[go: up one dir, main page]

JP2018003811A - Oxidation catalyst and exhaust emission control system - Google Patents

Oxidation catalyst and exhaust emission control system Download PDF

Info

Publication number
JP2018003811A
JP2018003811A JP2016135789A JP2016135789A JP2018003811A JP 2018003811 A JP2018003811 A JP 2018003811A JP 2016135789 A JP2016135789 A JP 2016135789A JP 2016135789 A JP2016135789 A JP 2016135789A JP 2018003811 A JP2018003811 A JP 2018003811A
Authority
JP
Japan
Prior art keywords
oxidation catalyst
exhaust gas
cell
catalyst device
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016135789A
Other languages
Japanese (ja)
Other versions
JP6753179B2 (en
Inventor
和広 榎
Kazuhiro Enoki
和広 榎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Isuzu Motors Ltd
Original Assignee
Isuzu Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Isuzu Motors Ltd filed Critical Isuzu Motors Ltd
Priority to JP2016135789A priority Critical patent/JP6753179B2/en
Publication of JP2018003811A publication Critical patent/JP2018003811A/en
Application granted granted Critical
Publication of JP6753179B2 publication Critical patent/JP6753179B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an oxidation catalyst device which is easy in manufacturing, and can improve the exhaust emission control performance of an exhaust emission control device such as a PM collection filter device and an NOx purification catalyst device which is arranged at a downstream side, and an exhaust emission control system.SOLUTION: In an oxidation catalyst device 20 for carrying an oxidation catalyst at a honeycomb structure 21, cells 22a, 22b through which an exhaust gas G passes are formed into square shapes, the cell 22a of an external peripheral part Ra is formed into a shape which is obtained by eliminating a cross-shaped bulkhead of the cell 22b of a center part Rb with respect to a face vertical to a flow direction of the exhaust gas G, a circulation cross section area of the cell 22a of the external peripheral part Ra becomes four times of a circulation cross section area of the cell 22b of the center part Rb, and a cell concentration of the external peripheral part Ra becomes one fourth of a cell concentration of the center part Rb.SELECTED DRAWING: Figure 2

Description

本発明は、車両に搭載した内燃機関等の排気ガスを浄化するための酸化触媒装置、及び排気ガス浄化システムに関する。   The present invention relates to an oxidation catalyst device for purifying exhaust gas such as an internal combustion engine mounted on a vehicle, and an exhaust gas purification system.

車両に搭載した内燃機関では、酸化触媒装置やPM捕集フィルター装置やNOx浄化用のSCR触媒装置等を組み合わせた排気ガス浄化システムを備えて、排気ガスを浄化している。この酸化触媒装置は、排気ガス中の炭化水素等を酸化するもので、通常、排気ガス浄化システムの最前列に配置されることが多い。   An internal combustion engine mounted on a vehicle is provided with an exhaust gas purification system that combines an oxidation catalyst device, a PM collection filter device, an SCR catalyst device for NOx purification, and the like to purify exhaust gas. This oxidation catalyst device oxidizes hydrocarbons and the like in exhaust gas, and is usually arranged in the forefront of an exhaust gas purification system in many cases.

この酸化触媒装置は、白金等の貴金属触媒をハニカム構造体の担体に担持されることが多く、高昇温性能及び高熱容量を両立させて、排ガスを効率よく浄化するために外周部のセルの隔壁の厚さを中心側のセルの隔壁の厚さよりも厚く形成したこのハニカム構造体も提案されている(例えば、特許文献1参照)。   In this oxidation catalyst device, a noble metal catalyst such as platinum is often supported on a carrier of a honeycomb structure, and in order to efficiently purify exhaust gas while achieving both high temperature rise performance and high heat capacity, the partition walls of the outer peripheral cells There has also been proposed a honeycomb structure in which the thickness of the honeycomb structure is made larger than the thickness of the partition wall of the cell on the center side (see, for example, Patent Document 1).

特開2012−200625号公報JP 2012-200265 A

一方、酸化触媒装置においては、排気管の壁面の摩擦抵抗の影響で、配管流路の外周部(壁面側)で中心部側よりも遅くなるため、酸化触媒装置の外周部に流入する排気ガスの量が低下する。その結果、HCの堆積量が中心側より低くなり、HCの酸化による発熱量が少なくなるため、下流側の排気ガス浄化装置では、酸化触媒装置を通過して外周部で流速と温度が低くなった排気ガスが流入することになり、排気ガス浄化性能を十分に発揮できないという問題がある。   On the other hand, in the oxidation catalyst device, the exhaust gas flowing into the outer peripheral portion of the oxidation catalyst device is slower than the central portion side at the outer peripheral portion (wall surface side) of the pipe flow channel due to the influence of the frictional resistance of the wall surface of the exhaust pipe. The amount of is reduced. As a result, the amount of HC deposited is lower than that at the center, and the amount of heat generated by the oxidation of HC is reduced. Therefore, the downstream exhaust gas purification device passes through the oxidation catalyst device and the flow velocity and temperature are reduced at the outer periphery. Exhaust gas will flow in, and there is a problem that exhaust gas purification performance cannot be fully exhibited.

また、酸化触媒の前面におけるHCの堆積による詰りが生じると、酸化触媒でHCの酸化を十分に行うことができずに、後流側のPM捕集フィルター装置の再生温度やNOx浄化触媒装置の活性化温度の確保ができず、再生不良などが起こるという問題が生じる。   In addition, when clogging due to HC accumulation on the front surface of the oxidation catalyst occurs, the oxidation catalyst cannot sufficiently oxidize HC, and the regeneration temperature of the PM collecting filter device on the downstream side and the NOx purification catalyst device There is a problem that the activation temperature cannot be ensured and regeneration failure occurs.

本発明の目的は、製造容易で、しかも、下流側に配置されているPM捕集フィルター装置やNOx浄化触媒装置等の排気ガス浄化装置の排気ガス浄化性能を向上できる酸化触媒装置、及び、排気ガス浄化システムを提供することにある。   An object of the present invention is an oxidation catalyst device that is easy to manufacture and that can improve the exhaust gas purification performance of an exhaust gas purification device such as a PM collection filter device or a NOx purification catalyst device arranged on the downstream side, and an exhaust gas It is to provide a gas purification system.

さらには、外周部からの詰まりに対するハニカム形状での流れの改良と煤詰まりの原因となるHCの付着回避のための低温におけるHC浄化性能を向上して、酸化触媒装置の前面詰りを回避できる酸化触媒装置、及び、排気ガス浄化システムを提供することにある。   Furthermore, it is possible to improve the flow in the honeycomb shape against clogging from the outer peripheral part and improve the HC purification performance at low temperature for avoiding the adhesion of HC causing clogging, and the oxidation that can avoid clogging of the front surface of the oxidation catalyst device A catalyst device and an exhaust gas purification system are provided.

上記の目的を達成するための本発明の酸化触媒装置は、ハニカム構造体に酸化触媒を担持した酸化触媒装置において、排気ガスが通過するセルが四角形形状になっていると共に、排気ガスの流れ方向に垂直な面に関して、外周部のセルを中心部のセルの十字形状の隔壁を省いた形状で、外周部のセルの流通断面積が中心部のセルの流通断面積の4倍になっていて、外周部のセル密度が中心部のセル密度の1/4になっている。   To achieve the above object, an oxidation catalyst device of the present invention is an oxidation catalyst device in which an oxidation catalyst is supported on a honeycomb structure, the cells through which exhaust gas passes have a square shape, and the flow direction of the exhaust gas With respect to the surface perpendicular to the outer peripheral cell, the cross-sectional partition wall of the central cell is omitted from the central cell, and the flow cross-sectional area of the peripheral cell is four times that of the central cell. The cell density at the outer periphery is ¼ of the cell density at the center.

さらに、上記の酸化触媒装置において、排気ガスの流れ方向に関して、当該酸化触媒装置の前側の全体の長さの15%〜25%の位置より前方の領域を前部領域として、この前部領域における白金に対するパラジウムの担持量の割合が、この前部領域の後側の後部側領域における白金に対するパラジウムの担持量の割合よりも多くなっている構成とする。   Further, in the above oxidation catalyst device, with respect to the flow direction of the exhaust gas, a region in front of the position of 15% to 25% of the entire length of the front side of the oxidation catalyst device is defined as a front region, and The ratio of the amount of palladium supported with respect to platinum is set to be larger than the ratio of the amount of palladium supported with respect to platinum in the rear side region on the rear side of the front region.

また、上記の目的を達成するための本発明の排気ガス浄化システムは、上記の酸化触媒装置を当該排気ガス浄化システムにおける上流側に備えて構成される。   In addition, an exhaust gas purification system of the present invention for achieving the above object includes the above oxidation catalyst device provided on the upstream side of the exhaust gas purification system.

本発明の酸化触媒装置、及び、排気ガス浄化システムによれば、セル形状が四角形形状になっているとともに、外周部のセルが中央部のセルの十字形状の隔壁を省いた形状になっており、さらに、外周部のセル密度が中心部のセル密度の1/4になっているので、製造容易で、しかも、下流側に配置されているPM捕集フィルター装置やNOx浄化触媒装置等の排気ガス浄化装置の排気ガス浄化性能を向上できる。   According to the oxidation catalyst device and the exhaust gas purification system of the present invention, the cell shape is a square shape, and the outer peripheral cell has a shape in which the cross-shaped partition wall of the central cell is omitted. Furthermore, since the cell density in the outer peripheral portion is ¼ of the cell density in the central portion, it is easy to manufacture and the exhaust gas from the PM collection filter device, the NOx purification catalyst device, etc. disposed on the downstream side. The exhaust gas purification performance of the gas purification device can be improved.

さらには、外周部からの詰まりに対するハニカム形状での流れの改良と煤詰まりの原因となるHCの付着回避のための低温におけるHC浄化性能を向上して、酸化触媒装置の前面詰りを回避できる。   Furthermore, it is possible to improve the flow in the honeycomb shape against clogging from the outer peripheral portion and improve the HC purification performance at a low temperature for avoiding the adhesion of HC causing clogging, thereby avoiding the front clogging of the oxidation catalyst device.

本発明に係る実施の形態の排気ガス浄化システムの構成を模式的に示す図である。It is a figure showing typically composition of an exhaust-gas purification system of an embodiment concerning the present invention. 本発明に係る実施の形態の酸化触媒装置の構成を示す横断面図である。It is a cross-sectional view which shows the structure of the oxidation catalyst apparatus of embodiment which concerns on this invention. 図2の酸化触媒装置における外周部と中央部の区分を示す横断面図である。It is a cross-sectional view which shows the division of the outer peripheral part and center part in the oxidation catalyst apparatus of FIG. 図2の酸化触媒装置の構成を、セル構造を省いて模式的に示す側断面図である。FIG. 3 is a side sectional view schematically showing the configuration of the oxidation catalyst device of FIG. 2 without the cell structure. 別体で形成する酸化触媒装置の構成を、セル構造を省いて模式的に示す側断面図である。It is a sectional side view which shows typically the structure of the oxidation catalyst apparatus formed separately, without a cell structure. 均一セルの酸化触媒装置の構成を模式的に示す横断面図である。It is a cross-sectional view which shows typically the structure of the oxidation catalyst apparatus of a uniform cell.

以下、本発明に係る実施の形態の酸化触媒装置、及び排気ガス浄化システムについて図面を参照しながら説明する。   Hereinafter, an oxidation catalyst device and an exhaust gas purification system according to embodiments of the present invention will be described with reference to the drawings.

図1に示すように、本発明の実施の形態の排気ガス浄化システム1は、エンジン(内燃機関)10から排出される排気ガスGが通過する排気通路11に、酸化触媒装置(DOC)20と、粒子状物質(PM)を捕集するためのPM捕集フィルター装置(DPD)30、排気ガスG中の窒素酸化物(NOx)等の成分を浄化するSCR触媒装置(SCR)40等の各種の排気ガスユニットを組み合わせて設けた排気ガス浄化システムであり、この排気ガス浄化システム1において、酸化触媒装置20が、この排気ガス浄化システム1の最上流に配置されている。   As shown in FIG. 1, an exhaust gas purification system 1 according to an embodiment of the present invention includes an oxidation catalyst device (DOC) 20 and an exhaust passage 11 through which an exhaust gas G discharged from an engine (internal combustion engine) 10 passes. , PM collection filter device (DPD) 30 for collecting particulate matter (PM), SCR catalyst device (SCR) 40 for purifying components such as nitrogen oxide (NOx) in exhaust gas G, etc. In this exhaust gas purification system 1, the oxidation catalyst device 20 is disposed in the uppermost stream of the exhaust gas purification system 1.

この酸化触媒装置20は、排気ガスG中の酸素(O2)を使用して排気ガスG中に含まれる炭化水素(HC)や一酸化炭素(CO)を酸化したり、粒子状物質(PM)に含まれる未燃燃焼物質(SOF)を酸化したりして、水(H2O)と二酸化炭素(CO2)に変える排気ガス浄化装置であり、コーディエライトなどを原料としたセラミックスで構成された、フルスロー型のハニカム構造体21に白金(Pt)、パラジウム(Pd)、ロジウム(Rh)などの貴金属を酸化触媒(図示しない)として担持して構成される。 The oxidation catalyst device 20 uses oxygen (O 2 ) in the exhaust gas G to oxidize hydrocarbons (HC) and carbon monoxide (CO) contained in the exhaust gas G, or particulate matter (PM). ) Is an exhaust gas purifying device that oxidizes unburned combustible material (SOF) contained in) and converts it into water (H 2 O) and carbon dioxide (CO 2 ). The full-throw type honeycomb structure 21 is configured to carry a noble metal such as platinum (Pt), palladium (Pd), rhodium (Rh) as an oxidation catalyst (not shown).

そして、この酸化触媒装置20は、下流側に配置されるPM捕集フィルター装置30の温度を上昇させて、このPM捕集フィルター装置30に捕集されたPMを燃焼除去するような強制再生時には、エンジン10のシリンダ内燃料噴射のポスト噴射、又は、排気通路11に設けた燃料噴射ノズル(図示しない)から燃料を排気管内に直接噴射する排気管内直接噴射により、燃料を排気ガスG中に供給して、排気ガスG中の未燃燃料を増加し、この未燃燃料を酸化触媒装置20で触媒反応により酸化して、この酸化で発生する熱により排気ガスGの温度を上昇させる役割や、排気ガスG中の一酸化窒素(NO)を二酸化窒素(NO2)に酸化して排気ガスG中のNO:NO2の割合を1:1に近くして、PM捕集フィルター装置30における粒子状物質の燃焼を促進したりする役割を持っている。 Then, the oxidation catalyst device 20 raises the temperature of the PM collection filter device 30 arranged on the downstream side, and at the time of forced regeneration in which the PM collected by the PM collection filter device 30 is burned and removed. The fuel is supplied into the exhaust gas G by post-injection of in-cylinder fuel injection of the engine 10 or direct injection in the exhaust pipe through which fuel is directly injected into the exhaust pipe from a fuel injection nozzle (not shown) provided in the exhaust passage 11. The role of increasing the unburned fuel in the exhaust gas G, oxidizing the unburned fuel by a catalytic reaction in the oxidation catalyst device 20, and increasing the temperature of the exhaust gas G by the heat generated by the oxidation, nitrogen monoxide in the exhaust gas G the (NO) by oxidation to nitrogen dioxide (NO 2) in the exhaust gas G NO: the ratio of NO 2 1: to close to 1, the particle in the PM collection filter 30 The combustion of Jo substance has a role or to promote.

また、PM捕集フィルター装置30は、排気ガスG中の粒子状物質を捕集するためのもので、例えば、多孔質のセラミックのハニカムのセル(チャンネル)の入口と出口を交互に目封じしたモノリスハニカム型ウォールフロータイプのフィルターで構成される。   The PM collection filter device 30 is for collecting particulate matter in the exhaust gas G. For example, the inlet and outlet of a porous ceramic honeycomb cell (channel) are alternately plugged. It consists of a monolith honeycomb type wall flow type filter.

排気ガスGは、PM捕集フィルター装置30の目封じされていないセルの入口より流入し、隣接する出口を目封じされていないセルとの境界に形成されたPM捕集用のセル壁を通過して隣接する出口を目封じされていないセルの出口より流出する。PM捕集用の壁で捕集できるPMの捕集量には限界があるため、PM捕集量が飽和する前に、PM捕集フィルター装置30に高温の排気ガスGを通過させて、捕集された粒子状物質を燃焼除去する強制PM再生制御を定期的に行っている。   Exhaust gas G flows from the inlet of the unsealed cell of the PM collection filter device 30 and passes through the cell wall for collecting PM formed at the boundary between the adjacent outlet and the unsealed cell. Then, the adjacent outlet flows out from the outlet of the unsealed cell. Since there is a limit to the amount of PM that can be collected by the PM collection wall, before the PM collection amount is saturated, the high temperature exhaust gas G is passed through the PM collection filter device 30 to capture the PM. Forced PM regeneration control for burning and removing collected particulate matter is periodically performed.

そして、SCR触媒装置40は、鉄イオン交換アルミノシリケート等の触媒ゼオライトをセラミックハニカム等の担体に担持させたもので、その上流側の排気通路11に備えた尿素水供給装置41により噴射される尿素水が排気ガスGの熱により加水分解して生成されたアンモニア(NH3)を還元剤として、排気ガスGに含まれる窒素酸化物(NOx)を窒素(N2)に浄化する装置である。 The SCR catalyst device 40 is obtained by supporting a catalyst zeolite such as iron ion exchange aluminosilicate on a carrier such as a ceramic honeycomb, and urea injected by a urea water supply device 41 provided in the exhaust passage 11 on the upstream side thereof. This is an apparatus for purifying nitrogen oxide (NOx) contained in the exhaust gas G into nitrogen (N 2 ) using ammonia (NH 3 ) generated by hydrolysis of water by the heat of the exhaust gas G as a reducing agent.

なお、排気ガス浄化システム1には、SCR触媒装置40でのNOx浄化のために、尿素水を排気ガスG中に供給する尿素水噴射システムや、排気管内直接燃料噴射のための燃料噴射システムや、アンモニア流出を防止するためのアンモニア吸着ユニットなどと、PM捕集フィルター装置30の前後差圧を検出するための差圧センサや排気ガスG等の温度を検出するための温度センサやNOx濃度や酸素濃度を検出するためのガス濃度センサ等が配置されるが、ここでは、これらの構成は、本発明に直接関係しないので説明の簡略化のために省略する。   The exhaust gas purification system 1 includes a urea water injection system for supplying urea water into the exhaust gas G for NOx purification in the SCR catalyst device 40, a fuel injection system for direct fuel injection in the exhaust pipe, An ammonia adsorption unit for preventing ammonia outflow, a differential pressure sensor for detecting the differential pressure across the PM collection filter device 30, a temperature sensor for detecting the temperature of the exhaust gas G, NOx concentration, A gas concentration sensor or the like for detecting the oxygen concentration is arranged. However, since these components are not directly related to the present invention, they are omitted for simplification of description.

そして、本発明においては、図2及び図3に示すように、酸化触媒装置20のハニカム構造体21は、排気ガスGが通過するセルを四角形形状、好ましくは正方形形状になっているように形成すると共に、排気ガスGの流れ方向に垂直な面に関して、外周部Ra(図3の斜線によるハッチング部分)のセル22aが中心部Rb(図3の斜線によるハッチング部分に囲まれた白地の部分)のセル22bの十字形状の隔壁を省いた形状で、外周部Raのセル22aの流通断面積が中心部Rbのセル22bの流通断面積の4倍になっていて、外周部Raのセル密度が中心部Rbのセル密度の1/4になっているように構成される。そして、図2〜図4に示すように、このハニカム構造体21は、前後のテーパー部分を有して排気ガスGの流路を形成するケース23に、リング形状などの形状をしている固定部材24により固定支持されている。   In the present invention, as shown in FIGS. 2 and 3, the honeycomb structure 21 of the oxidation catalyst device 20 is formed so that the cells through which the exhaust gas G passes have a quadrangular shape, preferably a square shape. In addition, with respect to a plane perpendicular to the flow direction of the exhaust gas G, the cell 22a of the outer peripheral portion Ra (hatched portion by hatching in FIG. 3) is the center portion Rb (white portion surrounded by the hatching portion by hatching in FIG. 3). The cross-sectional area of the cell 22a in the outer peripheral portion Ra is four times the distribution cross-sectional area of the cell 22b in the central portion Rb, and the cell density of the outer peripheral portion Ra is The cell density is configured to be 1/4 of the cell density of the central portion Rb. As shown in FIGS. 2 to 4, the honeycomb structure 21 is fixed in a ring shape or the like on a case 23 having front and rear tapered portions and forming a flow path for the exhaust gas G. The member 24 is fixedly supported.

この構成によれば、セル22a、22bの形状が四角形形状好ましくは正方形形状なっていて、外周部Raのセル22aが中央部Rbのセル22bの十字形状の隔壁を省いている形状で、外周部Raのセル密度が中心部Rbのセル密度の1/4になっているので、図2及び図3に示すように、排気ガスGの流れ方向から見て、セル22a、22bの壁面にずれが生じない。そのため、押し出し成形による製造が容易となり、酸化触媒装置20の製造が容易となる。なお、この構成では、より製造し易くするために、外周部Raのセル22aと中心部Rbのセル22bの隔壁の厚さは同じ厚さとなっていることが好ましい。   According to this configuration, the shape of the cells 22a and 22b is a quadrangular shape, preferably a square shape, and the cell 22a of the outer peripheral portion Ra is a shape in which the cross-shaped partition wall of the cell 22b of the central portion Rb is omitted. Since the cell density of Ra is ¼ of the cell density of the central portion Rb, as shown in FIGS. 2 and 3, the wall surfaces of the cells 22 a and 22 b are displaced as seen from the flow direction of the exhaust gas G. Does not occur. Therefore, manufacture by extrusion molding becomes easy, and manufacture of the oxidation catalyst device 20 becomes easy. In this configuration, in order to facilitate manufacture, it is preferable that the partition walls of the cell 22a in the outer peripheral portion Ra and the cell 22b in the central portion Rb have the same thickness.

また、外周部Raのセル22aでは、中央部Rbのセル22bに比べて、流路断面積が大きくなっているので、外周部Raのセル22aの流通抵抗が中央部Rbのセル22bの流通抵抗より減少し、外周部Raのセル22aにおける排気ガスGの流通量が増加する。そのため、従来技術の図6に示すような、均一の流路断面積を持つハニカム構造体21Xの酸化触媒装置20Xでは、排気ガスGの流速が外周側で中心側よりも遅くなるため外周側から粒子状物質の堆積が発生し、中央側に進行するが、この実施の形態の酸化触媒装置20では、この粒子状物質の堆積を回避できるようになる。   Further, in the cell 22a of the outer peripheral portion Ra, the flow passage cross-sectional area is larger than that of the cell 22b of the central portion Rb, so that the flow resistance of the cell 22a of the outer peripheral portion Ra is the flow resistance of the cell 22b of the central portion Rb. The flow rate of the exhaust gas G in the cell 22a of the outer peripheral portion Ra increases. Therefore, in the oxidation catalyst device 20X of the honeycomb structure 21X having a uniform channel cross-sectional area as shown in FIG. 6 of the prior art, the flow rate of the exhaust gas G is slower on the outer peripheral side than on the central side, so that from the outer peripheral side. Particulate matter deposition occurs and proceeds toward the center, but in the oxidation catalyst device 20 of this embodiment, the particulate matter deposition can be avoided.

その結果、外周部Raと中央部Rbを通過した後の排気ガスGの流速と発熱量の差が小さくなり、下流側に配置されているPM捕集フィルター装置30に流入する排気ガスGの流速分布と温度分布が均一化される。そのため、PM捕集フィルター装置30の全体で粒子状物質をほぼ均一に捕集できるようになるので、PM強制再生時における温度分布も均一化できて熱膨張の差によるフィルターの破損を回避できると共に、PM強制再生制御までの間における全体としてのPM捕集量を増加できる。これにより、より効率よく粒子状物質の捕集とPM強制再生を行うことができ、PM捕集フィルター装置30における排気ガス浄化性能を向上できる。   As a result, the difference between the flow rate of the exhaust gas G after passing through the outer peripheral portion Ra and the central portion Rb and the calorific value become small, and the flow rate of the exhaust gas G flowing into the PM collection filter device 30 disposed on the downstream side Distribution and temperature distribution are made uniform. Therefore, since the particulate matter can be collected almost uniformly in the entire PM collection filter device 30, the temperature distribution during the forced regeneration of PM can be made uniform, and damage to the filter due to a difference in thermal expansion can be avoided. In addition, the amount of collected PM as a whole until the PM forced regeneration control can be increased. Thereby, collection of particulate matter and forced PM regeneration can be performed more efficiently, and the exhaust gas purification performance in the PM collection filter device 30 can be improved.

また、さらに、酸化触媒装置20の前面におけるHCの堆積による詰りが生じると、酸化触媒装置20でHCの酸化を十分に行うことができずに、後流側のPM捕集フィルター装置30の再生温度やSCR触媒装置40の活性化温度の確保ができず、再生不良などが起こるという問題が生じるので、これに対処するために、酸化触媒装置20は、排気ガスGの流れ方向に関して、前端から全体の長さLtの15%〜25%の位置(Pa)より前方の領域を長さLaの前部領域Aaとして、この前部領域Aaにおける白金(Pt)に対するパラジウム(Pd)の担持量の割合αaを、この前部領域Aaの後側の長さLbの後部側領域Abにおける白金(Pt)に対するパラジウム(Pd)の担持量の割合αbを多くする。   Further, when clogging due to HC accumulation occurs on the front surface of the oxidation catalyst device 20, the oxidation catalyst device 20 cannot sufficiently oxidize HC, and the regeneration side PM collection filter device 30 is regenerated. Since the temperature and the activation temperature of the SCR catalyst device 40 cannot be ensured and a regeneration failure occurs, the oxidation catalyst device 20 has a problem with respect to the flow direction of the exhaust gas G from the front end. A region in front of the position (Pa) of 15% to 25% of the entire length Lt is defined as a front region Aa of length La, and the amount of palladium (Pd) supported on platinum (Pt) in this front region Aa The proportion αa is increased to the proportion αb of the amount of palladium (Pd) supported with respect to platinum (Pt) in the rear region Ab of the length Lb on the rear side of the front region Aa.

より具体的には、前部領域Aaにおける白金に対するパラジウムの担持量の割合αaを重量ベースで5%〜10%(Pt:Pdの担持率では、20:1〜10:1)とし、後部領域Abにおける白金に対するパラジウム(Pd)の担持量の割合αbを重量ベースで20%〜33%(Pt:Pdで5:1〜3:1)とすることが好ましい。   More specifically, the ratio αa of the supported amount of palladium with respect to platinum in the front region Aa is 5% to 10% on a weight basis (20: 1 to 10: 1 in the Pt: Pd loading rate), and the rear region The ratio αb of the amount of palladium (Pd) supported on platinum in Ab is preferably 20% to 33% (Pt: Pd 5: 1 to 3: 1) on a weight basis.

つまり、白金のみに対し極小量のパラジウムを添加することで低温側でのHCの浄化率が向上するが、全体で使うには貴金属コストが大となり,また性能的にもよりパラジウムを入れたもの(3:1など)に対し二酸化窒素(NO2)の生成量が多く問題となるので、この前部領域Aaと後部領域Abにおける白金に対するパラジウムの担持量の割合αa、αbに差を設ける。 In other words, by adding a very small amount of palladium to only platinum, the purification rate of HC on the low temperature side is improved, but the cost of precious metals is large for use as a whole, and more palladium is added in terms of performance. Since a large amount of nitrogen dioxide (NO 2 ) is generated with respect to (3: 1 or the like), a difference is made in the ratios αa and αb of the amount of palladium supported with respect to platinum in the front region Aa and the rear region Ab.

これにより、外周部からの詰まりに対するハニカム形状での流れの改良と煤詰まりの原因となるHCの付着回避のための低温におけるHC浄化性能を向上させることができ、酸化触媒装置20の前面詰りを回避できる。   As a result, it is possible to improve the flow in the honeycomb shape against clogging from the outer peripheral portion and to improve the HC purification performance at a low temperature for avoiding adhesion of HC causing clogging. Can be avoided.

この前部領域Aaと後部領域Abで白金に対するパラジウムの担持量の割合αa、αbに差がある酸化触媒装置20は、白金に対するパラジウムの担持量の割合が割合αaである第1の触媒溶液に前部領域Aaをドブ漬し、白金に対するパラジウムの担持量の割合が割合αbである第2の触媒溶液に後部領域Abをドブ漬することで容易に製造できる。   The oxidation catalyst device 20 having a difference in the supported amount ratios αa and αb of palladium with respect to platinum in the front region Aa and the rear region Ab is used in the first catalyst solution in which the ratio of the supported amount of palladium to platinum is the rate αa. It can be manufactured easily by dipping the front area Aa and dipping the rear area Ab in the second catalyst solution in which the ratio of the supported amount of palladium to platinum is αb.

また、図5に示す酸化触媒装置20Aのように、前部領域Aaと後部領域Abを別体の前部ハニカム構造体21Aaと後部ハニカム構造体21Abで形成し、それぞれ、第1の触媒溶液と第2の触媒溶液にドブ漬した後に両者を接合して一体化して製造もよい。この場合には、前部領域Aaと後部領域Abを密着させて一体化してもよいが、前部領域Aaと後部領域Abとの間に隙間(空間)Cや断熱材を設けて構成することが好ましい。   Further, as in the oxidation catalyst device 20A shown in FIG. 5, the front region Aa and the rear region Ab are formed of separate front honeycomb structures 21Aa and rear honeycomb structures 21Ab, respectively, and the first catalyst solution and It is also possible to manufacture by immersing them in the second catalyst solution and then joining them together. In this case, the front region Aa and the rear region Ab may be closely integrated to each other, but a gap (space) C or a heat insulating material is provided between the front region Aa and the rear region Ab. Is preferred.

これにより、前部領域Aaから後部領域Abへの熱移動量が少なくなるので、エンジン10の始動時などでは、熱容量の少ない前部領域Aaが排気ガスGにより早期に昇温し活性化する。従って、この前部領域Aaにおける排気ガスG中の炭化水素(HC)や一酸化炭素(CO)の燃焼を促進できる。その結果、さらに、前部領域Aaにおける温度が昇温するので炭化水素や一酸化炭素の酸化の効率が上昇し、後部領域Abに昇温した排気ガスGを送り込むことができ、この後部領域Abを昇温して触媒の活性化を図ることができる。   As a result, the amount of heat transfer from the front region Aa to the rear region Ab is reduced, so that the front region Aa having a small heat capacity is quickly heated and activated by the exhaust gas G when the engine 10 is started. Therefore, combustion of hydrocarbons (HC) and carbon monoxide (CO) in the exhaust gas G in the front region Aa can be promoted. As a result, the temperature in the front region Aa rises, so that the efficiency of oxidation of hydrocarbons and carbon monoxide increases, and the heated exhaust gas G can be sent to the rear region Ab. This rear region Ab The catalyst can be activated by raising the temperature.

そして、本発明に係る実施の形態の排気ガス浄化システム1は、図1に示すように、上記の酸化触媒装置20、20Aをこの排気ガス浄化システム1における上流側に備えて構成され、上記の酸化触媒装置20、20Aが発揮する効果を同様に発揮することができる。   As shown in FIG. 1, the exhaust gas purification system 1 according to the embodiment of the present invention is configured to include the oxidation catalyst devices 20 and 20A on the upstream side of the exhaust gas purification system 1. The effects exhibited by the oxidation catalyst devices 20 and 20A can be similarly exhibited.

1 排気ガス浄化システム
10 エンジン(内燃機関)
11 排気通路
20、20A、20X 酸化触媒装置
21,21A、21X ハニカム構造体
21Aa 前部ハニカム構造体
21Ab 後部ハニカム構造体
22a 外周部のセル
22b 中央部のセル
23 ケース
24 固定部材
30 PM捕集フィルター装置
40 SCR触媒装置
Aa 前部領域
Ab 後部領域
La 前部領域の長さ
Lb 後部領域の長さ
Lt 全体の長さ
Ra 外周部
Rb 中央部
1 exhaust gas purification system 10 engine (internal combustion engine)
11 Exhaust passages 20, 20A, 20X Oxidation catalyst devices 21, 21A, 21X Honeycomb structure 21Aa Front honeycomb structure 21Ab Rear honeycomb structure 22a Cell 22b in the outer peripheral part Cell 23 in the central part Case 24 Fixing member 30 PM collection filter Device 40 SCR catalyst device Aa Front region Ab Rear region La Length of front region Lb Length of rear region Lt Overall length Ra Outer portion Rb Center portion

Claims (4)

ハニカム構造体に酸化触媒を担持した酸化触媒装置において、排気ガスが通過するセルが四角形形状になっていると共に、排気ガスの流れ方向に垂直な面に関して、外周部のセルを中心部のセルの十字形状の隔壁を省いた形状で、外周部のセルの流通断面積が中心部のセルの流通断面積の4倍になっていて、外周部のセル密度が中心部のセル密度の1/4になっていることを特徴とする酸化触媒装置。   In an oxidation catalyst device in which an oxidation catalyst is supported on a honeycomb structure, the cells through which the exhaust gas passes have a quadrangular shape, and the cells in the outer peripheral portion of the cell perpendicular to the flow direction of the exhaust gas In a shape that excludes the cross-shaped partition wall, the flow cross-sectional area of the outer peripheral cell is four times the flow cross-sectional area of the central cell, and the cell density in the outer peripheral portion is 1/4 of the cell density in the central portion. An oxidation catalyst device characterized by the above. 排気ガスの流れ方向に関して、当該酸化触媒装置の前側の全体の長さの15%〜25%の位置より前方の領域を前部領域として、この前部領域における白金に対するパラジウムの担持量の割合が、この前部領域の後側の後部側領域における白金に対するパラジウムの担持量の割合よりも多くなっていることを特徴とする請求項1に記載の酸化触媒装置。   With respect to the flow direction of the exhaust gas, a region in front of the position 15% to 25% of the entire length of the front side of the oxidation catalyst device is defined as a front region, and the ratio of the amount of palladium supported to platinum in this front region is 2. The oxidation catalyst device according to claim 1, wherein the ratio is larger than the ratio of the amount of palladium supported with respect to platinum in the rear region on the rear side of the front region. 前記前部領域における白金に対するパラジウムの担持量の割合が重量ベースで5%〜10%であり、前記後部領域における白金に対するパラジウムの担持量の割合が重量ベースで20%〜33%であることを特徴とする請求項2に記載の酸化触媒装置。   The ratio of the supported amount of palladium to platinum in the front region is 5% to 10% on a weight basis, and the ratio of the supported amount of palladium to platinum in the rear region is 20% to 33% on a weight basis. The oxidation catalyst device according to claim 2, wherein 請求項1〜3のいずれか1項に記載の酸化触媒装置を当該排気ガス浄化システムにおける上流側に備えていることを特徴とする排気ガス浄化システム。   An exhaust gas purification system comprising the oxidation catalyst device according to any one of claims 1 to 3 on an upstream side of the exhaust gas purification system.
JP2016135789A 2016-07-08 2016-07-08 Oxidation catalyst and exhaust gas purification system Active JP6753179B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016135789A JP6753179B2 (en) 2016-07-08 2016-07-08 Oxidation catalyst and exhaust gas purification system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016135789A JP6753179B2 (en) 2016-07-08 2016-07-08 Oxidation catalyst and exhaust gas purification system

Publications (2)

Publication Number Publication Date
JP2018003811A true JP2018003811A (en) 2018-01-11
JP6753179B2 JP6753179B2 (en) 2020-09-09

Family

ID=60948622

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016135789A Active JP6753179B2 (en) 2016-07-08 2016-07-08 Oxidation catalyst and exhaust gas purification system

Country Status (1)

Country Link
JP (1) JP6753179B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020101154A (en) * 2018-12-25 2020-07-02 スズキ株式会社 Deterioration diagnosis device of exhaust emission control device
CN112638497A (en) * 2018-09-07 2021-04-09 五十铃自动车株式会社 Particulate filter and method for manufacturing same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225651A (en) * 1984-04-24 1985-11-09 Toyota Motor Corp Monolithic catalyst for automobile exhaust gas purification
JP2013520311A (en) * 2010-02-23 2013-06-06 ビーエーエスエフ ソシエタス・ヨーロピア Improved catalyzed soot filter
JP2015137625A (en) * 2014-01-24 2015-07-30 株式会社デンソー Catalyst device and catalyst device design method
JP2016043276A (en) * 2014-08-19 2016-04-04 ヤンマー株式会社 Diesel oxidation catalyst

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60225651A (en) * 1984-04-24 1985-11-09 Toyota Motor Corp Monolithic catalyst for automobile exhaust gas purification
JP2013520311A (en) * 2010-02-23 2013-06-06 ビーエーエスエフ ソシエタス・ヨーロピア Improved catalyzed soot filter
JP2015137625A (en) * 2014-01-24 2015-07-30 株式会社デンソー Catalyst device and catalyst device design method
JP2016043276A (en) * 2014-08-19 2016-04-04 ヤンマー株式会社 Diesel oxidation catalyst

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112638497A (en) * 2018-09-07 2021-04-09 五十铃自动车株式会社 Particulate filter and method for manufacturing same
US11446599B2 (en) 2018-09-07 2022-09-20 Isuzu Motors Limited Particulate filter and manufacturing method for same
CN112638497B (en) * 2018-09-07 2022-09-23 五十铃自动车株式会社 Particulate filter and method for manufacturing same
JP2020101154A (en) * 2018-12-25 2020-07-02 スズキ株式会社 Deterioration diagnosis device of exhaust emission control device

Also Published As

Publication number Publication date
JP6753179B2 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US8844274B2 (en) Compact diesel engine exhaust treatment system
CN102057139B (en) Exhaust gas purifier and exhaust gas purification system
CN102733911B (en) Exhaust-gas treatment system for internal combustion engine
JP4556587B2 (en) Exhaust gas purification device
CN102213123B (en) Apparatus and method for regenerating exhaust filter
JP2001073742A (en) Particulate trap for diesel engine
JP2006520264A5 (en)
JP2007285295A (en) Exhaust emission control system
JP2004084666A (en) Removal of soot fine particles from exhaust gas of diesel engine
JP2010269205A (en) Exhaust gas purification catalyst
JP2011214577A (en) Process and device for removing soot particle from diesel engine exhaust gas
JP2006183507A (en) Exhaust emission control device for internal combustion engine
KR101795402B1 (en) Exhaust system
JP5999193B2 (en) Exhaust gas purification device for internal combustion engine
JP6733352B2 (en) Oxidation catalyst and exhaust gas purification system
JP6753179B2 (en) Oxidation catalyst and exhaust gas purification system
KR101261949B1 (en) catalyst unit
JP5112815B2 (en) Exhaust purification device
JP6020105B2 (en) Diesel engine exhaust gas purification method and exhaust gas purification system
WO2019059032A1 (en) Exhaust gas purification filter
JP2008229459A (en) Exhaust gas purification device
JP2003056327A (en) Exhaust fine particle collecting filter of self- regeneration type
JP3826773B2 (en) Diesel particulate filter
JP6156228B2 (en) Exhaust gas purification device
JP6297827B2 (en) Exhaust purification device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190627

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200519

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200707

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200721

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200803

R150 Certificate of patent or registration of utility model

Ref document number: 6753179

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150