JP2017221008A - Power conversion device and power conversion method - Google Patents
Power conversion device and power conversion method Download PDFInfo
- Publication number
- JP2017221008A JP2017221008A JP2016113160A JP2016113160A JP2017221008A JP 2017221008 A JP2017221008 A JP 2017221008A JP 2016113160 A JP2016113160 A JP 2016113160A JP 2016113160 A JP2016113160 A JP 2016113160A JP 2017221008 A JP2017221008 A JP 2017221008A
- Authority
- JP
- Japan
- Prior art keywords
- phase
- capacitor
- circuit
- voltage unit
- fuse
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/32—Means for protecting converters other than automatic disconnection
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02H—EMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
- H02H7/00—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
- H02H7/10—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers
- H02H7/12—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers
- H02H7/1213—Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for converters; for rectifiers for static converters or rectifiers for DC-DC converters
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Inverter Devices (AREA)
- Rectifiers (AREA)
Abstract
Description
本発明は,電力変換装置及び電力変換方法に係り,特に主回路構成および主回路の保護に好適な電力変換装置及び電力変換方法に関する。 The present invention relates to a power conversion device and a power conversion method, and more particularly to a power conversion device and a power conversion method suitable for main circuit configuration and main circuit protection.
半導体スイッチング素子を用いた電力変換器は,産業,家電,交通,自動車および電力・社会インフラシステムなどの分野で幅広く使用されている。数百kW以上の産業向け電力変換器は,複数の半導体スイッチング素子を含むアセンブリにより構成されることが多い。このような電力変換器には,半導体スイッチング素子が短絡するような事故時が発生しても,電力変換器内の保護手段により事故相を速やかに切り離し,健全相へ与える影響を抑止することで復旧までのダウンタイムの短縮を実現することが望まれる。この要求に対し,電力変換器内部の直流回路部を接続する箇所にヒューズを挿入する保護方法が多用される。 Power converters using semiconductor switching elements are widely used in fields such as industry, home appliances, transportation, automobiles, and power / social infrastructure systems. Industrial power converters of several hundred kW or more are often composed of assemblies containing multiple semiconductor switching elements. In such a power converter, even if an accident occurs in which the semiconductor switching element is short-circuited, the accident phase is quickly separated by the protective means in the power converter, and the influence on the healthy phase is suppressed. It is desirable to reduce downtime until recovery. In response to this requirement, a protection method in which a fuse is inserted at a location where the DC circuit portion inside the power converter is connected is frequently used.
このように,電力変換器の保護のため直流回路部にヒューズを挿入し,かつ半導体スイッチング素子の短絡事故時は速やかにヒューズを溶断可能となるようダイオードとコンデンサを直列にした回路を追加した構成は,例えば,特開2014-96892号公報に記載されている。 In this way, a fuse is inserted in the DC circuit to protect the power converter, and a circuit in which a diode and a capacitor are connected in series is provided so that the fuse can be blown quickly in the event of a short circuit in the semiconductor switching element. Is described, for example, in JP-A-2014-96892.
上記の従来技術は,3相一括で平滑コンデンサを抱える構成に対する保護回路である。一方,産業や電力・社会インフラシステム向けの電力変換器は損失低減を目的に高電圧化が進んでおり,そのような高圧電力変換器においては,半導体スイッチング素子を始めとする部品は高耐圧/大電流のものが使用される。3相一括で回路を構成した場合は絶縁距離・沿面距離を確保するため平滑コンデンサと半導体スイッチング素子の距離が離れる。距離が離れることにより,主回路の寄生インダクタンスが大きくなる。寄生インダクタンスが大きくなると,半導体スイッチング素子をスイッチングする際に半導体スイッチング素子の端子間に生じる跳ね上がり電圧により,半導体スイッチング素子が破損する場合があるため,スナバ回路等の跳ね上がり電圧を抑制する追加の回路が必要となり,電力変換器の大型化を招く。 The above prior art is a protection circuit for a configuration having a smoothing capacitor in a three-phase package. On the other hand, power converters for industrial and power / social infrastructure systems have been increased in voltage for the purpose of reducing loss. In such high-voltage power converters, components such as semiconductor switching elements have high breakdown voltage / The one with a large current is used. When a circuit is configured with three phases at once, the distance between the smoothing capacitor and the semiconductor switching element is increased to ensure the insulation distance and creepage distance. As the distance increases, the parasitic inductance of the main circuit increases. When the parasitic inductance increases, the semiconductor switching element may be damaged by the jumping voltage generated between the terminals of the semiconductor switching element when switching the semiconductor switching element. Therefore, an additional circuit for suppressing the jumping voltage such as a snubber circuit is provided. This is necessary and causes an increase in the size of the power converter.
このように,電力変換器,特に高電圧の電力変換器では,小型化,および,短絡事故時に事故相が健全相へ与える影響を抑止することの両立が困難であるという問題があった。 As described above, power converters, particularly high-voltage power converters, have a problem that it is difficult to achieve both miniaturization and suppression of the influence of the accident phase on the healthy phase in the event of a short circuit accident.
本発明の目的は,電力変換装置の小型化ができ,且つ,事故が起きた際は簡易に復旧が可能となる電力変換装置及び電力変換方法を提供することにある。 An object of the present invention is to provide a power conversion device and a power conversion method that can reduce the size of the power conversion device and that can be easily restored when an accident occurs.
上記目的を達成するため,本発明では,相を構成する相回路を複数有し,前記複数の相回路は共通の直流電圧部を一部に含んでおり,前記複数の相回路の各々は,半導体スイッチング素子で構成されて電力変換動作をするスイッチング回路と,前記スイッチング回路に接続される交流端子と,前記前記スイッチング回路と前記直流電圧部との間に並列接続される複数のコンデンサと,前記スイッチング回路と前記直流電圧部との間に接続されるヒューズを有するように構成した。 In order to achieve the above object, the present invention has a plurality of phase circuits constituting a phase, the plurality of phase circuits partially including a common DC voltage unit, and each of the plurality of phase circuits includes: A switching circuit configured by a semiconductor switching element and performing a power conversion operation; an AC terminal connected to the switching circuit; a plurality of capacitors connected in parallel between the switching circuit and the DC voltage unit; A fuse connected between the switching circuit and the DC voltage unit is provided.
あるいは,相毎に半導体スイッチング素子と,第一のコンデンサと,第二のコンデンサと,配線と,から成るアセンブリと,該アセンブリの直流回路が並列接続される共通直流回路と,を備え,該第一のコンデンサと第二のコンデンサはアセンブリの直流回路に並列接続され,該第一のコンデンサ端子はアセンブリ直流回路の上記半導体スイッチング素子の近傍に接続され,該第二のコンデンサ端子は第一のコンデンサに比べてアセンブリ直流回路の上記共通直流回路側に接続され,第一のコンデンサ端子接続箇所と第二のコンデンサ端子接続箇所を結ぶ配線の一部にヒューズを挿入する構成を備える構成とする。 Alternatively, each phase includes a semiconductor switching element, a first capacitor, a second capacitor, and a wiring, and a common DC circuit in which the DC circuits of the assembly are connected in parallel. One capacitor and a second capacitor are connected in parallel to the DC circuit of the assembly, the first capacitor terminal is connected in the vicinity of the semiconductor switching element of the assembly DC circuit, and the second capacitor terminal is connected to the first capacitor Compared to the above, it is connected to the common DC circuit side of the assembly DC circuit, and has a configuration in which a fuse is inserted into a part of the wiring connecting the first capacitor terminal connection location and the second capacitor terminal connection location.
本発明によれば,半導体スイッチング素子から見込んだ直流回路の低インダクタンス化が図れ,その結果として装置の小型化が可能となる。また,ヒューズをアセンブリ内のコンデンサによる放電電流により溶断できるため,短絡事故時に事故相が健全相へ与える影響を抑制することができ,事故相のみの部品交換で簡易な復旧が可能となる。 According to the present invention, it is possible to reduce the inductance of the DC circuit as expected from the semiconductor switching element, and as a result, it is possible to reduce the size of the apparatus. In addition, since the fuse can be blown by the discharge current from the capacitor in the assembly, the influence of the accident phase on the healthy phase in the event of a short-circuit accident can be suppressed, and simple recovery is possible by replacing only the accident phase.
以下に発明を実施するための形態を図面を用いて説明する。 EMBODIMENT OF THE INVENTION Below, the form for inventing is demonstrated using drawing.
実施例1を説明する。図1に電力変換器の回路構成を示す。本実施例では3相の2レベル変換器を例に説明する。本電力変換器の主回路は,一相を構築する回路102a,102b,そして102cにより構成され,102a,102b,102cの直流端子は共通の直流回路100a(直流電圧部(正極)とも称す),100b(直流電圧部(負極)とも称す)で並列接続される。102a,102b,102cは,共通直流回路との間に図示しない断路構成を備え,一相ごとの取り外し,もしくは入れ替えが可能な構成となっている。
Example 1 will be described. Fig. 1 shows the circuit configuration of the power converter. In this embodiment, a three-phase two-level converter will be described as an example. The main circuit of this power converter is composed of
一相を構築する回路(102a,102b,102c)は例えばU相,V相,W相を形成し,一相を構築する回路(102a,102b,102c)の各々の端子(104a),端子(104b),端子(104c)は3相交流電力機のU相,V相,W相端子に接続される。これにより,図示しない交流電動機を駆動し,あるいは,回生電力を直流に変換する。
The circuit (102a, 102b, 102c) that constructs one phase forms, for example, a U phase, a V phase, and a W phase, and each terminal (104a), terminal (104) of the circuit (102a, 102b, 102c) that constructs one
例えば,一相を構築する回路(102a)を例にとると,一相を構築する回路(102a)は,図7に示すように,回路(101)として,正側のスイッチング素子(401)と正側の逆ダイオード(402)の対と,負側のスイッチング素子(401)と負側の逆ダイオード(402)の対とが直列に接続される。半導体スイッチング素子で構成される回路に接続される配線(正極)(108a)を介して直流回路(100a)に,半導体スイッチング素子で構成される回路に接続される配線(負極)(109a)を介して直流回路(100b)に接続される。また,正側のスイッチング素子(401)と正側の逆ダイオード(402)の対と,負側のスイッチング素子(401)と負側の逆ダイオード(402)の対との接続点は入・出力端子(104a)となる。 For example, taking the circuit (102a) for constructing one phase as an example, the circuit (102a) for constructing one phase is connected to the switching element (401) on the positive side as the circuit (101) as shown in FIG. A pair of positive reverse diodes (402), a negative switching element (401) and a negative reverse diode (402) pair are connected in series. Via the wiring (positive electrode) (108a) connected to the circuit composed of semiconductor switching elements to the DC circuit (100a), via the wiring (negative electrode) (109a) connected to the circuit composed of semiconductor switching elements Connected to the DC circuit (100b). The connection point between the pair of the positive switching element (401) and the positive reverse diode (402) and the pair of the negative switching element (401) and the negative reverse diode (402) is input / output. Terminal (104a).
