheath peeling is likely to occur, so that there is a problem in the yarn production stability and color spots are likely to occur. In addition, the woven or knitted fabric is usually subjected to a dry heat treatment such as a preset or final set. Fibers using polypropylene resin have a lower melting point than fibers using polyester resin or polyamide resin, and fusion occurs during dry heat treatment. For this reason, combined use with polyester fiber, nylon fiber, etc. was difficult.
Moreover, although patent document 2 describes that it is made difficult to produce core-sheath peeling of a fiber by setting it as mild extending | stretching conditions, such as performing wet heat processing at low temperature, Specifically, a nonwoven fabric and a spun yarn The use with long fibers is not described.
Therefore, the present invention is a composite fiber composed of a polypropylene resin and a dyeable thermoplastic resin, and without taking a special stretching method, the peel resistance, the yarn production stability and the heat resistance are good, and there are few dyeing spots. The object is to obtain a polyolefin composite fiber that can be used as a long fiber.
すなわち、本発明の要旨は、海部と2つ以上の島部とからなり、海部と島部との接合面が繊維長さ方向に連続した海島構造を有し、以下の(a)〜(d)を満たす海島型複合繊維にある。
(a)島成分がポリプロピレンを主成分とするポリプロピレン樹脂
(b)海成分が染色可能な熱可塑性樹脂
(c)繊維横断面における海部の面積比率が30%以上、70%以下
(d)繊維横断面における海部の最小厚みが1μm以上
また、その中でも、染色可能な熱可塑性樹脂はポリエステル樹脂またはポリアミド樹脂であることが好ましい。また、前記繊維が170℃の乾熱雰囲気下で乾熱処理後に融着・溶断のないことが好ましい。さらに、前記繊維の単糸繊度が1dtex以上であることが好ましい。
That is, the gist of the present invention consists of a sea part and two or more island parts, and has a sea-island structure in which a joint surface between the sea part and the island part is continuous in the fiber length direction, and the following (a) to (d) ) Is a sea-island type composite fiber.
(A) Polypropylene resin whose island component is polypropylene as a main component (b) Thermoplastic resin capable of dyeing sea component (c) The sea area ratio in the fiber cross section is 30% or more and 70% or less (d) Fiber crossing The minimum thickness of the sea portion on the surface is 1 μm or more. Among them, the dyeable thermoplastic resin is preferably a polyester resin or a polyamide resin. Moreover, it is preferable that the said fiber does not have melt | fusion and fusing after dry heat processing in 170 degreeC dry-heat atmosphere. Furthermore, the single yarn fineness of the fiber is preferably 1 dtex or more.
本発明の海島型複合繊維によれば、特別な延伸方法をとらなくても、耐剥離性、製糸安定性、耐熱性及び染色性が良好で、長繊維として使用できるポリオレフィン複合繊維を提供できる。また本発明の海島型複合繊維は、ポリエステル繊維やポリアミド繊維等の熱可塑性樹脂繊維と併用できる。 According to the sea-island type composite fiber of the present invention, it is possible to provide a polyolefin composite fiber that can be used as a long fiber, having excellent peeling resistance, yarn-making stability, heat resistance and dyeability, without taking a special stretching method. The sea-island composite fiber of the present invention can be used in combination with thermoplastic resin fibers such as polyester fibers and polyamide fibers.
本発明において、海島型複合繊維とは、海成分からなる海部と島成分からなる島部とから構成される海島型複合繊維のことをいう。 In the present invention, the sea-island type composite fiber refers to a sea-island type composite fiber composed of a sea part composed of a sea component and an island part composed of an island component.
本発明の海島型複合繊維は、海成分が染色可能な熱可塑性樹脂、島成分がポリプロピレン樹脂から構成される。 The sea-island type composite fiber of the present invention is composed of a thermoplastic resin capable of dyeing sea components and an island component made of polypropylene resin.
本発明の海島型複合繊維において、海成分のポリプロピレン樹脂とは、ポリプロピレン(PP)が主成分である樹脂をいう。プロピレン単独重合体であっても、他の成分を繰り返し単位として含む共重合体であってもよい。共重合体としては、プロピレンに、例えば、エチレン、ブテン−1、ヘキセン−1等を1種以上共重合したものが挙げられる。 In the sea-island composite fiber of the present invention, the sea component polypropylene resin refers to a resin mainly composed of polypropylene (PP). It may be a propylene homopolymer or a copolymer containing other components as repeating units. Examples of the copolymer include a copolymer of propylene and one or more kinds of ethylene, butene-1, hexene-1, and the like.
本発明において、樹脂の融点とは、示差走査熱量計(DSC)を用いて、窒素雰囲気下、10℃/minで300℃まで昇温した時の吸熱ピークのピークトップが示す値のことをいう。 In the present invention, the melting point of the resin means a value indicated by the peak top of the endothermic peak when the temperature is raised to 300 ° C. at 10 ° C./min in a nitrogen atmosphere using a differential scanning calorimeter (DSC). .
上記ポリプロピレンの融点は145℃以上、250℃以下が好ましい。融点が145℃より低いと、十分な耐熱性が得られない傾向がある。融点が250℃より高いと、溶融紡糸において、海成分の熱可塑性樹脂との複合が困難となる傾向があり、海島型複合繊維を得難い傾向がある。すなわち、上記の範囲であると、ポリエステル樹脂やポリアミド樹脂等の熱可塑性樹脂からなる繊維を混用して繊維構造物とした際、通常実施する、プレセットやファイナルセット等の後加工における乾熱処理(例えば、120〜190℃の乾熱処理)や染色処理(例えば、100〜135℃の湿熱処理)を行うのに、十分良好な耐熱性を備えるものを得られ易い。より好ましいポリプロピレンの融点は、160℃以上、235℃以下である。 The melting point of the polypropylene is preferably 145 ° C or higher and 250 ° C or lower. When the melting point is lower than 145 ° C., sufficient heat resistance tends to be not obtained. When the melting point is higher than 250 ° C., in melt spinning, it tends to be difficult to combine the sea component with the thermoplastic resin, and it is difficult to obtain sea-island type composite fibers. That is, in the above range, when a fiber structure is formed by mixing fibers made of a thermoplastic resin such as a polyester resin or a polyamide resin, a dry heat treatment in post-processing such as a preset or final set is usually performed ( For example, it is easy to obtain one having sufficiently good heat resistance for performing a heat treatment at 120 to 190 ° C. and a dyeing treatment (for example, a wet heat treatment at 100 to 135 ° C.). A more preferable melting point of polypropylene is 160 ° C. or higher and 235 ° C. or lower.
上記ポリプロピレンの230℃、荷重2.16kgにおけるメルトフレート(MFR)は、9g/10min以上、30g/10min以下が好ましい。すなわち、MFRが9g/10min以上であれば、島部同士の融合による凝集塊が生じ難い傾向があるため、海部と島部の剥離が生じ難くなる。この結果、紡糸工程や延撚工程での製糸安定性は良好となり、染色した後に白化現象等の染色斑も生じ難い傾向がある。また繊維の機械的強度を良好に保つ点からは、MFRが30g/10min以下であることが好ましい。よって、MFRが上記の範囲内であると、島部同士の融合が生じ難く、海部と島部の剥離がなく、機械的強度の良好な繊維を得られ易い。なかでも、MFRは9g/10min以上が好ましく、20g/10min以下が好ましい。より好ましくは9g/10min以上、15g/10min以下である。 The melt frate (MFR) at 230 ° C. and a load of 2.16 kg of the polypropylene is preferably 9 g / 10 min or more and 30 g / 10 min or less. That is, if the MFR is 9 g / 10 min or more, there is a tendency that an agglomeration due to the fusion of the island portions does not easily occur, and therefore the sea portion and the island portion are hardly separated. As a result, the spinning stability in the spinning process and the drawing process becomes good, and there is a tendency that dyeing spots such as a whitening phenomenon do not easily occur after dyeing. Moreover, it is preferable that MFR is 30 g / 10min or less from the point which maintains the mechanical strength of a fiber favorably. Therefore, when the MFR is within the above range, the island portions hardly merge with each other, the sea portion and the island portion do not peel off, and a fiber having good mechanical strength can be easily obtained. Especially, MFR is preferably 9 g / 10 min or more, and preferably 20 g / 10 min or less. More preferably, it is 9 g / 10 min or more and 15 g / 10 min or less.
本発明の海島型複合繊維において、海成分は、染色可能な熱可塑性樹脂であれば特に限定されることはない。具体例として、例えば、ポリエステル樹脂、ポリアミド樹脂、ポリビニルアルコール樹脂が挙げられる。これらの中でも、耐熱性や機械的特性の観点からポリエステル樹脂、ポリアミド樹脂が好ましい。 In the sea-island composite fiber of the present invention, the sea component is not particularly limited as long as it is a dyeable thermoplastic resin. Specific examples include polyester resin, polyamide resin, and polyvinyl alcohol resin. Among these, polyester resins and polyamide resins are preferable from the viewpoints of heat resistance and mechanical properties.
上記熱可塑性樹脂は、融点は180℃以上、280℃以下が好ましい。
本発明において島部は、海部の海成分に覆われており、通常のプレセットやファイナルセット等の後加工における乾熱処理でも問題のない良好な耐熱性を備えている。海成分の融点が低すぎると、乾熱処理により、海部の融解が生じ、風合いが硬くなる傾向がある。また高過ぎると、海成分との複合紡糸が難しくなる傾向がある。よって、耐熱性、安定した製糸性や海部と島部との剥離を抑制し易い点から、上記の範囲が好ましい。より好ましい上記熱可塑性樹脂の融点は、210℃以上、270℃以下であり、さらに好ましくは220℃以上、265℃以下である。
The thermoplastic resin preferably has a melting point of 180 ° C. or higher and 280 ° C. or lower.
In the present invention, the island part is covered with sea components of the sea part, and has good heat resistance with no problem even in dry heat treatment in post-processing such as a normal preset or final set. When the melting point of the sea component is too low, the sea part is melted by dry heat treatment, and the texture tends to be hard. Moreover, when too high, there exists a tendency for the composite spinning with a sea component to become difficult. Therefore, the above range is preferable from the viewpoints of heat resistance, stable yarn production, and easy suppression of peeling between the sea and the island. The melting point of the thermoplastic resin is more preferably 210 ° C. or higher and 270 ° C. or lower, and further preferably 220 ° C. or higher and 265 ° C. or lower.
上記海成分、または島成分は、本発明の効果を損なわない範囲内で、添加物を添加することにより改質が行われたものであっても良い。添加物としては相溶化剤、熱安定化剤、酸化防止剤、蛍光増白剤、赤外線遮蔽剤、赤外線吸収剤等が挙げられる。また、添加物は単独で用いても良いし併用しても良い。
上記赤外線吸収剤としては、例えば、アンチモンドープ酸化スズ(ATO)やスズドープ酸化インジウム(ITO)等が挙げられる。アンチモンドープ酸化スズの場合、ポリプロピレンに対し、1質量%以上含有することが好ましく、より好ましくは、2質量%以上である。
上記赤外線遮蔽剤としては、例えば、六ホウ化ランタン(LaB6)、セシウム酸化タングステン(CWO)、大粒子径酸化チタン(大粒径TiO2)等が挙げられる。大粒子径酸化チタンの場合、重量平均粒子径が0.8〜1.8μmの酸化チタンを、ポリプロピレンに対し、5質量%以上含有することが好ましい。より好ましくは、8質量%以上である。
The sea component or the island component may be modified by adding an additive within a range not impairing the effects of the present invention. Examples of the additive include a compatibilizer, a heat stabilizer, an antioxidant, a fluorescent whitening agent, an infrared shielding agent, and an infrared absorber. Moreover, an additive may be used independently and may be used together.
Examples of the infrared absorber include antimony-doped tin oxide (ATO) and tin-doped indium oxide (ITO). In the case of antimony-doped tin oxide, the content is preferably 1% by mass or more, and more preferably 2% by mass or more with respect to polypropylene.
Examples of the infrared shielding agent include lanthanum hexaboride (LaB 6 ), cesium tungsten oxide (CWO), large particle diameter titanium oxide (large particle diameter TiO 2 ), and the like. In the case of titanium oxide having a large particle diameter, it is preferable to contain 5% by mass or more of titanium oxide having a weight average particle diameter of 0.8 to 1.8 μm with respect to polypropylene. More preferably, it is 8 mass% or more.
上記ポリエステル樹脂としては、ジカルボン酸類またはそのエステル形成誘導体とジオールまたはそのエステル形成誘導体を原料として重縮合反応によって製造される線状飽和ポリエステルであればよく、ポリエチレンテレフタレート(PET)、ポリトリメチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリ乳酸等が挙げられるが、これらに限定されるものではない。特に、ポリエチレンテレフタレートを主体とするものが好ましく、またホモポリエステルであってもコポリエステルであってもよい。共重合成分としてはアジピン酸、セバシン酸、フタル酸、イソフタル酸、ナフタレン−2,6−ジカルボン酸、ジフェニルジカルボン酸、5−ナトリウムスルホイソフタル酸、ジフェニルスルホンジカルボン酸、p−オキシエトキシ安息香酸等のジカルボン酸類またはそのエステル形成誘導体成分、またはポリエチレングリコール、ポリテトラメチレングリコール、ポリヘキサンメチレングリコールなどのポリアルキレングリコール成分を含んでいるものが好ましい。ポリアルキレングリコールには、ジエチレングリコール、プロピレングリコール、ネオペンチルグリコール、ポリオキシアルキレングリコール、p−キシレングリコール、1,4−シクロヘキサンジメタノール等のジオールまたはそのエステル形成誘導体成分を含んでいてもよい。これらの共重合成分は互いに1種ずつ用いてもよいし、2種以上用いることもできる。 The polyester resin may be a linear saturated polyester produced by a polycondensation reaction using a dicarboxylic acid or an ester-forming derivative thereof and a diol or an ester-forming derivative as raw materials. Polyethylene terephthalate (PET), polytrimethylene terephthalate, Examples include, but are not limited to, polybutylene terephthalate, polyethylene naphthalate, and polylactic acid. In particular, those mainly composed of polyethylene terephthalate are preferable, and may be a homopolyester or a copolyester. Examples of copolymer components include adipic acid, sebacic acid, phthalic acid, isophthalic acid, naphthalene-2,6-dicarboxylic acid, diphenyldicarboxylic acid, 5-sodium sulfoisophthalic acid, diphenylsulfone dicarboxylic acid, p-oxyethoxybenzoic acid, etc. Those containing dicarboxylic acids or ester-forming derivative components thereof, or polyalkylene glycol components such as polyethylene glycol, polytetramethylene glycol, polyhexanemethylene glycol and the like are preferable. The polyalkylene glycol may contain a diol such as diethylene glycol, propylene glycol, neopentyl glycol, polyoxyalkylene glycol, p-xylene glycol, 1,4-cyclohexanedimethanol, or an ester-forming derivative component thereof. These copolymerization components may be used one by one, or two or more types may be used.
上記ポリアミド樹脂としては、ポリアミド6、ポリアミド10、ポリアミド12、ポリアミド66などの単独の重合体または共重合体が挙げられ、これらに限定されるものではない。 Examples of the polyamide resin include, but are not limited to, single polymers or copolymers such as polyamide 6, polyamide 10, polyamide 12, and polyamide 66.
本発明の海島型複合繊維の断面形状について、以下説明する。 The cross-sectional shape of the sea-island composite fiber of the present invention will be described below.
本発明の海島型複合繊維は、1つ以上の海部と、2つ以上の島部とを、長さ方向に連続して形成された海島構造を有する複合繊維である。また海部と島部との接合面は、繊維長さ方向に途切れずに連続してなる海島構造を有することが好ましい。 The sea-island type composite fiber of the present invention is a composite fiber having a sea-island structure in which one or more sea parts and two or more island parts are continuously formed in the length direction. Moreover, it is preferable that the joint surface of a sea part and an island part has a sea-island structure formed without a break in the fiber length direction.
本発明の海島型複合繊維は、繊維表面に海成分が露出している。すなわち、繊維横断面(繊維長さ方向に垂直な繊維断面)においては、外周に海部が露出している。 In the sea-island type composite fiber of the present invention, sea components are exposed on the fiber surface. That is, in the fiber cross section (fiber cross section perpendicular to the fiber length direction), the sea is exposed on the outer periphery.
図1は、本発明の海島型複合繊維の繊維横断面の断面形状の一例を示す図である。この例では、丸断面の繊維の海部aに、丸断面の19個の島部bが繊維中央に寄り合う形で配置されている。また、海部の最小厚みは1μm以上で構成される。ここで、海部の最小厚みとは、繊維外周と島部外周との最短距離であり、繊維外周の法線(繊維外周の一点を通り、この点における接線に垂直な直線)をひいたときに最も近い島部の外周までの距離を示す。例えば、図1の海島型複合繊維において、繊維外周上の点pから法線をひき、島部bの外周との交点をqとする。繊維横断面中で、この点pと点qを結ぶ線分p−qの最も短い長さXが海部の最小厚みとなる。
海部の最小厚みが1μm未満の場合、延伸工程、製織編工程、染色工程において、海成分と島成分との剥離が生じ易くなる。このため、製糸安定性の悪化、白化現象等の染色斑が生じ易い。また、乾熱処理による、島部の融解が生じ、風合いが硬くなり易い。
FIG. 1 is a diagram showing an example of a cross-sectional shape of a fiber cross section of a sea-island type composite fiber of the present invention. In this example, 19 islands b having a round cross section are arranged in the sea part a of the fiber having a round cross section so as to be close to the center of the fiber. Further, the minimum thickness of the sea portion is 1 μm or more. Here, the minimum thickness of the sea is the shortest distance between the outer periphery of the fiber and the outer periphery of the island, and when the normal of the outer periphery of the fiber (a straight line passing through one point of the outer periphery of the fiber and perpendicular to the tangent at this point) is drawn. Indicates the distance to the outer periphery of the nearest island. For example, in the sea-island type composite fiber of FIG. 1, the normal line is drawn from the point p on the outer periphery of the fiber, and the intersection point with the outer periphery of the island part b is defined as q. In the fiber cross section, the shortest length X of the line segment p-q connecting the points p and q is the minimum thickness of the sea part.
When the minimum thickness of the sea part is less than 1 μm, the sea component and the island component are easily separated in the stretching process, the weaving and knitting process, and the dyeing process. For this reason, dyeing spots such as deterioration of yarn-making stability and whitening phenomenon are likely to occur. In addition, the islands are melted by the dry heat treatment, and the texture tends to be hard.
本発明の海島型複合繊維の繊維横断面において、島部の個数を40個以下にすることが好ましい。島部の個数が40個以下であれば、適度な強度を備えた海部と島部の剥離が生じ難い海島型複合繊維が安定的に得られ易くなる。一方、島部の個数が40個を超える場合は繊維中の島部の密集度が大きくなり、紡糸過程で互いの島部同士が融合し凝集塊が発生し易くなり、海部と島部の剥離が生じ易くなる傾向がある。また、より安定した繊維横断面の形成を確保する点から、配置される島部の個数は20個以下がより好ましい。島部をこのような個数とすることにより島部同士の凝集を抑制することがさらに容易になる。加えて、海部と島部の接合面積を大きくしつつ剥離を防ぐ点から、配置される島部の個数は3個以上が好ましく、より好ましくは10個以上である。 In the fiber cross section of the sea-island composite fiber of the present invention, the number of island portions is preferably 40 or less. If the number of island portions is 40 or less, it becomes easy to stably obtain sea-island type composite fibers that are less likely to cause separation between the sea portion and the island portion having an appropriate strength. On the other hand, when the number of islands exceeds 40, the density of the islands in the fiber increases, and the islands are easily fused to form an agglomerate during the spinning process, causing separation between the sea and the islands. It tends to be easier. Further, the number of island portions to be arranged is more preferably 20 or less from the viewpoint of ensuring the formation of a more stable fiber cross section. By controlling the number of island portions to such a number, it becomes easier to suppress aggregation between the island portions. In addition, the number of island portions to be arranged is preferably 3 or more, more preferably 10 or more, from the viewpoint of preventing separation while increasing the joint area between the sea portion and the island portion.
本発明の海島型複合繊維の繊維横断面において、繊維横断面全体に対する海部の面積比率が30%以上で構成される。すなわち、繊維横断面において、海部の面積比率が30%未満であると、島部と島部の間の海部の厚さが薄くなり、島部同士が融合し、海部と島部の剥離が生じ易くなる。また、染色後に淡色となる傾向があるため、好ましくは面積比率が35%以上であり、より好ましくは、40%以上である。 In the fiber cross section of the sea-island composite fiber of the present invention, the area ratio of the sea part to the entire fiber cross section is configured to be 30% or more. That is, in the fiber cross section, when the area ratio of the sea part is less than 30%, the thickness of the sea part between the island part and the island part becomes thin, the island parts merge, and the sea part and the island part peel off. It becomes easy. Moreover, since there is a tendency to become pale after dyeing, the area ratio is preferably 35% or more, more preferably 40% or more.
本発明の海島型複合繊維の繊維横断面において、繊維横断面全体に対する島部の面積比率は、70%以下が好ましい。島部の面積比率は、軽量性、染色性とのバランスを考慮して、適宜設定するとよい。 In the fiber cross section of the sea-island type composite fiber of the present invention, the area ratio of the island part to the entire fiber cross section is preferably 70% or less. The area ratio of the islands may be appropriately set in consideration of the balance between lightness and dyeability.
本発明の海島型複合繊維の繊維横断面において、島部は、島部同士が融合しない範囲で、中心部に配置することが好ましい。例えば、繊維横断面において、繊維半径をrとした場合、繊維中心点から[半径r×0.90]以下の範囲に島部を配置することが好ましく、より好ましくは[半径r×0.85]以下の範囲に島部を配置することである。これにより、海部の最小厚みを1μm以上にでき易く、製糸安定性の悪化、白化現象等の染色斑を抑制し易い傾向がある。 In the fiber cross section of the sea-island type composite fiber of the present invention, it is preferable that the island portion is disposed in the center portion in such a range that the island portions do not merge with each other. For example, in the fiber cross section, when the fiber radius is r, it is preferable to arrange the island portion in a range of [radius r × 0.90] or less from the fiber center point, more preferably [radius r × 0.85]. It is to arrange the island part in the following range. Thereby, it is easy to make the minimum thickness of the sea part 1 μm or more, and there is a tendency to easily suppress dyeing spots such as deterioration in yarn-making stability and whitening phenomenon.
本発明の海島型複合繊維において、総繊度は、製糸安定性の点から、40dtex以上、200dtex以下が好ましい。より好ましくは40dtex以上、150dtex以下、さらに好ましくは40dtex以上、100dtex以下である。 In the sea-island type composite fiber of the present invention, the total fineness is preferably 40 dtex or more and 200 dtex or less from the viewpoint of yarn production stability. More preferably, it is 40 dtex or more and 150 dtex or less, More preferably, it is 40 dtex or more and 100 dtex or less.
また、本発明の海島型複合繊維において、単糸繊度は1dtex以上で構成されることが好ましい。単糸繊度が1dtex未満では海部の最小厚みを1μm以上に維持することが難しい傾向があり、製糸安定性の悪化、白化現象等の染色斑が起こり易くなる。また、布帛にした時の風合いの点から、単糸繊度は5dtex以下が好ましい。5dtexを超えると布帛にした時に風合いが硬いものとなり易い。より好ましくは4dtex以下、さらに好ましくは3dtex以下である。 In the sea-island composite fiber of the present invention, the single yarn fineness is preferably 1 dtex or more. If the single yarn fineness is less than 1 dtex, it tends to be difficult to maintain the minimum thickness of the sea at 1 μm or more, and dyeing spots such as deterioration in yarn-making stability and whitening phenomenon tend to occur. Moreover, the single yarn fineness is preferably 5 dtex or less from the viewpoint of the texture when it is made into a fabric. If it exceeds 5 dtex, the texture tends to be hard when it is made into a fabric. More preferably, it is 4 dtex or less, More preferably, it is 3 dtex or less.
本発明の海島複合繊維において、強度は、後加工の点から、2.0cN/dtex以上、5.5cN/dtex以下が好ましい。さらに好ましくは2.5cN/dtex以上、5.0cN/dtex以下である。 In the sea-island composite fiber of the present invention, the strength is preferably 2.0 cN / dtex or more and 5.5 cN / dtex or less from the viewpoint of post-processing. More preferably, it is 2.5 cN / dtex or more and 5.0 cN / dtex or less.
本発明の海島複合繊維において、伸度は、後加工の点から、20%以上、45%以下が好ましい。さらに好ましくは25%以上、40%以下である。 In the sea-island composite fiber of the present invention, the elongation is preferably 20% or more and 45% or less from the viewpoint of post-processing. More preferably, it is 25% or more and 40% or less.
本発明の海島型複合繊維の密度について説明する。島成分のポリプロピレンは密度が0.91g/cm3程度と軽量性に優れている。一方、本発明において、海成分は、染色可能な熱可塑性樹脂からなる。そのため、本発明の海島型複合繊維の密度は、繊維横断面における島部の面積比率に応じて変化する。軽量性の点から密度の小さいポリプロピレン樹脂からなる島成分の面積比率が大きい程良いが、染色性の点からポリプロピレンより密度の大きい熱可塑性樹脂からなる島成分の面積比率が大きい方が好ましい。これらのバランスを考慮すると、繊維横断面における海部の面積比率の下限は30%であり、好ましくは35%、より好ましくは40%である。海部の面積比率の上限は70%であり、好ましくは65%、より好ましくは60%である。このような範囲であれば軽量性と染色性の両方に優れた海島型複合繊維を得ることが容易となる。 The density of the sea-island type composite fiber of the present invention will be described. Island component polypropylene has a density of about 0.91 g / cm 3 and is excellent in lightness. On the other hand, in the present invention, the sea component is made of a dyeable thermoplastic resin. Therefore, the density of the sea-island type composite fiber of the present invention changes according to the area ratio of the island part in the fiber cross section. A larger area ratio of island components made of a polypropylene resin having a lower density is better from the viewpoint of lightness, but a larger area ratio of island components made of a thermoplastic resin having a higher density than polypropylene is preferred from the viewpoint of dyeability. Considering these balances, the lower limit of the sea area ratio in the fiber cross-section is 30%, preferably 35%, more preferably 40%. The upper limit of the sea area ratio is 70%, preferably 65%, more preferably 60%. If it is such a range, it will become easy to obtain the sea-island type composite fiber excellent in both lightness and dyeability.
本発明において、耐熱性について説明する。本発明の海島型複合繊維は、170℃の乾熱処理で溶融・融着が発生しないものであることが好ましい。通常、製織、製編された生地は、プレセットやファイナルセット等の乾熱処理を行う必要がある。ポリエステル繊維やポリアミド繊維を用いた生地の場合、通常120℃〜180℃で熱処理が行われる。その際に耐熱性が低い繊維を併用すると、乾熱処理時に繊維の融着・溶断が発生し、風合いの硬い生地や穴が開いた生地となってしまい、衣料用途や産業資材用途等に用いることができなくなる。この点から、耐熱性は高いほど良く、170℃の乾熱処理で溶融・融着が発生しないことが好ましい。 In the present invention, heat resistance will be described. It is preferable that the sea-island type composite fiber of the present invention is one that does not cause melting / fusion by a dry heat treatment at 170 ° C. Usually, a woven or knitted fabric needs to be subjected to a dry heat treatment such as a preset or final set. In the case of a fabric using polyester fiber or polyamide fiber, heat treatment is usually performed at 120 ° C to 180 ° C. In this case, if fibers with low heat resistance are used together, the fibers will be fused or melted during dry heat treatment, resulting in a fabric with a hard texture or a hole, and used for clothing and industrial materials. Can not be. In this respect, the higher the heat resistance, the better, and it is preferable that no melting or fusion occurs in a dry heat treatment at 170 ° C.
本発明の海島型複合繊維は、ステープル、紡績糸、フィラメント等の形態で用いることができる。本発明の海島型複合繊維は、特別な延伸方法をとらなくても、海部と島部の剥離が生じ難く、白化現象を抑制することができる。さらに、十分な強度や伸度を有しているため、長繊維としても、好適に使用できる。 The sea-island type composite fiber of the present invention can be used in the form of staple, spun yarn, filament and the like. The sea-island type composite fiber of the present invention is less likely to cause separation between the sea part and the island part without taking a special stretching method, and can suppress the whitening phenomenon. Furthermore, since it has sufficient strength and elongation, it can be suitably used as a long fiber.
本発明の海島型複合繊維を用いて、種々の繊維構造物を得ることができる。繊維構造物としては、例えば、撚糸、組紐などの糸束、仮撚糸やタスラン加工糸などの加工糸、紡績糸、各種混繊糸、織編物や不織布等の布帛、詰め綿等の形態をとることができる。
特に、ポリエステル繊維やポリアミド繊維等の熱可塑性樹脂からなる繊維と混繊や交織や交編した織編物・不織布等の布帛とした繊維構造物であれば、染色性、耐熱性、軽量性などの特徴を、適宜、活用して用いることができる点で好ましい。
Various fiber structures can be obtained by using the sea-island composite fiber of the present invention. Examples of the fiber structure include yarn bundles such as twisted yarns and braids, processed yarns such as false twisted yarns and taslan processed yarns, spun yarns, various mixed yarns, fabrics such as woven and knitted fabrics and nonwoven fabrics, and stuffed cotton. be able to.
In particular, if the fiber structure is a fabric such as a woven or knitted fabric / nonwoven fabric woven / knitted / woven with a fiber made of a thermoplastic resin such as polyester fiber or polyamide fiber, the dyeability, heat resistance, lightness, etc. It is preferable in that the features can be utilized by being used as appropriate.
次に、本発明の海島型複合繊維を製造する方法の好適な例について説明する。 Next, the suitable example of the method of manufacturing the sea-island type composite fiber of this invention is demonstrated.
まず、上記島成分のポリプロピレン樹脂および上記海成分の熱可塑性樹脂を準備する。
準備した海成分と島成分を別々に溶融して、上記断面形状となるように、紡糸口金より吐出し、冷却した後、延伸して、本発明の海島型複合繊維を得ることができる。
First, the island component polypropylene resin and the sea component thermoplastic resin are prepared.
The prepared sea component and island component are separately melted, discharged from the spinneret so as to have the above-mentioned cross-sectional shape, cooled, and then stretched to obtain the sea-island composite fiber of the present invention.
紡糸温度は、ポリプロピレン樹脂と熱可塑性樹脂の耐熱性や紡糸性の点から220℃以上、300℃以下が好ましく、250℃以上、290℃以下がより好ましい。紡糸速度は800m/min以上、4500m/min以下が好ましく、1000m/min以上、3800m/min以下がより好ましい。 The spinning temperature is preferably 220 ° C. or higher and 300 ° C. or lower, more preferably 250 ° C. or higher and 290 ° C. or lower, from the viewpoints of heat resistance and spinnability of the polypropylene resin and the thermoplastic resin. The spinning speed is preferably 800 m / min or more and 4500 m / min or less, and more preferably 1000 m / min or more and 3800 m / min or less.
本発明の海島型複合繊維は、海部と島部が繊維の長さ方向に連続した状態で途切れずに互いに接合していることが好ましい。この場合、延伸工程、製織編工程及び染色工程等で海部と島部の剥離が生じ難く、製糸安定性の悪化、白化現象を抑制し易い。一方、繊維の長さ方向において、島部の樹脂が途切れると、製糸安定性の悪化、白化現象等の染色斑を抑制することは困難となる傾向があるため好ましくない。 In the sea-island type composite fiber of the present invention, it is preferable that the sea part and the island part are joined to each other without interruption in a state where the sea part and the island part are continuous in the fiber length direction. In this case, the sea part and the island part are hardly separated in the drawing process, the weaving and knitting process, the dyeing process, and the like, and it is easy to suppress the deterioration of the yarn production stability and the whitening phenomenon. On the other hand, if the resin in the island portion is interrupted in the length direction of the fiber, it is not preferable because it tends to be difficult to suppress dyeing spots such as deterioration of yarn-making stability and whitening phenomenon.
延伸温度は、製糸安定性の点から90℃以上、120℃以下が好ましく、95℃以上、110℃以下がより好ましい。延伸倍率は、安定的に海島型複合繊維の断面形状を得る点から2.0倍以上、3.5倍以下程度が好ましい。 The drawing temperature is preferably 90 ° C. or higher and 120 ° C. or lower, more preferably 95 ° C. or higher and 110 ° C. or lower, from the viewpoint of yarn production stability. The draw ratio is preferably about 2.0 times or more and 3.5 times or less from the viewpoint of stably obtaining the cross-sectional shape of the sea-island composite fiber.
なお、本発明の海島型複合繊維を製造する際には、溶融紡糸した後に一旦巻き取った後に延伸する方法や溶融紡糸した後、一旦巻き取ることなく延伸する直接紡糸延伸法など任意の方法を採用することができる。 In producing the sea-island type composite fiber of the present invention, any method such as a method of drawing after melt spinning and then winding up, or a method of direct spinning and drawing after melt spinning and then drawing without winding up is used. Can be adopted.
このようにして、海部と島部の剥離がなく、製糸安定性が良好な本発明の海島型複合繊維を得ることができる。 In this manner, the sea-island type composite fiber of the present invention can be obtained which has no peeling between the sea part and the island part and has good yarn-making stability.
このようにして得られた本発明の海島型複合繊維は、製糸安定性が良好で、耐熱性が良好なため、延伸工程、仮撚工程、製編織工程、精錬工程、染色工程等の各工程でも、剥離しにくく、各工程での取り扱い性に優れる。特に、染色の際に、白化現象等の染色斑が生じたりしないため、濃色に染色ができる。 The sea-island type composite fiber of the present invention thus obtained has good yarn production stability and good heat resistance, so that each step such as drawing step, false twisting step, weaving step, refining step, dyeing step, etc. However, it is difficult to peel off and is excellent in handling in each process. In particular, since dyeing spots such as a whitening phenomenon do not occur at the time of dyeing, dyeing can be performed in a dark color.
以下、本発明の実施例を示して具体的に説明するが、下記実施例は本発明を例示するものであって、本発明を限定するものではない。なお、各種物性の測定及び評価の方法は下記のように行った。 EXAMPLES Hereinafter, the present invention will be described in detail with reference to examples, but the following examples illustrate the present invention and do not limit the present invention. Various physical properties were measured and evaluated as follows.
(1)融点
示差走査熱量計(DSC)(リガク製 「DSC 8230」)を用いて、窒素雰囲気中、昇温速度10℃/minで300℃まで昇温し、吸熱ピークのピークトップを熱可塑性樹脂の融点とした。
(1) Melting point Using a differential scanning calorimeter (DSC) (“DSC 8230” manufactured by Rigaku), the temperature is raised to 300 ° C. at a temperature rising rate of 10 ° C./min in a nitrogen atmosphere, and the peak top of the endothermic peak is thermoplastic. The melting point of the resin.
(2)製糸安定性
10kgの糸を生産した際の平均糸切れ回数で製糸安定性を評価し、下記の基準でB以上を合格とした。
A:糸切れ回数が1回未満の場合
B:糸切れ回数が1回以上、3回未満の場合
C:糸切れ回数が3回以上の場合
(2) Yarn Stability The yarn making stability was evaluated based on the average number of yarn breakage when a 10 kg yarn was produced, and B or higher was determined to be acceptable according to the following criteria.
A: When thread breakage is less than 1 B: When thread breakage is 1 or more and less than 3 C: When thread breakage is 3 or more
(3)島部状況(融合・剥離)の確認、及び海部の最小厚み
得られた海島型複合繊維の任意の2箇所を長さ方向に垂直に切断し、切断面を電子顕微鏡により1500倍で観察し、島部の融合・剥離の発生状況を確認した。これらの欠点が未発生のものは「良好」とした。また、同様の切断面にて海部の最小厚みを測定した。
(3) Confirmation of island state (fusion / peeling) and minimum thickness of sea part Two arbitrary parts of the obtained sea-island type composite fiber were cut perpendicular to the length direction, and the cut surface was magnified 1500 times with an electron microscope Observed and confirmed the state of fusion / detachment of the islands. Those in which these defects did not occur were evaluated as “good”. Moreover, the minimum thickness of the sea part was measured with the same cut surface.
(4)繊維の強度・伸度
JIS L1013に準じて、島津製作所製オートグラフAGSを用いた引張試験を行い、測定長:200mm、引張り速度:200mm/分の条件下にて、繊維が破断したときの破断強度、および破断伸度をそれぞれ5回測定し、その平均値を求めた。
(4) Strength and elongation of fiber According to JIS L1013, a tensile test using an autograph AGS manufactured by Shimadzu Corporation was performed, and the fiber was broken under the conditions of a measurement length: 200 mm and a tensile speed: 200 mm / min. The breaking strength and the breaking elongation were measured 5 times, and the average value was obtained.
(5)軽量性
得られた海島型複合繊維はJIS K7112 D法に準じた密度勾配管法により密度を算出した。密度勾配管に重液として塩化亜鉛水溶液、軽液としてエタノールを用いて調整した浸漬液を用意し、23℃の恒温槽24時間静置した。試料を密度勾配管にいれ1時間静置した後、浮沈状態を確認した。軽量性は下記の基準に基づいて評価した。
A:比重が1.1g/cm3未満の優れた軽量性を有する。
B:比重が1.1g/cm3以上、1.2g/cm3未満の良好な軽量性を有する。
C:比重が1.2g/cm3以上で軽量性を有していない。
(5) Lightness The density of the obtained sea-island type composite fiber was calculated by the density gradient tube method according to JIS K7112 D method. An immersion liquid prepared using a zinc chloride aqueous solution as a heavy liquid and ethanol as a light liquid was prepared in a density gradient tube, and allowed to stand for 24 hours at a constant temperature bath at 23 ° C. The sample was placed in a density gradient tube and allowed to stand for 1 hour, and then the floating state was confirmed. The lightness was evaluated based on the following criteria.
A: It has excellent light weight with a specific gravity of less than 1.1 g / cm 3 .
B: It has good light weight with a specific gravity of 1.1 g / cm 3 or more and less than 1.2 g / cm 3 .
C: The specific gravity is 1.2 g / cm 3 or more and does not have light weight.
(6)耐熱性評価
得られた海島型複合繊維で作製した筒編地を開反した後、20cm×25cmの枠で固定し、170℃の熱風にて1分間乾熱処理を行った。乾熱処理後の布帛を電子顕微鏡により1000倍で観察し、下記の基準により評価した。
○:糸融着や溶断がなく、風合いが硬くならない場合
×:糸融着や溶断があり、風合いが硬くなる場合
(6) Evaluation of heat resistance After the tubular knitted fabric produced with the obtained sea-island type composite fiber was opened, it was fixed with a frame of 20 cm x 25 cm and subjected to dry heat treatment with hot air at 170 ° C for 1 minute. The fabric after the dry heat treatment was observed at 1000 times with an electron microscope and evaluated according to the following criteria.
○: When there is no yarn fusion or fusing and the texture is not hard ×: When there is yarn fusion or fusing and the texture is hard
(7)染色性評価
得られた海島型複合繊維で作製した筒編地を、70℃で20分間の精錬を行い、水洗、風乾し、分散染料(ダイアニックス(登録商標) ブルー ACE)2.0%o.w.f、浴比1:50、130℃で1時間の高圧染色後、還元洗浄を常法で行い、下記の基準により評価した。
○:白化現象がない場合
×:白化現象がある場合
(7) Evaluation of dyeability The cylindrical knitted fabric produced from the obtained sea-island type composite fiber is refined at 70 ° C. for 20 minutes, washed with water and air-dried to obtain a disperse dye (Dianix (registered trademark) Blue ACE). 0% o. w. f, bath ratio 1:50, after high-pressure dyeing at 130 ° C. for 1 hour, reduction washing was carried out by a conventional method and evaluated according to the following criteria.
○: When there is no whitening phenomenon ×: When there is whitening phenomenon
(8)蓄熱保温色性評価
得られた海島型複合繊維で作製した筒編地と基準とした繊維の筒編地の裏面に5mmの空間を設け、黒紙を配置し、黒紙中央部に熱電対温度センサーを取り付け、試料表面より50cm上部から500Wのレフランプを10分間照射した。基準とした繊維の筒編地との温度差の測定を行い、下記の基準により評価した。
○:照射10分後に温度差が+5℃以上、かつ消灯1分後に温度差が+3℃以上ある場合
×:照射10分後に温度差が+5℃未満、または消灯1分後に温度差が+3℃未満の場合
(8) Thermal storage color retention evaluation 5 mm space is provided on the back of the cylindrical knitted fabric made of the obtained sea-island type composite fiber and the reference fiber knitted fabric, black paper is placed, and the central portion of the black paper is placed. A thermocouple temperature sensor was attached, and a 500 W reflex lamp was irradiated for 10 minutes from 50 cm above the sample surface. A temperature difference from the standard fiber knitted fabric was measured and evaluated according to the following criteria.
○: When the temperature difference is + 5 ° C or more after 10 minutes of irradiation and the temperature difference is + 3 ° C or more after 1 minute of light extinction ×: The temperature difference is less than + 5 ° C after 10 minutes of irradiation, or the temperature difference is less than + 3 ° C after 1 minute of light emission in the case of
(9)遮熱性評価
得られた海島型複合繊維で作製した筒編地と基準とした繊維の筒編地の中央部に熱電対温度センサーを取り付け、試料表面より50cm上部から500Wのレフランプを30分間照射した。基準とした繊維の筒編地との温度差の測定を行い、下記の基準により評価した。
○:照射30分後の温度差が−2℃未満の場合
×:照射30分後の温度差が−2℃以上の場合
(9) Evaluation of heat shielding property A thermocouple temperature sensor is attached to the center of the cylindrical knitted fabric made of the sea-island type composite fiber and the standard fiber knitted fabric, and a 500 W reflex lamp is placed 30 cm above the sample surface. Irradiated for 1 minute. A temperature difference from the standard fiber knitted fabric was measured and evaluated according to the following criteria.
○: When the temperature difference after 30 minutes of irradiation is less than −2 ° C. ×: When the temperature difference after 30 minutes of irradiation is −2 ° C. or more
〔実施例1〕
島成分にポリプロピレン(日本ポリプロ製「SA01A(登録商標)」、MFR9g/10min、融点164℃)、海成分にポリエチレンテレフタレート(融点258℃)を用い、海部:島部の面積比率が40:60となるように供給し、図1のように19個の島成分が繊維中央に配置される口金から288℃で紡出し、延伸倍率2.5倍で延伸し、3000m/minの速度で巻取り、66dtex/24fの海島型複合繊維を得た。得られた海島型複合繊維の繊維横断面における海部の最小厚みは1.1μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。170℃で1分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。染色性は白化現象の発生がなく、軽量性も優れていた。得られた結果を表1に示す。
[Example 1]
Polypropylene (“SA01A (registered trademark)” manufactured by Nippon Polypro, MFR 9 g / 10 min, melting point 164 ° C.) is used as the island component, polyethylene terephthalate (melting point 258 ° C.) is used as the sea component, and the area ratio of sea part: island part is 40:60. As shown in FIG. 1, 19 island components are spun at 288 ° C. from a die arranged at the center of the fiber, drawn at a draw ratio of 2.5 times, and wound at a speed of 3000 m / min. A 66 dtex / 24 f sea-island type composite fiber was obtained. The minimum thickness of the sea part in the fiber cross section of the obtained sea-island type composite fiber was 1.1 μm, and no peeling was observed at the interface between the sea part and the island part, and the yarn-making stability was good. Even after a dry heat treatment at 170 ° C. for 1 minute, there was no fusion or fusing, and the heat resistance was excellent. As for the dyeability, no whitening phenomenon occurred and the lightness was excellent. The obtained results are shown in Table 1.
〔実施例2〕
海部:島部の面積比率を60:40とした以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維の繊維横断面における海部の最小厚みは1.5μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。170℃で1分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。染色性は白化現象の発生がなく、軽量性も良好であった。得られた結果を表1に示す。
[Example 2]
A sea-island type composite fiber was produced in the same manner as in Example 1 except that the area ratio of sea part: island part was 60:40. The minimum thickness of the sea part in the fiber cross section of the obtained sea-island type composite fiber was 1.5 μm, and no peeling was observed at the interface between the sea part and the island part, and the yarn-making stability was good. Even after a dry heat treatment at 170 ° C. for 1 minute, there was no fusion or fusing, and the heat resistance was excellent. As for the dyeability, no whitening phenomenon occurred and the lightness was good. The obtained results are shown in Table 1.
〔実施例3〕
島成分が7個配置される口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは1.2μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。170℃で1分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。染色性は白化現象の発生がなく、軽量性も優れていた。得られた結果を表1に示す。
Example 3
A sea-island type composite fiber was produced in the same manner as in Example 1 except that a base in which seven island components were arranged was used. In the obtained sea-island type composite fiber, the minimum thickness of the sea part was 1.2 μm, peeling at the interface between the sea part and the island part was not observed, and the spinning stability was good. Even after a dry heat treatment at 170 ° C. for 1 minute, there was no fusion or fusing, and the heat resistance was excellent. As for the dyeability, no whitening phenomenon occurred and the lightness was excellent. The obtained results are shown in Table 1.
〔実施例4〕
ポリプロピレンに対して、赤外線吸収剤としてアンチモンドープ酸化スズ(ATO)を2質量%を添加すること以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは1.2μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。170℃で1分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。染色性は白化現象の発生がなく、良好であった。また、実施例1を基準とした蓄熱保温性評価も良好であった。得られた結果を表1に示す。
Example 4
A sea-island composite fiber was produced in the same manner as in Example 1 except that 2% by mass of antimony-doped tin oxide (ATO) was added as an infrared absorber to polypropylene. The minimum thickness of the sea part in the obtained sea-island type composite fiber was 1.2 μm, and no peeling at the interface between the sea part and the island part was observed, so that the yarn production stability was good. Even after a dry heat treatment at 170 ° C. for 1 minute, there was no fusion or fusing, and the heat resistance was excellent. The dyeability was good with no whitening phenomenon. Moreover, the heat storage heat retention evaluation on the basis of Example 1 was also favorable. The obtained results are shown in Table 1.
〔実施例5〕
ポリプロピレンに対して、赤外線遮蔽剤として重量平均粒子径1.0μmの大粒子径酸化チタンを8質量%を添加すること以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維における海部の最小厚みは1.1μmであり、海部と島部の界面での剥離は認められず、製糸安定性は良好であった。170℃で1分間の乾熱処理後も融着や溶断はなく耐熱性に優れたものであった。染色性は白化現象の発生がなく、良好であった。また、実施例1を基準とした遮熱性も良好であった。得られた結果を表1に示す。
Example 5
A sea-island composite fiber was produced in the same manner as in Example 1 except that 8% by mass of titanium oxide having a weight average particle size of 1.0 μm was added as an infrared shielding agent to polypropylene. The minimum thickness of the sea part in the obtained sea-island type composite fiber was 1.1 μm, and no peeling at the interface between the sea part and the island part was observed, so that the yarn production stability was good. Even after a dry heat treatment at 170 ° C. for 1 minute, there was no fusion or fusing, and the heat resistance was excellent. The dyeability was good with no whitening phenomenon. Further, the heat shielding property based on Example 1 was also good. The obtained results are shown in Table 1.
〔比較例1〕
通常の芯鞘糸(単芯)となる口金を用いた以外は実施例1と同様の方法で複合繊維を作製した。得られた複合繊維は芯成分と鞘成分の界面で剥離がみられた。また、染色後は白化現象が生じた。得られた結果を表2に示す。
[Comparative Example 1]
A composite fiber was produced in the same manner as in Example 1 except that a base serving as a normal core-sheath thread (single core) was used. The resulting composite fiber was peeled at the interface between the core component and the sheath component. In addition, a whitening phenomenon occurred after dyeing. The obtained results are shown in Table 2.
〔比較例2〕
図2のように19個の島成分が繊維全体に均一に配置される口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維の一部の島部は表面へ露出していた。また、海部と島部との界面で剥離がみられ、製糸安定性は不良であり、染色後は白化現象が生じた。170℃で1分間の乾熱処理で融着や溶断が発生し耐熱性は良くなかった。得られた結果を表2に示す。
[Comparative Example 2]
A sea-island composite fiber was produced in the same manner as in Example 1 except that a base in which 19 island components were uniformly arranged over the entire fiber as shown in FIG. 2 was used. Some islands of the obtained sea-island type composite fiber were exposed to the surface. Further, peeling was observed at the interface between the sea part and the island part, the spinning stability was poor, and a whitening phenomenon occurred after dyeing. The heat resistance was not good because fusing or fusing occurred in a dry heat treatment at 170 ° C. for 1 minute. The obtained results are shown in Table 2.
〔比較例3〕
図3のように花弁型で、島成分が繊維表面に露出するように配置される口金を用いた以外は実施例1と同様の方法で海島型複合繊維を作製した。熱可塑性樹脂が繊維表面に露出しているため、製糸安定性が悪く、複合繊維を得ることはできなかった。得られた結果を表2に示す。
[Comparative Example 3]
A sea-island type composite fiber was produced in the same manner as in Example 1 except that a base having a petal shape as shown in FIG. 3 and an island component exposed to the fiber surface was used. Since the thermoplastic resin is exposed on the fiber surface, the yarn-making stability is poor, and composite fibers could not be obtained. The obtained results are shown in Table 2.
〔比較例4〕
海部:島部の面積比率を25:75とした以外は実施例1と同様の方法で海島型複合繊維を作製した。得られた海島型複合繊維は島成分が融合し、1つの芯を有する芯鞘型繊維となっていた。染色後は白化現象が生じた。得られた結果を表2に示す。
[Comparative Example 4]
A sea-island type composite fiber was produced in the same manner as in Example 1 except that the area ratio of sea part: island part was 25:75. The obtained sea-island type composite fiber was a core-sheath type fiber having a single core in which the island components were fused. A whitening phenomenon occurred after dyeing. The obtained results are shown in Table 2.
実施例1〜5で得られた海島型複合繊維は、耐剥離性、染色性、耐熱性が良好であったが、比較例から得られた海島型複合繊維は耐剥離性、染色性、耐熱性の少なくとも一つが不良であった。 The sea-island type composite fibers obtained in Examples 1 to 5 were excellent in peel resistance, dyeability and heat resistance, but the sea-island type composite fibers obtained from Comparative Examples were peel resistance, dyeability and heat resistance. At least one of the sexes was bad.
本発明の海島型複合繊維は、種々の繊維構造体とすることができ、インナーやスポーツウェア等の衣料用のみならず、傘地やテント地のアウトドア用品等の産業資材に好適に用いることができる。 The sea-island type composite fiber of the present invention can be made into various fiber structures and can be suitably used not only for clothing such as inner and sportswear, but also for industrial materials such as outdoor goods such as umbrellas and tents. it can.
a 海部
b 島部
p 繊維外周の接点
q 繊維外周の法線と島部外周の交点
X 海部の最小厚み
a Sea part b Island part p Contact point on the outer periphery of the fiber q Intersection of the normal line on the outer periphery of the fiber and the outer periphery of the island part X Minimum thickness of the sea part
Claims (4)
(a)島成分がポリプロピレンを主成分とするポリプロピレン樹脂
(b)海成分が染色可能な熱可塑性樹脂
(c)繊維横断面における海部の面積比率が30%以上、70%以下
(d)繊維横断面における海部の最小厚みが1μm以上 A sea-island type composite fiber composed of a sea part and two or more island parts, having a sea-island structure in which a joint surface between the sea part and the island part is continuous in the fiber length direction and satisfying the following (a) to (d).
(A) Polypropylene resin whose island component is polypropylene as a main component (b) Thermoplastic resin capable of dyeing sea component (c) The sea area ratio in the fiber cross section is 30% or more and 70% or less (d) Fiber crossing Minimum thickness of sea part on the surface is 1μm or more
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150885A JP6697972B2 (en) | 2016-07-30 | 2016-07-30 | Sea-island type composite fiber |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016150885A JP6697972B2 (en) | 2016-07-30 | 2016-07-30 | Sea-island type composite fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2018016925A true JP2018016925A (en) | 2018-02-01 |
JP6697972B2 JP6697972B2 (en) | 2020-05-27 |
Family
ID=61075860
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016150885A Active JP6697972B2 (en) | 2016-07-30 | 2016-07-30 | Sea-island type composite fiber |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6697972B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112575398A (en) * | 2020-12-21 | 2021-03-30 | 江苏华峰超纤材料有限公司 | PP/LDPE sea-island fiber for thermal forming non-woven fabric and preparation method thereof |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60224812A (en) * | 1984-04-17 | 1985-11-09 | Kanebo Ltd | Electrically conductive composite fiber |
JP2000160432A (en) * | 1998-11-30 | 2000-06-13 | Japan Vilene Co Ltd | Ultrafine fiber-generating fiber, ultrafine fiber generated therefrom, and fiber sheet using this ultrafine fiber |
JP2000282333A (en) * | 1999-03-31 | 2000-10-10 | Kuraray Co Ltd | Bonded composite staple fiber and method for producing the same |
JP2005002522A (en) * | 2003-06-13 | 2005-01-06 | Toray Ind Inc | Multi-island conjugate fiber and spinneret for producing the same |
JP2014227633A (en) * | 2013-05-24 | 2014-12-08 | 東レ株式会社 | Conjugate fiber |
JP2015148032A (en) * | 2014-02-07 | 2015-08-20 | Kbセーレン株式会社 | sea-island type composite fiber |
-
2016
- 2016-07-30 JP JP2016150885A patent/JP6697972B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60224812A (en) * | 1984-04-17 | 1985-11-09 | Kanebo Ltd | Electrically conductive composite fiber |
JP2000160432A (en) * | 1998-11-30 | 2000-06-13 | Japan Vilene Co Ltd | Ultrafine fiber-generating fiber, ultrafine fiber generated therefrom, and fiber sheet using this ultrafine fiber |
JP2000282333A (en) * | 1999-03-31 | 2000-10-10 | Kuraray Co Ltd | Bonded composite staple fiber and method for producing the same |
JP2005002522A (en) * | 2003-06-13 | 2005-01-06 | Toray Ind Inc | Multi-island conjugate fiber and spinneret for producing the same |
JP2014227633A (en) * | 2013-05-24 | 2014-12-08 | 東レ株式会社 | Conjugate fiber |
JP2015148032A (en) * | 2014-02-07 | 2015-08-20 | Kbセーレン株式会社 | sea-island type composite fiber |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112575398A (en) * | 2020-12-21 | 2021-03-30 | 江苏华峰超纤材料有限公司 | PP/LDPE sea-island fiber for thermal forming non-woven fabric and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6697972B2 (en) | 2020-05-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2008156810A (en) | Core-sheath composite conductive fiber | |
CN104066875B (en) | The polyester type conjugate fiber of thermal insulation and excellent color reproducing performance | |
KR20160143634A (en) | Composite fiber, false twisted yarn formed from same, method for producing said false twisted yarn, and fabric | |
JP2007308830A (en) | Dyeable polypropylene fiber | |
JP6356976B2 (en) | Sea-island type composite fiber | |
JP7038481B2 (en) | Heat storage and heat retention fiber | |
JP2014101613A (en) | Ultra fine fiber | |
JP2010007201A (en) | Fabric and textile product | |
JP2016194169A (en) | Core-sheath type composite fiber | |
JP6697972B2 (en) | Sea-island type composite fiber | |
JP2014210986A (en) | Yarn, fabric and textile product | |
JP5277077B2 (en) | Fabric manufacturing method | |
JP2011157646A (en) | Polyester microfiber | |
TW201520388A (en) | Organic resin non-crimped staple fiber | |
JP2009299209A (en) | Sheath-core conjugate filament | |
JP4581428B2 (en) | Light-weight blended fiber with excellent light-shielding properties, and fiber products made of the same | |
JP5774820B2 (en) | Variety of different sizes | |
JP3583248B2 (en) | Splittable conjugate fiber comprising polyester and polyamide and method for producing the same | |
JP2008266809A (en) | Heat-bondable polyester filament | |
JP6998818B2 (en) | Olefin-based composite fiber and method for producing olefin-based composite fiber | |
JP2015196914A (en) | False twisted yarn | |
JP5661310B2 (en) | Woven knitted fabric using core-sheath composite fiber yarn | |
JP5616022B2 (en) | string | |
JP2006002275A (en) | Dyeable polypropylene fiber and its woven / knitted fabric | |
JP2004332152A (en) | Pigmented thermoadhesive filament fiber |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20181227 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20190912 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20190924 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191125 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200421 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200427 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6697972 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |