[go: up one dir, main page]

JP2018004059A - Airflow control apparatus and airflow control method - Google Patents

Airflow control apparatus and airflow control method Download PDF

Info

Publication number
JP2018004059A
JP2018004059A JP2016136213A JP2016136213A JP2018004059A JP 2018004059 A JP2018004059 A JP 2018004059A JP 2016136213 A JP2016136213 A JP 2016136213A JP 2016136213 A JP2016136213 A JP 2016136213A JP 2018004059 A JP2018004059 A JP 2018004059A
Authority
JP
Japan
Prior art keywords
airflow
plasma
flow
blade
boundary layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016136213A
Other languages
Japanese (ja)
Inventor
田中 元史
Motofumi Tanaka
元史 田中
安井 祐之
Sukeyuki Yasui
祐之 安井
俊樹 大迫
Toshiki Osako
俊樹 大迫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2016136213A priority Critical patent/JP2018004059A/en
Publication of JP2018004059A publication Critical patent/JP2018004059A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Landscapes

  • Plasma Technology (AREA)
  • Wind Motors (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an airflow control apparatus capable of producing sufficient airflow control effects even in a situation where a boundary layer of an airflow flowing through a surface of an object can become thicker.SOLUTION: An airflow control apparatus 10 includes a layer thickness reduction mechanism 20 and an airflow generator 30. The layer thickness reduction mechanism reduces a thickness of a boundary layer of an airflow 15 flowing through a surface of an object 12. The airflow generator is disposed on the surface of the object. The layer thickness reduction mechanism is disposed at an upstream side in a flow direction of the airflow in comparison with a position at which the airflow generator is disposed on the object.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、気流制御装置及び気流制御方法に関する。   Embodiments described herein relate generally to an airflow control device and an airflow control method.

流体機器の内部や表面に沿った流体の流れを制御して、流体機器の振動及び騒音の低減や、流体機器の効率向上を図ることは重要である。流体の流れを制御するための装置としては、流体の一部をプラズマ化して、プラズマ誘起流を発生させる気流発生装置などの開発が進められている。   It is important to reduce the vibration and noise of the fluid device and to improve the efficiency of the fluid device by controlling the flow of fluid along the inside and the surface of the fluid device. As an apparatus for controlling the flow of fluid, development of an airflow generator that generates a plasma-induced flow by converting a part of the fluid into plasma has been underway.

この気流発生装置は、高電圧が高周波で印加されると、気流発生装置上にプラズマが生成され、このプラズマ中に存在するイオンの運動量が周辺の中性気体分子に移行して、プラズマ誘起流と呼ばれる、薄い層状の流れを発生させる。   In this airflow generator, when a high voltage is applied at a high frequency, plasma is generated on the airflow generator, and the momentum of ions present in this plasma is transferred to the surrounding neutral gas molecules, so that a plasma-induced current is generated. A thin laminar flow called is generated.

上記したプラズマ誘起流を流れの境界層に作用させることで、境界層の速度分布を変化させたり、擾乱を与えたりすることができる。つまり、このプラズマ誘起流の作用によって、層流から乱流への遷移を強制的に引き起こしたり、渦流を発生させたり、渦流を消滅させたりすることができ、これにより、流体機器の内外における流体の流れを制御して、流体機器の空力特性などを改善することが可能となる。   By applying the plasma-induced flow to the boundary layer of the flow, the velocity distribution of the boundary layer can be changed or a disturbance can be given. In other words, the action of this plasma-induced flow can forcibly cause a transition from laminar flow to turbulent flow, generate eddy currents, or extinguish eddy currents. It is possible to improve the aerodynamic characteristics of the fluid device by controlling the flow of the fluid.

特開2008−25434号公報JP 2008-25434 A

ところで、このような気流発生装置は、流体機器における例えば翼(2次元対称翼など)の前縁付近に設置されることで、翼の前縁での流体の流れ(気流)の失速が改善され、効率的な気流制御を行うことができる。   By the way, such an airflow generation device is installed near the leading edge of a wing (such as a two-dimensional symmetric wing) in a fluid device, thereby improving the stall of fluid flow (airflow) at the leading edge of the wing. Efficient airflow control can be performed.

しかしながら、翼型の中には、上記した翼の前縁付近での気流の失速とは異なり、翼の後縁付近で気流が失速する形状の翼型も存在する。後者の翼型の場合、翼の後縁付近に気流発生装置を設置したとしても、気流発生装置の設置位置よりも上流側の位置で、境界層が発達しその厚さが厚くなってしまうと、十分な気流制御効果が得られないという課題が生じる。   However, in the airfoil, there is an airfoil having a shape in which the airflow stalls in the vicinity of the trailing edge of the wing, unlike the stalling of the airflow in the vicinity of the leading edge of the wing described above. In the case of the latter airfoil, even if an airflow generator is installed near the trailing edge of the blade, the boundary layer develops at a position upstream of the installation position of the airflow generator and its thickness increases. There arises a problem that a sufficient airflow control effect cannot be obtained.

そこで、本発明が解決しようとする課題は、物体の表面を流れる気流の境界層が厚くなり得る状況においても、十分な気流制御効果を発揮させることができる気流制御装置及び気流制御方法を提供することである。   Therefore, the problem to be solved by the present invention is to provide an airflow control device and an airflow control method capable of exerting a sufficient airflow control effect even in a situation where the boundary layer of the airflow flowing on the surface of the object can be thick. That is.

実施の形態の気流制御装置は、層厚縮減機構及び気流発生装置を備えている。層厚縮減機構は、物体の表面を流れる気流の境界層の厚みを縮減する。気流発生装置は、前記物体の表面に設置され、前記層厚縮減機構は、前記物体上における前記気流発生装置の設置位置よりも、前記気流の流れ方向の上流側の位置に設けられている。   The airflow control device of the embodiment includes a layer thickness reduction mechanism and an airflow generation device. The layer thickness reduction mechanism reduces the thickness of the boundary layer of the airflow flowing on the surface of the object. The airflow generation device is installed on the surface of the object, and the layer thickness reduction mechanism is provided at a position upstream of the installation position of the airflow generation device on the object in the flow direction of the airflow.

第1の実施の形態に係る気流制御装置の構成を概略的に示す斜視図。The perspective view which shows roughly the structure of the airflow control apparatus which concerns on 1st Embodiment. 図1の気流制御装置が備えた気流発生装置の構成を概略的に示す図。The figure which shows schematically the structure of the airflow generator with which the airflow control apparatus of FIG. 1 was equipped. 図1の気流制御装置が備えた層厚縮減機構の構成を示すA−A断面図。AA sectional drawing which shows the structure of the layer thickness reduction mechanism with which the airflow control apparatus of FIG. 1 was equipped. 前縁付近に気流発生装置を設置した翼において、プラズマ誘起流を発生させていない場合(プラズマOFFの場合)の気流の状態を示す図。The figure which shows the state of the airflow when the plasma induced flow is not generated in the wing | blade which installed the airflow generation apparatus near the front edge (in the case of plasma OFF). 前縁付近に気流発生装置を設置した翼において、プラズマ誘起流を発生させた場合(プラズマONの場合)の気流の状態を示す図。The figure which shows the state of the airflow when the plasma induced flow is generated in the wing | blade which installed the airflow generator near the front edge (in the case of plasma ON). 風車のナセルの表面を移動する気流を概略的に示す図。The figure which shows schematically the airflow which moves the surface of the nacelle of a windmill. 自動車の表面を移動する気流を概略的に示す図。The figure which shows schematically the airflow which moves the surface of a motor vehicle. ヘリコプタの表面を移動する気流を概略的に示す図。The figure which shows roughly the airflow which moves the surface of a helicopter. 後縁付近で気流の失速している翼のモデルを示す図。The figure which shows the model of the wing | blade which the airflow stalls near the trailing edge. ディフューザモデルに作用する気流を概略的に示す図。The figure which shows roughly the airflow which acts on a diffuser model. 角部に気流発生装置を設置したバックステップにおいて、プラズマ誘起流を発生させていない場合の気流の状態を示す図。The figure which shows the state of the airflow in case the plasma induced flow is not generated in the back step which installed the airflow generator in the corner | angular part. 角部に気流発生装置を設置したバックステップにおいて、プラズマ誘起流を発生させた場合の気流の状態を示す図。The figure which shows the state of the airflow at the time of generating a plasma induced flow in the back step which installed the airflow generation apparatus in the corner | angular part. 図8Bの構成に加えて、バックステップの上流側にトリッピングワイヤを設置したときの気流の状態を示す図。The figure which shows the state of an airflow when a tripping wire is installed in the upstream of the back step in addition to the structure of FIG. 8B. 気流発生装置を気流の剥離点付近に設置した翼において、プラズマ誘起流を発生させていない場合の気流の状態を示す図。The figure which shows the state of the airflow when not generating the plasma induction flow in the wing | blade which installed the airflow generation apparatus in the vicinity of the peeling point of an airflow. 気流発生装置を気流の剥離点付近に設置した翼において、プラズマ誘起流を発生させた場合の気流の状態を示す図。The figure which shows the state of the airflow at the time of generating a plasma induced flow in the wing | blade which installed the airflow generation apparatus in the vicinity of the peeling point of an airflow. 気流発生装置を気流の剥離点付近に設置した翼において、プラズマ誘起流を発生させていない場合の気流の剥離抑制効果を示す図。The figure which shows the peeling inhibitory effect of the airflow in case the airflow generator is installed in the vicinity of the peeling point of an airflow, and the plasma induced flow is not generated. 気流発生装置を気流の剥離点付近に設置した翼において、プラズマ誘起流を発生させた場合の気流の剥離抑制効果を示す図。The figure which shows the peeling inhibitory effect of the airflow at the time of generating the plasma induced flow in the blade | wing installed in the airflow separation point vicinity. 気流発生装置を気流の剥離点付近に設置した翼において、層厚縮減機構を設けていない場合の構成を示す図。The figure which shows the structure when the layer thickness reduction mechanism is not provided in the wing | blade which installed the airflow generation apparatus in the vicinity of the peeling point of an airflow. 図11Aの構成において、翼の表面上を流れる気流の移動区間とプラズマ誘起流による剥離抑制効果との関係を示す図。FIG. 11B is a diagram showing the relationship between the moving section of the airflow flowing on the surface of the blade and the effect of suppressing separation by the plasma-induced flow in the configuration of FIG. 11A. 気流発生装置を気流の剥離点付近に設置した翼において、層厚縮減機構を設けた場合の構成を示す図。The figure which shows the structure at the time of providing the layer thickness reduction mechanism in the wing | blade which installed the airflow generation apparatus in the vicinity of the peeling point of an airflow. 図11Cの構成において、翼の表面上を流れる気流の移動区間とプラズマ誘起流による剥離抑制効果との関係を示す図。FIG. 11C is a diagram showing the relationship between the moving section of the airflow flowing over the surface of the blade and the effect of suppressing the separation by the plasma-induced flow in the configuration of FIG. 11C. 気流発生装置を気流の剥離点付近に設置した翼において、層厚縮減機構を設けていない場合の境界層の速度分布を示す図。The figure which shows the velocity distribution of the boundary layer in the case of not providing the layer thickness reduction mechanism in the wing | blade which installed the airflow generation apparatus in the vicinity of the peeling point of an airflow. 気流発生装置を気流の剥離点付近に設置した翼において、層厚縮減機構を設けた場合の境界層の速度分布を示す図。The figure which shows the velocity distribution of a boundary layer at the time of providing the layer thickness reduction | decrease mechanism in the wing | blade which installed the airflow generation apparatus in the vicinity of the peeling point of an airflow. 第2の実施の形態に係る気流制御装置の構成を概略的に示す斜視図。The perspective view which shows roughly the structure of the airflow control apparatus which concerns on 2nd Embodiment. 第3の実施の形態に係る気流制御装置の構成を概略的に示す斜視図。The perspective view which shows roughly the structure of the airflow control apparatus which concerns on 3rd Embodiment.

以下、実施の形態を図面に基づき説明する。
<第1の実施の形態>
図1〜図3に示すように、本実施形態に係る気流制御装置10は、層厚縮減機構(境界層厚み縮減部)20及び気流発生装置30を備えている。層厚縮減機構20は、後に詳述するように、翼(物体)12の表面を流れる気流15の境界層の厚みを縮減する。一方、気流15の一部をプラズマ化したプラズマ誘起流を発生させ、このプラズマ誘起流を、厚みの縮減された境界層に作用させる。
Hereinafter, embodiments will be described with reference to the drawings.
<First Embodiment>
As shown in FIGS. 1 to 3, the airflow control device 10 according to the present embodiment includes a layer thickness reduction mechanism (boundary layer thickness reduction portion) 20 and an airflow generation device 30. The layer thickness reduction mechanism 20 reduces the thickness of the boundary layer of the airflow 15 flowing on the surface of the wing (object) 12 as will be described in detail later. On the other hand, a plasma-induced flow is generated by converting a part of the air flow 15 into plasma, and this plasma-induced flow is applied to the boundary layer with a reduced thickness.

気流発生装置30は、図2に示すように、誘電体33、34と、誘電体33を挟んで対向する一対の第1及び第2の電極31、32と、第1及び第2の電極31、32間に電圧を印加する放電用電源(電源装置)35と、を備えている。第1の電極31は、誘電体33の表面上に設けられている。第2の電極32は、誘電体33と誘電体34との間に埋設されている。   As shown in FIG. 2, the airflow generation device 30 includes dielectrics 33 and 34, a pair of first and second electrodes 31 and 32 that are opposed to each other with the dielectric 33 interposed therebetween, and first and second electrodes 31. , 32, and a discharge power supply (power supply device) 35 that applies a voltage between the two. The first electrode 31 is provided on the surface of the dielectric 33. The second electrode 32 is embedded between the dielectric 33 and the dielectric 34.

放電用電源35は、ケーブル36を介して第1及び第2の電極31、32と接続されており、第1の電極31と第2の電極32との間に交番電圧(交流電圧)を印加する。また、放電用電源35は、例えば、電圧値を増減可能又は周期的に入切可能(間欠的にON/OFF可能)なパルス変調電圧を、第1及び第2の電極31、32間に印加するパルス変調機能などを備えている。   The discharge power source 35 is connected to the first and second electrodes 31 and 32 via the cable 36 and applies an alternating voltage (alternating voltage) between the first electrode 31 and the second electrode 32. To do. The discharge power source 35 applies, for example, a pulse modulation voltage between the first and second electrodes 31 and 32 that can increase or decrease the voltage value or can be periodically turned on and off (intermittently ON / OFF). It has a pulse modulation function.

ここで、放電用電源35から、第1及び第2の電極31、32間に高電圧が高周波で印加されると、電極間に誘電体バリア放電が起こり、この誘電体バリア放電に伴って放電プラズマが生成される。この放電プラズマ中に存在するイオンの運動量が周辺の中性気体分子に移行して、プラズマ誘起流(薄い層状の流れ)を発生させる。プラズマ誘起流は、第1の電極31側から第2の電極32側へ向かうように、第1の誘電体33の表面上に沿って流れる。   Here, when a high voltage is applied between the first and second electrodes 31 and 32 from the discharge power source 35 at a high frequency, a dielectric barrier discharge occurs between the electrodes, and the discharge is accompanied by the dielectric barrier discharge. Plasma is generated. The momentum of ions present in the discharge plasma is transferred to the surrounding neutral gas molecules to generate plasma-induced flow (thin laminar flow). The plasma-induced flow flows along the surface of the first dielectric 33 so as to go from the first electrode 31 side to the second electrode 32 side.

このようなプラズマ誘起流を気流の境界層に作用させることで、境界層の速度分布を変化させたり、擾乱を与えたりすることができる。すなわち、このプラズマ誘起流の作用によって、層流から乱流への遷移を強制的に引き起こしたり、渦流を発生させたり、渦流を消滅させたりすることができ、これにより、翼12の表面を流れる気流15を制御して、空力特性などを改善することが可能となる。   By applying such plasma-induced flow to the boundary layer of the airflow, the velocity distribution of the boundary layer can be changed or disturbance can be given. That is, the action of the plasma-induced flow can forcibly cause a transition from laminar flow to turbulent flow, generate vortex flow, or eliminate vortex flow, and thereby flow on the surface of the blade 12. It is possible to improve the aerodynamic characteristics and the like by controlling the air flow 15.

ところで、図4A、図4Bに示すように、前縁失速を起こしている翼(2次元対称翼)71の前縁付近に上記した気流発生装置30と同様の気流発生装置70を設け、この気流発生装置70に対しパルス変調制御によって電圧の印加を間欠的に行うと、翼71の前縁での気流72の失速が改善され、電圧を連続的に印加する方法に比べて効率的な気流制御が可能となる。特に、パルス変調の周波数を、翼後流で検出した流速変動の卓越周波数付近に設定した場合、大規模剥離流れが翼面に引き寄せられる効果が現れることがわかっている。   4A and 4B, an air flow generation device 70 similar to the air flow generation device 30 described above is provided in the vicinity of the leading edge of a blade (two-dimensional symmetric blade) 71 that has caused a leading edge stall. When the voltage is intermittently applied to the generator 70 by pulse modulation control, the stall of the air current 72 at the leading edge of the blade 71 is improved, and the air current control is more efficient than the method in which the voltage is continuously applied. Is possible. In particular, it has been found that when the frequency of pulse modulation is set near the dominant frequency of the flow velocity fluctuation detected in the wake of the blade, the effect of attracting a large-scale separated flow to the blade surface appears.

このような間欠的な電圧の印加によるプラズマ誘起流の作用のメカニズムについては、翼71の前縁付近からの2次元的な横渦を放出している場合と、乱流遷移により流れを付着させている場合と、があるといわれている。また、気流発生装置70の設置位置(第1、第2の電極の設置位置)は、翼に対する気流の剥離点に近い位置とするのが効率的であることもわかっている。   Regarding the mechanism of the action of the plasma-induced flow by such intermittent voltage application, the flow is attached by the case where a two-dimensional transverse vortex is released from the vicinity of the leading edge of the blade 71 and the turbulent transition. It is said that there is a case. It has also been found that it is efficient to set the installation position of the airflow generator 70 (the installation position of the first and second electrodes) close to the separation point of the airflow with respect to the blade.

しかしながら、翼型の中には、上記した翼の前縁付近での気流の失速とは異なり、図6のように、翼の後縁付近で気流が失速する形状の翼型も存在する。また、本実施形態では、図5A〜図5Cに示すように、気流制御の対象となる物体(流体機器)として、風車のナセル74、自動車75やヘリコプタ76など、種々の流体機器において、流体機器の前縁ではなく、流体機器の後方側の角部等での剥離を制御し、後流(下流側の気流)を整流することを想定している。   However, in the airfoil, there is an airfoil having a shape in which the airflow stalls in the vicinity of the trailing edge of the blade, as shown in FIG. 6, unlike the stalling of the airflow in the vicinity of the leading edge of the blade described above. Further, in the present embodiment, as shown in FIGS. 5A to 5C, as various objects (fluid devices) subject to airflow control, in various fluid devices such as a windmill nacelle 74, an automobile 75, and a helicopter 76, It is assumed that separation at the corners on the rear side of the fluid device is controlled instead of the front edge, and the wake (downstream airflow) is rectified.

そこで、本願発明者らは、流体機器後方の流れの制御方法を複数のモデルを用いて実験的に検討を行った。まず、図6に示すように、後縁付近で気流72の剥離している翼71において、後縁近くで流れが剥離する剥離点Sの近傍に設置した気流発生装置での剥離抑制を試みたが、十分な効果を得られなかった。次に、図7に示すように、ディフューザモデル73において、剥離点Sの近傍に設置した気流発生装置70による、圧力回復の促進を試みたが、十分な効果を得られなかった。   Therefore, the inventors of the present application experimentally studied a method for controlling the flow behind the fluid device using a plurality of models. First, as shown in FIG. 6, in the blade 71 where the air current 72 is separated near the trailing edge, an attempt was made to suppress separation with an airflow generator installed near the separation point S where the flow separated near the trailing edge. However, a sufficient effect was not obtained. Next, as shown in FIG. 7, in the diffuser model 73, an attempt was made to promote pressure recovery by the airflow generation device 70 installed in the vicinity of the separation point S, but a sufficient effect could not be obtained.

さらに、図8Aに示すように、流体機器のバックステップ77の角部に気流発生装置70を設置した気流の再付着促進実験では、プラズマ誘起流によって図8Bのように再付着を促進させることができたものの、バックステップ77の上流側にトリッピングワイヤ78などが設置されている場合では、図8Cのように気流制御効果が低減することが判明した。   Furthermore, as shown in FIG. 8A, in the air reattachment promotion experiment in which the air flow generation device 70 is installed at the corner of the back step 77 of the fluid device, the reattachment is promoted as shown in FIG. 8B by the plasma induced flow. Although it was possible, when the tripping wire 78 or the like was installed upstream of the back step 77, it was found that the airflow control effect was reduced as shown in FIG. 8C.

これらの結果を総合して考察した結果、翼などの後縁付近に気流発生装置を設置したとしても、気流発生装置の設置位置よりも上流側の位置で、境界層が発達しその厚さが厚くなってしまうと、十分な気流制御効果が得られないという課題が明らかになった。   As a result of comprehensive consideration of these results, even if an airflow generator is installed near the trailing edge of a wing or the like, a boundary layer develops at a position upstream of the installation position of the airflow generator and the thickness of the boundary layer develops. When it became thick, the subject that sufficient airflow control effect was not acquired became clear.

そこで、本実施形態の気流制御装置10は、図1、図3に示すように、上述した層厚縮減機構(境界層厚み縮減部)20を備えている。層厚縮減機構20は、翼(物体)12の表面に設置された気流発生装置30の設置位置よりも、翼12上における、気流15の流れ方向の上流側の位置に設けられている。   Therefore, the airflow control device 10 of the present embodiment includes the layer thickness reduction mechanism (boundary layer thickness reduction part) 20 described above, as shown in FIGS. The layer thickness reduction mechanism 20 is provided at a position on the blade 12 on the upstream side in the flow direction of the airflow 15 with respect to the installation position of the airflow generation device 30 installed on the surface of the blade (object) 12.

層厚縮減機構20は、翼12の表面を流れる気流15の一部15aを、翼12の内部12a側へ導くためのスリット(開口)21を有している。このスリット21は、翼12の表面部分に間隙Dを隔てた段差22を設けることによって構成されたスリットである。   The layer thickness reduction mechanism 20 has a slit (opening) 21 for guiding a part 15 a of the air flow 15 flowing on the surface of the blade 12 toward the inside 12 a of the blade 12. The slit 21 is a slit configured by providing a step 22 having a gap D in the surface portion of the blade 12.

より具体的には、層厚縮減機構20は、図3に示すように、当該層厚縮減機構20本体における、気流15の流れ方向の上流側の部位を構成する上流側縮減部23と、当該層厚縮減機構20本体における、気流15の流れ方向の下流側の部位を構成する下流側縮減部24と、を備えている。上流側縮減部23の表面は、翼12の上流側の表面14を滑らかに延伸するかたちで構成されている。一方、下流側縮減部24の表面は、翼12の下流側の表面16に滑らかに接続されている。   More specifically, as shown in FIG. 3, the layer thickness reduction mechanism 20 includes an upstream side reduction portion 23 that constitutes a portion on the upstream side in the flow direction of the airflow 15 in the layer thickness reduction mechanism 20 main body, A downstream reduction portion 24 that constitutes a downstream portion of the layer thickness reduction mechanism 20 main body in the flow direction of the air flow 15. The surface of the upstream reducing portion 23 is formed by smoothly extending the upstream surface 14 of the blade 12. On the other hand, the surface of the downstream reduced portion 24 is smoothly connected to the downstream surface 16 of the blade 12.

上流側縮減部23と下流側縮減部24とは互いにラップする位置関係にあり、上流側縮減部23は、下流側縮減部24よりも、翼12本体の内側に配置されている。上流側縮減部23と下流側縮減部24との間隙Dは、数ミリオーダ又は数十ミリオーダで構成されている。   The upstream side reduction part 23 and the downstream side reduction part 24 are in a positional relationship such that they wrap around each other, and the upstream side reduction part 23 is disposed more inside the blade 12 body than the downstream side reduction part 24. A gap D between the upstream side reduction portion 23 and the downstream side reduction portion 24 is configured to be several milli-order or several tens of milli-order.

層厚縮減機構20では、翼12の表面14を流れてきた気流15は、スリット21を通過する際に、下流側縮減部24の先端部分Eで分断され、気流15の一部は、上流側縮減部23の後端部からスリット21内に流入し、一方、気流15の残りは、下流側縮減部24の表面及び翼12の表面16を流れる外部流となって、新たな境界層を形成する。この際、角部流側に新たに形成された境界層の厚みは、もとの境界層の厚みよりも薄くなる。   In the layer thickness reduction mechanism 20, the airflow 15 that has flowed through the surface 14 of the blade 12 is divided by the tip E of the downstream reduction portion 24 when passing through the slit 21, and a part of the airflow 15 is upstream. The remaining airflow 15 flows into the slit 21 from the rear end portion of the reduced portion 23, while the remaining airflow 15 becomes an external flow that flows on the surface of the downstream reduced portion 24 and the surface 16 of the blade 12 to form a new boundary layer. To do. At this time, the thickness of the boundary layer newly formed on the corner flow side is smaller than the thickness of the original boundary layer.

下流側縮減部24の先端部分Eの形状は、極力薄い板状にするか、楔状(シャープエッジ)にするか、又は、できるだけ曲率半径を小さくした曲面にすることが望ましい。第1及び第2の電極31、32を含む気流発生装置30は、下流側縮減部24よりも下流側の翼12の表面16上に配置されている。   The shape of the distal end portion E of the downstream side reduced portion 24 is desirably a thin plate shape, a wedge shape (sharp edge), or a curved surface having a curvature radius as small as possible. The airflow generation device 30 including the first and second electrodes 31 and 32 is disposed on the surface 16 of the blade 12 on the downstream side of the downstream side reduction portion 24.

第1の電極31の表面は、翼12の表面16と同一面(面一)となるように設置されている。なお、第1の電極31は、その表面が露出しないように埋設されていてもよい。
一方、第2の電極32は、図3に示すように、第1の電極31の設置位置よりも、気流15の流れ方向の下流側に設置位置をシフトさせて配置されている。この第2の電極32は、第1の電極31よりも、翼12の表面16からさらに深い位置に埋設されている。
The surface of the first electrode 31 is installed so as to be flush with the surface 16 of the wing 12. The first electrode 31 may be embedded so that the surface thereof is not exposed.
On the other hand, as shown in FIG. 3, the second electrode 32 is arranged with its installation position shifted to the downstream side in the flow direction of the airflow 15 from the installation position of the first electrode 31. The second electrode 32 is buried deeper from the surface 16 of the blade 12 than the first electrode 31.

ここで、図9Aは、気流制御装置10を作動さていないときの、翼12の後縁付近(又は車両の後方付近)での流体の流れ(気流15)を模式的に示した図である。一方、図9Bは、気流制御装置10を作動させたときの、翼12の後縁付近(又は車両の後方付近)での流体の流れ(気流15)を模式的に示した図である。   Here, FIG. 9A is a diagram schematically showing a fluid flow (air flow 15) in the vicinity of the rear edge of the blade 12 (or in the vicinity of the rear of the vehicle) when the air flow control device 10 is not operated. On the other hand, FIG. 9B is a diagram schematically showing the flow of fluid (airflow 15) in the vicinity of the rear edge of the blade 12 (or the vicinity of the rear of the vehicle) when the airflow control device 10 is operated.

図9A、図9Bに示すように、気流発生装置30が備える第2の電極32は、翼(物体)12の表面16を流れる気流(外部流れ)15の剥離点S0の近傍に設置されることが望ましい。また、放電用電源35によって印加される交番電圧の周波数、またはパルス変調周波数は、放電を印加しない状態で、剥離点S0から断続的に放出される渦流17の卓越周波数fsに近い周波数とすることが好ましい。具体的には、これらの周波数は、卓越周波数fsの±10%に制御されることが好ましい。 As shown in FIGS. 9A and 9B, the second electrode 32 included in the airflow generation device 30 is installed in the vicinity of the separation point S 0 of the airflow (external flow) 15 that flows on the surface 16 of the wing (object) 12. It is desirable. The frequency of the alternating voltage applied by the discharge power supply 35 or the pulse modulation frequency is a frequency close to the dominant frequency fs of the eddy current 17 intermittently discharged from the separation point S 0 in the state where no discharge is applied. It is preferable. Specifically, these frequencies are preferably controlled to ± 10% of the dominant frequency fs.

この範囲が好ましいのは、この範囲内であれば放電のエネルギで効率的に渦流17の放出現象を共鳴させ、渦流17を強化することができるからである。また、気流発生装置30の第1及び第2の電極31、32間における誘電体33の材質は、特に限定されるものではなく、公知な固体の誘電材料が適用されている。誘電体33の材質としては、例えば電気的絶縁材料である、酸化アルミニウム(アルミナ)、マイカなどの無機絶縁物、ポリイミド、ガラスエポキシ、ゴム、ガラスなどの有機絶縁物などが挙げられ、用途に応じて最適な誘電材料を選択して使用することが可能である。なお、層厚縮減機構20の上流側縮減部23及び下流側縮減部24を翼(物体)12本体と一体で形成してもよいし、上流側縮減部23及び下流側縮減部24と、翼12本体と、を個別に形成した後、一体化させるようにしてもよい。   This range is preferable because, within this range, the discharge phenomenon of the vortex 17 can be efficiently resonated with the energy of the discharge and the vortex 17 can be strengthened. The material of the dielectric 33 between the first and second electrodes 31 and 32 of the airflow generation device 30 is not particularly limited, and a known solid dielectric material is applied. Examples of the material of the dielectric 33 include an electrically insulating material such as an inorganic insulator such as aluminum oxide (alumina) and mica, and an organic insulator such as polyimide, glass epoxy, rubber, and glass. It is possible to select and use the most suitable dielectric material. The upstream side reduction part 23 and the downstream side reduction part 24 of the layer thickness reduction mechanism 20 may be formed integrally with the main body of the blade (object) 12, or the upstream side reduction part 23, the downstream side reduction part 24, and the blade After the 12 main bodies are individually formed, they may be integrated.

次に、本実施形態の気流制御装置10の動作(気流制御方法)について説明する。
図9Aに示すように、気流15は、最初の段階では、翼12の表面の曲率に沿って流れるが、剥離点S0において剥離を生じる。剥離の際、翼12の表面に平行かつ気流15の流れ方向に垂直な軸をもつ横渦(渦流)17が発生する。境界層は、非定常に、図9Aに示す剥離状態と図9Bに示す付着状態とを繰り返す状態となっており、この剥離と付着の繰り返しのなかで、横渦17が気流15の流れ方向に断続的に放出される。剥離点S0の位置は、翼(物体)12の表面形状や気流15の速度(主流速度)などによって定まる。
Next, the operation (airflow control method) of the airflow control device 10 of the present embodiment will be described.
As shown in FIG. 9A, the air flow 15 flows along the curvature of the surface of the blade 12 in the first stage, but the separation occurs at the separation point S 0 . At the time of separation, a lateral vortex (vortex) 17 having an axis parallel to the surface of the blade 12 and perpendicular to the flow direction of the airflow 15 is generated. The boundary layer is in an unsteady state in which the separation state shown in FIG. 9A and the adhesion state shown in FIG. 9B are repeated, and the transverse vortex 17 moves in the flow direction of the air flow 15 during this repetition of separation and adhesion. Released intermittently. The position of the separation point S 0 is determined by the surface shape of the wing (object) 12 and the velocity of the airflow 15 (mainstream velocity).

そこで、流れが剥離を生じる場合に、気流制御装置10を作動させる。この場合、気流発生装置30の第1及び第2の電極31、32間に放電用電源35によって例えば交番電圧が印加され、翼12の表面上にプラズマを生じさせる。このプラズマ中のイオンが電界から受ける力が気体に伝達されることで、プラズマ誘起流が発生する。なお、プラズマ誘起流は、気流15の流れ方向に沿って流れるように発生させることが好ましいが、特に境界層に上乱を与えたいときなどは、プラズマ誘起流の向きを逆にしてもよい。プラズマ誘起流が発生すると、プラズマ誘起流により気流の境界層の低速度部分が加速され、速度分布に有効な影響を与える。   Therefore, when the flow causes separation, the air flow control device 10 is operated. In this case, for example, an alternating voltage is applied between the first and second electrodes 31 and 32 of the airflow generation device 30 by the discharge power source 35, and plasma is generated on the surface of the blade 12. A plasma induced flow is generated by transmitting the force received by the ions in the plasma from the electric field to the gas. The plasma-induced flow is preferably generated so as to flow along the flow direction of the air flow 15, but the direction of the plasma-induced flow may be reversed particularly when it is desired to give a disturbance to the boundary layer. When plasma-induced flow occurs, the low-speed part of the boundary layer of the airflow is accelerated by the plasma-induced flow and has an effective effect on the velocity distribution.

例えば、交番電圧を印加された場合、プラズマは交番電圧の周波数によって断続的に発生するため、プラズマ誘起流は交番電圧の周期にあわせて断続的に発生する。また、交番電圧を印加する際、電圧の印加を断続的に制御するパルス変調制御を行った場合、プラズマ誘起流は、このパルス変調制御の周波数に対応して断続的に発生する。   For example, when an alternating voltage is applied, plasma is intermittently generated according to the frequency of the alternating voltage, so that the plasma induced current is intermittently generated in accordance with the period of the alternating voltage. Further, when pulse modulation control is performed to intermittently control the application of voltage when applying the alternating voltage, the plasma induced flow is intermittently generated corresponding to the frequency of this pulse modulation control.

図9A、図9Bに示すように、気流発生装置30を作動していない場合、翼12の後縁付近における横渦17の状態は、前述したように不安定な状態である。これに対して、図10A、図10Bに示すように、気流発生装置30を設けている場合、例えば印加する交番電圧の周波数又はパルス変調の周波数fc、つまり断続的に発生するプラズマ誘起流の周波数を、翼12の後縁付近から放出される渦流(横渦)の卓越周波数fsに同調させると、放出されていた横渦17が共鳴してエネルギが注入され、横渦17が強化される。横渦17が強化されると、横渦17のもつ減圧分の作用、または、横渦17による境界層内外の運動量交換により、翼12の表面付近の流れが翼12の表面に引き寄せられる。   As shown in FIGS. 9A and 9B, when the airflow generation device 30 is not operated, the state of the lateral vortex 17 in the vicinity of the trailing edge of the blade 12 is an unstable state as described above. On the other hand, as shown in FIGS. 10A and 10B, when the airflow generation device 30 is provided, for example, the frequency of the alternating voltage to be applied or the frequency fc of the pulse modulation, that is, the frequency of the plasma-induced flow generated intermittently. Is tuned to the dominant frequency fs of the vortex flow (lateral vortex) emitted from the vicinity of the trailing edge of the blade 12, the released horizontal vortex 17 resonates and energy is injected, and the horizontal vortex 17 is strengthened. When the lateral vortex 17 is strengthened, the flow near the surface of the blade 12 is attracted to the surface of the blade 12 by the action of the reduced pressure of the lateral vortex 17 or the exchange of momentum inside and outside the boundary layer by the lateral vortex 17.

この結果、図10Bに示すように、大規模な剥離が抑えられ、流体の流れ(気流15)は、翼12の表面に付着するようにして移動する。これにより、翼12では、揚力が向上したり、抵抗が低減したりするなどの効果が得られる。   As a result, as shown in FIG. 10B, large-scale separation is suppressed, and the fluid flow (air flow 15) moves so as to adhere to the surface of the blade 12. Thereby, in the wing | blade 12, effects, such as a lift improving and resistance reducing, are acquired.

ここで、上記した電極間に印加する交番電圧の周波数又はパルス変調の周波数fcは、前述した電圧を印加していない場合に放出される渦流(渦流の放出周波数)と対応した卓越周波数fsに基づいて設定される。なお、周波数fcは、卓越周波数fsと完全に等しくなくとも、卓越周波数fsに対して±10%の範囲の値であれば十分な気流制御効果が得られる。渦流の卓越周波数fsと、交番電圧の周波数又はパルス変調の周波数fcと、が等しくない場合には、卓越周波数fsが周波数fcに収斂する。   Here, the frequency of the alternating voltage applied between the electrodes or the frequency fc of the pulse modulation is based on the dominant frequency fs corresponding to the eddy current (eddy current emission frequency) emitted when no voltage is applied. Is set. Even if the frequency fc is not completely equal to the dominant frequency fs, a sufficient airflow control effect can be obtained as long as the value is within a range of ± 10% with respect to the dominant frequency fs. When the dominant frequency fs of the eddy current is not equal to the frequency of the alternating voltage or the frequency fc of the pulse modulation, the dominant frequency fs converges to the frequency fc.

渦流の卓越周波数fsは、風速の関数として、あらかじめ計測してデータベース化しておき、運用時には主流速度のみを定めることで卓越周波数fsを決めることができる。このため、交番電圧の周波数制御を容易に行うことができる。また、図10Bに示すように、気流15の剥離点は、気流発生装置30の効果によって、当該図10B中のSoffからSonに移動し、このSoffからSonまでの距離ΔSを、プラズマ誘起流による剥離抑制効果(プラズマ効果ΔS)とみなすことができる。 The dominant frequency fs of the eddy current can be measured in advance as a function of the wind speed and stored in a database, and the dominant frequency fs can be determined by determining only the mainstream speed during operation. For this reason, the frequency control of the alternating voltage can be easily performed. Further, as shown in FIG. 10B, the separation point of the air flow 15, by the effect of the airflow generating device 30, moves from the S off in the Figure 10B to S on, the distance ΔS from the S off to S on, It can be regarded as a delamination suppressing effect (plasma effect ΔS) by the plasma induced flow.

次に、図11A〜図11Dに基づき、気流発生装置30よりも上流側に設置された層厚縮減機構(境界層厚み縮減部)20の作用について説明する。   Next, based on FIGS. 11A to 11D, the operation of the layer thickness reduction mechanism (boundary layer thickness reduction part) 20 installed on the upstream side of the airflow generation device 30 will be described.

図11A、図11Bは、層厚縮減機構20を設けていない場合の、助走区間(翼の表面上を流れる気流の移動区間)Lと、プラズマ効果(プラズマ誘起流による剥離抑制効果)ΔSと、の関係を示したものである。図11A、図11Bに示すように、助走区間Lの長さが長くなるほど、プラズマ効果ΔSは小さくなり、Lがある閾値以上に長くなると、プラズマ効果はほとんど観測できなくなる。   FIG. 11A and FIG. 11B show a run-up section (moving section of the airflow flowing over the surface of the wing) L, a plasma effect (a delamination suppressing effect due to plasma-induced flow) ΔS, when the layer thickness reduction mechanism 20 is not provided. This shows the relationship. As shown in FIGS. 11A and 11B, the longer the length of the run-up section L, the smaller the plasma effect ΔS. When L is longer than a certain threshold, the plasma effect can hardly be observed.

一方、図11C、図11Dは、層厚縮減機構20を設けた場合の、助走区間Lとプラズマ効果ΔSとの関係を示したものである。図11C、図11Dに示すように、層厚縮減機構20を設けた場合、プラズマ効果ΔSは、助走区間Lの長さの影響を受け難くなる。   On the other hand, FIG. 11C and FIG. 11D show the relationship between the run-up section L and the plasma effect ΔS when the layer thickness reducing mechanism 20 is provided. As shown in FIGS. 11C and 11D, when the layer thickness reduction mechanism 20 is provided, the plasma effect ΔS is hardly affected by the length of the run-up section L.

図11A〜図11Dに示した結果になる理由を、さらに図12A、図12Bに基づき説明する。図12Aは、層厚縮減機構20を設けていない場合の、上記した助走区間から剥離点までの境界層の速度分布を示している。ここで、図12A中の横軸vは、流速を表しており、この図12Aの速度分布では、物体の表面は、摩擦によって速度が遅くなることを示している。この図12A中のX0,X1,X2は、翼(物体)12の表面上における位置を示している。位置X0と位置X1とでは速度分布が異なっている。つまり、位置X0では、翼12の表面上を流体が流れ始めた(気流が移動し始めた)ところであり、境界層は薄い状態である。位置X0から位置X1まで気流が移動(助走)するあいだに境界層の厚みが厚くなり、さらに、翼(物体)12の後縁付近の曲率面上を通過して、気流発生装置30の設置されている位置X2に到達する時点では、境界層が非常に厚くなる。 The reason for the results shown in FIGS. 11A to 11D will be further described based on FIGS. 12A and 12B. FIG. 12A shows the velocity distribution of the boundary layer from the above-described running section to the separation point when the layer thickness reduction mechanism 20 is not provided. Here, the horizontal axis v in FIG. 12A represents the flow velocity, and the velocity distribution in FIG. 12A indicates that the velocity of the surface of the object is decreased by friction. X 0 , X 1 , and X 2 in FIG. 12A indicate positions on the surface of the wing (object) 12. The velocity distribution is different between the position X 0 and the position X 1 . That is, at the position X 0 , the fluid has started to flow on the surface of the blade 12 (the airflow has started to move), and the boundary layer is thin. While the airflow moves (runs up) from position X 0 to position X 1, the thickness of the boundary layer increases, and further passes over the curvature surface near the trailing edge of the wing (object) 12 to at the time it reaches the position X 2 which is installed, the boundary layer becomes very thick.

一方、図12Bは、層厚縮減機構20を設けた場合の、上記した助走区間Lから剥離点までの境界層の速度分布を示している。位置X0では、翼12の表面上を流体が流れ始めたところであり、境界層は薄い状態である。位置X0から位置X1まで気流が移動するあいだに境界層の厚みは厚くなるものの、気流が層厚縮減機構20を通過すると境界層の厚みは薄くなる。 On the other hand, FIG. 12B shows the velocity distribution of the boundary layer from the above-described running section L to the separation point when the layer thickness reduction mechanism 20 is provided. At position X 0 , fluid has just started to flow over the surface of the wing 12 and the boundary layer is thin. While the thickness of the boundary layer increases while the airflow moves from position X 0 to position X 1, the thickness of the boundary layer decreases when the airflow passes through the layer thickness reducing mechanism 20.

さらに、翼(物体)12の後縁付近の曲率面上を通過して、気流発生装置30の設置されている位置X2に到達するまでに境界層の厚みは増大するものの、位置X2に設置された気流発生装置30の作用によって、位置X2における境界層の厚みは、図12Aに示す状態と比べて薄くなる。この薄くなった境界層にプラズマ誘起流による加速や擾乱を与えることで、プラズマ効果を発現させることができる。 Furthermore, blade passes over the curvature surface near the trailing edge of the (object) 12, although the thickness of the boundary layer before it reaches the position X 2 which is installed in the airflow generating device 30 increases, the position X 2 by the action of the installed flow generator 30, the thickness of the boundary layer at the position X 2 is thinner in comparison with the state shown in FIG. 12A. The plasma effect can be expressed by applying acceleration or disturbance by the plasma-induced flow to the thinned boundary layer.

既述したように、本実施形態の気流制御装置10及び気流制御方法によれば、翼などの流体機器の後方側を流れる気流の境界層が十分に発達してしまう状況においても、気流発生装置30の上流側に設置した層厚縮減機構20の作用によって、気流発生装置30の設置位置での境界層の厚みを縮減できるため、プラズマ誘起流による気流制御効果(気流の剥離抑制効果)を十分に発揮させることができる。   As described above, according to the airflow control device 10 and the airflow control method of the present embodiment, even in a situation where the boundary layer of the airflow flowing behind the fluid equipment such as the wings is sufficiently developed, the airflow generation device Since the thickness of the boundary layer at the installation position of the airflow generation device 30 can be reduced by the action of the layer thickness reduction mechanism 20 installed upstream of the airflow 30, the airflow control effect by the plasma-induced flow (airflow separation suppression effect) is sufficient. Can be demonstrated.

<第2の実施の形態>
次に、第2の実施の形態を図13に基づき説明する。図13に示すように、本実施形態の気流制御装置80は、第1の実施形態の気流制御装置10が備えていた層厚縮減機構20に代えて、層厚縮減機構90を備えている。層厚縮減機構90は、層厚縮減機構20のスリット(開口)21に代えて空隙(開口)91を有している。
<Second Embodiment>
Next, a second embodiment will be described with reference to FIG. As shown in FIG. 13, the airflow control device 80 of this embodiment includes a layer thickness reduction mechanism 90 instead of the layer thickness reduction mechanism 20 provided in the airflow control device 10 of the first embodiment. The layer thickness reducing mechanism 90 has a gap (opening) 91 instead of the slit (opening) 21 of the layer thickness reducing mechanism 20.

この空隙91は、気流15の流れ方向に対して、翼(物体)92の表面上を横断するように設けられている。この空隙91は、翼92の表面を流れる気流(境界層)95の一部を、翼92の内部92a側へ導く(吸い込む)ための開口として機能するものである。 The air gap 91 is provided so as to cross the surface of the wing (object) 92 with respect to the flow direction of the air flow 15. The air gap 91 functions as an opening for guiding (sucking) a part of the airflow (boundary layer) 95 flowing on the surface of the blade 92 toward the inside 92 a of the blade 92.

したがって、第2の実施形態の気流制御装置80においても、気流発生装置30の上流側に設置した層厚縮減機構90により境界層の厚みを縮減できるため、下流側の気流発生装置30が発生させるプラズマ誘起流の作用によって十分な気流制御効果を得ることができる。   Therefore, also in the airflow control device 80 of the second embodiment, since the thickness of the boundary layer can be reduced by the layer thickness reduction mechanism 90 installed on the upstream side of the airflow generation device 30, the downstream airflow generation device 30 generates the airflow. A sufficient airflow control effect can be obtained by the action of the plasma induced flow.

<第3の実施の形態>
次に、第3の実施の形態を図14に基づき説明する。図14に示すように、本実施形態の気流制御装置100は、第1の実施形態の気流制御装置10が備えていた層厚縮減機構20に代えて、層厚縮減機構110を備えている。層厚縮減機構110は、層厚縮減機構20のスリット(開口)21に代えて多孔面111を有している。
<Third Embodiment>
Next, a third embodiment will be described with reference to FIG. As shown in FIG. 14, the airflow control device 100 of this embodiment includes a layer thickness reduction mechanism 110 instead of the layer thickness reduction mechanism 20 included in the airflow control device 10 of the first embodiment. The layer thickness reducing mechanism 110 has a porous surface 111 instead of the slit (opening) 21 of the layer thickness reducing mechanism 20.

この多孔面111は、翼(物体)112の表面上の所定の面積を網羅するように設けられている。多孔面111が有する複数の孔は、気流115の流れ方向に沿って配列されている。この多孔面111は、翼112の表面を流れる気流(境界層)115の一部を、翼112の内部112a側へ導く(吸い込む)ための開口として機能するものである。   The porous surface 111 is provided so as to cover a predetermined area on the surface of the wing (object) 112. The plurality of holes of the porous surface 111 are arranged along the flow direction of the air flow 115. The porous surface 111 functions as an opening for guiding (sucking) a part of the airflow (boundary layer) 115 flowing on the surface of the blade 112 toward the inside 112 a of the blade 112.

したがって、第2の実施形態の気流制御装置100においても、気流発生装置30の上流側に設置した層厚縮減機構110により境界層の厚みを縮減できるため、下流側の気流発生装置30が発生させるプラズマ誘起流の作用によって十分な気流制御効果を得ることができる。   Therefore, also in the airflow control device 100 of the second embodiment, since the thickness of the boundary layer can be reduced by the layer thickness reduction mechanism 110 installed on the upstream side of the airflow generation device 30, the downstream airflow generation device 30 generates the airflow. A sufficient airflow control effect can be obtained by the action of the plasma induced flow.

以上説明した少なくとも一つの実施形態によれば、物体の表面を流れる気流の境界層が厚くなり得る状況においても、十分な気流制御効果を発揮させることができる。   According to at least one embodiment described above, a sufficient airflow control effect can be exhibited even in a situation where the boundary layer of the airflow flowing on the surface of the object can be thick.

以上、本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施することが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これらの実施形態やその変形例は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。   As mentioned above, although some embodiment of this invention was described, these embodiment is shown as an example and is not intending limiting the range of invention. These novel embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and modifications thereof are included in the scope and gist of the invention, and are included in the invention described in the claims and the equivalents thereof.

10,80,100…気流制御装置、12,92,112…翼(物体)、12a,92a,112a…翼の内部、14,16…翼の表面、15,95,115…気流、17…渦流(横渦)、20,90,110…層厚縮減機構、21…スリット(開口)、22…段差、23…上流側縮減部、24…下流側縮減部、30…気流発生装置、31…第1の電極、32…第2の電極、33,34…誘電体、35…放電用電源、91…空隙(開口)、111…多孔面、E…下流側縮減部の先端部分。   10, 80, 100 ... Airflow control device, 12, 92, 112 ... Wing (object), 12a, 92a, 112a ... Inside of the wing, 14, 16 ... Surface of the wing, 15, 95, 115 ... Airflow, 17 ... Eddy current (Horizontal vortex), 20, 90, 110 ... layer thickness reduction mechanism, 21 ... slit (opening), 22 ... step, 23 ... upstream reduction part, 24 ... downstream reduction part, 30 ... air flow generator, 31 ... first DESCRIPTION OF SYMBOLS 1 electrode 32 ... 2nd electrode, 33, 34 ... Dielectric material, 35 ... Power supply for discharge, 91 ... Air gap (opening), 111 ... Porous surface, E ... Tip part of downstream reduction part.

Claims (8)

物体の表面を流れる気流の境界層の厚みを縮減する層厚縮減機構と、
前記物体の表面に設置される気流発生装置と
を備え、
前記層厚縮減機構は、前記物体上における前記気流発生装置の設置位置よりも、前記気流の流れ方向の上流側の位置に設けられている
気流制御装置。
A layer thickness reduction mechanism that reduces the thickness of the boundary layer of the airflow flowing through the surface of the object;
An airflow generator installed on the surface of the object,
The layer thickness reduction mechanism is an airflow control device provided at a position upstream of the airflow generation device on the object in the flow direction of the airflow.
前記気流発生装置は、前記気流の一部をプラズマ化したプラズマ誘起流を発生させて、前記厚みの縮減された境界層に作用させる
請求項1に記載の気流制御装置。
The airflow control device according to claim 1, wherein the airflow generation device generates a plasma induced flow obtained by converting a part of the airflow into plasma and acts on the boundary layer having the reduced thickness.
前記層厚縮減機構は、前記物体の表面を流れる気流の一部を、前記物体の内部側へ導くための開口を有する
請求項1又は2に記載の気流制御装置。
The airflow control device according to claim 1, wherein the layer thickness reduction mechanism has an opening for guiding a part of the airflow flowing on the surface of the object to the inside of the object.
前記開口は、前記物体の表面部分に間隙を隔てた段差を設けることによって構成されている
請求項3に記載の気流制御装置。
The air flow control device according to claim 3, wherein the opening is configured by providing a step with a gap in a surface portion of the object.
前記開口は、前記気流の流れ方向に対して、前記物体の表面上を横断するように設けられている
請求項3に記載の気流制御装置。
The airflow control device according to claim 3, wherein the opening is provided so as to cross the surface of the object with respect to a flow direction of the airflow.
前記開口は、前記物体の表面に設けられている、
請求項3に記載の気流制御装置。
The opening is provided on the surface of the object.
The airflow control device according to claim 3.
前記物体は翼、または移動体である
請求項1から6までのいずれか1項に記載の気流制御装置。
The airflow control device according to any one of claims 1 to 6, wherein the object is a wing or a moving body.
物体の表面を流れる気流の境界層の厚みを縮減する工程と、
前記気流の一部をプラズマ化したプラズマ誘起流を発生させて、前記厚みの縮減された境界層に作用させる工程と
を有する気流制御方法。
Reducing the thickness of the boundary layer of the airflow flowing over the surface of the object;
And a step of generating a plasma-induced flow in which a part of the airflow is converted into plasma and acting on the boundary layer with the reduced thickness.
JP2016136213A 2016-07-08 2016-07-08 Airflow control apparatus and airflow control method Pending JP2018004059A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016136213A JP2018004059A (en) 2016-07-08 2016-07-08 Airflow control apparatus and airflow control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016136213A JP2018004059A (en) 2016-07-08 2016-07-08 Airflow control apparatus and airflow control method

Publications (1)

Publication Number Publication Date
JP2018004059A true JP2018004059A (en) 2018-01-11

Family

ID=60947767

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016136213A Pending JP2018004059A (en) 2016-07-08 2016-07-08 Airflow control apparatus and airflow control method

Country Status (1)

Country Link
JP (1) JP2018004059A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167006A (en) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 Cab structure
JP2021047086A (en) * 2019-09-18 2021-03-25 株式会社Subaru Wind tunnel test apparatus
JP2021156497A (en) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル Air conditioner

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686897A (en) * 1979-12-06 1981-07-15 Ver Flugtechnische Werke Plane form with section of critical excess
JPH03112496U (en) * 1990-03-02 1991-11-18
JP2008025434A (en) * 2006-07-20 2008-02-07 Toshiba Corp Wind turbine blade, wind power generation system, and control method for wind power generation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5686897A (en) * 1979-12-06 1981-07-15 Ver Flugtechnische Werke Plane form with section of critical excess
JPH03112496U (en) * 1990-03-02 1991-11-18
JP2008025434A (en) * 2006-07-20 2008-02-07 Toshiba Corp Wind turbine blade, wind power generation system, and control method for wind power generation system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019167006A (en) * 2018-03-23 2019-10-03 いすゞ自動車株式会社 Cab structure
JP2021047086A (en) * 2019-09-18 2021-03-25 株式会社Subaru Wind tunnel test apparatus
JP7412114B2 (en) 2019-09-18 2024-01-12 株式会社Subaru wind tunnel test equipment
JP2021156497A (en) * 2020-03-27 2021-10-07 株式会社富士通ゼネラル Air conditioner

Similar Documents

Publication Publication Date Title
JP5793343B2 (en) Airflow control device and airflow control method
US8235072B2 (en) Method and apparatus for multibarrier plasma actuated high performance flow control
US7017863B2 (en) Turbulent flow drag reduction
US8226047B2 (en) Reduction of tip vortex and wake interaction effects in energy and propulsion systems
CN102887223B (en) Method of controlling plasma circular rector for wing with sharp trailing edge
US7066431B2 (en) Turbulent flow drag reduction
CN106564585B (en) High-performance deep stall wing structure and aircraft
CN107914865B (en) Plasma virtual dynamic bionic device and method for wing leading edge
JP4912955B2 (en) Aerodynamic noise reduction device, fluid equipment, moving body and rotating equipment
RU2008119502A (en) PLASMA DEVICES TO REDUCE FRONT RESISTANCE ON WINGS, TONES AND / OR FUSELELES OF VERTICAL APPLIANCE WITH A VERTICAL TAKE-OFF AND LANDING
EP3147207B1 (en) Embedded dielectric structures for active flow control plasma sources
JP2018004059A (en) Airflow control apparatus and airflow control method
Mohammadi et al. Active flow control by dielectric barrier discharge to increase stall angle of a NACA0012 airfoil
CN106184720A (en) Lift-drag ratio enhancement mode wing based on Plasma Actuator and gurney flap
JP6404042B2 (en) Lift control device
DK2769912T3 (en) Vertebral apparatus and method
KR101381872B1 (en) Plasma film for airflow control
JP2013236995A (en) Air current generating device
JP2013525196A (en) Method of processing sound waves emitted at the exit of an aircraft turbo engine using a dielectric barrier discharge device and an aircraft comprising such a device
WO2014178205A1 (en) Surface flow control system and surface flow control method
JP2019189045A (en) Wing structure, method for controlling wing structure, and aircraft
CN107893796A (en) A kind of synthesizing jet-flow excitor and Blades For Horizontal Axis Wind
JP5955996B2 (en) Airflow control device and airflow control method
Polivanov et al. Comparison of flows induced by a dielectric barrier discharge and a sliding discharge
Yarusevych et al. Effect of local flow control on transition in a laminar separation bubble

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171201

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20171201

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20191127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20191203

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20200526