スイッチング素子(401)はPWM等のスイッチングにより,直流回路(100a)と直流回路(100b)との間の直流電力を交流電力へ変換して端子(104a)から出力し,あるいは,端子(104a)からの交流電力を直流に変換して直流回路(100a)と直流回路(100b)に出力する。 The switching element (401) converts the DC power between the DC circuit (100a) and the DC circuit (100b) into AC power by switching such as PWM and outputs it from the terminal (104a), or the terminal (104a) AC power is converted into direct current and output to the direct current circuit (100a) and direct current circuit (100b).
スイッチング素子(401)は図示しないゲート駆動回路及びゲート制御回路によって,上下交互にスイッチングすることで電力変換を行う。スイッチング素子(401)は図示しないPWM制御回路により,変調波と搬送波とを比較してPWM変調方式で制御される。
The switching element (401) performs power conversion by switching alternately up and down by a gate drive circuit and a gate control circuit (not shown). The
他の一相を構築する回路(102b)及び(102c)は,一相を構築する回路(102a)と同様の構成である。 The other circuits (102b) and (102c) for constructing one phase have the same configuration as the circuit (102a) for constructing one phase.
一相を構成する回路(102a)では,半導体スイッチング素子で構成される回路(101a)に近接して,直流回路(100a)と直流回路(100b)と並列になるように,第一のコンデンサ(103a)を設置する。該回路は図7に示す構成である。図7では半導体スイッチング素子としてIGBT(401)を用いているが,その他の半導体スイッチング素子(トランジスタ・GTO・サイリスタ等)へ置き換えてもよい。このように,コンデンサ(103a)から半導体スイッチング素子で構成される回路(101a)までの電流経路(C100)が小さくなるため,該電流経路の寄生インダクタンスを小さくすることが可能となる。ここで,IGBT(401)がスイッチングする際に端子間へ掛かる跳ね上がり電圧は該寄生インダクタンスと電流変化(di/dt)によって決まるため,該構成により跳ね上がり電圧の抑制が可能となる。従い,跳ね上がり電圧から半導体スイッチング素子を保護するためのスナバ回路が不要となり,電力変換器の小型化が可能となる。 In the circuit (102a) constituting one phase, the first capacitor (102a) is placed in parallel with the DC circuit (100a) and the DC circuit (100b) in close proximity to the circuit (101a) constituted by the semiconductor switching element. 103a) is installed. The circuit has the configuration shown in FIG. Although IGBT (401) is used as the semiconductor switching element in FIG. 7, it may be replaced with other semiconductor switching elements (transistor, GTO, thyristor, etc.). Thus, since the current path (C100) from the capacitor (103a) to the circuit (101a) composed of the semiconductor switching elements is reduced, the parasitic inductance of the current path can be reduced. Here, since the jumping voltage applied between the terminals when the IGBT (401) switches is determined by the parasitic inductance and the current change (di / dt), the jumping voltage can be suppressed by this configuration. Accordingly, a snubber circuit for protecting the semiconductor switching element from the jumping voltage becomes unnecessary, and the power converter can be downsized.
本発明の特徴である,第二のコンデンサを活用した健全相への事故波及抑制を実現する構成およびそのメカニズムについて,以下説明する。 The structure and mechanism for realizing the accident propagation suppression to the healthy phase using the second capacitor, which is a feature of the present invention, will be described below.
本実施例で示す電力変換器は相毎に備えられるアセンブリに,半導体スイッチング素子(101a)の直近に備えられる第一のコンデンサ(103a),コンデンサ(103a)の端子に接続される配線に備えられるヒューズ(105a・106a),そして第一のコンデンサ(103a)とは別に上記ヒューズに比べて共通直流回路(100a・100b)側に,直流回路(100a)と直流回路(100b)の間に,設置される第二のコンデンサ(107a)を備える点に特徴がある。 The power converter shown in the present embodiment is provided in the assembly provided for each phase, the first capacitor (103a) provided in the immediate vicinity of the semiconductor switching element (101a), and the wiring connected to the terminals of the capacitor (103a). Aside from the fuse (105a / 106a) and the first capacitor (103a), it is installed on the common DC circuit (100a / 100b) side, between the DC circuit (100a) and the DC circuit (100b). The second capacitor (107a) is provided with a feature.
本構成により,半導体スイッチング素子の短絡事故が生じた際,事故相のみのヒューズを溶断することが可能となり,健全相のアセンブリである(102b,102c)への影響を低減することが可能となる。 With this configuration, when a semiconductor switching element short circuit accident occurs, it is possible to blow only the fuse in the fault phase, and it is possible to reduce the impact on the sound phase assembly (102b, 102c) .
図2を用いてヒューズ溶断時の電流の流れを説明する。 The current flow when the fuse is blown will be described with reference to FIG.
ヒューズ(105a)は,半導体スイッチング素子(101a)の端子の一方と直流回路100aを溶断により切り離すように挿入される。ヒューズ(106a)は,半導体スイッチング素子(101a)の端子のもう一方と直流回路(100b)を溶断により切り離すように挿入される。
The fuse (105a) is inserted so that one of the terminals of the semiconductor switching element (101a) and the
半導体スイッチング素子の短絡時,まず半導体スイッチング素子で構成される回路(101a)に近接したコンデンサ(103a)から電荷が半導体スイッチング素子で構成される回路(101a)に放出される(電流経路(200))。電荷放出によりコンデンサ(103a)の端子間電圧が低下するため,コンデンサ(107a)からヒューズ(105a)を介して電流が流れ,該電流がヒューズを溶断され(電流経路(201)),事故相が直流電圧部(100a・100b)から切り離される。コンデンサ(107a)は半導体スイッチング素子で構成される回路(101a)と同一のアセンブリに備えられるため,コンデンサ(107a)から半導体スイッチング素子で構成される回路(101a)までの寄生インダクタンスは,健全相のアセンブリ(102b・102c)内コンデンサから事故相(102a)の半導体スイッチング素子で構成させる回路(101a)までの寄生インダクタンスに比べて小さい。ゆえに,事故相のヒューズ溶断に必要な電流はコンデンサ(107a)から供給されることとなる。コンデンサ(107a)からヒューズを溶断するための電流を供給することでコンデンサ(107a)の端子電圧は低下するので,健全相からも電流が流れ込む。健全相への影響を低減するため,コンデンサ(107a)から半導体スイッチング素子で構成される回路(101a)までの寄生インダクタンスに比べ,各相を接続している配線(L10・L20)によって生じる健全相からコンデンサ(107a)までの寄生インダクタンスは十分大きいことが望ましい。なお,コンデンサ(107a)の静電容量と電流経路(201)の寄生インダクタンスで決定する共振周波数が,コンデンサ(103b)と電流経路(203)の寄生インダクタンスで決定する共振周波数の4倍以上となるよう,各相間を接続する配線(L10)の寄生インダクタンスおよび各コンデンサの静電容量を選定することが望ましい。これにより,例えば図9に示すように,健全相から流れる込む電流(801)がピーク値となるまでに,事故相のコンデンサ(107a)から流れる電流(800)によってヒューズを溶断させることが可能となる。これが,半導体スイッチング素子が短絡故障した場合の健全相への影響低減メカニズムである。 When the semiconductor switching element is short-circuited, electric charge is first discharged from the capacitor (103a) adjacent to the circuit (101a) composed of the semiconductor switching element to the circuit (101a) composed of the semiconductor switching element (current path (200) ). Since the voltage between the terminals of the capacitor (103a) decreases due to the charge discharge, current flows from the capacitor (107a) through the fuse (105a), the current blows the fuse (current path (201)), and the accident phase Disconnected from the DC voltage section (100a / 100b). Since the capacitor (107a) is provided in the same assembly as the circuit (101a) composed of semiconductor switching elements, the parasitic inductance from the capacitor (107a) to the circuit (101a) composed of semiconductor switching elements is It is smaller than the parasitic inductance from the capacitor in the assembly (102b, 102c) to the circuit (101a) constituted by the semiconductor switching element of the accident phase (102a). Therefore, the current required to blow the fuse in the accident phase is supplied from the capacitor (107a). By supplying the current for fusing the fuse from the capacitor (107a), the terminal voltage of the capacitor (107a) is lowered, so that the current also flows from the healthy phase. In order to reduce the influence on the healthy phase, compared to the parasitic inductance from the capacitor (107a) to the circuit (101a) composed of semiconductor switching elements, the healthy phase generated by the wiring (L10 / L20) connecting each phase To the capacitor (107a) is desirably sufficiently large. Note that the resonance frequency determined by the capacitance of the capacitor (107a) and the parasitic inductance of the current path (201) is more than four times the resonance frequency determined by the parasitic inductance of the capacitor (103b) and the current path (203). Thus, it is desirable to select the parasitic inductance of the wiring (L10) connecting each phase and the capacitance of each capacitor. As a result, for example, as shown in FIG. 9, it is possible to blow the fuse by the current (800) flowing from the capacitor (107a) in the accident phase before the current (801) flowing from the healthy phase reaches the peak value. Become. This is a mechanism for reducing the influence on the healthy phase when the semiconductor switching element is short-circuited.
仮にヒューズ直近のコンデンサ(107a)が無い場合のヒューズ溶断の流れを,比較例として,図3を用いて説明する。ここで,左端の相(102a)が事故相,他の相(102b・102c)を健全相とする。本構成で半導体スイッチング素子の短絡が生じた場合,まず半導体スイッチング素子で構成される回路(101a)に近接したコンデンサ(103a)から電荷が放出され(電流経路(200)),次に健全相(102b・102c)のコンデンサ(103b)から電荷が放出される(電流経路(202))ことでヒューズが溶断するため,事故相(102a)だけではなく,健全相(102b・102c)のヒューズにも疲労が蓄積される。従い事故から復旧する際には事故相だけではなく,他相を合わせて復旧する必要がある。 The flow of fuse blowing when there is no capacitor (107a) closest to the fuse will be described as a comparative example with reference to FIG. Here, the leftmost phase (102a) is the accident phase, and the other phases (102b and 102c) are the healthy phases. When a short circuit of the semiconductor switching element occurs in this configuration, the charge is first released from the capacitor (103a) close to the circuit (101a) composed of the semiconductor switching element (current path (200)), and then the healthy phase ( Since the fuse is blown by discharging the electric charge from the capacitor (103b) of 102b and 102c (current path (202)), not only the fault phase (102a) but also the fuse of the healthy phase (102b and 102c) Fatigue accumulates. Therefore, when recovering from an accident, it is necessary to recover not only from the accident phase but also from other phases.
次に,比較例として,半導体スイッチング素子で構成される回路(101a)の直近に配置されるコンデンサ(103a)が無い場合を,図4を用いて説明する。本構成では,半導体スイッチング素子の短絡事故時,ヒューズ直近に配置されたコンデンサ(107a)から電荷が放出されることでヒューズが溶断するため,図1で示した構成と同様,他相から電流が流れ込むことが抑止され,事故相のみのヒューズが溶断される。しかし,コンデンサ(107a)から半導体スイッチング素子で構成される回路(101a)までの電流経路(C200)が大きくなるため,該電流経路の寄生インダクタンスが大きくなる。従い,半導体スイッチング素子をスイッチングする際の跳ね上がり電圧が懸念され,スナバ回路等の保護回路が必要となり,電力変換器が大きくなる。 Next, as a comparative example, a case where there is no capacitor (103a) arranged in the immediate vicinity of the circuit (101a) composed of semiconductor switching elements will be described with reference to FIG. In this configuration, in the event of a short circuit failure of the semiconductor switching element, the fuse is blown by discharging the capacitor (107a) arranged in the immediate vicinity of the fuse, so that current is supplied from other phases as in the configuration shown in FIG. Inflow is suppressed and the fuse for the accident phase only is blown. However, since the current path (C200) from the capacitor (107a) to the circuit (101a) composed of semiconductor switching elements becomes large, the parasitic inductance of the current path becomes large. Therefore, there is a concern about the jumping voltage when switching the semiconductor switching element, a protection circuit such as a snubber circuit is required, and the power converter becomes large.
以上より,本実施例によれば,半導体スイッチング素子から見込んだ直流回路の低インダクタンス化が図れるためスナバ回路の追加を不要とでき,その結果として電力変換器の小型化が可能となる。また,ヒューズをアセンブリ内の第二のコンデンサによる放電電流により溶断できるため,短絡事故時に事故相が健全相へ与える影響を抑制することができ,事故相のみの部品交換で復旧が可能となる。 As described above, according to the present embodiment, since the inductance of the DC circuit expected from the semiconductor switching element can be reduced, it is not necessary to add a snubber circuit, and as a result, the power converter can be miniaturized. In addition, since the fuse can be blown by the discharge current from the second capacitor in the assembly, the influence of the accident phase on the sound phase can be suppressed in the event of a short circuit accident, and recovery can be achieved by replacing only the accident phase.
ヒューズ直近に配置されたコンデンサ(107a)の静電容量を選定する方法を,図2を用いて示す。実施例1の変形例である実施例2では(他の実施例でも同様)異なる部分のみを説明する。したがって,説明が省略された部分は実施例1と同様である。半導体スイッチング素子で構成される回路(101a)の内部にある半導体スイッチング素子(402)が短絡故障したとき,実施例1で示した通り,コンデンサ(107a)の放電電流でヒューズ(105a)が溶断される。ここでヒューズを溶断するために流れる放電電流Is(A)と,放電時間ts(s)によって決まるジュール積分値Is2t(A2s)によってヒューズが溶断する。 Figure 2 shows how to select the capacitance of the capacitor (107a) placed in the immediate vicinity of the fuse. In the second embodiment, which is a modification of the first embodiment (same in other embodiments), only different parts will be described. Therefore, the part where the description is omitted is the same as that of the first embodiment. When the semiconductor switching element (402) in the circuit (101a) composed of the semiconductor switching elements has a short circuit failure, the fuse (105a) is blown by the discharge current of the capacitor (107a) as shown in the first embodiment. The Here, the fuse is blown by the discharge current Is (A) that flows to blow the fuse and the Joule integral value Is 2 t (A 2 s) determined by the discharge time ts (s).
ここで,短絡事故時の電流経路(201)の抵抗をRs(Ω),コンデンサ(107a)の放電前の電圧をV0(V),放電後の電圧をV1(V)とし,コンデンサ(107a)の静電容量をCf(F)とすると,コンデンサの電圧をV0(V)からV1(V)まで放電するために必要な時間t(s)は式(1)で求められる。すなわち,短絡故障時にヒューズを溶断させる時間は,ヒューズの特性(ジュール積分値Is2t(A2s))および短絡故障時の抵抗およびヒューズ溶断用のコンデンサ(107a)の静電容量によって決まる。従い,半導体スイッチング素子(402)が短絡故障した際にヒューズを溶断させたい時間によってヒューズ溶断用のコンデンサ(107a)の静電容量を選定する。該選定された構成部品が採用される。 Here, Rs (Ω) is the resistance of the current path (201) at the time of the short-circuit accident, V0 (V) is the voltage before discharge of the capacitor (107a), V1 (V) is the voltage after discharge, and the capacitor (107a) If the capacitance of Cf (F) is Cf (F), the time t (s) required to discharge the capacitor voltage from V0 (V) to V1 (V) can be obtained by equation (1). That is, the time to blow the fuse at the time of a short circuit failure is determined by the characteristics of the fuse (Joule integral value Is 2 t (A 2 s)), the resistance at the time of the short circuit failure, and the capacitance of the capacitor (107a) for fusing the fuse. Accordingly, the capacitance of the fuse blowing capacitor (107a) is selected according to the time at which the fuse should be blown when the semiconductor switching element (402) is short-circuited. The selected component is employed.
t(s)=-Cf×Rs×ln(V0/V1) … 式(1) t (s) =-Cf × Rs × ln (V0 / V1) ... Equation (1)
図5に,3相の3レベル変換器の例を示す。直流回路(300a)(直流電圧部(正極)とも称す),直流回路(300b)(直流電圧部(負極)とも称す)に加え,直流回路(300c)(直流電圧部(コモン)とも称す)で構成される。直流回路(300a)と直流回路(300c)の間にコンデンサ(308a)が,直流回路(300c)と直流回路(300b)の間にコンデンサ(308b)が設けられる。 Figure 5 shows an example of a 3-phase 3-level converter. In addition to DC circuit (300a) (also referred to as DC voltage section (positive electrode)) and DC circuit (300b) (also referred to as DC voltage section (negative electrode)), DC circuit (300c) (also referred to as DC voltage section (common)) Composed. A capacitor (308a) is provided between the DC circuit (300a) and the DC circuit (300c), and a capacitor (308b) is provided between the DC circuit (300c) and the DC circuit (300b).
一相を構築する回路(301)の半導体スイッチング素子で構成される回路に接続される配線(正極)(309)と半導体スイッチング素子で構成される回路に接続される配線(コモン) (311)の間にコンデンサ(303a)が,配線(311)と半導体スイッチング素子で構成される回路に接続される配線(負極)(310)の間にコンデンサ(303b)が設けられる。 The wiring (positive) (309) connected to the circuit composed of the semiconductor switching elements of the circuit (301) constructing one phase (309) and the wiring (common) (311) connected to the circuit composed of the semiconductor switching elements A capacitor (303a) is provided between the wiring (311) and a wiring (negative electrode) (310) connected to a circuit composed of semiconductor switching elements.
一相を構築する回路(301)の配線(309)と直流回路(300a)の間にヒューズ(305a)が,配線(311)と直流回路(300c)の間にヒューズ(307a)が,配線(310)と直流回路(300b)の間にヒューズ(306a)が設けられる
一相を構築する回路(301)は,図8に示すように,配線(309)と配線(310)の間に,スイッチング素子(401)と逆ダイオード(402)の対を4つ直列に接続する共に,2つの上側スイッチング素子(401)と逆ダイオード(402)の対の接続点と,2つの下側スイッチング素子(401)と逆ダイオード(402)の対の接続点とを,直列接続された2つのダイオード(501)で接続する。スイッチング素子(401)と逆ダイオード(402)の対が4つ直列されて形成される回路の一方は配線(309)を介して直流回路(300a)に,他方は配線(310)を介して直流回路(300b)に接続される。2つのダイオード(501)の接続点は配線(311)を介して直流回路(300c)に接続される。2つの上側スイッチング素子(401)と逆ダイオード(402)の対の接続点と,2つの下側スイッチング素子(401)と逆ダイオード(402)の対の接続点は,入・出力端子(304)となる。他の一相を構築する回路は同様に構成である。
A fuse (305a) is connected between the wiring (309) of the circuit (301) and the DC circuit (300a), and a fuse (307a) is connected between the wiring (311) and the DC circuit (300c). 310) and a DC circuit (300b) are provided with a fuse (306a) As shown in FIG. 8, the circuit (301) constituting one phase is switched between the wiring (309) and the wiring (310). Four pairs of the element (401) and the reverse diode (402) are connected in series, the connection point between the pair of the two upper switching elements (401) and the reverse diode (402), and the two lower switching elements (401 ) And the connection point of the pair of reverse diodes (402) are connected by two diodes (501) connected in series. One of the circuits formed by connecting four pairs of the switching element (401) and the reverse diode (402) in series is connected to the DC circuit (300a) via the wiring (309), and the other is connected to the DC circuit via the wiring (310). Connected to the circuit (300b). The connection point of the two diodes (501) is connected to the DC circuit (300c) via the wiring (311). The connection point between the two upper switching elements (401) and the reverse diode (402) and the connection point between the two lower switching elements (401) and the reverse diode (402) are the input / output terminals (304). It becomes. The circuits that make up the other phase are similarly configured.
図8に示す回路(301)では,PWM変調によりいわゆる3レベルで機能し,入・出力端子304に正出力,ゼロ出力,負出力が出力され,あるいは,入・出力端子304の交流電力を直流に電力変換する。
The circuit (301) shown in FIG. 8 functions at three levels by PWM modulation, and outputs positive output, zero output, and negative output to the input /
実施例1と同様,コンデンサ(308a・308b),ヒューズ(305a・306a・307a)・コンデンサ(303a・303b)・半導体スイッチング素子で構成される回路(301)の順序で回路を構成する。本構成の効果・動作は実施例1と同様である。 As in the first embodiment, the circuit is configured in the order of a circuit (301) including capacitors (308a and 308b), fuses (305a, 306a, and 307a), capacitors (303a and 303b), and semiconductor switching elements. The effects and operations of this configuration are the same as in the first embodiment.
図6に,3相2レベル変換器の別の実施例を示す。実施例1と同様,半導体スイッチング素子で構成される回路(101a)に近接して第一のコンデンサ(103a)が設置され,該半導体スイッチング素子で構成される回路(101a)と第一のコンデンサ(103a)で構成される回路を1つの回路郡(700)とし,該回路郡をヒューズ(105a・106a)に対して並列に接続する。なお本実施例では2並列の回路構成を示したが,並列数が異なっていても良い。また,本構成は実施例3に示す構成においても同様とする。
FIG. 6 shows another embodiment of the three-phase two-level converter. Similar to the first embodiment, a first capacitor (103a) is installed in the vicinity of the circuit (101a) composed of the semiconductor switching element, and the circuit (101a) composed of the semiconductor switching element and the first capacitor ( A
100a・300a…直流電圧部(正極),100b・300b…直流電圧部(負極),101・101a・101b・301…半導体スイッチング素子で構成される回路, 104a・104b・304…端子(交流出力端子),105a・106a・105b・106b・305a・306a・307a…ヒューズ,102a・102b・102c・302a・302b・302c…相を構成する回路,103a・103b・107a・303a・303b・308a・308b…コンデンサ,108・309…半導体スイッチング素子で構成される回路に接続される配線(正極),109・310…半導体スイッチング素子で構成される回路に接続される配線(負極),200・201・202・203…電流経路,300c…直流電圧部(コモン),311…半導体スイッチング素子で構成される回路に接続される配線(コモン),401…IGBT,402…ダイオード,700…半導体スイッチング素子で構成される回路とコンデンサから構成される回路郡,800・801…ヒューズを溶断する電流,C100・C200…電流経路,L10・L20…各相間を接続する配線 100a / 300a ... DC voltage part (positive electrode), 100b / 300b ... DC voltage part (negative electrode), 101 / 101a / 101b / 301 ... Circuit composed of semiconductor switching elements, 104a / 104b / 304 ... terminal (AC output terminal) ), 105a, 106a, 105b, 106b, 305a, 306a, 307a ... fuses, 102a, 102b, 102c, 302a, 302b, 302c ... circuits constituting the phases, 103a, 103b, 107a, 303a, 303b, 308a, 308b ... Capacitors, 108, 309 ... wiring connected to a circuit composed of semiconductor switching elements (positive electrode), 109, 310 ... wiring connected to a circuit composed of semiconductor switching elements (negative electrode), 200, 201, 202, 203 ... Current path, 300c ... DC voltage section (common), 311 ... Wiring (common) connected to a circuit composed of semiconductor switching elements, 401 ... IGBT, 402 ... Diode, 700 ... Consists of semiconductor switching elements A circuit group consisting of a circuit and a capacitor, 800 ・ 801… The current that blows the fuse , C100 / C200 ... current path, L10 / L20 ... wiring to connect each phase
Claims (8)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016113160A JP6715685B2 (en) | 2016-06-07 | 2016-06-07 | Power conversion device and power conversion method |
CN201710256017.7A CN107482891B (en) | 2016-06-07 | 2017-04-19 | Power-converting device and electric power conversion method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016113160A JP6715685B2 (en) | 2016-06-07 | 2016-06-07 | Power conversion device and power conversion method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017221008A true JP2017221008A (en) | 2017-12-14 |
JP6715685B2 JP6715685B2 (en) | 2020-07-01 |
Family
ID=60594081
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016113160A Active JP6715685B2 (en) | 2016-06-07 | 2016-06-07 | Power conversion device and power conversion method |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6715685B2 (en) |
CN (1) | CN107482891B (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020100030A (en) * | 2018-12-20 | 2020-07-02 | 東芝テック株式会社 | Inkjet head and inkjet printer |
JP2021142642A (en) * | 2020-03-10 | 2021-09-24 | 東芝テック株式会社 | Inkjet head and inkjet printer |
CN114336334A (en) * | 2022-01-25 | 2022-04-12 | 上能电气股份有限公司 | A DC power distribution unit applied to photovoltaic inverter and photovoltaic inverter |
JPWO2022185519A1 (en) * | 2021-03-05 | 2022-09-09 | ||
JP2023006730A (en) * | 2021-06-30 | 2023-01-18 | 株式会社オートネットワーク技術研究所 | In-vehicle device |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108448537B (en) * | 2018-02-28 | 2019-06-07 | 北京天诚同创电气有限公司 | Protect equipment, protection control method and modular multi-level converter |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000152604A (en) * | 1998-11-12 | 2000-05-30 | Yaskawa Electric Corp | Power converter |
JP2007074823A (en) * | 2005-09-07 | 2007-03-22 | Fuji Electric Systems Co Ltd | Power converter |
JP2014096892A (en) * | 2012-11-08 | 2014-05-22 | Toshiba Mitsubishi-Electric Industrial System Corp | Fuse melting assist circuit and power conversion device |
JP2015186376A (en) * | 2014-03-25 | 2015-10-22 | 東芝三菱電機産業システム株式会社 | Electric power conversion device |
JP2016067133A (en) * | 2014-09-25 | 2016-04-28 | 株式会社日立製作所 | Power conversion unit and power conversion device |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH06311752A (en) * | 1993-04-22 | 1994-11-04 | Fuji Electric Co Ltd | Three-phase multi-type inverse converter |
CN203574370U (en) * | 2013-10-29 | 2014-04-30 | 北京精密机电控制设备研究所 | Power supply filtering/energy storage circuit |
CN204559459U (en) * | 2015-03-20 | 2015-08-12 | 成都千秋科技有限公司 | A kind of power control circuit for lift |
-
2016
- 2016-06-07 JP JP2016113160A patent/JP6715685B2/en active Active
-
2017
- 2017-04-19 CN CN201710256017.7A patent/CN107482891B/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2000152604A (en) * | 1998-11-12 | 2000-05-30 | Yaskawa Electric Corp | Power converter |
JP2007074823A (en) * | 2005-09-07 | 2007-03-22 | Fuji Electric Systems Co Ltd | Power converter |
JP2014096892A (en) * | 2012-11-08 | 2014-05-22 | Toshiba Mitsubishi-Electric Industrial System Corp | Fuse melting assist circuit and power conversion device |
JP2015186376A (en) * | 2014-03-25 | 2015-10-22 | 東芝三菱電機産業システム株式会社 | Electric power conversion device |
JP2016067133A (en) * | 2014-09-25 | 2016-04-28 | 株式会社日立製作所 | Power conversion unit and power conversion device |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2020100030A (en) * | 2018-12-20 | 2020-07-02 | 東芝テック株式会社 | Inkjet head and inkjet printer |
US10828891B2 (en) * | 2018-12-20 | 2020-11-10 | Toshiba Tec Kabushiki Kaisha | Ink jet head and ink jet printer |
JP7118879B2 (en) | 2018-12-20 | 2022-08-16 | 東芝テック株式会社 | Inkjet head and inkjet printer |
JP2021142642A (en) * | 2020-03-10 | 2021-09-24 | 東芝テック株式会社 | Inkjet head and inkjet printer |
JP7410755B2 (en) | 2020-03-10 | 2024-01-10 | 東芝テック株式会社 | Inkjet head and inkjet printer |
JP7396493B2 (en) | 2021-03-05 | 2023-12-12 | 東芝三菱電機産業システム株式会社 | power converter |
WO2022185519A1 (en) * | 2021-03-05 | 2022-09-09 | 東芝三菱電機産業システム株式会社 | Power converter |
JPWO2022185519A1 (en) * | 2021-03-05 | 2022-09-09 | ||
US11967894B2 (en) | 2021-03-05 | 2024-04-23 | Toshiba Mitsubishi-Electric Industrial Systems Corporation | Power converter |
JP2023006730A (en) * | 2021-06-30 | 2023-01-18 | 株式会社オートネットワーク技術研究所 | In-vehicle device |
JP7586000B2 (en) | 2021-06-30 | 2024-11-19 | 株式会社オートネットワーク技術研究所 | Vehicle-mounted equipment |
CN114336334B (en) * | 2022-01-25 | 2023-08-25 | 上能电气股份有限公司 | A DC power distribution unit applied to a photovoltaic inverter and a photovoltaic inverter |
CN114336334A (en) * | 2022-01-25 | 2022-04-12 | 上能电气股份有限公司 | A DC power distribution unit applied to photovoltaic inverter and photovoltaic inverter |
Also Published As
Publication number | Publication date |
---|---|
CN107482891B (en) | 2019-10-01 |
CN107482891A (en) | 2017-12-15 |
JP6715685B2 (en) | 2020-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6715685B2 (en) | Power conversion device and power conversion method | |
US20120201066A1 (en) | Dual switching frequency hybrid power converter | |
JP6646870B2 (en) | Chopper device | |
JP2016144340A (en) | Snubber circuit | |
KR100994872B1 (en) | Inverter device | |
EP0538825B1 (en) | Power converting apparatus | |
Guo et al. | Overvoltage protection scheme for three-phase current source converter built with SiC MOSFETs | |
WO2014192327A1 (en) | Power conversion device and control method | |
CN108448537B (en) | Protect equipment, protection control method and modular multi-level converter | |
KR20140110037A (en) | Power conversion device | |
JP3926618B2 (en) | Power converter | |
US10686368B2 (en) | Power electronic module for a charging station and corresponding charging station and electricity charging station | |
JP2004248479A (en) | Three-level converter | |
RU2605082C2 (en) | Method for eliminating electric arc driven by at least one phase voltage source of inverter circuit | |
US9929677B2 (en) | Three-level active neutral point converter | |
JP5695379B2 (en) | Power converter | |
CN107960141B (en) | Inverter circuit with a circuit arrangement for regenerative damping of electrical oscillations and method for regenerative damping of electrical oscillations | |
US9950898B2 (en) | Semiconductor device, inverter circuit, driving device, vehicle, and elevator | |
KR102453339B1 (en) | Controlling circuit for multilevel inverter and controlling method thereof | |
CN110326218B (en) | Semiconductor switch with magnetic coupling device | |
JP2018029412A (en) | Power conversion device and power conversion system | |
JP2007267435A (en) | Power converter | |
AU731178B2 (en) | Protective device for power converter | |
KR102229840B1 (en) | Hvdc system including multi-function filter | |
JP7373424B2 (en) | power converter |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170111 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20170113 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190118 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191107 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200114 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20200204 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200324 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20200512 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20200609 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6715685 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |