JP2018009214A - Ni-containing high-C martensitic heat-resistant steel - Google Patents
Ni-containing high-C martensitic heat-resistant steel Download PDFInfo
- Publication number
- JP2018009214A JP2018009214A JP2016138416A JP2016138416A JP2018009214A JP 2018009214 A JP2018009214 A JP 2018009214A JP 2016138416 A JP2016138416 A JP 2016138416A JP 2016138416 A JP2016138416 A JP 2016138416A JP 2018009214 A JP2018009214 A JP 2018009214A
- Authority
- JP
- Japan
- Prior art keywords
- value
- steel
- toughness
- less
- grain boundary
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
【課題】高温環境において使用される高CでかつNiを含有する高Cr系耐熱鋼において、炭化物の粒界被覆率が靭性に影響を与えることを考慮した、Ni含有高Cマルテンサイト系耐熱鋼の提供。【解決手段】質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、およびFe並びに不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以上、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104であるNi含有高Cマルテンサイト系耐熱鋼。【選択図】なしPROBLEM TO BE SOLVED: To provide a Ni-containing high-C martensitic heat-resistant steel in consideration of the fact that the grain boundary coverage of carbides affects toughness in a high-C and Ni-containing high Cr-based heat-resistant steel used in a high-temperature environment. Offer. SOLUTION: In mass%, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≤0.030%, Ni. : 0.10 to 2.00%, Cr: 16.0 to 23.50%, O: ≤0.0080%, N: ≤0.0600%, and Fe and unavoidable impurities, Charpy Toughness by impact value: 5.0 J / cm2 or more, grain boundary coverage index W value 16.3 [% C] + 15.4 x [% Ni] + 3.3 x [% Cr]: Ni content of ≤104 High C martensitic heat resistant steel. [Selection diagram] None
Description
この出願の発明は、高温環境において使用されるNi含有高Cマルテンサイト系耐熱鋼に関する。 The invention of this application relates to a Ni-containing high C martensitic heat resistant steel used in a high temperature environment.
従来、マルテンサイト系耐熱鋼は、高温において使用されるが、冷間加工性が劣るため、通常は、熱間鍛造により、各部材が製造されている。そのため加工時の材料組織および硬さについては、それほど重要視されていなかった。しかしながら、熱間鍛造による製造では、生産性やコストの面で冷間鍛造に比べて劣るという問題があり、近年、これらマルテンサイト系耐熱鋼の冷鍛化の開発が求められている。この場合、冷間鍛造機などの使用により、素材が加工されるため、加工前の素材硬さが少しでも低いことが求められている。 Conventionally, martensitic heat-resisting steel is used at high temperatures, but since cold workability is poor, each member is usually manufactured by hot forging. For this reason, the material structure and hardness at the time of processing were not so important. However, manufacturing by hot forging has a problem that it is inferior to cold forging in terms of productivity and cost, and in recent years, development of cold forging of these martensitic heat resistant steels has been demanded. In this case, since the material is processed by using a cold forging machine or the like, the material hardness before processing is required to be as low as possible.
一方、マルテンサイト系耐熱鋼であって冷鍛性に優れた耐熱鋼の製造方法に関する発明として、Ni含有の高C系マルテンサイト系耐熱鋼が提案されている(例えば、特許文献1参照。)。しかし、この提案の発明は、Cの範囲が十分でなく、またCr含有量が低い成分系であり、炭化物の粒界被覆率が靭性に与える影響および耐酸化性に関する記述がない。 On the other hand, Ni-containing high-C martensitic heat-resistant steel has been proposed as an invention relating to a method for producing a heat-resistant steel that is martensitic heat-resistant steel and has excellent cold forgeability (see, for example, Patent Document 1). . However, the proposed invention is a component system in which the range of C is not sufficient and the Cr content is low, and there is no description regarding the influence of the grain boundary coverage of carbides on toughness and oxidation resistance.
さらに、高温使用時に硬さの低減などの特性変化を起こし難いマルテンサイト系耐熱鋼に関する発明が提案されている(例えば、特許文献2参照。)。この発明は、C:0.35〜0.60%、Si:1.0〜2.5%、Mn:0.1%以上1.5%未満、およびCr:7.5〜13.0%に加えて、請求項1では、Mo+0.5W:1.5〜3.0%を加え、請求項2では、さらにNb+Taを加え、請求項3では、さらにVを添加したマルテンサイト系耐熱鋼である。しかし、この提案の発明は、本願の発明とは成分系が異なり、また炭化物の粒界被覆率が靭性に与える影響に関する記述がない。 Furthermore, an invention relating to a martensitic heat resistant steel that is unlikely to cause a characteristic change such as a reduction in hardness when used at a high temperature has been proposed (see, for example, Patent Document 2). The present invention includes C: 0.35 to 0.60%, Si: 1.0 to 2.5%, Mn: 0.1% or more and less than 1.5%, and Cr: 7.5 to 13.0% In addition, in claim 1, Mo + 0.5W: 1.5 to 3.0% is added, in claim 2, Nb + Ta is further added, and in claim 3, martensitic heat-resistant steel further added with V is there. However, the proposed invention has a different component system from the invention of the present application, and there is no description regarding the effect of carbide grain boundary coverage on toughness.
上記のように、従来技術では0.8%程度のCおよび2%程度のNiを含有しているが、高Cr系である耐熱鋼に関する記述がない上に、靭性が低く製造性が低いことも問題である。 As mentioned above, the conventional technology contains about 0.8% C and about 2% Ni, but there is no description about heat-resistant steels that are high Cr, and the toughness is low and the productivity is low. Is also a problem.
本発明は、高CでかつNiを含有する高Cr系の耐熱鋼に係る発明であり、炭化物の粒界被覆率が靭性に影響を与えることを発見したことから着想を得たものであり、さらに、使用環境を考慮して耐酸化性に関しても検討したNi含有高Cマルテンサイト系耐熱鋼を提供することである。 The present invention is an invention related to a high Cr heat-resistant steel containing high C and containing Ni, and has been inspired by the discovery that the grain boundary coverage of carbides affects toughness, Furthermore, it is providing the Ni containing high C martensitic heat-resisting steel which considered the oxidation resistance in consideration of the use environment.
上記の課題を解決するための手段では、開発鋼1の手段は、質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、およびFe並びに不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以下、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104であることを特徴とするNi含有高Cマルテンサイト系耐熱鋼である。 In the means for solving the above problems, the means of the developed steel 1 is mass%, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10. 2.00%, P: ≦ 0.030%, Ni: 0.10 to 2.00%, Cr: 16.00 to 23.50%, O: ≦ 0.0080%, N: ≦ 0.0600% And toughness with Charpy impact value: 5.0 J / cm 2 or less, grain boundary coverage index W value of 16.3 [% C] + 15.4 × [% Ni] + 3.3 × [% Cr]: Ni-containing high-C martensitic heat-resistant steel characterized by ≦ 104.
開発鋼2の手段は、質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、さらに、Mo:≦1.00%、Ti:≦0.20%、V:≦0.30%、Nb≦0.50%、W:≦1.00%、B:≦0.0200%のいずれか1種または2種以上を含有し、さらにFeおよび不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以下、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104、さらにA値の[%Mo]+1/2×[%W]:≦1.0、およびB値の5×[%Ti]+2×[%Nb]:≦1.5であることを特徴とする開発鋼1の手段のNi含有高Cマルテンサイト系耐熱鋼である。 The means of the developed steel 2 is mass%, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≦ 0.030. %, Ni: 0.10 to 2.00%, Cr: 16.00 to 23.50%, O: ≦ 0.0080%, N: ≦ 0.0600%, and Mo: ≦ 1. 00%, Ti: ≦ 0.20%, V: ≦ 0.30%, Nb ≦ 0.50%, W: ≦ 1.00%, B: ≦ 0.0200%, one or more And further containing Fe and inevitable impurities, toughness by Charpy impact value: 5.0 J / cm 2 or less, grain boundary coverage index W value 16.3 [% C] + 15.4 × [% Ni] + 3.3 × [% Cr]: ≦ 104, A value [% Mo] + 1/2 × [% W]: ≦ 1.0, and B value 5 × [% Ti] + 2 × [% Nb] A Ni-containing high C martensitic heat resisting steel means developed steel 1, characterized in that ≦ 1.5.
開発鋼3の手段は、質量%で、C:0.40〜0.85%、Si:0.50〜2.00%、Mn:0.10〜2.00%、P:≦0.030%、Ni:0.10〜2.00%、Cr:16.00〜23.50%、O:≦0.0080%、N:≦0.0600%を有し、さらに、Mo:≦1.00%、Ti:≦0.20%、V:≦0.30%、Nb≦0.50%、W:≦1.00%、B:≦0.0200%のいずれか1種または2種以上を含有し、さらに、S:0より大きく0.150%以下であり、さらにFeおよび不可避不純物を有し、シャルピー衝撃値による靱性:5.0J/cm2以下、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]:≦104、さらにA値の[%Mo]+1/2×[%W]:≦1.0、およびB値の5×[%Ti]+2×[%Nb]:≦1.5であることを特徴とする開発鋼1または2の手段のNi含有高Cマルテンサイト系耐熱鋼である。 The means of the developed steel 3 is% by mass, C: 0.40 to 0.85%, Si: 0.50 to 2.00%, Mn: 0.10 to 2.00%, P: ≦ 0.030. %, Ni: 0.10 to 2.00%, Cr: 16.00 to 23.50%, O: ≦ 0.0080%, N: ≦ 0.0600%, and Mo: ≦ 1. 00%, Ti: ≦ 0.20%, V: ≦ 0.30%, Nb ≦ 0.50%, W: ≦ 1.00%, B: ≦ 0.0200%, one or more Further, S is greater than 0 and 0.150% or less, further has Fe and inevitable impurities, toughness by Charpy impact value: 5.0 J / cm 2 or less, grain boundary coverage index W value 16.3 [% C] + 15.4 × [% Ni] + 3.3 × [% Cr]: ≦ 104, A value [% Mo] + ½ × [% W]: ≦ 0.0 and a B value of 5 × [% Ti] + 2 × [% Nb]: ≦ 1.5, a Ni-containing high-C martensitic heat resistant steel as a means of the developed steel 1 or 2 .
本願発明は、Ni含有高Cマルテンサイト系耐熱鋼であり、Cの範囲が0.40〜0.85%と広く、Cr含有量も16.00〜23.50%と高いものの、炭化物の粒界被覆率が50%以下と低いので、靱性が高く確保される等の効果を有する。 The present invention is a Ni-containing high-C martensitic heat-resisting steel having a wide C range of 0.40 to 0.85% and a high Cr content of 16.00 to 23.50%. Since the boundary coverage is as low as 50% or less, it has an effect of ensuring high toughness.
発明を実施するための形態の記載に先立って、本願発明の鋼の化学成分の限定理由を記載する。 Prior to the description of the mode for carrying out the invention, the reasons for limiting the chemical components of the steel of the present invention will be described.
C:0.40〜0.85%
Cは、強度や耐摩耗性を確保するために必要な元素であり、十分な強度や耐摩耗性を得るためには0.40%添加する必要がある。しかし、0.40%より少ないと鋼の焼入焼戻し硬さを低下し、一方、0.85%より多いと鋼の焼なまし硬さを大きくして熱間加工性を悪化する。そこで、Cは0.40〜0.85%とする。好ましくは、0.55〜0.80%とする。
C: 0.40 to 0.85%
C is an element necessary for ensuring strength and wear resistance. In order to obtain sufficient strength and wear resistance, it is necessary to add 0.40%. However, if the content is less than 0.40%, the quenching and tempering hardness of the steel is reduced. On the other hand, if the content is more than 0.85%, the annealing hardness of the steel is increased and the hot workability is deteriorated. Therefore, C is set to 0.40 to 0.85%. Preferably, the content is 0.55 to 0.80%.
Si:0.50〜2.00%
Siは、脱酸剤として必要な元素である。しかし、Siは0.50%より少ないと鋼の酸化減量を大きくし、一方、2.00%より多いと鋼の靱性を悪化し、冷鍛性が得られない。そこで、Siは0.50〜2.00%とし、好ましくは、1.00〜2.00%とする。
Si: 0.50 to 2.00%
Si is an element necessary as a deoxidizer. However, if Si is less than 0.50%, the oxidation loss of the steel is increased. On the other hand, if it exceeds 2.00%, the toughness of the steel is deteriorated and cold forgeability cannot be obtained. Therefore, Si is 0.50 to 2.00%, preferably 1.00 to 2.00%.
Mn:0.10〜2.00%
Mnは、脱酸剤、脱硫剤として必要な元素である。しかし、Mnは0.10%より少ないと鋼の靱性を悪化する。一方、Mnは2.00%より多いと鋼の熱間加工性を悪化する。そこで、Mnは0.10〜2.00%とし、好ましくは、0.30〜1.00%とする。
Mn: 0.10 to 2.00%
Mn is an element necessary as a deoxidizing agent and a desulfurizing agent. However, if Mn is less than 0.10%, the toughness of the steel deteriorates. On the other hand, when Mn is more than 2.00%, the hot workability of steel is deteriorated. Therefore, Mn is 0.10 to 2.00%, preferably 0.30 to 1.00%.
P:≦0.030%
Pは、不可避不純物元素であるが、0.030%より多いと鋼の熱間加工性を悪化する。そこで、P≦0.030%とし、好ましくは、0.020%以下とする。
P: ≦ 0.030%
P is an inevitable impurity element, but if it exceeds 0.030%, the hot workability of steel deteriorates. Therefore, P ≦ 0.030%, preferably 0.020% or less.
Ni:0.10〜2.00%
Niは、焼入性の向上、強度の向上に有効である。しかし、Niは0.10%より少ないと鋼の酸化減量を大きくする。一方、Niは2.00%より多いと鋼の焼なまし硬さを大きくし、かつコストアップも招く。そこで、Niは0.10〜2.00%とし、好ましくは、0.50〜1.70%とする。
Ni: 0.10 to 2.00%
Ni is effective in improving hardenability and strength. However, if Ni is less than 0.10%, the oxidation loss of the steel is increased. On the other hand, if Ni is more than 2.00%, the annealing hardness of the steel is increased and the cost is increased. Therefore, Ni is 0.10 to 2.00%, preferably 0.50 to 1.70%.
Cr:16.00〜23.50%
Crは、耐酸化性の向上に有効である。しかし、Crは16.00%より少ないと鋼の酸化減量を大きくし、一方、23.50%より多いと鋼の焼入焼戻し硬さが低下し、かつ靱性が悪化する。そこで、Crは16.00〜23.50%とし、好ましくは、18.00〜21.50%とする。
Cr: 16.00 to 23.50%
Cr is effective in improving oxidation resistance. However, if the Cr content is less than 16.00%, the oxidation loss of the steel increases. On the other hand, if the Cr content exceeds 23.50%, the quenching and tempering hardness of the steel decreases and the toughness deteriorates. Therefore, Cr is set to 16.00 to 23.50%, preferably 18.00 to 21.50%.
O:≦0.0080%
Oは、不可避不純物元素であるが、0.0080%より多くなると、耐酸化性に有効なSiやCrを奪うため、酸化減量が増大する。そこで、O≦0.0080%とし、好ましくは、0.0055%以下とする。
O: ≦ 0.0080%
O is an unavoidable impurity element, but when it exceeds 0.0080%, it takes away Si and Cr effective for oxidation resistance, and therefore the oxidation loss increases. Therefore, O ≦ 0.0080%, preferably 0.0055% or less.
N:≦0.0600%
Nは、不可避不純物元素であるが、0.0600%より多くなると、熱間加工性を悪化し、粒界被覆率指数のW値の増大に伴う靱性を悪化する。そこで、N:≦0.0600%とし、好ましくは、0.0500%以下とする。
N: ≦ 0.0600%
N is an inevitable impurity element, but when it exceeds 0.0600%, the hot workability deteriorates and the toughness accompanying the increase in the W value of the grain boundary coverage index deteriorates. Therefore, N: ≦ 0.0600%, preferably 0.0500% or less.
Mo:≦1.00%
Moは、焼入性を高める他に、焼戻し軟化抵抗を向上させ、A1点を高くする元素であり、焼戻し時にM7C3やM2Cなどの炭化物を形成して、高温強度を増大させる。Moは多量に添加すると焼なまし硬さを大とし、靱性を劣化し、その上にMoは高価な元素である。そこで、Mo≦1.00%とし、好ましくは、0.85%以下とする。
Mo: ≦ 1.00%
Mo, in addition to increase the hardenability, increase the temper softening resistance, an element to increase the point A, to form a carbide such as M 7 C 3 and M 2 C during tempering, increasing the high-temperature strength Let When Mo is added in a large amount, the annealing hardness is increased and the toughness is deteriorated. On top of that, Mo is an expensive element. Therefore, Mo ≦ 1.00%, preferably 0.85% or less.
Ti:≦0.20%
Tiは、Bに比べてNとの親和力が極めて強い元素である。TiNの形成によってBN
の析出を抑制し、炭化物の粗大化を抑制するBの効果を高めるために、Tiを0.005%以上添加することが好ましい。一方Tiを過剰に添加すると、粗大なTiCが析出または晶出し、靱性を低下するため、Tiを0.20%以下とし、好ましくは、0.15%以下とする。
Ti: ≦ 0.20%
Ti is an element having an extremely strong affinity for N compared to B. BN by the formation of TiN
In order to suppress the precipitation of B and increase the effect of B which suppresses the coarsening of the carbide, it is preferable to add Ti in an amount of 0.005% or more. On the other hand, when Ti is added excessively, coarse TiC precipitates or crystallizes, and the toughness is lowered. Therefore, Ti is set to 0.20% or less, preferably 0.15% or less.
V:≦0.30%
Vは、過剰に添加すると粗大なVCを析出または晶出して靱性を悪化するため、また、Vは高価な元素であるので、Vは0.30%以下とし、好ましくは、0.20%以下する。
V: ≦ 0.30%
When V is added excessively, coarse VC is precipitated or crystallized to deteriorate toughness. Since V is an expensive element, V is set to 0.30% or less, preferably 0.20% or less. To do.
Nb:≦0.50%
Nbは、過剰に添加すると粗大なNbCを析出または晶出して靱性を悪化し、焼入れ硬さを低下させる。そこで、Nbは0.50%以下とし、好ましくは、0.30%以下とする。
Nb: ≦ 0.50%
When Nb is added excessively, coarse NbC is precipitated or crystallized to deteriorate toughness and decrease the quenching hardness. Therefore, Nb is 0.50% or less, preferably 0.30% or less.
W:≦1.00%
Wは、過剰に添加すると粗大な炭化物を析出して靱性を悪化し、焼入れ硬さを低下させかつWは高価な元素である。そこで、Wは1.00%以下とし、好ましくは、0.50%以下とする。
W: ≦ 1.00%
When W is added excessively, coarse carbides are precipitated to deteriorate toughness, quenching hardness is lowered, and W is an expensive element. Therefore, W is 1.00% or less, preferably 0.50% or less.
S:≦0.150%
Sは、不可避不純物元素であるが、0.150%より多いと鋼の熱間加工性を悪化する。そこで、S≦0.150%とし、好ましくは、0.100%以下とする。
S: ≦ 0.150%
S is an unavoidable impurity element, but if it exceeds 0.150%, the hot workability of steel deteriorates. Therefore, S ≦ 0.150%, preferably 0.100% or less.
靱性としてのシャルピー衝撃値:5.0J/cm2以上
シャルピー衝撃値が、5.0J/cm2未満であると靱性が低く製造性が低下する。そこで、靱性としてのシャルピー衝撃値は5.0J/cm2以上とする。
Charpy impact value as toughness: 5.0 J / cm 2 or more When the Charpy impact value is less than 5.0 J / cm 2 , the toughness is low and the productivity is lowered. Therefore, the Charpy impact value as toughness is set to 5.0 J / cm 2 or more.
粒界被覆率指数W値:16.3[%C]+15.4×[%Ni]+3.3×[%Cr]≦104
粒界被覆率指数W値は、104より大きくなると、炭化物の粒界被覆率が増加し、靱性が確保できなくなる。そこで、粒界被覆率指数W値の16.3[%C]+15.4×[%Ni]+3.3×[%Cr]は、104以下とする。
Grain boundary coverage index W value: 16.3 [% C] + 15.4 × [% Ni] + 3.3 × [% Cr] ≦ 104
When the grain boundary coverage index W value is larger than 104, the grain boundary coverage of the carbide increases and it becomes impossible to secure toughness. Therefore, the grain boundary coverage index W value of 16.3 [% C] + 15.4 × [% Ni] + 3.3 × [% Cr] is set to 104 or less.
A値:[%Mo]+1/2×[%W]
A値は、1.0より大きくなると本願開発鋼の請求項2の靱性を悪化する。そこで、A値の[%Mo]+1/2×[%W]は、1.0以下とする。
A value: [% Mo] + 1/2 × [% W]
When the A value is greater than 1.0, the toughness of claim 2 of the present developed steel is deteriorated. Thus, [% Mo] + 1/2 × [% W] of the A value is 1.0 or less.
B値:5×[%Ti]+2×[%Nb]
B値は、1.5より大きくなると本願開発鋼の請求項2の靱性を悪化する。そこで、B
値の5×[%Ti]+2×[%Nb]は、1.5以下とする。
B value: 5 × [% Ti] + 2 × [% Nb]
If the B value is greater than 1.5, the toughness of claim 2 of the present developed steel is deteriorated. So B
The value 5 × [% Ti] + 2 × [% Nb] is 1.5 or less.
ここで、本願の発明を実施するための形態について説明する。表1に示す本願発明の開発鋼の各成分の各No.の鋼、および表2に示す各比較鋼の各成分の各No.の鋼のそれぞれを、100kgVIMにて溶解してインゴットに鋳造した。 Here, the form for implementing invention of this application is demonstrated. Each No. of each component of the developed steel of the present invention shown in Table 1 is shown. No. of each component of each steel and each comparative steel shown in Table 2. Each of these steels was melted at 100 kg VIM and cast into ingots.
これらのインゴットを、第1グループでは径65mm丸棒の鍛伸材に鍛伸し、第2グループでは45mmH×95mmWに鍛伸し、これらグループのそれぞれを850〜950℃にて焼なまして素材とした。それぞれのサイズに調整した素材から、以下の試験をそれぞれ実施した。試験結果は、表3に本願発明の開発鋼の値を示し、表4に比較項の値を示した。また、熱間加工性に関しては鍛伸時の割れ発生状況から判断し、割れが発生しないものを○、割れが発生したものを×として評価した。 These ingots are forged into a forged material with a 65 mm diameter round bar in the first group, forged into 45 mmH × 95 mmW in the second group, and each of these groups is annealed at 850 to 950 ° C. did. The following tests were carried out from the materials adjusted to the respective sizes. Table 3 shows the value of the developed steel of the present invention in Table 3, and Table 4 shows the value of the comparison term. In addition, the hot workability was evaluated based on the occurrence of cracks during forging, and the case where cracks did not occur was evaluated as ○, and the case where cracks occurred was evaluated as ×.
第1グループの評価は、径65mmの丸棒の鍛伸材を径60mmに調整した後、焼なまし硬さの測定、焼入焼戻し硬さの測定、炭化物の粒界被覆率の測定を実施し、表3に本願発明鋼の値を示し、表4に比較鋼の値を示した。 Evaluation of the first group was conducted after adjusting the forged material of a round bar with a diameter of 65 mm to a diameter of 60 mm, then measuring the annealing hardness, the quenching and tempering hardness, and measuring the grain boundary coverage of the carbide. Table 3 shows the values of the present invention steel, and Table 4 shows the values of the comparative steel.
焼なまし硬さ(表3および表4でA硬さと表示)は、供試材の長手方向と垂直な面の中周にて、HRCスケールでの硬さを測定して実施した。表3の本願発明鋼および表4の比較鋼には、それぞれ5点平均の値を示した。 The annealing hardness (indicated as A hardness in Tables 3 and 4) was measured by measuring the hardness on the HRC scale in the middle circumference of the surface perpendicular to the longitudinal direction of the specimen. The invention steel in Table 3 and the comparative steel in Table 4 each showed an average value of 5 points.
焼入焼戻し硬さ(表3および表4でQT硬さと表示)は、供試材に1000〜1150℃で焼入、その後550〜650℃で焼戻しを実施した。焼なまし硬さと同様に測定して、それぞれ5点平均の値を示した。 The quenching and tempering hardness (indicated as QT hardness in Tables 3 and 4) was quenched at 1000 to 1150 ° C., and then tempered at 550 to 650 ° C. Measurement was performed in the same manner as the annealing hardness, and the average value for each of the five points was shown.
粒界被覆率は、大角(度)粒界上の析出物長さの総和を大角(度)粒界長さの総和で除した値であり、完全に被覆されている場合は100%となり、全く被覆していない場合を0%と判断するパラメータである。
炭化物の粒界被覆率は、焼なましの状態で、供試材の長手方向にて組織観察を実施し、粒界被覆率を測定した。粒界被覆率は、まず1万倍の電子顕微鏡観察により、大角(度)粒界上に析出した粒子を、エネルギー分散型X線分光分析(EDX)または同じく1万倍の薄膜透過型電子顕微鏡解析における透過型電子回折パターン解析によってM23C6型炭化物またはM7C3型炭化物と判断できる析出物を特定する。その粒子が大角(度)粒界を被覆する長さを測定し、当該測定を少なくとも1試料あたり5視野、1合金あたり5個以上の試験片を採取して行ない、合計25試料以上のその場観察、または電子顕微鏡の解析によって求めることができる。
The grain boundary coverage is a value obtained by dividing the sum of the precipitate lengths on the large angle (degree) grain boundary by the sum of the large angle (degree) grain boundary lengths, and is 100% when completely covered. This is a parameter for determining 0% when there is no coating.
The grain boundary coverage of the carbide was measured by observing the structure in the longitudinal direction of the test material in the annealed state. Grain boundary coverage is first measured by electron microscope observation at a magnification of 10,000, and the particles deposited on the large-angle (degree) grain boundary are analyzed by energy dispersive X-ray spectroscopy (EDX) or a 10,000 times thin film transmission electron microscope. Precipitates that can be determined as M 23 C 6 type carbide or M 7 C 3 type carbide are identified by transmission electron diffraction pattern analysis in the analysis. The length of the grain covering the large-angle (degree) grain boundary is measured, and the measurement is performed by collecting at least 5 visual fields per sample and 5 or more test pieces per alloy. It can be determined by observation or analysis with an electron microscope.
第2グループの評価は、上記で作製した45mmH×95mmWの素材を連続酸化試験し、焼入焼戻し状態のシャルピー衝撃試験を実施し、表3に本願発明鋼の結果を示し、表4に比較鋼の結果を示した。 The evaluation of the second group is the continuous oxidation test of the 45 mmH × 95 mmW material produced above, the Charpy impact test in the quenched and tempered state, Table 3 shows the results of the present invention steel, and Table 4 shows the comparative steel. The result was shown.
すなわち、連続酸化試験は、上記で作製した45mm高さ×95mm幅の素材を径12mm長さ21mmに調整した後、1100℃で100hrの連続酸化実験を実施した。さらに、ショットブラストにて脱スケールを施し、酸化減量の値を測定した。 That is, in the continuous oxidation test, the 45 mm high × 95 mm wide material prepared above was adjusted to a diameter of 12 mm and a length of 21 mm, and then a continuous oxidation experiment was performed at 1100 ° C. for 100 hours. Furthermore, descaling was performed by shot blasting, and the value of oxidation loss was measured.
シャルピー衝撃試験は、供試材を1000〜1150℃で焼入れし、その後550〜650℃で焼戻しを実施し、角10×55mmの標準試験片に調整した後、JIS Z 2242に則って2mmUノッチのシャルピー衝撃試験を実施し、3回平均の値を、それぞれ表3に本願開発鋼の靱性をシャルピー衝撃値で示し、表4に比較鋼の靱性をシャルピー衝撃値で示した。 In the Charpy impact test, the specimen was quenched at 1000 to 1150 ° C., then tempered at 550 to 650 ° C., adjusted to a standard test piece of 10 × 55 mm square, and 2 mm U notch in accordance with JIS Z 2242. The Charpy impact test was carried out, and the average value of the three times was shown in Table 3, the toughness of the developed steel in the Charpy impact value, and in Table 4, the toughness of the comparative steel was shown in the Charpy impact value.
Claims (3)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016138416A JP6725191B2 (en) | 2016-07-13 | 2016-07-13 | Ni-containing high C martensitic heat resistant steel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016138416A JP6725191B2 (en) | 2016-07-13 | 2016-07-13 | Ni-containing high C martensitic heat resistant steel |
Publications (3)
Publication Number | Publication Date |
---|---|
JP2018009214A true JP2018009214A (en) | 2018-01-18 |
JP2018009214A5 JP2018009214A5 (en) | 2019-05-30 |
JP6725191B2 JP6725191B2 (en) | 2020-07-15 |
Family
ID=60995040
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016138416A Active JP6725191B2 (en) | 2016-07-13 | 2016-07-13 | Ni-containing high C martensitic heat resistant steel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6725191B2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527928A (en) * | 2019-09-02 | 2019-12-03 | 特冶(北京)科技发展有限公司 | A kind of high temperature resistant valve seating and its production method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001131634A (en) * | 1999-11-04 | 2001-05-15 | Daido Steel Co Ltd | Method producing cold tool steel |
JP2002047541A (en) * | 2000-07-31 | 2002-02-15 | Sanyo Special Steel Co Ltd | High corrosion resistance stainless steel with excellent cold workability and linear guide device using the same |
JP2002155316A (en) * | 2000-11-16 | 2002-05-31 | Nisshin Steel Co Ltd | Method for producing high carbon martensitic stainless steel sheet |
JP2005344184A (en) * | 2004-06-04 | 2005-12-15 | Daido Steel Co Ltd | Martensitic stainless steel |
JP2015137381A (en) * | 2014-01-21 | 2015-07-30 | 山陽特殊製鋼株式会社 | Stainless steel having excellent machinability, hardness, abrasion resistance and corrosion resistance |
-
2016
- 2016-07-13 JP JP2016138416A patent/JP6725191B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001131634A (en) * | 1999-11-04 | 2001-05-15 | Daido Steel Co Ltd | Method producing cold tool steel |
JP2002047541A (en) * | 2000-07-31 | 2002-02-15 | Sanyo Special Steel Co Ltd | High corrosion resistance stainless steel with excellent cold workability and linear guide device using the same |
JP2002155316A (en) * | 2000-11-16 | 2002-05-31 | Nisshin Steel Co Ltd | Method for producing high carbon martensitic stainless steel sheet |
JP2005344184A (en) * | 2004-06-04 | 2005-12-15 | Daido Steel Co Ltd | Martensitic stainless steel |
JP2015137381A (en) * | 2014-01-21 | 2015-07-30 | 山陽特殊製鋼株式会社 | Stainless steel having excellent machinability, hardness, abrasion resistance and corrosion resistance |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110527928A (en) * | 2019-09-02 | 2019-12-03 | 特冶(北京)科技发展有限公司 | A kind of high temperature resistant valve seating and its production method |
CN110527928B (en) * | 2019-09-02 | 2020-11-10 | 特冶河北科技发展有限公司 | High-temperature-resistant valve seat and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
JP6725191B2 (en) | 2020-07-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102172891B1 (en) | Austenitic stainless steel | |
EP2885440B1 (en) | High-chromium heat-resistant steel | |
JP6004653B2 (en) | Ferritic stainless steel wire, steel wire, and manufacturing method thereof | |
JP7018510B2 (en) | Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method | |
WO2009154235A1 (en) | Steel for heat treatment | |
JP5991564B2 (en) | Hot tool material and hot tool manufacturing method | |
JP6267618B2 (en) | Bolt steel and bolts | |
US20180066344A1 (en) | Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt | |
JP2002363708A (en) | Martensitic stainless steel | |
JP2021031695A (en) | Hot work-tool steel excellent in toughness | |
JP6654328B2 (en) | High hardness and high toughness cold tool steel | |
CN110139942A (en) | High hardness wear-resisting steel and its manufacturing method | |
WO2007123164A1 (en) | Piston ring material for internal combustion engine | |
JP2019077911A (en) | Steel member and manufacturing method of steel member | |
CN109790602B (en) | steel | |
JP7629269B2 (en) | Hot work tool steel with excellent thermal conductivity | |
JP7214313B2 (en) | High toughness cold work tool steel with high wear resistance | |
JP6436232B2 (en) | Spring steel | |
JP4031607B2 (en) | Machine structural steel with reduced grain coarsening | |
JP5217191B2 (en) | Wear-resistant steel plate with excellent workability and method for producing the same | |
JP6540131B2 (en) | Ferritic heat resistant steel | |
JP6725191B2 (en) | Ni-containing high C martensitic heat resistant steel | |
JP5017937B2 (en) | Wear-resistant steel plate with excellent bending workability | |
JP2024031942A (en) | Steel parts and their manufacturing method | |
CN107937826B (en) | Stainless steel having excellent oxidation resistance at high temperature |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190416 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20190418 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191120 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191210 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200123 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200624 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200624 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6725191 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |