[go: up one dir, main page]

JP2017223385A - Cylindrical metal container for gun ammunition - Google Patents

Cylindrical metal container for gun ammunition Download PDF

Info

Publication number
JP2017223385A
JP2017223385A JP2016117283A JP2016117283A JP2017223385A JP 2017223385 A JP2017223385 A JP 2017223385A JP 2016117283 A JP2016117283 A JP 2016117283A JP 2016117283 A JP2016117283 A JP 2016117283A JP 2017223385 A JP2017223385 A JP 2017223385A
Authority
JP
Japan
Prior art keywords
container
cylindrical
tensile strength
welding
ammunition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016117283A
Other languages
Japanese (ja)
Inventor
小坂 安則
Yasunori Kosaka
安則 小坂
英宏 野田
Hidehiro Noda
英宏 野田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2016117283A priority Critical patent/JP2017223385A/en
Publication of JP2017223385A publication Critical patent/JP2017223385A/en
Pending legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a cylindrical metal container for gun ammunition in which the number of scattered fragments caused by explosion of the container when an external shock is applied or ammunition or the like in the container ignites at the time of irregular state or trouble is reduced to enable damage at surroundings to be restricted while holding handling characteristic or airtightness for ammunition under a normal state.SOLUTION: This invention relates to a cylindrical metal container for gun ammunition of which cylindrical part main body having a predetermined length in an axial direction is sealed by a bottom member and a lid member. The cylindrical part main body is made in such a way that a metal plate having a predetermined thickness is formed into a cylindrical shape while being connected at one straight linear welding part in parallel in an axial direction, and a tensile strength at the welded part is 0.3 to 0.7 times of a tensile strength of metal plate mother material constituting the container main body.SELECTED DRAWING: Figure 1

Description

本発明は、火砲弾薬用円筒状金属容器に関する。   The present invention relates to a cylindrical metal container for artillery ammunition.

火砲弾薬用金属容器(以下、単に金属容器又は容器と称することもある)は、気密されたその内部に、製造後の火薬類である発射装薬や発射薬などを含む弾薬が一つ又は複数内装され、輸送、保管、さらには射撃時に至る間、内部の火薬を保護するよう機能する。   A metal container for artillery ammunition (hereinafter sometimes simply referred to as a metal container or container) is hermetically sealed and contains one or more ammunition containing explosives and explosives that are explosives after manufacture. Built and functions to protect internal gunpowder during transport, storage and even shooting.

以下の特許文献1に記載されるように、りゅう弾砲用発射装薬等に使用される弾薬用容器とは、細かい粒状の発射薬を装填した複数個の発射装薬を梱包し、運搬し、弾薬庫に保管する際に使用する金属容器のことである。発射装薬をりゅう弾砲等の薬室に挿入する際には、弾薬用容器から発射装薬を取り出して使用する。一般に、りゅう弾砲用発射装薬や火砲用弾薬等に使用される梱包容器としての弾薬用容器は、運用面を配慮して一定以上の落下強度と気密性を有する構造となっている。特許文献1には、弾薬用容器の脆弱部についての記載は一切ない。   As described in the following Patent Document 1, an ammunition container used for a projectile charge for an ammunition can pack and transport a plurality of charge charges loaded with fine granular projectiles. It is a metal container used when storing in an ammunition cabinet. When inserting the propellant into a chamber such as an enamel shell, the propellant is taken out from the ammunition container and used. In general, an ammunition container as a packing container used for a shooting gun for a cannon or an ammunition for a gun has a structure having a drop strength and airtightness of a certain level or more in consideration of operational aspects. In Patent Document 1, there is no description of the fragile portion of the ammunition container.

以下の特許文献2には、通常時における落下強度や気密性を保持しながらも、容器内部において火薬類が発火した非常時には容器の爆発を回避して周囲の被害を抑制できる弾薬用容器を提供することを目的として、有底円筒状の容器本体と、該容器本体の開口を塞ぐ蓋体とを有する弾薬用容器であって、前記容器本体の筒部は、金属長板が螺旋状に巻回されてその両側縁同士を接合することで、螺旋状に延在する接合部を有する円筒状に形成されており、前記筒部には、軸方向に延びる長孔が内外貫通状に穿設されており、前記長孔は、封止材によって封止され、該長孔及び該封止材の外面は金属製のカバー部材によって覆われていることを特徴とする弾薬用容器が開示されている。   Patent Document 2 below provides an ammunition container that can prevent the explosion of the container in the event of an emergency when the explosives are ignited inside the container and suppress the surrounding damage while maintaining the drop strength and airtightness at the normal time. In order to achieve this, an ammunition container having a bottomed cylindrical container main body and a lid for closing the opening of the container main body, the cylindrical portion of the container main body is spirally wound with a metal long plate. It is formed into a cylindrical shape with a joint extending in a spiral shape by joining both side edges of the tube, and a long hole extending in the axial direction is formed in the cylindrical portion so as to penetrate inside and outside. An ammunition container is disclosed, wherein the elongated hole is sealed with a sealing material, and the outer surface of the elongated hole and the sealing material is covered with a metal cover member. Yes.

以下の特許文献3には、衝撃や熱等を受けて収納された発射装薬が爆発したとき、収納容器を所定の脆弱部において破壊させることにより、破壊による開口面積をできるだけ大きなものにして圧力を効果的に開放し、それ以上激しい反応が起きにくくするとともに、破片の飛散を防止できる発射装薬の収納容器が開示されている。特許文献3に開示された収納容器は、螺旋状に巻かれた帯状金属板が溶接一体化されたものであるか又は予め筒状に形成されたものである筒体、該筒体の両端部を閉塞する底部材と蓋部材を備え、該筒体が、内周面及び外周面の少なくとも一面において長さ方向に形成された螺旋状の脆弱部を有している発射装薬の収納容器である。   In Patent Document 3 below, when a propellant stored in response to impact, heat, or the like explodes, the storage container is destroyed at a predetermined weakened portion so that the opening area by destruction is as large as possible. A container for a propellant charge is disclosed that can effectively open the door and prevent further intense reactions from occurring, and can prevent scattering of fragments. The storage container disclosed in Patent Document 3 is a cylindrical body in which a spirally wound belt-shaped metal plate is welded and integrated, or is formed in a cylindrical shape in advance, and both end portions of the cylindrical body A container for a propellant charge comprising a bottom fragile member and a lid member, the cylindrical body having a helical fragile portion formed in a length direction on at least one of an inner peripheral surface and an outer peripheral surface. is there.

従来の弾薬用容器では、容器内部に収納された発射装薬など弾薬が、外的要因である衝撃や熱により発火した場合、高い気密性を有する弾薬用容器内において火薬の燃焼反応が生じるので、容器内部の圧力が上昇して容器自体が爆発してしまい、周囲に多大な被害を発生させる。そこで、特許文献2と3では、金属長板を螺旋状に巻いて形成した筒部に、内外貫通状の長孔が脆弱部又は開口部として軸方向に穿設された金属容器、あるいは螺旋状に巻かれた帯状金属板に同じく螺旋状の脆弱部を有した金属容器が提案されている。しかしながら、これらの金属容器では、飛翔体が衝突した衝撃で容器本体に亀裂を増大させると、内部の火薬が反応し内圧が上昇したとき長孔の開放と同時に増大した開放部に沿って金属容器の破壊が進展して破片の数が増大してしまうという問題がある。   In conventional ammunition containers, when an ammunition such as a projectile charged in the container is ignited by impact or heat, which is an external factor, a combustion reaction of the explosive occurs in the highly airtight ammunition container. If the pressure inside the container rises, the container itself will explode, causing a great deal of damage to the surroundings. Therefore, in Patent Documents 2 and 3, a metal container in which a long hole with inner and outer penetrating holes is drilled in the axial direction as a fragile portion or an opening in a cylindrical portion formed by spirally winding a long metal plate, or a spiral shape A metal container having a spiral fragile portion on a belt-like metal plate wound around is proposed. However, in these metal containers, when the cracks are increased in the container body due to the impact of the flying object colliding, the metal container along the open part increased simultaneously with the opening of the long hole when the internal gunpowder reacted and the internal pressure increased. There is a problem that the number of fragments increases due to the progress of destruction.

以下の特許文献4には、隣接する材料において接合部と一つの非接合部とが容器の長手方向と平行に配置され、二つ以上の非接合部を有する場合は積み重ねリングを介して複数の非接合部を有し、該非接合部はシリコーンシーラントやネオプレンシーラントで接着された金属容器が開示されている。かかる金属容器は、かかる非接合部を設けることで、内部の爆薬や推進薬や火工品が刺激を受けた場合に爆発的反応を回避することができる金属容器である。前記文献4に記載された金属容器は、容器内圧と容器外圧との圧力差で該非接合部が開放するものであるが、本体部と溶接部の強度については一切言及されていない。一般に溶接部の強度は本体に比べて同程度であるため、飛翔体が衝突した衝撃で容器本体に発生した亀裂が溶接部にかかったときその亀裂は溶接線を通過して進展するために破片の数の増加を抑制することはできないという問題がある。   In the following Patent Document 4, in an adjacent material, a joint portion and one non-joint portion are arranged in parallel with the longitudinal direction of the container, and when there are two or more non-joint portions, a plurality of layers are provided via a stacking ring. There is disclosed a metal container having a non-bonded portion, which is bonded with a silicone sealant or a neoprene sealant. Such a metal container is a metal container which can avoid an explosive reaction when an internal explosive, a propellant, or a pyrotechnic is stimulated by providing such a non-joining part. In the metal container described in Document 4, the non-joined part is opened by the pressure difference between the container internal pressure and the container external pressure, but no mention is made of the strength of the main body part and the welded part. Generally, the strength of the welded part is comparable to that of the main body, so when a crack generated in the container body due to the impact of the flying object hits the welded part, the crack propagates through the weld line and breaks up. There is a problem that it is not possible to suppress an increase in the number of

特開2004−226031号公報JP 2004-226031 A 特開2013−44454号公報JP 2013-44454 A 特開2012−17935号公報JP 2012-17935 A 米国特許第7624888号明細書US Pat. No. 7,624,888

以上に鑑み、本発明が解決しようとする課題は、通常時における弾薬の取扱い性や気密性を保持しながらも、異常時や有事において外部からの衝撃や容器内部の火薬類が発火した際には容器の破裂による破片の飛散数を少なくして周囲の被害を抑制することができる火砲弾薬用円筒状金属容器を提供することである。   In view of the above, the problem to be solved by the present invention is to maintain the handling and airtightness of ammunition during normal times, but also when an external impact or explosives inside a container ignite in an abnormal or emergency situation. Is to provide a cylindrical metal container for artillery ammunition that can reduce the number of fragments scattered by the rupture of the container and suppress surrounding damage.

本発明者らは、前記した課題を解決すべく鋭意研究し実験を重ねた結果、以下の構成によってかかる課題を解決しうることを見出し、本発明を完成するに至ったものである。すなわち、本発明は、以下の通りのものである。   As a result of intensive studies and experiments to solve the above-mentioned problems, the present inventors have found that such problems can be solved by the following configuration, and have completed the present invention. That is, the present invention is as follows.

[1]軸方向に所定長を有する円筒部本体が底部材と蓋部材により封止された火砲弾薬用円筒状金属容器であって、該円筒部本体は、該軸方向に平行な1つの直線状の溶接部で接合されることにより所定厚の金属板が円筒状の形態を呈するものとなっており、そして該溶接部の引張強度は、該容器本体を構成する金属板母材の引張強度の0.3〜0.7倍であることを特徴とする前記火砲弾薬用円筒状金属容器。
[2]前記溶接部は、部分溶込み溶接、飛び石溶接又はスポット溶接により形成されたものである、前記[1]に記載の火砲弾薬用円筒状金属容器。
[3]前記溶接部の引張強度は、前記容器本体を構成する金属板母材の引張強度の0.3〜0.5倍である、前記[1]又は[2]に記載の火砲弾薬用円筒状金属容器。
[1] A cylindrical metal container for artillery ammunition in which a cylindrical body having a predetermined length in the axial direction is sealed by a bottom member and a lid member, and the cylindrical body is a straight line parallel to the axial direction The metal plate having a predetermined thickness is formed in a cylindrical shape by being joined at the welded portion, and the tensile strength of the welded portion is the tensile strength of the metal plate base material constituting the container body The cylindrical metal container for artillery ammunition, characterized in that the ratio is 0.3 to 0.7 times.
[2] The cylindrical metal container for artillery ammunition according to [1], wherein the weld is formed by partial penetration welding, stepping stone welding, or spot welding.
[3] Tensile strength of the weld is 0.3 to 0.5 times the tensile strength of the metal plate base material constituting the container body. Cylindrical metal container.

本発明に係る火砲弾薬用円筒状金属容器は、通常時における弾薬の取扱い性や気密性を保持しながらも、異常時や有事において外部からの衝撃や容器内部の火薬類が発火した際には容器の破裂による破片の飛散数を少なくして周囲の被害を抑制することができる。   The cylindrical metal container for artillery ammunition according to the present invention retains the handling and airtightness of ammunition at normal times, but in the event of an abnormality or emergency, when external impacts or explosives inside the container ignite It is possible to reduce the number of fragments scattered due to the rupture of the container and suppress surrounding damage.

本実施形態の火砲弾薬用円筒状金属容器の模式図である。It is a schematic diagram of the cylindrical metal container for artillery ammunition of this embodiment. 本実施形態の円筒部本体母材の引張強度よりも低い引張強度をもつ部分溶込み溶接の模式図である。It is a schematic diagram of the partial penetration welding which has a tensile strength lower than the tensile strength of the cylindrical part main body base material of this embodiment. 本実施形態の円筒部本体母材の引張強度よりも低い引張強度をもつ飛び石溶接の模式図である。It is a schematic diagram of the stepping stone welding which has a tensile strength lower than the tensile strength of the cylindrical part main body base material of this embodiment. 本実施形態の円筒部本体母材の引張強度よりも低い引張強度をもつスポット溶接の模式図である。It is a schematic diagram of the spot welding which has a tensile strength lower than the tensile strength of the cylindrical part main body base material of this embodiment. 本実施形態の円筒部本体母材の引張強度と同等又はそれよりも高い引張強度をもつ完全溶け込み溶接の模式図である。It is a schematic diagram of the complete penetration welding which has the tensile strength equivalent to or higher than the tensile strength of the cylindrical part main body of this embodiment. 本実施形態の円筒部本体母材の引張強度よりも低い引張強度をもつ溶接線に亀裂が接触したときの亀裂進展の模式図である。It is a schematic diagram of a crack progress when a crack contacts a weld line having a tensile strength lower than the tensile strength of the cylindrical part main body of the present embodiment. 本実施形態の円筒部本体母材の引張強度と同等又はそれよりも高い引張強度をもつ溶接線に亀裂が接触したときの亀裂進展の模式図である。It is a schematic diagram of a crack progress when a crack contacts a weld line having a tensile strength equal to or higher than the tensile strength of the cylindrical body main body of the present embodiment. 実施例1と2の銃撃感度試験の模式図である。2 is a schematic diagram of a shooting sensitivity test of Examples 1 and 2. FIG.

以下、本発明の実施形態を詳細に説明する。
図1に示すように、本実施形態の弾薬用金属容器は、円筒状の金属容器本体1に蓋部材3と底部材4を有し円筒状容器本体1の軸方向に容器本体の母材よりも引張強度を下げた円筒部本体の軸方向に平行な1つの直線状の溶接部(溶接線)2で構成されている。容器の補強のために蓋部材3と底部材4間の容器本体1に補強リング5を入れている構造もある。また、底部材4を有さず蓋部材3が2か所ある場合もある。蓋部材3、底部材4、補強リング5は金属製であることが好ましく、材質は特に限定されない。
Hereinafter, embodiments of the present invention will be described in detail.
As shown in FIG. 1, the metal container for ammunition of this embodiment has a lid member 3 and a bottom member 4 in a cylindrical metal container main body 1 in the axial direction of the cylindrical container main body 1 from the base material of the container main body. Also, it is composed of one linear welded portion (weld line) 2 parallel to the axial direction of the cylindrical portion main body with reduced tensile strength. There is also a structure in which a reinforcing ring 5 is inserted in the container main body 1 between the lid member 3 and the bottom member 4 to reinforce the container. In some cases, the bottom member 4 is not provided and the lid member 3 is provided in two places. The lid member 3, the bottom member 4, and the reinforcing ring 5 are preferably made of metal, and the material is not particularly limited.

必要に応じて、例えば、図2と図4中12で、また、図3中12aで表される不溶接部には、シール材を施してもよい。シール材としては、例えば、接着剤一般、コーキング材、半田、ゴム材等が挙げられる。   If necessary, for example, a seal material may be applied to a non-welded portion represented by 12 in FIGS. 2 and 4 and 12a in FIG. Examples of the sealing material include general adhesives, caulking materials, solders, rubber materials, and the like.

容器本体容器本体の母材よりも引張強度を下げた溶接、すなわち、円筒部本体母材の引張強度よりも低い引張強度をもつ溶接部の溶接とは、溶接便覧に記載される部分溶込み溶接、飛び石溶接、スポット溶接等でありことができ、容器本体の接合部に不溶接部を残した溶接である。
部分溶込み溶接とは、図2に示す突合せ部の溶接において、母材の板厚方向の全領域にわたらない溶接、すなわち、金属容器本体母材の突合せ部10を溶接する際、突合せ断面の一部に不溶接部12を残して溶接部11にて溶接するものをいう。
Welding with a tensile strength lower than that of the base material of the container body, that is, welding of a welded portion having a tensile strength lower than that of the base material of the cylindrical part is partial penetration welding described in the welding manual. It can be stepping stone welding, spot welding, etc., and is a welding in which a non-welded part is left in the joint part of the container body.
The partial penetration welding refers to the welding of the butt section shown in FIG. 2, which does not cover the entire area of the base metal in the plate thickness direction, that is, when the butt section 10 of the metal container main body is welded. The welding is performed at the welded portion 11 while leaving the non-welded portion 12 in part.

また、スキップ溶接とも言われる飛び石溶接とは、図3に示すように、金属容器本体母材の突合せ部10を溶接する際、飛び飛びに一定区間に区切って溶接を行う溶接であり、溶接部11と不溶接部12aとが交互になるように溶接したものである。変形、残留応力を最も均一にすることができる溶接法である。溶接方向に複数個存在する不溶接部12aと突合せ部10の母材肉厚方向における不溶接部12bの両方の非接合部を有することは、亀裂の進展を誘導するために好ましい。   Further, stepping stone welding, also referred to as skip welding, is welding in which, when welding the butt portion 10 of the metal container body base material, welding is performed while being divided into certain sections during welding, as shown in FIG. And the non-welded portions 12a are alternately welded. This welding method can make the deformation and residual stress most uniform. It is preferable to have both non-welded portions of the non-welded portion 12a existing in the welding direction and the non-welded portion 12b in the base material thickness direction of the butt portion 10 in order to induce the progress of cracks.

また、スポット溶接とは、図4に示すように重ねあわせた母材金属容器本体母材の突合せ部10を電極で圧着しつつ電流を流し、その電気抵抗熱を利用して金属を溶かして、溶接部11と不溶接部12とが交互になるように接合する溶接である。   In addition, spot welding is a method in which a current is passed while pressing the butted portion 10 of the base metal container body base material superimposed as shown in FIG. 4 with an electrode, and the metal is melted using the electric resistance heat, It is welding which joins so that the welding part 11 and the non-welding part 12 may become alternate.

不意の落下衝撃によって容器中央部が開くのを防止するために、飛び石溶接では、突合せ部の少なくとも3か所以上を溶接することが好ましく、スポット溶接では連続的にスポット溶接を施すことが好ましい。   In order to prevent the central portion of the container from opening due to an unexpected drop impact, it is preferable to weld at least three or more of the butt portions in stepping stone welding, and it is preferable to perform spot welding continuously in spot welding.

これらの溶接方法に対して、容器本体よりも引張強度を下げない溶接、すなわち、円筒部本体母材の引張強度と同等又はそれよりも高い引張強度をもつ溶接部の溶接とは、溶接便覧に記載されるような完全溶け込み溶接であり、図5に示すように、突合せ溶接において母材の全厚にわたって溶着金属を溶け込ませる溶接のことである。金属容器本体母材の突合せ部10の全断面を溶接線11によって完全に一体化して溶接するものであり、一般に溶接部の引張強度は母材の引張強度と同等かそれ以上と考えられ、継手効率(=溶接継手の強度÷母材の強度)は100%とみなすことができる。   For these welding methods, welding that does not lower the tensile strength than the container body, that is, welding of a welded portion having a tensile strength equal to or higher than the tensile strength of the base material of the cylindrical body is described in the welding manual. It is a complete penetration welding as described, and as shown in FIG. 5, a welding in which the weld metal is melted over the entire thickness of the base metal in the butt welding. The entire cross section of the butt portion 10 of the metal container main body is completely integrated by welding line 11 and welded. Generally, the tensile strength of the welded portion is considered to be equal to or higher than the tensile strength of the base material. The efficiency (= welded joint strength ÷ base material strength) can be regarded as 100%.

本明細書中、引張強度の試験方法は、JIS Z 2241を参照している。例えば、熱間圧延軟鋼帯SPHC母材の引張強度は、270 N/mm2以上であり、一般構造用炭素鋼管STK400母材の引張強度は、400N/mm2以上となっている。本明細書中、前記した母材より引張強度を下げた溶接とは、接合面に不溶接部を持たせて接合面積を下げることにより、溶接部の引張強度を円筒状容器の軸方向の単位長さあたり、母材の引張強度の0.3〜0.7倍に低下させた溶接、好ましくは0.3〜0.5倍に低下させた溶接という。母材より引張強度を下げた溶接としては、前記したように、部分溶込み溶接、飛び石溶接、スポット溶接を単独で又はこれらを組み合わせで用いることができる。 In this specification, the test method of tensile strength refers to JIS Z 2241. For example, the tensile strength of the hot rolled mild steel strip SPHC base material is 270 N / mm 2 or more, and the tensile strength of the general structural carbon steel pipe STK400 base material is 400 N / mm 2 or more. In this specification, welding with a lower tensile strength than the base metal described above means that the weld surface has a non-welded portion and the joint area is lowered to reduce the tensile strength of the welded portion in the axial direction of the cylindrical container. Welding reduced to 0.3 to 0.7 times the tensile strength of the base metal per length, preferably welding reduced to 0.3 to 0.5 times. As described above, partial penetration welding, stepping stone welding, and spot welding can be used alone or in combination as welding with a lower tensile strength than the base metal.

本実施形態の火砲弾薬用円筒状金属容器は、容器本体母材よりも引張強度を下げた円筒部本体の軸方向に平行な1つの直線状の溶接部(溶接線)を有することで、図6に示すように、亀裂の進展方向を溶接線に沿って誘導し、破片の数の増加を抑制する機能と、容器の開放圧力を下げる機能の両者を発揮して、例えば、銃撃感度のような飛翔体の衝撃による亀裂進展の抑制と、引き続いて内部の火薬の反応による圧力上昇の抑制の両者を発現することができる。   The cylindrical metal container for artillery ammunition of this embodiment has one linear welded part (weld line) parallel to the axial direction of the cylindrical part main body, which has a lower tensile strength than the container main body base material. As shown in FIG. 6, the crack propagation direction is guided along the weld line, and both the function of suppressing the increase in the number of fragments and the function of reducing the opening pressure of the container are exhibited. It is possible to exhibit both suppression of crack propagation due to impact of a flying object and subsequent suppression of pressure increase due to reaction of internal explosives.

容器本体に螺旋状の溶接線と脆弱部を有する従来技術の弾薬用金属容器では、数百m/sから1000m/sを超えるような高速で、当該容器に弾丸や高速破片が衝突した場合、弾丸や高速破片の飛翔体の衝突・貫通場所に衝撃波が生じ、そこを起点として放射状に容器へ亀裂が発生する。さらに衝撃エネルギーが引き金となって容器内部の火薬が反応し始め燃焼に移行すると容器内圧が急激に上昇し、金属母材に応力がかかり亀裂が進展すると同時に火薬が燃焼したガスによる圧力の上昇で螺旋状の脆弱部が開放し、容器の長さよりもはるかに長い開放断片が容器を周回するように開放する。螺旋状にあった長い開放断片に、かかる亀裂が進展するために、本体容器が破壊された際に発生する破片の数が増大する結果となる。   In a conventional metal container for ammunition that has a helical weld line and a fragile part in the container body, when a bullet or high-speed debris collides with the container at a high speed of several hundred m / s to over 1000 m / s, A shock wave is generated at the location where the projectiles of bullets and high-speed debris collide and penetrate, and cracks are generated radially in the container. Furthermore, when the shock energy triggers and the gunpowder in the container starts to react and starts to burn, the pressure inside the container rises rapidly, stress is applied to the metal base material, cracks develop, and at the same time the pressure rises due to the gas burning the gunpowder. The spiral weakened part opens and opens so that an open piece that is much longer than the length of the container circulates around the container. Such cracks propagate into long open pieces that were in a spiral, resulting in an increase in the number of debris generated when the body container is broken.

本実施形態の容器本体は、このような断片数の増加を回避するために、容器本体に螺旋状の溶接線や脆弱部を設ける代わりに、該円筒状容器の軸方向に平行な直線状の溶接部であって円筒状容器本体母材よりも引張強度を下げたものを設けている。かかる溶接部の引張強度を下げた溶接として、部分溶込み溶接、飛び石溶接、スポット溶接等を用いることで、平常時には容器内部の火薬は雨水等から保護されているが、異常時や有事には外部から高速の飛翔体が衝突した衝撃で容器に発生する亀裂の進展がなく、また、内部の火薬が反応・燃焼した際に開放される際に発生する破片の数が少なくなるという効果を奏する。   In order to avoid such an increase in the number of fragments, the container body according to the present embodiment has a linear shape parallel to the axial direction of the cylindrical container, instead of providing a helical weld line or a weakened portion on the container body. A welded portion having a tensile strength lower than that of the cylindrical container main body is provided. By using partial penetration welding, stepping stone welding, spot welding, etc. as welding with reduced tensile strength of the welded part, the gunpowder inside the container is protected from rainwater etc. in normal times, but in abnormal or emergency situations There is no progress of cracks generated in the container due to the impact of a high-speed flying object from the outside, and there is an effect that the number of fragments generated when the internal explosive is released when it reacts and burns is reduced. .

本実施形態の容器内部には、通常、火薬類、例えば、一個又は複数個の弾薬、例えば、発射薬が内装されており密閉されている(図示せず)。
火薬類、特に発射薬の燃焼速度は、圧力の0.6から1.2乗に比例して高くなる特性を持っている。密閉された内部の火薬類が燃焼を始めると、その燃焼ガスにより内部の圧力が上昇する。その上昇した圧力でさらに燃焼速度が上がり、短時間のうちに急激に爆発的反応へと移っていく。そのため密閉された弾薬用金属容器では、異常時に大きな被害が生じる恐れがある。
例えば、外部から高速の飛翔体が弾薬用金属容器に衝突した異常時の衝撃や外部火災による熱により内部の火薬が反応・燃焼した際に内部の圧力の上昇に耐えられなくなった容器が爆発して被害を大きくする恐れがある。
Inside the container of this embodiment, explosives, for example, one or a plurality of ammunition, for example, a propellant, are usually housed and sealed (not shown).
The burning rate of explosives, especially propellants, has the property of increasing in proportion to the power of 0.6 to 1.2. When the sealed internal explosives start burning, the internal pressure rises due to the combustion gas. The increased pressure further increases the combustion rate, and the reaction rapidly starts to explosive reaction within a short time. Therefore, in a sealed metal container for ammunition, there is a risk that great damage will occur in the event of an abnormality.
For example, when a high-speed flying object collides with a metal container for ammunition from the outside and the internal gunpowder reacts and burns due to the impact of an abnormality or the heat from an external fire, the container that can not withstand the rise in internal pressure explodes. There is a risk of serious damage.

本実施形態の弾薬用金属容器は、図6に示すように金属容器本体母材10に応力21が働いて亀裂20の進展が溶接部11に接触したとき、容器本体接合部に本体母材よりも引張強度を下げた溶接を施すことにより亀裂の進展方向22を溶接部の方向へ誘導され、容器の軸方向へ強度を下げた溶接部が開放するため、容器本体母材の破片数を少なくしつつ安全に内圧を開放することできる。
他方、強度を下げない完全溶け込み溶接で接合された金属容器では、図7に示すように溶接部(溶接線)は容器本体母材と同等の引張強度をもつため、容器本体母材10に応力21が働いて亀裂20の進展が溶接部11に接触しても、その亀裂の進展方向22は溶接部11を通り越して進むために溶接部(溶接線)の方向に亀裂の進展を誘導することができず、亀裂個所から容器の内圧開放が始まり爆発的に破片数が増大し、安全に内圧を開放することができない。
As shown in FIG. 6, the metal container for ammunition of the present embodiment has a stress 21 acting on the metal container body base material 10 and the progress of the crack 20 contacts the welded portion 11. Also, by applying welding with reduced tensile strength, the crack propagation direction 22 is guided toward the welded portion, and the welded portion with reduced strength in the axial direction of the container is opened, so the number of fragments of the container body base material is reduced. However, the internal pressure can be released safely.
On the other hand, in a metal container joined by full penetration welding that does not reduce the strength, as shown in Fig. 7, the welded portion (weld line) has the same tensile strength as the container body base material. Even if 21 works and the progress of the crack 20 comes into contact with the weld 11, the direction 22 of the crack must pass through the weld 11 to induce the progress of the crack in the direction of the weld (weld line). The internal pressure of the container starts to be released from the crack, and the number of fragments increases explosively, making it impossible to safely release the internal pressure.

以下、本発明を実施例、比較例により具体的に説明する。
[実施例1]
図8に示すように、金属容器の軸方向に平行な部分溶込み溶接による溶接線2を有する金属容器の試験供試体30の中に、トリプルベース発射薬と焼尽容器とからなる発射装薬15kgを収容した。円筒状金属容器は、本体長さ1010mm、外径165mm、厚さ2.3mmのであった。溶接線も本体長さと同じ1010mmであり、蓋部材3及び底部材4の間は溶接されていた。金属容器本体の材質はSPHC JISG3131規格であった。
溶接部は本体厚さ2.3mmに対して0.7倍の1.6mmで部分溶け込み溶接を施したものであった。溶接部の引張強度は本体母材の引張強度の0.7倍であった。
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples.
[Example 1]
As shown in FIG. 8, in a test specimen 30 of a metal container having a weld line 2 by partial penetration welding parallel to the axial direction of the metal container, a projectile charge 15 kg comprising a triple base propellant and a burnout container is provided. Housed. The cylindrical metal container had a main body length of 1010 mm, an outer diameter of 165 mm, and a thickness of 2.3 mm. The weld line was also 1010 mm, the same as the main body length, and the lid member 3 and the bottom member 4 were welded. The material of the metal container body was SPHC JISG3131 standard.
The welded part was partly welded at 1.6 mm, 0.7 times the thickness of the main body of 2.3 mm. The tensile strength of the welded part was 0.7 times the tensile strength of the main body base material.

この金属容器の銃撃感度試験を、STANAG 4241 (Bullet Impact Test)に従い実施した。火薬の入った金属容器は立てて溶接部は弾丸の入射方向から右へ90度振って固定し、30m離れた位置から12.7mm徹甲弾を単発で試験供試体30へ向けて銃31で発射した。弾丸速度は850m/sであった。
弾丸は容器中央部に当たり容器と火薬を貫通し、内部の火薬が燃焼して金属容器の裂ける状況を高速度カメラ32で撮影して観察した。
高速度カメラでの観察の結果、金属容器に弾丸が貫通すると同時に前後2か所の貫通孔から白煙が吹き出し、やがて激しい炎に変わり溶接部が開放して火薬が燃焼しながら、開放した溶接部から飛び散り開放部周辺が炎に包まれていった。
燃焼がおさまって容器を調べると、本体は溶接部が大きく開放していたが容器の破片はなく、蓋の飛散もないため、破片数は容器本体のみの1個とカウントした。
The fire sensitivity test of this metal container was conducted according to STANAG 4241 (Bullet Impact Test). Stand up the metal container containing the gunpowder and fix the welded part by turning 90 degrees to the right from the direction of the bullet's incidence, and fire 12.7mm armor-piercing bullets from the position 30m away to the test specimen 30 with the gun 31. did. The bullet speed was 850m / s.
The bullet hit the center of the container and penetrated the container and the explosive, and the state in which the internal explosive burned and the metal container was torn was photographed with a high-speed camera 32 and observed.
As a result of observation with a high-speed camera, the bullet penetrates into the metal container, and at the same time, white smoke blows out from the front and rear through holes. Scattered from the area, the open area was surrounded by flames.
When the container was inspected after the combustion had subsided, the welded part of the main body was widely open, but there were no broken pieces of the container, and there was no scattering of the lid. Therefore, the number of broken pieces was counted as only one.

[実施例2]
図8に示すように、金属容器の軸方向に入った飛び石溶接による溶接線2を有する金属容器の試験供試体30の中にトリプルベース発射薬と焼尽容器とからなる発射装薬15kgを準備した。円筒状金属容器は、本体長さ1010mm、外径165mm、厚さ2.3mmであった。溶接線を有する突合せ部も本体長さと同じ1010mmであり、蓋部材3及び底部材4間は溶接されていた。金属容器本体の材質はSPHC JISG3131規格であった。
溶接部は、本体厚さ2.3mmに対して0.7倍の1.6mmで部分溶け込みの飛び石溶接を施したものであった。飛び石の間隔は、溶接部60mmに対して非溶接部35mmのピッチで10か所と両端溶接した。溶接部の引張強度は本体母材の引張強度の0.45倍であった。
この金属容器の銃撃感度試験をSTANAG 4241 (Bullet Impact Test)に従い実施した。
火薬の入った金属容器は立てて溶接部は弾丸の入射方向から右へ90度振って固定し30m離れた位置から12.7mm徹甲弾を単発で試験供試体30へ向けて銃31で発射した。弾丸速度は850m/sであった。
弾丸は容器中央部に当たり容器と火薬を貫通し、内部の火薬が燃焼して金属容器の裂ける状況を高速度カメラ32で撮影して観察した。
高速度カメラでの観察の結果、金属容器に弾丸が貫通すると同時に前後2か所の貫通孔から白煙が吹き出しやがて激しい炎に変わり溶接部が開放して火薬が燃焼しながら開放した溶接部から飛び散り開放部周辺が炎に包まれていった。
燃焼がおさまって容器を調べると、本体は溶接部が大きく開放していたが容器の破片はなく、蓋の飛散もないため、破片数は容器本体のみの1個とカウントした。
[Example 2]
As shown in FIG. 8, 15 kg of a projectile charge consisting of a triple base propellant and a burnout container was prepared in a test specimen 30 of a metal container having a welding line 2 formed by stepping stone welding that entered the axial direction of the metal container. . The cylindrical metal container had a main body length of 1010 mm, an outer diameter of 165 mm, and a thickness of 2.3 mm. The butt portion having the weld line is also 1010 mm, which is the same as the main body length, and the lid member 3 and the bottom member 4 are welded. The material of the metal container body was SPHC JISG3131 standard.
The welded part was a partly-penetrating stepping stone weld with a thickness of 1.6 mm, 0.7 times the thickness of the main body of 2.3 mm. The stepping stones were welded at both ends to 10 places at a pitch of 35 mm of non-welded part to 60 mm of welded part. The tensile strength of the weld was 0.45 times the tensile strength of the main body base material.
The fire sensitivity test of this metal container was conducted according to STANAG 4241 (Bullet Impact Test).
The metal container containing the gunpowder stood up and the welded part was fixed by shaking 90 degrees to the right from the direction of the bullet's incidence. . The bullet speed was 850m / s.
The bullet hit the center of the container and penetrated the container and the explosive, and the state in which the internal explosive burned and the metal container was torn was photographed with a high-speed camera 32 and observed.
As a result of observation with a high-speed camera, the bullet penetrates into the metal container, and at the same time, white smoke blows out from the two through holes in the front and rear, and then turns into a fierce flame, and the weld is opened and the explosive is burned and opened. The area around the open area was shrouded in flames.
When the container was inspected after the combustion had subsided, the welded part of the main body was widely open, but there were no broken pieces of the container, and there was no scattering of the lid. Therefore, the number of broken pieces was counted as only one.

[比較例1]
金属容器の軸方向に平行して完全溶込み溶接による本体と強度を下げない溶接33を有する金属容器の試験供試体30の中にトリプルベース発射薬と焼尽容器とからなる発射装薬15kgを準備した。円筒状金属容器は、本体長さ1010mm、外径165mm、厚さ2.3mmであった。溶接線も本体長さと同じ1010mmであり、蓋部材3及び底部材4間は溶接されていた。金属容器本体の材質は、SPHC JISG3131規格であった。
溶接部は、本体厚さ2.3mmに対して同じ2.3mmで完全溶け込み溶接を施したものであった。溶接部の引張強度は本体母材の引張強度と同程度であった。
この金属容器の銃撃感度試験をSTANAG 4241 (Bullet Impact Test)に従い実施した。火薬の入った金属容器は立てて溶接部は弾丸の入射方向から右へ90度振って固定し30m離れた位置から12.7mm徹甲弾を単発で試験供試体30へ向けて銃31で発射した。弾丸速度は850m/sであった。
弾丸は容器中央部に当たり容器と火薬を貫通し、内部の火薬が燃焼して金属容器の裂ける状況は高速度カメラ32で撮影して観察した。
高速度カメラの観察結果、金属容器に弾丸が貫通すると同時に前後2か所の貫通孔から白煙が吹き出しやがて激しい炎に変わり容器が爆発的に開放して火薬が燃焼しながら周辺全体へと飛び散り周囲が炎に包まれていった。
燃焼がおさまって容器を調べると容器本体は破片となって激しく破損しており蓋と破片が飛散していた、破片数は蓋も合わせて大小7個とカウントした。
[Comparative Example 1]
Prepare a 15 kg projectile charge consisting of a triple-base propellant and a burnout container in the test specimen 30 of a metal container with a weld 33 that does not reduce the strength and the main body by full penetration welding parallel to the axial direction of the metal container did. The cylindrical metal container had a main body length of 1010 mm, an outer diameter of 165 mm, and a thickness of 2.3 mm. The weld line was also 1010 mm, the same as the length of the main body, and the lid member 3 and the bottom member 4 were welded. The material of the metal container body was SPHC JISG3131 standard.
The weld was a full penetration weld at 2.3mm, the same as the body thickness of 2.3mm. The tensile strength of the weld was the same as the tensile strength of the main body base material.
The fire sensitivity test of this metal container was conducted according to STANAG 4241 (Bullet Impact Test). The metal container containing the gunpowder stood up and the welded part was fixed by shaking 90 degrees to the right from the direction of the bullet's incidence. A 12.7mm armor shell was fired from the position 30m away to the test specimen 30 with a gun 31 in a single shot. . The bullet speed was 850m / s.
The bullet hit the center of the container and penetrated the container and the explosive, and the situation where the internal explosive burned and the metal container was torn was photographed and observed with the high-speed camera 32.
As a result of observation by the high-speed camera, bullets penetrate the metal container and at the same time, white smoke blows out from the two front and rear through holes and turns into a fierce flame, the container opens explosively and the explosive burns and scatters to the entire periphery. The surroundings were wrapped in flames.
When the container was inspected after the combustion had subsided, the container itself was severely damaged as fragments, and the lid and fragments were scattered. The number of fragments was counted as 7 large and small, including the lid.

[比較例2]
円筒状本体容器の軸方向に平行して直線状の溶接部をもつ本実施形態の容器と、従来技術の螺旋状に溶接され接合された容器とを比較するため、実施例1の部分溶込み溶接と同じ引張強度となる直線状の切れ目を、該螺旋状に溶接され接合された金属容器に適用した。該螺旋状に溶接され接合された金属容器は、本体長さ1010mm、外径165mm、厚さ2.3mmであった。溶接線も本体長さと同じ1010mmであり、蓋部材3及び底部材4間は溶接されていた。金属容器本体の材質は、SPHC JISG3131規格であった。該螺旋状に溶接され接合された金属容器本体に、溶接部に代えて、円筒状本体容器の軸方向に平行して直線状の本体長さと同じ1010mm長さの切れ目(穿孔部(非接合部)と非穿孔部(接合部)の反復)を入れ、切れ目の引張強度が本体母材の引張強度の0.7倍となるよう接合部と非接合部のピッチ(穿孔部と非穿孔部の長さ)をレーザー加工により調整した。
比較例2における螺旋状の接合部を有する容器に関しては、螺旋状の溶接部ではなく、上記切れ目の引張強度を測定した。容器胴体に脆弱部を設けているため、比較例1に比べ容器破壊後の破片数は2個と少なかったが、螺旋状の溶接接合部に脆弱部があっため、弾丸貫入時に金属缶に発生した亀裂と溶接線がつながり、実施例1より破片数が増加した。
[Comparative Example 2]
In order to compare the container of this embodiment having a linear welded portion parallel to the axial direction of the cylindrical main body container and the container welded and joined in a spiral shape of the prior art, the partial penetration of Example 1 A linear cut having the same tensile strength as that of welding was applied to the helically welded and joined metal container. The helically welded and joined metal container had a main body length of 1010 mm, an outer diameter of 165 mm, and a thickness of 2.3 mm. The weld line was also 1010 mm, the same as the length of the main body, and the lid member 3 and the bottom member 4 were welded. The material of the metal container body was SPHC JISG3131 standard. Instead of the welded portion, the metal container body welded and joined in a spiral shape is parallel to the axial direction of the cylindrical body container and has a 1010 mm length (perforated part (non-joined part)). ) And non-perforated part (joint part)), and the pitch of the joint part and non-joined part (length of perforated part and non-perforated part) so that the tensile strength of the cut is 0.7 times the tensile strength of the base metal ) Was adjusted by laser processing.
For the container having the spiral joint in Comparative Example 2, the tensile strength of the cut was measured instead of the spiral weld. Since the container body is provided with a weak part, the number of fragments after the container breakage was only two compared to Comparative Example 1, but there was a weak part in the spiral welded joint, which occurred in the metal can when the bullet penetrated As a result, the number of fragments increased from Example 1.

本発明の火砲弾薬用円筒状金属容器は、通常時における弾薬の取り扱い性、気密性を保持しながらも、異常時や有事において容器内部の火薬類が発火した際には容器の破裂による破片の飛散数を少なくして周囲の被害を抑制することができるため、安全に火薬類を輸送・保管・運用することが可能であり、火砲弾薬用容器として好適に利用可能である。   The cylindrical metal container for artillery ammunition of the present invention retains the handling and airtightness of ammunition during normal times, but when the explosives inside the container ignite in an abnormal or emergency situation, Since the number of splashes can be reduced and surrounding damage can be suppressed, explosives can be safely transported, stored and operated, and can be suitably used as a shell for ammunition.

1 金属容器本体
2 円筒部本体母材の引張強度よりも低い引張強度をもつ溶接部
3 蓋部材
4 底部材
5 補強リング
10 金属容器本体母材突合せ部
11 溶接部
12 不溶接部
12a 飛び石溶接の溶接線方向の不溶接部
12b 飛び石溶接の母材肉厚方向の不溶接部
20 亀裂
21 応力
22 亀裂の進展方向
30 試験供試体
31 銃
32 高速度カメラ
1 Metal container body
2 Welded part with tensile strength lower than the tensile strength of the cylindrical base material
3 Lid member
4 Bottom member
5 Reinforcement ring
10 Metal container body base material butt
11 Welded part
12 Non-welded part
12a Unwelded part in the welding line direction of stepping stone welding
12b Non-welded part in the thickness direction of base metal in stepping stone welding
20 crack
21 Stress
22 Crack propagation direction
30 test specimens
31 gun
32 high speed camera

Claims (3)

軸方向に所定長を有する円筒部本体が底部材と蓋部材により封止された火砲弾薬用円筒状金属容器であって、該円筒部本体は、該軸方向に平行な1つの直線状の溶接部で接合されることにより所定厚の金属板が円筒状の形態を呈するものとなっており、そして該溶接部の引張強度は、該容器本体を構成する金属板母材の引張強度の0.3〜0.7倍であることを特徴とする前記火砲弾薬用円筒状金属容器。   A cylindrical metal container for artillery ammunition in which a cylindrical body having a predetermined length in the axial direction is sealed by a bottom member and a lid member, and the cylindrical body is a single linear weld parallel to the axial direction The metal plate having a predetermined thickness is formed in a cylindrical shape by being joined at the portion, and the tensile strength of the welded portion is 0. 0 of the tensile strength of the metal plate base material constituting the container body. The cylindrical metal container for artillery ammunition characterized by being 3 to 0.7 times. 前記溶接部は、部分溶込み溶接、飛び石溶接又はスポット溶接により形成されたものである、請求項1に記載の火砲弾薬用円筒状金属容器。   The cylindrical metal container for artillery ammunition according to claim 1, wherein the weld is formed by partial penetration welding, stepping stone welding, or spot welding. 前記溶接部の引張強度は、前記容器本体を構成する金属板母材の引張強度の0.3〜0.5倍である、請求項1又は2に記載の火砲弾薬用円筒状金属容器。   The cylindrical metal container for artillery ammunition of Claim 1 or 2 whose tensile strength of the said welding part is 0.3 to 0.5 time the tensile strength of the metal plate base material which comprises the said container main body.
JP2016117283A 2016-06-13 2016-06-13 Cylindrical metal container for gun ammunition Pending JP2017223385A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016117283A JP2017223385A (en) 2016-06-13 2016-06-13 Cylindrical metal container for gun ammunition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016117283A JP2017223385A (en) 2016-06-13 2016-06-13 Cylindrical metal container for gun ammunition

Publications (1)

Publication Number Publication Date
JP2017223385A true JP2017223385A (en) 2017-12-21

Family

ID=60688156

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016117283A Pending JP2017223385A (en) 2016-06-13 2016-06-13 Cylindrical metal container for gun ammunition

Country Status (1)

Country Link
JP (1) JP2017223385A (en)

Similar Documents

Publication Publication Date Title
JP5584924B2 (en) Ignition device for the destruction of shells
JP5328779B2 (en) Cartridge ammunition, especially training ammunition
KR20120058515A (en) Pressure-relief system for gun fired cannon cartridges
US20130206027A1 (en) Rock cracker cartridge and ignition capsule
JP5504902B2 (en) Packing container for cylindrical ammunition
CA2680421A1 (en) Initiation of explosives materials
JPS59205600A (en) Shock sensible detonator
JP6399812B2 (en) Ammunition container with Y-shaped weak part
EP2410286B1 (en) Blast treatment method and blast treatment device
GB2295664A (en) Apparatus for explosive ordnance disposal
JP5774843B2 (en) Cylindrical ammunition container
JP5577854B2 (en) Cylindrical ammunition container
JP2017223385A (en) Cylindrical metal container for gun ammunition
JP7504260B2 (en) Ammunition container
JP6399811B2 (en) Ammunition container having a stitch-like fragile portion
US11614313B2 (en) Pyrotechnic delay element device
JP5584031B2 (en) Projectile storage container
JP6399815B2 (en) Ammunition container having a weak part in the main body cylindrical part and a lock spider in the lid
US7913608B1 (en) Weapon with IM-characteristics
KR101183488B1 (en) Multi-purpose thermobaric hand grenade with fragmentation effects
WO2018029248A1 (en) A method of and a cartridge for disarming an unexploded blasting charge in a drill hole
KR102788675B1 (en) Rear cover of penetrating warhead with insensitive munitions performance and assembly method thereof
JP5577870B2 (en) Cylindrical ammunition container
JP6707965B2 (en) Ammunition container
JP2007292320A (en) Warhead processing tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200528

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200609

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20201208