[go: up one dir, main page]

JP2018016695A - Method for treating carbon fiber reinforced plastic and method for producing fuel - Google Patents

Method for treating carbon fiber reinforced plastic and method for producing fuel Download PDF

Info

Publication number
JP2018016695A
JP2018016695A JP2016146680A JP2016146680A JP2018016695A JP 2018016695 A JP2018016695 A JP 2018016695A JP 2016146680 A JP2016146680 A JP 2016146680A JP 2016146680 A JP2016146680 A JP 2016146680A JP 2018016695 A JP2018016695 A JP 2018016695A
Authority
JP
Japan
Prior art keywords
carbon fiber
fiber reinforced
reinforced plastic
thermoplastic resin
cfrp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016146680A
Other languages
Japanese (ja)
Other versions
JP6840486B2 (en
Inventor
智典 竹本
Tomonori Takemoto
智典 竹本
充志 中村
Mitsuji Nakamura
充志 中村
洸 瀧澤
Akira Takizawa
洸 瀧澤
泰之 石田
Yasuyuki Ishida
泰之 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=61081317&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2018016695(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2016146680A priority Critical patent/JP6840486B2/en
Publication of JP2018016695A publication Critical patent/JP2018016695A/en
Application granted granted Critical
Publication of JP6840486B2 publication Critical patent/JP6840486B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/141Feedstock
    • Y02P20/143Feedstock the feedstock being recycled material, e.g. plastics
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/52Mechanical processing of waste for the recovery of materials, e.g. crushing, shredding, separation or disassembly
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Landscapes

  • Solid Fuels And Fuel-Associated Substances (AREA)
  • Separation, Recovery Or Treatment Of Waste Materials Containing Plastics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a processing method of a carbon fiber reinforced plastic capable of making crushability good while keeping recovery rate high when used as a fuel and capable of suppressing scattering of processed articles after a heat treatment.SOLUTION: There is provided a processing method of a carbon fiber reinforced plastic by conducting a heat treatment according to following conditions 1 and 2 on a mixture obtained by mixing the carbon fiber reinforced plastic and a thermoplastic resin or a material containing the thermoplastic resin. (Condition 1) Heating temperature of the mixture is 250 to 500°C. (Condition 2) Heating time is set within a range of 10 min. to 12 hr. depending on the heating temperature.SELECTED DRAWING: None

Description

本発明は、炭素繊維強化プラスチックの機械強度を低下させる処理方法、及びをその処理方法で処理して得た炭素繊維強化プラスチックを用いる燃料の製造方法に関する。   The present invention relates to a treatment method for reducing the mechanical strength of a carbon fiber reinforced plastic, and a fuel production method using a carbon fiber reinforced plastic obtained by treating the carbon fiber reinforced plastic with the treatment method.

炭素繊維強化プラスチック(以下、「CFRP」とも呼ぶ。)は、軽量であり、高強度・高弾性などの機械的強度に優れているため、テニスラケット、ゴルフクラブ用シャフト、釣竿などの小型のものから、自動車や航空機などの産業用の大型のものまで幅広く、大量に使用されている。それらの製品ばかりでなく、その製造工程で発生する不良品等も加わり、今後廃棄されるCFRPの量は増加し続けると考えられ、これらを資源として有効利用することが求められている。   Carbon fiber reinforced plastic (hereinafter also referred to as “CFRP”) is lightweight and excellent in mechanical strength such as high strength and high elasticity, so it is small in size such as tennis rackets, golf club shafts, fishing rods, etc. To large-sized products for industrial use such as automobiles and aircraft, and is used in large quantities. Not only those products but also defective products generated in the manufacturing process are added, and it is considered that the amount of CFRP discarded in the future will continue to increase, and it is required to effectively use these as resources.

リサイクル技術として、CFRPの廃棄物から炭素繊維を分離回収する種々の技術が検討されている。例えば、特許文献1には、CFRPの処理方法として、炭素繊維強化プラスチックを、酸素濃度が3〜18体積%の範囲内で、温度が300〜600℃の範囲内のガス雰囲気下で燃焼させないで処理し、プラスチックを熱分解し、炭素繊維を回収することが提案されている。しかし、廃棄物から炭素繊維を回収しても、繊維が短くなったり、強度が低下したりすることが多い。そのため、マテリアルリサイクルやケミカルリサイクルが難しく、最終的に埋立て処分されている量も多い。しかし、今後、埋立て処分場の確保、規制の強化などにより、埋立て処分は困難となる。   As a recycling technique, various techniques for separating and recovering carbon fibers from CFRP waste have been studied. For example, in Patent Document 1, as a treatment method of CFRP, carbon fiber reinforced plastic is not burned in a gas atmosphere in which the oxygen concentration is in the range of 3 to 18% by volume and the temperature is in the range of 300 to 600 ° C. It has been proposed to treat, pyrolyze the plastic and recover the carbon fiber. However, even if carbon fibers are recovered from waste, the fibers are often shortened or the strength is reduced. Therefore, material recycling and chemical recycling are difficult, and there are many final landfills. However, landfill disposal will become difficult in the future due to securing landfill sites and strengthening regulations.

結局、CFRPを燃料として利用するサーマルリサイクルが、リサイクルと最終処分を両立させることができるので有効な方法である。その一つの方法として、セメント製造工程等での燃料化がある。これは、処理量が増加した場合でもそれに対処できること、CFRP以外の廃棄物が混入しても処理できること、様々な形状や組成のCFRPの処理に対応できること、及び処理により廃棄物が発生しないことなどの利点があり、有効なリサイクル方法である。   After all, thermal recycling using CFRP as a fuel is an effective method because it can achieve both recycling and final disposal. One method is to use fuel in cement manufacturing processes. This means that it is possible to cope with an increase in the processing amount, that it can be processed even when waste other than CFRP is mixed, that it can handle CFRP of various shapes and compositions, and that no waste is generated by the processing. This is an effective recycling method.

特許文献2には、炭素繊維を含む廃プラスチックをセメントキルンに供給し、燃焼処理を行うことにより生じる排気ガスを集塵装置に供給して、排気ガス中の煤塵を捕集するようにした炭素繊維を含む廃プラスチックの焼却処理方法において、炭素繊維を含む廃プラスチックを平均粒子径が3mm以下になるように粉砕し、セメントキルンの内部温度が1200℃以上である位置に供給することにより、炭素繊維の分別を施すことなく、セメント製造装置において燃料の一部に使用することができる旨記載されている。   Patent Document 2 discloses a carbon in which waste plastic containing carbon fiber is supplied to a cement kiln and exhaust gas generated by performing a combustion process is supplied to a dust collector to collect dust in the exhaust gas. In the incineration processing method for waste plastics containing fibers, the waste plastics containing carbon fibers are pulverized so as to have an average particle diameter of 3 mm or less, and supplied to a position where the internal temperature of the cement kiln is 1200 ° C. or more. It is described that it can be used as a part of fuel in a cement manufacturing apparatus without performing fiber separation.

特開平6−99160号公報JP-A-6-99160 特開2007−131463号公報JP 2007-131463 A

しかしながら、特許文献2に記載の処理方法においては、CFRPは機械的強度が優れているので粉砕機の磨耗が激しく、また大量の粉砕エネルギーが必要であるので、CFRPを3mm以下に粉砕する方式は現実的ではない。つまり、CFRPは、炭素繊維と樹脂の一体性が高く高強度であるため、破砕や微粉砕することが困難であった。   However, in the processing method described in Patent Document 2, since CFRP is excellent in mechanical strength, the grinder is severely worn and a large amount of grinding energy is required. Therefore, the method of grinding CFRP to 3 mm or less is Not realistic. That is, CFRP is difficult to crush and finely pulverize because carbon fiber and resin have high integrity and high strength.

また、特許文献1に記載の処理方法においては、燃料として用いる場合の回収率が低かった。ここで、回収率とは、加熱前のCFRPの発熱量に対する加熱後のCFRPの発熱量の割合を指す。より詳細には、測定で得られる単位発熱量(J/g)の比較ではなく、処理前の重量、処理後の重量を加味した発熱量のマテリアルバランスを示す。すなわち、回収率は以下の式で求められる。   Moreover, in the processing method described in Patent Document 1, the recovery rate when used as fuel was low. Here, the recovery rate refers to the ratio of the calorific value of CFRP after heating to the calorific value of CFRP before heating. More specifically, instead of comparing the unit calorific value (J / g) obtained by measurement, the material balance of the calorific value taking into account the weight before treatment and the weight after treatment is shown. That is, the recovery rate is obtained by the following formula.

回収率=処理後の単位発熱量×回収重量/処理前の単位発熱量×処理重量
なお、本明細書においては、カーボンと樹脂の発熱量はほぼ同等とみなし、加熱後の残存率≒回収率としている。
Recovery rate = unit calorific value after treatment x recovered weight / unit calorific value before treatment x treated weight Note that in this specification, the calorific values of carbon and resin are considered to be approximately equal, and the residual rate after heating ≒ recovery rate It is said.

一方、CFRPを加熱処理して得られる処理品はかさ比重が小さく飛散しやすいため、処理品をベルトコンベアなどで搬送する際に、滑落、飛散しやすいなどの問題があった。さらに炭素繊維が剥離分離した場合には、炭素繊維は高強度の繊維であるため、人体にも悪影響を及ぼす恐れもあり、電気集塵装置で荷電不良等の不具合が生じたり、バグフィルターの性能低下が生じるおそれがあった。   On the other hand, a processed product obtained by heat-treating CFRP has a small bulk specific gravity and easily scatters. Therefore, when the processed product is conveyed by a belt conveyor or the like, there is a problem that the processed product is easily slid and scattered. Furthermore, if the carbon fiber is separated and separated, the carbon fiber is a high-strength fiber, which may adversely affect the human body, causing problems such as poor charging in the electrostatic precipitator, and the performance of the bag filter. There was a risk of a decrease.

本発明の目的は、燃料として用いる場合の回収率を高く維持したまま、粉砕性を良くすることができ、かつ加熱処理後の処理品の飛散を抑制し得る炭素繊維強化プラスチックの処理方法、及び廃材としての炭素繊維強化プラスチックを燃料として有効利用できる燃料の製造方法を提供することにある。   An object of the present invention is to provide a carbon fiber reinforced plastic processing method capable of improving the pulverization property while maintaining a high recovery rate when used as a fuel, and capable of suppressing scattering of a processed product after heat treatment, and An object of the present invention is to provide a method for producing a fuel capable of effectively using carbon fiber reinforced plastic as a waste material as a fuel.

本発明者らは、CFRPに熱可塑性樹脂などを混合して加熱し、炭素繊維が生じた場合でも、それらは熱可塑性樹脂に付着したり、絡み合ったり、被覆されたりするため飛散を抑制することができることを見出し本発明を完成するに至った。   The present inventors mix and heat a thermoplastic resin or the like in CFRP, and even when carbon fibers are produced, they adhere to the thermoplastic resin, become entangled, or are coated, thereby suppressing scattering. As a result, the present invention has been completed.

本発明の炭素繊維強化プラスチックの処理方法は、少なくとも、炭素繊維強化プラスチックと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを混合して得た混合物を、以下の条件1及び2に従い加熱処理を施すことを特徴とする。
(条件1)混合物の加熱温度を250〜500℃とする。
(条件2)加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定する。
The method for treating a carbon fiber reinforced plastic according to the present invention comprises subjecting a mixture obtained by mixing at least a carbon fiber reinforced plastic and a thermoplastic resin or a material containing a thermoplastic resin to a heat treatment according to the following conditions 1 and 2. It is characterized by giving.
(Condition 1) The heating temperature of the mixture is set to 250 to 500 ° C.
(Condition 2) The heating time is set within a range of 10 minutes to 12 hours according to the heating temperature.

本発明の炭素繊維強化プラスチックの処理方法においては、少なくとも、CFRPと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを混合して加熱処理を施すことで、処理品は熱可塑性樹脂に付着したり、絡み合ったり、被覆されたりするため、ベルトコンベアなどで搬送する際に飛散を抑制することができる。ひいては、加熱処理中及び処理後の双方において炭素繊維の飛散、発塵を抑制することができる。   In the carbon fiber reinforced plastic treatment method of the present invention, at least CFRP and a thermoplastic resin or a material containing a thermoplastic resin are mixed and subjected to a heat treatment, whereby the treated product adheres to the thermoplastic resin. Since they are entangled or covered, scattering can be suppressed when transported by a belt conveyor or the like. As a result, it is possible to suppress carbon fiber scattering and dust generation both during and after the heat treatment.

なお、本発明においては、「少なくとも、炭素繊維強化プラスチックと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを混合」するのであるが、「混合」とは攪拌等をすることなく各成分を同時に添加することも含む。   In the present invention, “at least carbon fiber reinforced plastic and a thermoplastic resin or a material containing a thermoplastic resin are mixed”, but “mixing” means that each component is simultaneously mixed without stirring or the like. Including adding.

本発明の炭素繊維強化プラスチックの処理方法において、前記熱可塑性樹脂を含む材料は、シュレッダーダスト及び廃プラスチックのうちの少なくとも1種であることが好ましい。熱可塑性樹脂を含む材料として、上記のような廃材の廃棄物を用いることで、資源の再利用化を図る観点から好ましい。また、CFRPを粉砕して燃料として利用することを考慮すると上記材料は発熱量が大きいため好ましい。   In the carbon fiber reinforced plastic treatment method of the present invention, the material containing the thermoplastic resin is preferably at least one of shredder dust and waste plastic. It is preferable from the viewpoint of reusing resources by using a waste material such as the above as a material containing a thermoplastic resin. Further, considering the fact that CFRP is pulverized and used as fuel, the above materials are preferable because they generate a large amount of heat.

また、本発明の炭素繊維強化プラスチックの処理方法においては、前記炭素繊維強化プラスチックの混合割合を5〜50質量%とすることが好ましい。   Moreover, in the processing method of the carbon fiber reinforced plastic of this invention, it is preferable that the mixing ratio of the said carbon fiber reinforced plastic shall be 5-50 mass%.

本発明の燃料の製造方法は、上記本発明の炭素繊維強化プラスチックの処理方法により、少なくとも、炭素繊維強化プラスチックと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを処理する工程と、前記処理後の炭素繊維強化プラスチックを粉砕する工程と、を含むことを特徴とする。前記処理後の炭素繊維強化プラスチックは3mm以下に粉砕することが好ましい。   The method for producing a fuel of the present invention includes a step of treating at least a carbon fiber reinforced plastic and a thermoplastic resin or a material containing a thermoplastic resin by the method for treating a carbon fiber reinforced plastic of the present invention, and after the treatment. And crushing the carbon fiber reinforced plastic. The carbon fiber reinforced plastic after the treatment is preferably pulverized to 3 mm or less.

本発明の燃料の製造方法では、上述の本発明の炭素繊維強化プラスチックの処理方法により処理され機械強度が低下した炭素繊維強化プラスチックを用いるため、処理品の飛散を抑制しつつ、容易に微粉砕でき、特に、粒子径0.5mm以下の燃料を容易に製造することができる。つまり、廃材としての炭素繊維強化プラスチックを燃料として有効利用が可能となる。   In the fuel production method of the present invention, the carbon fiber reinforced plastic processed by the carbon fiber reinforced plastic processing method of the present invention described above and having reduced mechanical strength is used, so that it is easily pulverized while suppressing the scattering of processed products. In particular, a fuel having a particle diameter of 0.5 mm or less can be easily produced. That is, the carbon fiber reinforced plastic as a waste material can be effectively used as a fuel.

ロータリーキルン2基を直列に接続した状態を示す構成図。The block diagram which shows the state which connected two rotary kilns in series. 本発明の炭素繊維強化プラスチックの処理方法により処理したCFRPを燃料として用いるシステムの全体構成図。The whole block diagram of the system which uses as a fuel CFRP processed by the processing method of the carbon fiber reinforced plastics of this invention.

以下に、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

本実施形態のCFRPの処理方法は、少なくとも、CFRPと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを混合して得た混合物を、以下の条件1及び2に従い加熱処理を施す。
(条件1)混合物の加熱温度を250〜500℃とする。
(条件2)加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定する。
In the CFRP treatment method of the present embodiment, at least a mixture obtained by mixing CFRP and a thermoplastic resin or a material containing a thermoplastic resin is subjected to heat treatment according to the following conditions 1 and 2.
(Condition 1) The heating temperature of the mixture is set to 250 to 500 ° C.
(Condition 2) The heating time is set within a range of 10 minutes to 12 hours according to the heating temperature.

熱可塑性樹脂又は熱可塑性樹脂を含む材料としては、条件1の加熱温度、すなわち250〜500℃において繊維のような糸状物質を発生しない物質である。熱可塑性樹脂としては、上記温度範囲で軟化するものであって、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリアミド、アクリロニトリル・ブタジエン・スチレン、ポリアセタールが挙げられ、中でも、ポリエチレン、ポリプロピレン、ポリアミド、アクリロニトリル・ブタジエン・スチレン、ポリカーボネートが好ましい。   The thermoplastic resin or the material containing the thermoplastic resin is a substance that does not generate a filamentous material such as a fiber at the heating temperature of Condition 1, that is, 250 to 500 ° C. The thermoplastic resin is softened in the above temperature range, and includes polyethylene, polypropylene, polystyrene, polycarbonate, polyamide, acrylonitrile / butadiene / styrene, and polyacetal. Among them, polyethylene, polypropylene, polyamide, acrylonitrile / butadiene / Styrene and polycarbonate are preferred.

熱可塑性樹脂を含む材料としては、シュレッダーダスト、廃プラスチックからなる群より選択される少なくとも1種であることが好ましい。シュレッダーダストとしては、廃自動車、廃家電、その他の廃棄物由来のものが挙げられる。廃プラスチックとしては、建設、容器包装、農業の廃棄物が挙げられる。   The material containing the thermoplastic resin is preferably at least one selected from the group consisting of shredder dust and waste plastic. Examples of the shredder dust include waste automobiles, waste home appliances, and other waste-derived ones. Waste plastic includes construction, container packaging, and agricultural waste.

本発明のCFRPの処理方法により処理した後のCFRPを粉砕して燃料として利用することを考慮すると、上記熱可塑性樹脂又は熱可塑性樹脂を含む材料は発熱量が高いものが好ましい。   Considering that the CFRP after the treatment by the CFRP treatment method of the present invention is pulverized and used as a fuel, the thermoplastic resin or the material containing the thermoplastic resin preferably has a high calorific value.

CFRPと熱可塑性樹脂又は熱可塑性樹脂を含む材料との混合割合としては、CFRPが5〜50質量%となるように混合することが、かさ比重、飛散性の点から好ましい。CFRPの混合割合は10〜30質量%とすることがより好ましい。   As a mixing ratio of the CFRP and the thermoplastic resin or the material containing the thermoplastic resin, it is preferable to mix so that the CFRP is 5 to 50% by mass from the viewpoint of bulk specific gravity and scattering property. The mixing ratio of CFRP is more preferably 10 to 30% by mass.

条件1及び2に従い加熱処理を施すことで、CFRPの機械強度を低下させることができるのであるが、例えば、加熱温度を300℃に設定するなら加熱時間を1時間、同様に400℃に設定するなら30分、500℃に設定するなら10分というように、加熱温度と加熱時間との関係は反比例するように設定することが好ましい。また、CFRPのサイズその他条件により、加熱温度及び加熱時間の好適な関係は異なるため適宜設定することが好ましい。加熱温度が250℃未満であると処理が長時間に及ぶ、又は粉砕性が悪い場合があり、500℃を超えると回収率が低下し、タールや有害ガスの生成量が増加するので、タールにより軟化した樹脂が処理装置内部で付着するなどの悪影響を及ぼす。より好ましくは、加熱温度の下限は300℃、上限は400℃である。   By performing heat treatment according to conditions 1 and 2, the mechanical strength of CFRP can be reduced. For example, if the heating temperature is set to 300 ° C., the heating time is set to 1 hour, and similarly to 400 ° C. It is preferable to set the relationship between the heating temperature and the heating time to be inversely proportional, such as 30 minutes if it is set to 500 ° C. and 10 minutes if it is set to 500 ° C. In addition, the preferred relationship between the heating temperature and the heating time varies depending on the size of the CFRP and other conditions, so it is preferable to set appropriately. If the heating temperature is less than 250 ° C, the treatment may take a long time or the grindability may be poor. If the heating temperature exceeds 500 ° C, the recovery rate decreases and the amount of tar and harmful gas generated increases. Detrimental effects such as adhesion of softened resin inside the processing equipment. More preferably, the lower limit of the heating temperature is 300 ° C and the upper limit is 400 ° C.

加熱処理を行う加熱手段としては、250〜500℃の温度範囲に設定できるものであればよく、固定炉、ストーカ炉、ロータリーキルン炉、竪型炉、多段炉などが挙げられる。中でも、排ガス処理量が少ない、外熱ロータリーキルン炉が好ましい。   The heating means for performing the heat treatment is not particularly limited as long as it can be set in a temperature range of 250 to 500 ° C., and examples thereof include a fixed furnace, a stoker furnace, a rotary kiln furnace, a vertical furnace, and a multistage furnace. Among these, an externally heated rotary kiln furnace with a small amount of exhaust gas treatment is preferable.

加熱処理は、大気中、酸化性雰囲気、還元性雰囲気、及び不活性雰囲気のいずれでもよいが、酸化性雰囲気であるとより短時間でCFRPの機械強度を低下することができ好ましい。   The heat treatment may be any of air, an oxidizing atmosphere, a reducing atmosphere, and an inert atmosphere. However, an oxidizing atmosphere is preferable because the mechanical strength of CFRP can be reduced in a shorter time.

加熱処理において、事前にCFRPの重量減少率が10〜50%となるような処理条件を求めておいて、当該条件で加熱処理を施すことが好ましく、当該重量減少率は10〜40%とすることがより好ましく、15〜35%とすることがさらに好ましい。CFRPの重量が減少するのは樹脂が低分子化し、低分子化に伴いガスが発生するためと考えられ、重量減少率は樹脂の種類や配合量により異なるが、上記数値範囲はエポキシ樹脂の場合のものである。   In the heat treatment, it is preferable to obtain a treatment condition such that the weight reduction rate of CFRP is 10 to 50% in advance, and the heat treatment is preferably performed under the condition, and the weight reduction rate is 10 to 40%. It is more preferable that the content be 15 to 35%. The weight of CFRP is decreased because the resin is low molecular weight and gas is generated with the low molecular weight. The weight reduction rate varies depending on the type and blending amount of the resin. belongs to.

なお、上述の通り、本実施形態のCFRPの処理方法によりCFRPの機械強度が低下することで、粉砕性が向上し、とくに微粉砕が容易となる。しかし、処理対象のCFRPが10cmを超えるような場合は、かえって加熱時間が長くなって負荷がかかったり、処理量が減少したりして、加熱時間の調整が困難となってくる。従って、処理対象のCFRPを5cm以下に粗粉砕したのち、加熱処理を行ってもよい。   As described above, the mechanical strength of CFRP is reduced by the CFRP processing method of the present embodiment, so that the pulverization property is improved, and in particular, the fine pulverization becomes easy. However, when the CFRP to be processed exceeds 10 cm, the heating time becomes longer and a load is applied, or the processing amount is reduced, so that it is difficult to adjust the heating time. Therefore, the heat treatment may be performed after roughly pulverizing the CFRP to be treated to 5 cm or less.

また、本実施形態のCFRPの処理方法においては、CFRPと熱可塑性樹脂又は熱可塑性樹脂を含む材料とを混合して加熱処理を施すため、既述の通り、処理品は熱可塑性樹脂に付着したり、絡み合ったり、被覆されたりするため、ベルトコンベアなどで搬送する際に飛散を抑制することができる。ひいては、加熱処理中及び処理後の双方において炭素繊維の飛散、発塵を抑制することができる。   In the CFRP processing method of the present embodiment, CFRP and a thermoplastic resin or a material containing a thermoplastic resin are mixed and subjected to a heat treatment. Therefore, as described above, the treated product adheres to the thermoplastic resin. Or entangled or covered, it is possible to suppress scattering when transported by a belt conveyor or the like. As a result, it is possible to suppress carbon fiber scattering and dust generation both during and after the heat treatment.

一方、処理品の飛散量は、添加する熱可塑性樹脂又は熱可塑性樹脂を含む材料の量によって変動するが、その添加量は、処理品の飛散量を勘案して予め決定し、決定した添加量を投入すればよい。しかし、シュレッダーダストなどの廃材は、廃材ごとに熱可塑性樹脂の含有量が異なり、どれだけの添加量で上記飛散を抑制可能であるかは容易に決定することができない。そこで、処理品の飛散量、あるいはより簡易的には加熱処理時における排ガス中の含じん濃度をモニタリングし、モニタリングした含じん量に基づいてシュレッダーダストなどの添加量を調整することが好ましい。例えば、モニタリングした含じん濃度が予め決定した基準値を超える場合は繊維の飛散があると判断し、シュレッダーダストなどの添加量を増加することが考えられる。   On the other hand, the amount of scattering of the processed product varies depending on the amount of the thermoplastic resin or the material containing the thermoplastic resin to be added, but the amount of addition is determined in advance in consideration of the amount of scattering of the processed product, and the determined addition amount Can be inserted. However, the waste material such as shredder dust has a different thermoplastic resin content for each waste material, and it cannot be easily determined how much the added amount can suppress the scattering. Therefore, it is preferable to monitor the scattering amount of the treated product, or more simply, the dust concentration in the exhaust gas during the heat treatment, and adjust the addition amount of shredder dust and the like based on the monitored dust content. For example, if the monitored concentration of dust content exceeds a predetermined reference value, it may be determined that there is fiber scattering and the amount of shredder dust or the like added is increased.

図1は、本実施形態のCFRPの処理方法を実行するシステムである。図1においては、外熱ロータリーキルン炉20、22の2基が直列に接合しており、外熱ロータリーキルン炉20の一端側には、CFRPと熱可塑性樹脂又は熱可塑性樹脂を含む材料の投入口である投入ホッパー24が設けられ、他端側には中継部26を介して外熱ロータリーキルン炉22が接続されている。また、中継部26の上部には投入ホッパー28が設けられている。   FIG. 1 shows a system that executes the CFRP processing method of this embodiment. In FIG. 1, two external heat rotary kiln furnaces 20 and 22 are joined in series, and one end of the external heat rotary kiln furnace 20 is provided with an inlet for a material containing CFRP and a thermoplastic resin or a thermoplastic resin. An input hopper 24 is provided, and an external heat rotary kiln furnace 22 is connected to the other end side via a relay portion 26. In addition, a charging hopper 28 is provided above the relay unit 26.

投入ホッパー24から投入された原料は外熱ロータリーキルン炉20で加熱された後、中継部26を経由し、外熱ロータリーキルン炉22に送られさらに加熱され、その端部から回収される。また、外熱ロータリーキルン炉20には、粉塵のモニタリング装置を有する不図示の排気管を備え、排気管から排気される排ガス中の含じん濃度はモニタリング装置によりモニタリングすることができる。   The raw material charged from the charging hopper 24 is heated in the external heating rotary kiln furnace 20, then sent to the external heating rotary kiln furnace 22 via the relay unit 26, further heated, and recovered from its end. The external heat rotary kiln furnace 20 includes an exhaust pipe (not shown) having a dust monitoring device, and the concentration of dust in the exhaust gas exhausted from the exhaust pipe can be monitored by the monitoring device.

図1に示すシステムを稼働させCFRPを処理するに当たり、投入した原料は、まず外熱ロータリーキルン炉20内で加熱される。そのとき排ガスが発生し、排ガスは排気管から排気されるが、排気と同時に含じん濃度がモニタリングされる。そして、含じん濃度が予め設定した基準値を超える場合には、中継部26の上部の投入ホッパー28から熱可塑性樹脂又は熱可塑性樹脂を含む材料を投入する。つまり、原料中の熱可塑性樹脂又は熱可塑性樹脂を含む材料が不足して炭素繊維の繊維が生じる場合には、熱可塑性樹脂又は熱可塑性樹脂を含む材料により繊維の飛散を抑えることができる。   When the system shown in FIG. 1 is operated to process CFRP, the charged raw materials are first heated in the external heat rotary kiln furnace 20. At that time, exhaust gas is generated, and the exhaust gas is exhausted from the exhaust pipe. When the concentration of dust content exceeds a preset reference value, a thermoplastic resin or a material containing a thermoplastic resin is charged from the charging hopper 28 above the relay portion 26. That is, in the case where the thermoplastic resin or the material containing the thermoplastic resin in the raw material is insufficient and the fiber of the carbon fiber is generated, the scattering of the fiber can be suppressed by the thermoplastic resin or the material containing the thermoplastic resin.

尚、上記実施形態では、外熱ロータリーキルン炉を2基使用したが1基で実施することもできる。   In the above embodiment, two external heat rotary kiln furnaces are used, but one can be implemented.

一方、本実施形態の燃料の製造方法は、前記炭素繊維強化プラスチックの処理方法により、炭素繊維強化プラスチックと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを処理する工程と、処理後の炭素繊維強化プラスチックを粉砕する工程と、を含む。CFRPと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを処理する工程については既に説明したので、処理後のCFRPを粉砕する工程について以下に説明する。   On the other hand, the fuel manufacturing method of the present embodiment includes a step of processing a carbon fiber reinforced plastic and a thermoplastic resin or a material containing a thermoplastic resin by the carbon fiber reinforced plastic processing method, and a carbon fiber after the processing. Crushing the reinforced plastic. Since the process of processing CFRP and the thermoplastic resin or the material containing the thermoplastic resin has already been described, the process of pulverizing the processed CFRP will be described below.

CFRPを粉砕する工程においては、その前工程における加熱処理によりCFRPの機械強度が低下しているため微粉砕が容易である。従って、粉砕装置としては、強力な粉砕能を有する装置は必ずしも必要ではない。粉砕装置としては、ハンマーミル、カッターミル、せん断破砕機、ロールクラッシャー、インパクトクラッシャー、ロータリーミル、ボールミル、ディスクミル、縦型ミルなどが挙げられる。また、既存の設備において燃料として使用されている石炭などとCFRPとを同時にミルに投入して混合粉砕すると、新規の粉砕設備が不要であり、また粉砕も容易であり、燃料の性状も大きく変化することがないため好ましい。   In the step of pulverizing the CFRP, the mechanical strength of the CFRP is reduced by the heat treatment in the previous step, so that fine pulverization is easy. Therefore, an apparatus having a strong pulverizing ability is not necessarily required as the pulverizing apparatus. Examples of the pulverizer include a hammer mill, a cutter mill, a shear crusher, a roll crusher, an impact crusher, a rotary mill, a ball mill, a disk mill, and a vertical mill. In addition, when coal and other materials used as fuel in the existing equipment and CFRP are mixed and pulverized at the same time, no new pulverization equipment is required, and pulverization is easy, and the properties of the fuel change greatly. This is preferable.

粉砕後のCFRPの粒子径は、3mmふるい残分が10%以下であることが好ましく、0.5mmふるい残分が10%以下であることがより好ましい。CFRPの粒子径が3mmを超えると、排ガス系統に悪影響を与える。具体的には、排ガス系統の集塵機に電気集塵機を使用した場合、燃え残った炭素繊維が電気集塵機の荷電不良を起こし、捕集性能が低下し、煤塵が大気中に排出される。集塵機にろ過集塵機を用いた場合、燃え残った炭素繊維が捕集ダストに混入し、捕集ダストのリサイクルの障害となる。なお、本発明において、「粒子径がAmmふるい残分が10%以下である」とは、目開きAmmのふるい上に残る粒子の重量が10%であることを指す。   As for the particle diameter of CFRP after pulverization, the 3 mm sieve residue is preferably 10% or less, and the 0.5 mm sieve residue is more preferably 10% or less. If the particle size of CFRP exceeds 3 mm, the exhaust gas system is adversely affected. Specifically, when an electric dust collector is used for a dust collector of an exhaust gas system, unburned carbon fibers cause a charging failure of the electric dust collector, the collection performance is lowered, and soot dust is discharged into the atmosphere. When a filtration dust collector is used as the dust collector, unburned carbon fibers are mixed into the collected dust, which hinders the recycling of the collected dust. In the present invention, “the particle size of the Amm sieve residue is 10% or less” means that the weight of the particles remaining on the sieve having an aperture of Amm is 10%.

次いで、図面を参照して、燃料の製造方法について説明する。図2は、本発明の燃料の製造方法の実施するためのシステムの一例を示し、この処理システム1は、受け入れた加熱処理後のCFRP及び熱可塑性樹脂又は熱可塑性樹脂を含む材料を貯留するタンク2と、タンク2からのCFRPを段階的に破砕及び粉砕する二軸せん断破砕機4、カッターミル5及び縦型ミル6と、縦型ミル6からの粉砕物Pをセメント焼成装置10に投入する投入装置7とで構成される。   Next, a method for producing fuel will be described with reference to the drawings. FIG. 2 shows an example of a system for carrying out the fuel production method of the present invention. This processing system 1 is a tank for storing a received CFRP and a thermoplastic resin or a material containing a thermoplastic resin after heat treatment. 2, a biaxial shear crusher 4 that crushes and crushes CFRP from the tank 2 stepwise, a cutter mill 5 and a vertical mill 6, and a pulverized product P from the vertical mill 6 is charged into the cement firing apparatus 10. It consists of a charging device 7.

二軸せん断破砕機4は、2本の軸の各々に鋭利な回転刃が設けられ、処理対象物を噛み込んで破砕する装置である。二軸せん断破砕機4に代えて、一軸せん断破砕機、四軸せん断破砕機、ロールクラッシャー、インパクトクラッシャー等を用いてもよい。   The biaxial shear crusher 4 is a device in which a sharp rotary blade is provided on each of two shafts, and the object to be processed is bitten and crushed. Instead of the biaxial shear crusher 4, a uniaxial shear crusher, a four-axis shear crusher, a roll crusher, an impact crusher, or the like may be used.

カッターミル5は、ロータに装着されたカッタと、ケーシングに装着された固定刃とで、せん断力を利用して挟み切るように処理対象物を破砕する装置であって、衝撃力を受けても力を吸収したり、延びたりして細かく破砕することが困難な物を破砕するのに適する。カッターミル5に代えて、ロータリーミル、ハンマーミル等を用いてもよい。   The cutter mill 5 is a device for crushing a processing object so as to be sandwiched by using a shearing force with a cutter attached to a rotor and a fixed blade attached to a casing, and can receive an impact force. It is suitable for crushing things that are difficult to crush finely by absorbing force or extending. Instead of the cutter mill 5, a rotary mill, a hammer mill or the like may be used.

縦型ミル6は、水平回転するテーブルと、テーブル凹部上面に沿うように取り付けられた複数のローラとを有し、テーブルとローラの間の処理対象物を粉砕する装置であって、粉砕された処理対象物はテーブルの外周方向に移動し、上昇気流でセパレータに運ばれて分級される。縦型ミル6に代えて、ボールミル、ディスクミル等を用いてもよい。   The vertical mill 6 is a device that has a horizontally rotating table and a plurality of rollers mounted along the upper surface of the table recess, and pulverizes the object to be processed between the table and the rollers. The object to be processed moves in the direction of the outer periphery of the table, and is carried to the separator by an ascending air current and classified. Instead of the vertical mill 6, a ball mill, a disk mill or the like may be used.

投入装置7には、スクリュー式、エゼクタ式の空気流動式のものや、ロータリフィーダ、スクリューフィーダ等が用いられる。   As the charging device 7, a screw type, an ejector type air flow type, a rotary feeder, a screw feeder or the like is used.

上記処理システム1によって得られた粉砕物Pを燃料として用いるセメント焼成装置10は、セメント原料CRを予熱するためサイクロンを多段に重ねたプレヒータ16と、セメント原料CRを仮焼する仮焼炉15と、主バーナ12等を備えてセメント原料CRを焼成するセメントキルン(ロータリーキルン)11と、セメントキルン11から排出されたセメントクリンカを冷却するクリンカクーラ13等で構成される。   The cement baking apparatus 10 using the pulverized material P obtained by the processing system 1 as a fuel includes a preheater 16 in which cyclones are stacked in multiple stages to preheat the cement raw material CR, and a calcining furnace 15 for calcining the cement raw material CR. The cement kiln (rotary kiln) 11 that includes the main burner 12 and the like and fires the cement raw material CR, and the clinker cooler 13 that cools the cement clinker discharged from the cement kiln 11 and the like.

次に、上記構成を有する処理システム1による燃料の燃焼処理方法について説明する。   Next, a fuel combustion processing method by the processing system 1 having the above configuration will be described.

受け入れた加熱処理後のCFRP及び熱可塑性樹脂又は熱可塑性樹脂を含む材料をタンク2に一時的に貯留した後、二軸せん断破砕機4、カッターミル5及び縦型ミル6でこの順に、最終的にCFRPの粒子径が0.2mmふるい残分が10%以下になるように粉砕する。   After the received heat-treated CFRP and the thermoplastic resin or the material containing the thermoplastic resin are temporarily stored in the tank 2, the biaxial shear crusher 4, the cutter mill 5, and the vertical mill 6 are finally used in this order. Then, the particle size of CFRP is 0.2 mm.

縦型ミル6からの粉砕物Pを、投入装置7を介してセメントキルン11の窯前11a、窯尻11bに投入したり、主バーナ12からセメントキルン11内に投入したりして燃料として使用しセメント原料CRを焼成する(図示例は、窯尻11bに投入した場合を示している)。窯前11a、窯尻11b、主バーナ12のいずれか一箇所からセメントキルン11に投入してもよく、複数箇所から投入してもよい。この中でも炭素繊維の燃え残りをなくすために主バーナ12から投入するのがよい。   The pulverized product P from the vertical mill 6 is used as fuel by being fed into the kiln 11a and the kiln bottom 11b of the cement kiln 11 through the feeding device 7 or by being fed into the cement kiln 11 from the main burner 12. Then, the cement raw material CR is fired (the illustrated example shows the case where it is put into the kiln bottom 11b). The cement kiln 11 may be charged from any one of the kiln front 11a, the kiln bottom 11b, and the main burner 12, or may be charged from a plurality of locations. Among these, in order to eliminate unburned carbon fiber, it is preferable to use the main burner 12.

尚、上記実施形態では、縦型ミル6からの粉砕物Pを投入装置7によってセメント焼成装置10に投入したが、縦型ミル6と投入装置7との間にタンクを設け、粉砕物Pを一旦タンクに貯留した後投入装置7でセメント焼成装置10に投入してもよい。   In the above embodiment, the pulverized material P from the vertical mill 6 is charged into the cement firing device 10 by the charging device 7. However, a tank is provided between the vertical mill 6 and the charging device 7, and the pulverized material P is Once stored in the tank, the cement firing device 10 may be charged by the charging device 7.

以下に、実施例により本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.

[実施例1〜2、比較例1〜5]
1.使用原料
CFRP製造時に発生した端材(以下、「CFRP」と称する。)と、熱可塑性樹脂を含む材料として、廃家電、廃自動販売機などを破砕、選別した際に発生したシュレッダーダスト(以下、「SR」と称する。)とを準備した。CFRP及びSRの諸データについて下記表1に示す。
[Examples 1 and 2, Comparative Examples 1 to 5]
1. Raw material used Shredder dust (hereinafter referred to as “CFRP”) and shredder dust (hereinafter referred to as “CFRP”) generated when CFRP is produced and crushed and sorted out of waste home appliances and waste vending machines as materials containing thermoplastic resin , Referred to as “SR”). Table 1 below shows various data of CFRP and SR.

各実施例・比較例において、CFRPとSRとを下記表2に示す混合割合で混合し、得られた混合物を、外熱ロータリーキルン炉に投入し加熱処理を行った。それぞれの例において、投入量、設定温度は表2に記載の数値となるように設定した。また、加熱時の混合物の温度は表2に示す温度であった。以下に、加熱に用いた外熱ロータリーキルン炉の諸条件を示す。
・外熱キルン径φ:500mm
・キルン長L:3m
・傾斜角:0.75°
・回転数:1.22rpm
・滞留時間:約1hr
[評価]
(1)落下飛散量
1.9L(半径10cm、高さ6cm)の容器の1/2の容量(重量で300〜500g)に加熱処理後の試料を充填した後、蓋をした。次いで、蓋をしたまま容器を反転させ、高さ1mの位置にセットした。蓋を地面に対して水平に取り外し、地面に試料が落下したときに、容器真下の半径10cmの枠外に飛散した重量を3回測定した。そして、充填重量に対する飛散重量の割合を百分率で算出した。算出結果を表2に示す。
(2)かさ密度
加熱後の試料に対して、JIS Z 7302-9:2002 廃棄物固形化燃料第9部:かさ密度試験方法に準拠して、20Lの円筒形容器を用いて、かさ密度を測定した。測定結果を表2に示す。
(3)回収率
加熱処理前の試料の重量(処理重量)と、加熱処理後の試料の重量(回収重量)とを測定し、以下の計算式に基づき回収率を算出した。算出結果を表2に示す。
In each of Examples and Comparative Examples, CFRP and SR were mixed at a mixing ratio shown in Table 2 below, and the resulting mixture was put into an external heat rotary kiln furnace and subjected to heat treatment. In each example, the input amount and the set temperature were set to be the values shown in Table 2. Moreover, the temperature of the mixture at the time of a heating was the temperature shown in Table 2. The various conditions of the external heating rotary kiln furnace used for the heating are shown below.
・ External heat kiln diameter φ: 500mm
・ Kiln length L: 3m
・ Inclination angle: 0.75 °
・ Rotation speed: 1.22 rpm
・ Residence time: about 1 hr
[Evaluation]
(1) Amount of falling scattering A sample after the heat treatment was filled in a half capacity (300 to 500 g by weight) of a 1.9 L (radius 10 cm, height 6 cm) container, and then the cap was applied. Next, the container was inverted with the lid on and set at a height of 1 m. The lid was removed horizontally with respect to the ground, and when the sample fell on the ground, the weight scattered outside the frame with a radius of 10 cm directly under the container was measured three times. And the ratio of the scattering weight with respect to filling weight was computed by the percentage. Table 2 shows the calculation results.
(2) Bulk density For samples after heating, in accordance with JIS Z 7302-9: 2002 Waste solidified fuel Part 9: Bulk density test method, the bulk density is measured using a 20L cylindrical container. It was measured. The measurement results are shown in Table 2.
(3) Recovery rate The weight of the sample before heat treatment (processed weight) and the weight of the sample after heat treatment (recovered weight) were measured, and the recovery rate was calculated based on the following formula. Table 2 shows the calculation results.

回収率=処理後の単位発熱量×回収重量/処理前の単位発熱量×処理重量
ここで、処理後の単位発熱量と処理前の単位発熱量とは同等とみなし、回収重量/処理重量を回収率とした。
Recovery rate = Unit calorific value after treatment x Recovered weight / Unit calorific value before treatment x Treated weight Here, the unit calorific value after treatment and the unit calorific value before treatment are regarded as equivalent, and the recovered weight / treatment weight is The recovery rate was used.

実施例1及び2と、比較例1との比較から、SRを添加するとかさ密度は向上し、飛散量が低減されることが分かる。   From comparison between Examples 1 and 2 and Comparative Example 1, it can be seen that when SR is added, the bulk density is improved and the amount of scattering is reduced.

また、SRを添加した例(実施例1〜4、比較例2)と、SRを添加しない例(比較例1、3〜5)とにおいて、設定温度と加熱時の物温とを比較すると、SRの添加によって、外熱ロータリーキルン炉からの熱伝導が高くなり、熱損失が少なくなり、温度制御も容易になるという効果も得られることが分かる。   In addition, in the example in which SR was added (Examples 1 to 4, Comparative Example 2) and the example in which SR was not added (Comparative Examples 1 and 3 to 5), the set temperature and the material temperature during heating were compared. It can be seen that the addition of SR increases the heat conduction from the external heat rotary kiln furnace, reduces heat loss, and facilitates temperature control.

また、比較例3〜5の比較から、加熱時の物温が高温になるほど回収率が低下することもわかる。   Moreover, it turns out from the comparison of Comparative Examples 3-5 that a recovery rate falls, so that the material temperature at the time of a heating becomes high.

参考までに比較例1、3、4、5で得られたCFRPから、粒径10〜20mmのCFRPを10g分取して卓上小型粉砕機(大阪ケミカル社製;ワンダーブレンダーWB−1)を用い、粉砕時間60秒にて粉砕した後、目開き1mm、0.3mm、0.1mmの篩を用いて篩い分けを行った。それぞれの粉砕後の粒度分布について表3に示す。   For reference, 10 g of CFRP having a particle size of 10 to 20 mm is separated from the CFRP obtained in Comparative Examples 1, 3, 4, and 5, and a tabletop small pulverizer (Osaka Chemical Co., Ltd .; Wonder Blender WB-1) is used. After pulverization with a pulverization time of 60 seconds, sieving was performed using a sieve having openings of 1 mm, 0.3 mm, and 0.1 mm. The particle size distribution after pulverization is shown in Table 3.

表3においては、粉砕性に及ぼす温度の効果を明示するためにCFRP単独の比較例1、3、4、5のみを掲載した。表3に示すように高温で処理するほど粉砕性は向上するが、一方で表2から分かるように回収率が低下する。したがって、本発明によると回収率を維持したまま、粉砕性を良くすることができるので、燃料として好適に用いることができる。   In Table 3, only Comparative Examples 1, 3, 4, and 5 of CFRP alone are listed in order to clearly show the effect of temperature on grindability. As shown in Table 3, the higher the temperature, the better the grindability. On the other hand, as can be seen from Table 2, the recovery rate decreases. Therefore, according to the present invention, the grindability can be improved while maintaining the recovery rate, so that it can be suitably used as a fuel.

1 処理システム
2 タンク
4 二軸せん断破砕機
5 カッターミル
6 縦型ミル
7 投入装置
10 セメント焼成装置
11 セメントキルン
12 主バーナ
13 クリンカクーラ
15 仮焼炉
16 プレヒータ
20 22 外熱ロータリーキルン炉
24 28 投入ホッパー
26 中継部
CR セメント原料
P 粉砕物
CFRP 炭素繊維強化プラスチック
DESCRIPTION OF SYMBOLS 1 Processing system 2 Tank 4 Biaxial shear crusher 5 Cutter mill 6 Vertical mill 7 Input apparatus 10 Cement baking apparatus 11 Cement kiln 12 Main burner 13 Clinker cooler 15 Pre-heating furnace 16 Preheater 20 22 External heat rotary kiln furnace 24 28 Input hopper 26 Relay part CR Cement raw material P Ground CFRP Carbon fiber reinforced plastic

Claims (5)

少なくとも、炭素繊維強化プラスチックと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを混合して得た混合物を、以下の条件1及び2に従い加熱処理を施すことを特徴とする炭素繊維強化プラスチックの処理方法。
(条件1)混合物の加熱温度を250〜500℃とする。
(条件2)加熱温度に応じて10分〜12時間の範囲内で加熱時間を設定する。
Treatment of carbon fiber reinforced plastic, characterized in that at least a carbon fiber reinforced plastic and a mixture obtained by mixing a thermoplastic resin or a material containing a thermoplastic resin are subjected to heat treatment according to the following conditions 1 and 2. Method.
(Condition 1) The heating temperature of the mixture is set to 250 to 500 ° C.
(Condition 2) The heating time is set within a range of 10 minutes to 12 hours according to the heating temperature.
請求項1に記載の炭素繊維強化プラスチックの処理方法において、前記熱可塑性樹脂を含む材料は、シュレッダーダスト及び廃プラスチックのうちの少なくとも1種である炭素繊維強化プラスチックの処理方法。   The method for treating carbon fiber reinforced plastic according to claim 1, wherein the material containing the thermoplastic resin is at least one of shredder dust and waste plastic. 請求項1又は2に記載の炭素繊維強化プラスチックの処理方法において、前記炭素繊維強化プラスチックの混合割合を5〜50質量%とする炭素繊維強化プラスチックの処理方法。   The carbon fiber reinforced plastic processing method according to claim 1 or 2, wherein a mixing ratio of the carbon fiber reinforced plastic is 5 to 50% by mass. 請求項1〜3のいずれか1項に記載の炭素繊維強化プラスチックの処理方法により、少なくともを、炭素繊維強化プラスチックと、熱可塑性樹脂又は熱可塑性樹脂を含む材料とを処理する工程と、
前記処理後の炭素繊維強化プラスチックを粉砕する工程と、
を含むことを特徴とする燃料の製造方法。
A step of treating at least a carbon fiber reinforced plastic and a thermoplastic resin or a material containing a thermoplastic resin by the method for treating a carbon fiber reinforced plastic according to any one of claims 1 to 3;
Crushing the carbon fiber reinforced plastic after the treatment;
A fuel production method comprising:
請求項4に記載の燃料の製造方法において、
前記処理後の炭素繊維強化プラスチックを3mm以下に粉砕する燃料の製造方法。
The method for producing a fuel according to claim 4, wherein
A method for producing a fuel, wherein the treated carbon fiber reinforced plastic is pulverized to 3 mm or less.
JP2016146680A 2016-07-26 2016-07-26 Carbon fiber reinforced plastic processing method and fuel manufacturing method Active JP6840486B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016146680A JP6840486B2 (en) 2016-07-26 2016-07-26 Carbon fiber reinforced plastic processing method and fuel manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016146680A JP6840486B2 (en) 2016-07-26 2016-07-26 Carbon fiber reinforced plastic processing method and fuel manufacturing method

Publications (2)

Publication Number Publication Date
JP2018016695A true JP2018016695A (en) 2018-02-01
JP6840486B2 JP6840486B2 (en) 2021-03-10

Family

ID=61081317

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016146680A Active JP6840486B2 (en) 2016-07-26 2016-07-26 Carbon fiber reinforced plastic processing method and fuel manufacturing method

Country Status (1)

Country Link
JP (1) JP6840486B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177299A (en) * 2018-03-30 2019-10-17 宇部興産株式会社 Processing method of carbon fiber-reinforced plastic
JP2020022930A (en) * 2018-08-07 2020-02-13 宇部興産株式会社 Waste separation apparatus and separation method, and waste treatment system and treatment method
JP2020022929A (en) * 2018-08-07 2020-02-13 宇部興産株式会社 Waste sorting device and sorting method, as well as waste processing system and processing method
JP2020093184A (en) * 2018-12-10 2020-06-18 太平洋セメント株式会社 Processing method and processing equipment for metal-containing waste
JP2020146961A (en) * 2019-03-14 2020-09-17 太平洋セメント株式会社 Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material
JP2020152827A (en) * 2019-03-20 2020-09-24 宇部興産株式会社 Solid fuel manufacturing method and usage method, and solid fuel manufacturing equipment
JP2022118564A (en) * 2021-02-02 2022-08-15 Ube三菱セメント株式会社 Fuel reforming method and fuel reforming device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022337A (en) * 1997-11-04 2006-01-26 Jfe Steel Kk Plastic processing method and solid fuel obtained by the processing method, ore reducing agent
JP2006218793A (en) * 2005-02-14 2006-08-24 Toray Ind Inc Method for recycling carbon fiber-reinforced thermoplastic resin molding
JP2007131463A (en) * 2005-11-08 2007-05-31 Ube Ind Ltd Method for treating waste plastic containing carbon fiber
JP2011068771A (en) * 2009-09-25 2011-04-07 Ube Industries Ltd Solid fuel and manufacturing method therefor
WO2014098229A1 (en) * 2012-12-20 2014-06-26 アースリサイクル株式会社 Method for separation and recovery of plastic-based composite waste
JP2014205833A (en) * 2013-04-10 2014-10-30 ザ・ボーイング・カンパニーTheBoeing Company Recycling of broad goods with thermoplastic stabilizer materials
JP2016108460A (en) * 2014-12-08 2016-06-20 太平洋セメント株式会社 Fuel, method for producing the fuel and combustion treatment method of waste containing carbon fiber

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006022337A (en) * 1997-11-04 2006-01-26 Jfe Steel Kk Plastic processing method and solid fuel obtained by the processing method, ore reducing agent
JP2006218793A (en) * 2005-02-14 2006-08-24 Toray Ind Inc Method for recycling carbon fiber-reinforced thermoplastic resin molding
JP2007131463A (en) * 2005-11-08 2007-05-31 Ube Ind Ltd Method for treating waste plastic containing carbon fiber
JP2011068771A (en) * 2009-09-25 2011-04-07 Ube Industries Ltd Solid fuel and manufacturing method therefor
WO2014098229A1 (en) * 2012-12-20 2014-06-26 アースリサイクル株式会社 Method for separation and recovery of plastic-based composite waste
JP2014205833A (en) * 2013-04-10 2014-10-30 ザ・ボーイング・カンパニーTheBoeing Company Recycling of broad goods with thermoplastic stabilizer materials
JP2016108460A (en) * 2014-12-08 2016-06-20 太平洋セメント株式会社 Fuel, method for producing the fuel and combustion treatment method of waste containing carbon fiber

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019177299A (en) * 2018-03-30 2019-10-17 宇部興産株式会社 Processing method of carbon fiber-reinforced plastic
JP2020022930A (en) * 2018-08-07 2020-02-13 宇部興産株式会社 Waste separation apparatus and separation method, and waste treatment system and treatment method
JP2020022929A (en) * 2018-08-07 2020-02-13 宇部興産株式会社 Waste sorting device and sorting method, as well as waste processing system and processing method
JP7169115B2 (en) 2018-08-07 2022-11-10 Ube三菱セメント株式会社 Waste treatment system and treatment method
JP7169116B2 (en) 2018-08-07 2022-11-10 Ube三菱セメント株式会社 Waste separation apparatus and separation method, and waste treatment system and treatment method
JP2020093184A (en) * 2018-12-10 2020-06-18 太平洋セメント株式会社 Processing method and processing equipment for metal-containing waste
JP2020146961A (en) * 2019-03-14 2020-09-17 太平洋セメント株式会社 Method and apparatus for separating and recovering carbon fiber from carbon fiber-reinforced plastic-containing material
JP7122988B2 (en) 2019-03-14 2022-08-22 太平洋セメント株式会社 Separation recovery method and separation recovery apparatus for carbon fiber from carbon fiber reinforced plastic content
JP2020152827A (en) * 2019-03-20 2020-09-24 宇部興産株式会社 Solid fuel manufacturing method and usage method, and solid fuel manufacturing equipment
JP7436147B2 (en) 2019-03-20 2024-02-21 Ube三菱セメント株式会社 Solid fuel manufacturing method and usage method, and solid fuel manufacturing device
JP2022118564A (en) * 2021-02-02 2022-08-15 Ube三菱セメント株式会社 Fuel reforming method and fuel reforming device
JP7681406B2 (en) 2021-02-02 2025-05-22 Ube三菱セメント株式会社 FUEL REFORMING METHOD AND FUEL REFORMING APPARATUS

Also Published As

Publication number Publication date
JP6840486B2 (en) 2021-03-10

Similar Documents

Publication Publication Date Title
JP6840486B2 (en) Carbon fiber reinforced plastic processing method and fuel manufacturing method
JP6384846B1 (en) Separation of metals from shredder dust, conversion of organic combustible residues into fuel, effective utilization of inorganic residues, and treatment equipment
CN108615956A (en) A kind of electric discharge dynamic lithium battery recovery process
CN103056146B (en) A kind of old and useless battery and the full-automatic cracking and sorting system of process waste material thereof
JP6767088B2 (en) Fuel, fuel manufacturing method and carbon fiber-containing waste combustion treatment method
JP6948246B2 (en) Method for manufacturing modified fly ash and equipment for manufacturing modified fly ash
CN208889803U (en) A kind of useless pole piece processing unit of lithium ion battery
JP6649860B2 (en) Fuel manufacturing method
KR101339554B1 (en) Method and apparatus for refining available component of by-product form recovering ingot wire sawed slurry
JP2019107620A (en) Method for manufacturing modified fly ash, and apparatus for manufacturing modified fly ash
KR20190043574A (en) Impact Reactor
JP2015189023A (en) Method for producing waste plastic crushed material
JP6186159B2 (en) Waste treatment equipment
JP2019127040A (en) Method of manufacturing recycled carbon fibers
JP2020023087A (en) Waste treatment system and waste treatment method
JP7436147B2 (en) Solid fuel manufacturing method and usage method, and solid fuel manufacturing device
JP7122988B2 (en) Separation recovery method and separation recovery apparatus for carbon fiber from carbon fiber reinforced plastic content
CN100563977C (en) The separation method of mixed waste plastic
JP3278384B2 (en) Pollution-free regeneration treatment plant for waste
JP2923244B2 (en) Solid waste recycling plant for waste
JP7100602B2 (en) Incinerator ash treatment method and treatment equipment
KR101382194B1 (en) Carbon black reclaim system
JP2016203054A (en) Method for selecting a mixture comprising metal, resin and inorganic fibers
JP2007169534A (en) Biomass-carbonizing apparatus
JP6579458B2 (en) Inorganic fiber particulate aggregate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190301

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200403

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200825

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201028

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20201028

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20201109

C21 Notice of transfer of a case for reconsideration by examiners before appeal proceedings

Free format text: JAPANESE INTERMEDIATE CODE: C21

Effective date: 20201110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210217

R150 Certificate of patent or registration of utility model

Ref document number: 6840486

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250