[go: up one dir, main page]

JP2017211291A - Method and apparatus for detecting exposure of precipitation-hardened aluminum alloy members to abnormally high temperature - Google Patents

Method and apparatus for detecting exposure of precipitation-hardened aluminum alloy members to abnormally high temperature Download PDF

Info

Publication number
JP2017211291A
JP2017211291A JP2016105045A JP2016105045A JP2017211291A JP 2017211291 A JP2017211291 A JP 2017211291A JP 2016105045 A JP2016105045 A JP 2016105045A JP 2016105045 A JP2016105045 A JP 2016105045A JP 2017211291 A JP2017211291 A JP 2017211291A
Authority
JP
Japan
Prior art keywords
aluminum alloy
exposure
alloy member
precipitation hardening
high temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016105045A
Other languages
Japanese (ja)
Other versions
JP6736979B2 (en
Inventor
茜 津野
Akane Tsuno
茜 津野
智道 尾崎
Tomomichi Ozaki
智道 尾崎
健 中野
Ken Nakano
健 中野
中野 賢治
Kenji Nakano
賢治 中野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2016105045A priority Critical patent/JP6736979B2/en
Publication of JP2017211291A publication Critical patent/JP2017211291A/en
Application granted granted Critical
Publication of JP6736979B2 publication Critical patent/JP6736979B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating And Analyzing Materials By Characteristic Methods (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
  • Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a more accurate method of detecting exposure of precipitation-hardened aluminum alloy members to abnormally high temperature.SOLUTION: A method of detecting exposure of a precipitation-hardened aluminum alloy member to abnormally high temperature includes: a conductivity measurement step (S10) for measuring conductivity of a precipitation-hardened aluminum alloy member before and after exposure to heat; a hardness measurement step (S12) for measuring hardness of the precipitation-hardened aluminum alloy member before and after the exposure to heat; and an abnormally high temperature exposure detection step (S14) for detecting exposure to abnormally high temperature by comparing a relationship between change in conductivity and change in hardness of the precipitation-hardened aluminum alloy member before and after the exposure to heat, and a pre-derived relationship between change in conductivity and change in hardness of a precipitation-hardened aluminum alloy of the same composition as the precipitation-hardened aluminum alloy member before and after being exposed to known heat, and by determining whether the heat temperature to which the precipitation-hardened aluminum alloy member is exposed is less than 250°C or not.SELECTED DRAWING: Figure 1

Description

本発明は、析出硬化型アルミニウム合金部材の異常高温曝露検出方法及び異常高温曝露検出装置に係り、特に、250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出方法及び異常高温曝露検出装置に関する。   The present invention relates to an abnormally high temperature exposure detection method and an abnormally high temperature exposure detection apparatus for a precipitation hardening type aluminum alloy member, and more particularly to an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member that is exposed to heat in a use environment of less than 250 ° C. The present invention relates to an abnormally high temperature exposure detection method and an abnormally high temperature exposure detection apparatus for a precipitation hardening type aluminum alloy member to be detected.

過給機、圧縮機等の運転温度の上昇により、析出硬化型アルミニウム合金で形成されたインペラ等の析出硬化型アルミニウム合金部材における使用環境は、材料の能力の限界に近付いている。また、析出硬化型アルミニウム合金部材は、過給機、圧縮機等の異常運転等により使用環境温度を超えて異常高温曝露されると、材料特性が劣化する可能性がある。このことから、析出硬化型アルミニウム合金部材の信頼性向上のために、析出硬化型アルミニウム合金部材が使用環境温度を超えて高温曝露されたか否かをより正確に把握する必要がある。   Due to the increase in operating temperature of turbochargers, compressors, etc., the usage environment of precipitation hardening type aluminum alloy members such as impellers made of precipitation hardening type aluminum alloy is approaching the limit of the capability of the material. Further, when the precipitation hardening type aluminum alloy member is exposed to an abnormally high temperature exceeding the operating environment temperature due to abnormal operation of a supercharger, a compressor or the like, the material characteristics may be deteriorated. Therefore, in order to improve the reliability of the precipitation hardening type aluminum alloy member, it is necessary to more accurately grasp whether or not the precipitation hardening type aluminum alloy member has been exposed to a high temperature exceeding the use environment temperature.

従来、析出硬化型アルミニウム合金部材の熱曝露温度については、析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して推定することが行われている(例えば、特許文献1参照)。   Conventionally, the thermal exposure temperature of a precipitation hardening type aluminum alloy member has been estimated by measuring the ambient temperature around the precipitation hardening type aluminum alloy member (see, for example, Patent Document 1).

特開2012−2231号公報JP 2012-2231 A

ところで、過給機、圧縮機等に用いられる析出硬化型アルミニウム合金部材は、250℃未満の使用環境下で熱曝露されている。上記のように析出硬化型アルミニウム合金部材の周りの雰囲気温度を測定して、析出硬化型アルミニウム合金部材が250℃以上で異常高温曝露されたか否かを検出する場合には、析出硬化型アルミニウム合金部材から直接情報を得ていないので、精度よく検出できない可能性がある。   By the way, the precipitation hardening type aluminum alloy member used for a supercharger, a compressor, etc. is heat-exposed in the use environment below 250 degreeC. When the ambient temperature around the precipitation hardening aluminum alloy member is measured as described above to detect whether the precipitation hardening aluminum alloy member is exposed to an abnormally high temperature at 250 ° C. or higher, the precipitation hardening aluminum alloy is used. Since information is not obtained directly from the member, there is a possibility that it cannot be accurately detected.

そこで、本発明の目的は、析出硬化型アルミニウム合金部材の異常高温曝露をより精度よく検出することが可能な析出硬化型アルミニウム合金部材の異常高温曝露検出方法及び異常高温曝露検出装置を提供することである。   Therefore, an object of the present invention is to provide an abnormally high temperature exposure detection method and an abnormally high temperature exposure detection apparatus for a precipitation hardening type aluminum alloy member that can detect the abnormally high temperature exposure of the precipitation hardening type aluminum alloy member with higher accuracy. It is.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出方法は、250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出工程と、を備えることを特徴とする。   An abnormally high temperature exposure detection method for a precipitation hardening type aluminum alloy member according to the present invention includes a precipitation hardening type aluminum alloy member that detects an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member that is exposed to heat in a use environment of less than 250 ° C. An abnormally high temperature exposure detection method, comprising: a conductivity measuring step for measuring conductivity before and after thermal exposure in the precipitation hardened aluminum alloy member; and a hardness for measuring hardness before and after heat exposure in the precipitation hardened aluminum alloy member. The same composition as the precipitation hardening aluminum alloy member obtained in advance, and the relationship between the thickness measurement step, the change in conductivity before and after thermal exposure in the precipitation hardening aluminum alloy member, and the change in hardness Comparison of the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness in precipitation-hardened aluminum alloys exposed to known heat Te, characterized in that it and a abnormally high temperature exposure detection step of detecting an abnormal high temperature exposure by thermal exposure temperature of the precipitation hardening type aluminum alloy member to determine whether less than 250 ° C..

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出方法において、前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする。   In the method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member according to the present invention, the conductivity measuring step is measured by an eddy current type conductivity measuring method.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出方法において、前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする。   In the method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member according to the present invention, the hardness measurement step is measured by a Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, or a Knoop hardness measurement method. It is characterized by doing.

本発明に係る析出硬化型アルミニウム合金部材の異常高温曝露検出装置は、250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出装置であって、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出手段と、を備えることを特徴とする。   An apparatus for detecting an abnormally high temperature of a precipitation hardening type aluminum alloy member according to the present invention is an apparatus for detecting an abnormal high temperature of a precipitation hardening type aluminum alloy member that is exposed to heat in a use environment of less than 250 ° C. An abnormally high temperature exposure detection device, comprising: a conductivity measuring means for measuring conductivity before and after thermal exposure in the precipitation hardening aluminum alloy member; and a hardness for measuring hardness before and after thermal exposure in the precipitation hardening aluminum alloy member. And the relationship between the change in electrical conductivity before and after thermal exposure and the change in hardness in the precipitation hardening aluminum alloy member, and the same composition as the precipitation hardening aluminum alloy member obtained in advance. Comparison of the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness in precipitation-hardened aluminum alloys exposed to known heat Te, characterized in that it and a abnormally high temperature exposure detecting means for detecting an abnormally high temperature exposure by thermal exposure temperature of the precipitation hardening type aluminum alloy member to determine whether less than 250 ° C..

上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化と、硬さの変化とに基づいて、析出硬化型アルミニウム合金部材の異常高温曝露を検出しているので、検出精度を高めることが可能となる。   According to the above configuration, the abnormally high temperature exposure of the precipitation hardening type aluminum alloy member is detected based on the change in conductivity before and after the heat exposure in the precipitation hardening type aluminum alloy member and the change in hardness. The accuracy can be increased.

本発明の実施の形態において、析出硬化型アルミニウム合金部材の異常高温曝露検出方法の構成を示すフローチャートである。In embodiment of this invention, it is a flowchart which shows the structure of the abnormally high temperature exposure detection method of a precipitation hardening type aluminum alloy member. 本発明の実施の形態において、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係を示すモデル図である。In embodiment of this invention, it is a model figure which shows the relationship between the variation | change_quantity of the electrical conductivity before and behind the heat exposure in a precipitation hardening type aluminum alloy member, and the variation | change_quantity of hardness. 本発明の実施の形態において、析出硬化型アルミニウム合金部材における異常高温曝露の検出方法を示すモデル図である。In embodiment of this invention, it is a model figure which shows the detection method of the abnormally high temperature exposure in a precipitation hardening type aluminum alloy member. 本発明の実施の形態において、析出硬化型アルミニウム合金部材の異常高温曝露検出装置の構成を示すブロック図である。In embodiment of this invention, it is a block diagram which shows the structure of the abnormally high temperature exposure detection apparatus of a precipitation hardening type aluminum alloy member. 本発明の実施の形態において、マスター曲線を示すグラフである。In embodiment of this invention, it is a graph which shows a master curve.

以下に本発明の実施の形態について図面を用いて詳細に説明する。図1は、析出硬化型アルミニウム合金部材の異常高温曝露検出方法の構成を示すフローチャートである。析出硬化型アルミニウム合金部材の異常高温曝露検出方法は、導電率測定工程(S10)と、硬さ測定工程(S12)と、異常高温曝露検出工程(S14)と、を備えている。   Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a flowchart showing the configuration of an abnormally high temperature exposure detection method for a precipitation hardening type aluminum alloy member. The abnormally high temperature exposure detection method for a precipitation hardening type aluminum alloy member includes a conductivity measurement step (S10), a hardness measurement step (S12), and an abnormal high temperature exposure detection step (S14).

析出硬化型アルミニウム合金部材は、例えば、船舶用過給機、発電機、車両用過給機に用いられるコンプレッサインペラ等の展伸部材や鋳造部材である。このような析出硬化型アルミニウム合金部材は、250℃未満の使用環境下(例えば、約100℃以上250℃未満)で熱曝露されている。   The precipitation hardening type aluminum alloy member is, for example, a spreading member or a casting member such as a compressor impeller used for a marine supercharger, a generator, or a vehicle supercharger. Such a precipitation hardening type aluminum alloy member is exposed to heat under a use environment of less than 250 ° C. (for example, about 100 ° C. or more and less than 250 ° C.).

析出硬化型アルミニウム合金部材は、JIS規格等の析出硬化型アルミニウム合金で形成されている。析出硬化型アルミニウム合金は、溶体化処理した後に時効処理することにより、析出物を析出させて強化させたアルミニウム合金である。析出硬化型アルミニウム合金部材は、例えば、Al−Cu系合金、Al−Cu−Mg系合金、Al−Mg−Si系合金、Al−Zn−Mg系合金、Al−Zn−Mg−Cu系合金等(2000系、6000系、7000系、AC1B、AC4A、AC4C、AC4CH等)で形成されている。   The precipitation hardening type aluminum alloy member is formed of a precipitation hardening type aluminum alloy such as JIS standard. The precipitation hardening type aluminum alloy is an aluminum alloy that is strengthened by depositing precipitates by aging treatment after solution treatment. Precipitation hardening type aluminum alloy members include, for example, Al-Cu alloys, Al-Cu-Mg alloys, Al-Mg-Si alloys, Al-Zn-Mg alloys, Al-Zn-Mg-Cu alloys, etc. (2000 series, 6000 series, 7000 series, AC1B, AC4A, AC4C, AC4CH, etc.).

導電率測定工程(S10)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する工程である。析出硬化型アルミニウム合金部材の導電率は、主に、析出硬化型アルミニウム合金におけるAl母相中の溶質元素の固溶量に影響される。析出硬化型アルミニウム合金部材が熱曝露されると、Al母相中に固溶している溶質元素が析出物として析出し、Al母相中の溶質元素の固溶量が低下することにより、析出硬化型アルミニウム合金部材の導電率が変化する。このことから、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化により、析出硬化型アルミニウム合金部材の熱曝露の影響を評価することができる。   The conductivity measurement step (S10) is a step of measuring the conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member. The electrical conductivity of the precipitation hardening type aluminum alloy member is mainly influenced by the amount of solute elements in the Al matrix in the precipitation hardening type aluminum alloy. When the precipitation hardening type aluminum alloy member is exposed to heat, the solute elements dissolved in the Al matrix phase precipitate as precipitates, and the amount of solute elements in the Al matrix phase decreases, resulting in precipitation. The conductivity of the curable aluminum alloy member changes. From this, the influence of the heat exposure of the precipitation hardening type aluminum alloy member can be evaluated by the change in the conductivity before and after the heat exposure in the precipitation hardening type aluminum alloy member.

析出硬化型アルミニウム合金部材は、溶体化処理後の時効処理により、準安定相からなる析出物を析出させて強化させている。析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。熱曝露により、Al母相中に固溶している溶質元素が析出すると、Al母相中に固溶している溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる傾向がある。また、熱曝露温度が高くなると、Al母相中に固溶している溶質元素の析出が促進されるので、Al母相中に固溶している溶質元素の固溶量の低下がより大きくなり、析出硬化型アルミニウム合金部材の導電率がより大きくなる傾向がある。   Precipitation hardening type aluminum alloy members are strengthened by precipitating precipitates composed of metastable phases by aging treatment after solution treatment. When precipitation hardened aluminum alloy members are exposed to heat, solute elements dissolved in the Al matrix phase precipitate, increasing the metastable phase and changing the metastable phase form. Is formed. When the solute element dissolved in the Al matrix phase precipitates due to heat exposure, the amount of the solute element dissolved in the Al matrix phase decreases, so the conductivity of the precipitation hardened aluminum alloy member Tend to be larger. In addition, when the heat exposure temperature increases, precipitation of solute elements dissolved in the Al matrix phase is promoted, so the decrease in the amount of solute elements dissolved in the Al matrix phase is greater. Therefore, the conductivity of the precipitation hardening type aluminum alloy member tends to be larger.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出し、合金組織内で析出物がGPB(Guinier Preston Bagaryatsky ギニエ・プレストン・バガリャツキ)(1)ゾーン→GPB(2)ゾーン(S”相)→S’相→S相(AlCuMg)の過程で変化して、最終的に安定相であるS相(AlCuMg)が形成される。熱曝露により、Al母相中に固溶しているCu、Mg等の溶質元素が析出すると、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量が低下するので、析出硬化型アルミニウム合金部材の導電率が大きくなる。また、熱曝露温度が高くなると、Al母相中に固溶しているCu、Mg等の溶質元素の析出が促進されるので、Al母相中に固溶しているCu、Mg等の溶質元素の固溶量の低下が大きくなり、析出硬化型アルミニウム合金部材の導電率が大きくなる。このように、析出硬化型アルミニウム合金部材の導電率は、主に、Al母相中の溶質元素の固溶量に起因して変化する。 For example, when the precipitation hardening type aluminum alloy member is formed of an Al—Cu—Mg alloy, solute elements such as Cu and Mg that are solid-dissolved in the Al matrix are precipitated by heat exposure. Within the alloy structure, precipitates change in the process of GPB (Guiner Preston Bagalysky) (1) Zone → GPB (2) Zone (S ”phase) → S ′ phase → S phase (Al 2 CuMg) As a result, an S phase (Al 2 CuMg), which is a stable phase, is formed.When solute elements such as Cu and Mg that are dissolved in the Al matrix are precipitated by heat exposure, As the amount of solute elements such as Cu and Mg dissolved in the solution decreases, the conductivity of the precipitation hardened aluminum alloy member increases, and when the heat exposure temperature increases, Melted Since the precipitation of solute elements such as Cu and Mg is promoted, the decrease in the amount of solute elements such as Cu and Mg dissolved in the Al matrix is greatly increased. Thus, the conductivity of the precipitation hardening type aluminum alloy member changes mainly due to the solid solution amount of the solute element in the Al matrix.

析出硬化型アルミニウム合金部材の導電率は、一般的な金属材料の導電率測定方法で測定可能である。析出硬化型アルミニウム合金部材の導電率は、非破壊で測定可能であることから、渦電流式導電率測定法で測定されることが好ましい。渦電流式導電率測定法であれば、析出硬化型アルミニウム合金部材が設けられている現場でも測定可能である。   The conductivity of the precipitation hardening type aluminum alloy member can be measured by a general method for measuring the conductivity of a metal material. Since the conductivity of the precipitation hardening type aluminum alloy member can be measured nondestructively, it is preferably measured by an eddy current type conductivity measurement method. If it is an eddy current type conductivity measuring method, it can be measured even at the site where the precipitation hardening type aluminum alloy member is provided.

硬さ測定工程(S12)は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する工程である。析出硬化型アルミニウム合金部材の硬さは、主に、析出硬化型アルミニウム合金の析出物の形態に影響される。   The hardness measurement step (S12) is a step of measuring the hardness of the precipitation hardening type aluminum alloy member before and after thermal exposure. The hardness of the precipitation hardening type aluminum alloy member is mainly influenced by the form of the precipitate of the precipitation hardening type aluminum alloy.

析出硬化型アルミニウム合金部材は、熱曝露されると、Al母相中に固溶している溶質元素が析出し、準安定相が増えるとともに準安定相の形態が変化し、最終的に安定相が形成される。析出硬化型アルミニウム合金部材の硬さは、準安定相が析出物として析出している間は略一定となり、安定相が析出物として析出すると低下する傾向がある。析出硬化型アルミニウム合金部材の硬さは、安定相が析出した後においても、オストワルド成長等により更に低下する傾向がある。   When precipitation hardened aluminum alloy members are exposed to heat, solute elements dissolved in the Al matrix phase precipitate, increasing the metastable phase and changing the metastable phase form. Is formed. The hardness of the precipitation hardening type aluminum alloy member becomes substantially constant while the metastable phase is precipitated as a precipitate, and tends to decrease when the stable phase is precipitated as a precipitate. The hardness of the precipitation hardening type aluminum alloy member tends to further decrease due to Ostwald growth or the like even after the stable phase is precipitated.

また、析出硬化型アルミニウム合金部材の硬さは、熱曝露温度が高温の場合には、準安定相の析出速度や形態の変化が速くなり、安定相に移行し易くなるので、低下が大きくなる傾向がある。一方、析出硬化型アルミニウム合金部材の硬さは、熱曝露温度が比較的低温の場合には、準安定相の析出速度や形態の変化が遅くなり、安定相に移行し難くなるので、低下し難くなる傾向がある。   Moreover, when the heat exposure temperature is high, the hardness of the precipitation-hardening type aluminum alloy member is greatly decreased because the precipitation rate and form of the metastable phase are rapidly changed and the transition to the stable phase is facilitated. Tend. On the other hand, when the heat exposure temperature is relatively low, the hardness of the precipitation-hardening type aluminum alloy member decreases because the precipitation rate and shape change of the metastable phase is slow and it is difficult to shift to the stable phase. It tends to be difficult.

例えば、析出硬化型アルミニウム合金部材がAl−Cu−Mg系合金で形成されている場合には、析出硬化型アルミニウム合金部材の硬さは、GPB(1)ゾーン、GPB(2)ゾーン(S”相)及びS’相からなる準安定相が析出物として析出している間は略一定となるが、S相(AlCuMg)からなる安定相が析出物として析出すると低下する傾向がある。このように、析出硬化型アルミニウム合金部材の硬さは、主に、析出物の形態に起因して変化する。 For example, when the precipitation hardening type aluminum alloy member is formed of an Al-Cu-Mg alloy, the hardness of the precipitation hardening type aluminum alloy member is GPB (1) zone, GPB (2) zone (S " Phase) and the metastable phase consisting of the S ′ phase are substantially constant while being precipitated as precipitates, but tends to decrease when the stable phase consisting of the S phase (Al 2 CuMg) is precipitated as precipitates. As described above, the hardness of the precipitation hardening type aluminum alloy member changes mainly due to the form of the precipitate.

硬さ測定は、例えば、マイクロビッカース硬さ測定法等のビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法、ヌープ硬さ測定法等を用いることが可能である。硬さ測定は、析出硬化型アルミニウム合金部材を直接測定してもよいし、サンプルを切り出して樹脂埋めし、耐水研磨紙やアルミナ、コロイダルシリカ等の研磨材で研磨してから測定してもよい。また、硬さ測定は、マイクロビッカース硬さ測定法によることが好ましい。マイクロビッカース硬さ測定法によれば、圧痕サイズが小さいので、析出硬化型アルミニウム合金部材が小さくても硬さを複数箇所測定することができる。   For the hardness measurement, for example, a Vickers hardness measurement method such as a micro Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, a Knoop hardness measurement method, or the like can be used. The hardness measurement may be performed by directly measuring a precipitation hardening type aluminum alloy member, or by cutting a sample and filling it with a resin and polishing it with an abrasive such as water-resistant abrasive paper, alumina, or colloidal silica. . Further, the hardness measurement is preferably performed by a micro Vickers hardness measurement method. According to the micro Vickers hardness measurement method, since the indentation size is small, the hardness can be measured at a plurality of locations even if the precipitation hardening type aluminum alloy member is small.

異常高温曝露検出工程(S14)は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する工程である。   The abnormally high temperature exposure detection step (S14) includes the relationship between the amount of change in conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member and the amount of change in hardness, and the precipitation hardening type aluminum alloy member obtained in advance. Compare the relationship between the amount of change in electrical conductivity before and after thermal exposure and the amount of change in hardness in precipitation hardened aluminum alloys that have been subjected to known heat exposure with the same composition. It is a step of detecting abnormally high temperature exposure by determining whether the exposure temperature is less than 250 ° C.

後述する実施例で明らかとなるように、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係は、熱曝露温度が250℃未満の場合と、熱曝露温度が250℃以上の場合とでは、大きく異なる傾向を示すことを見出した。   As will be apparent from the examples described later, the relationship between the amount of change in conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member and the amount of change in hardness are as follows: It has been found that the heat exposure temperature shows a significantly different tendency from the case of 250 ° C. or higher.

図2は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係を示すモデル図である。図2では、横軸に硬さの変化量を取り、縦軸に導電率の変化量を取り、熱曝露温度が250℃未満のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Aで示し、熱曝露温度が250℃以上のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Bで示している。   FIG. 2 is a model diagram showing the relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness in a precipitation hardening aluminum alloy member. In FIG. 2, the horizontal axis represents the amount of change in hardness, the vertical axis represents the amount of change in conductivity, the amount of change in conductivity before and after heat exposure when the heat exposure temperature is less than 250 ° C., and the hardness A curve showing the relationship with the amount of change is shown by curve A, and a curve showing the relationship between the amount of change in conductivity before and after heat exposure when the heat exposure temperature is 250 ° C. or higher and the amount of change in hardness is shown by curve B. Show.

析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満の場合には、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Aで示される曲線と略同じになる。例えば、熱曝露温度が120℃の場合や、180℃の場合でも、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Aと略一致する。   When the heat exposure temperature of the precipitation hardening type aluminum alloy member is less than 250 ° C., the relationship between the change in conductivity before and after the heat exposure and the change in hardness is substantially the same as the curve shown by curve A. Become. For example, even when the heat exposure temperature is 120 ° C. or 180 ° C., the relationship between the amount of change in conductivity before and after the heat exposure and the amount of change in hardness substantially match the curve A.

一方、析出硬化型アルミニウム合金部材の熱曝露温度が250℃以上の場合には、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Bで示される曲線と略同じになる。例えば、熱曝露温度が250℃の場合や、350℃の場合でも、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Bと略一致する。また、析出硬化型アルミニウム合金部材の熱曝露温度が、連続して長時間の間、250℃以上となる場合だけでなく、一時的に短時間の間、250℃以上となる場合でも、熱曝露前後の導電率の変化量と、硬さの変化量との関係は、曲線Bで示される曲線と略同じになる。   On the other hand, when the heat exposure temperature of the precipitation hardening type aluminum alloy member is 250 ° C. or higher, the relationship between the change in conductivity before and after the heat exposure and the change in hardness is substantially the same as the curve shown by curve B. Be the same. For example, even when the heat exposure temperature is 250 ° C. or 350 ° C., the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness substantially match the curve B. Further, not only when the heat exposure temperature of the precipitation hardening type aluminum alloy member is continuously 250 ° C. or higher for a long time, but also when it is temporarily 250 ° C. or higher for a short time. The relationship between the amount of change in conductivity before and after and the amount of change in hardness is substantially the same as the curve indicated by curve B.

このように、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係は、熱曝露温度250℃を境にして、2つの曲線に区分できることを見出した。この理由については、熱曝露温度が250℃以上となると、析出硬化型アルミニウム合金部材の金属組織中の析出物が、準安定相から安定相に急速に移行すること等によると考えられる。したがって、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係から、熱曝露温度が250℃未満か否かを判定して、異常高温曝露を検出することが可能となる。   Thus, it has been found that the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness in a precipitation hardening type aluminum alloy member can be divided into two curves with a heat exposure temperature of 250 ° C. as a boundary. It was. The reason for this is considered to be that when the heat exposure temperature is 250 ° C. or higher, the precipitate in the metal structure of the precipitation hardening type aluminum alloy member rapidly shifts from the metastable phase to the stable phase. Therefore, it is determined whether the heat exposure temperature is less than 250 ° C from the relationship between the change in conductivity before and after heat exposure and the change in hardness in the precipitation hardening type aluminum alloy member, and detects abnormally high temperature exposure. It becomes possible to do.

予め析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係を実験等により求めて、例えば、マスター曲線等を作成する。そして、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び硬さの変化量の関係から、析出硬化型アルミニウム合金部材の異常高温曝露を検出する。   Obtain the relationship between the amount of change in electrical conductivity before and after heat exposure and the amount of change in hardness in a precipitation hardened aluminum alloy that has been subjected to known heat exposure with the same composition as the precipitation hardened aluminum alloy member in advance, For example, a master curve or the like is created. And the abnormally high temperature exposure of a precipitation hardening type aluminum alloy member is detected from the relationship between the variation | change_quantity of the electrical conductivity before and behind the heat exposure in a precipitation hardening type aluminum alloy member, and the variation | change_quantity of hardness.

図3は、析出硬化型アルミニウム合金部材における異常高温曝露の検出方法を示すモデル図である。図3では、横軸に硬さの変化量を取り、縦軸に導電率の変化量を取り、熱曝露温度が250℃未満のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Aで示し、熱曝露温度が250℃以上のときの熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を曲線Bで示している。   FIG. 3 is a model diagram illustrating a method for detecting abnormally high temperature exposure in a precipitation hardening type aluminum alloy member. In FIG. 3, the horizontal axis represents the change in hardness, the vertical axis represents the change in conductivity, and the change in conductivity before and after heat exposure when the heat exposure temperature is less than 250 ° C. A curve showing the relationship with the amount of change is shown by curve A, and a curve showing the relationship between the amount of change in conductivity before and after heat exposure when the heat exposure temperature is 250 ° C. or higher and the amount of change in hardness is shown by curve B. Show.

例えば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量がΔE1であり、硬さの変化量がΔH1である場合には、曲線Aに対応しているので、熱曝露温度が250℃未満であると判定され、異常高温曝露が生じていないと判断される。一方、析出硬化型アルミニウム合金部材の熱曝露前後の導電率の変化量がΔE2であり、硬さの変化量がΔH2である場合には、曲線Bに対応しているので、熱曝露温度が250℃以上であると判定されて、異常高温曝露が検出される。このようにして、析出硬化型アルミニウム合金部材の異常高温曝露を検出することができる。   For example, when the amount of change in conductivity before and after thermal exposure in the precipitation hardening aluminum alloy member is ΔE1 and the amount of change in hardness is ΔH1, since it corresponds to curve A, the heat exposure temperature is 250. It is determined that the temperature is lower than ° C., and it is determined that no abnormally high temperature exposure has occurred. On the other hand, when the amount of change in conductivity before and after thermal exposure of the precipitation hardening aluminum alloy member is ΔE2 and the amount of change in hardness is ΔH2, since it corresponds to curve B, the heat exposure temperature is 250. It is determined that the temperature is higher than or equal to ° C, and abnormally high temperature exposure is detected. In this manner, abnormally high temperature exposure of the precipitation hardening type aluminum alloy member can be detected.

また、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係から、析出硬化型アルミニウム合金部材の異常高温曝露を検出することから、析出硬化型アルミニウム合金部材の熱曝露時間を考慮する必要がないので、熱曝露時間が不明な場合でも異常高温曝露を検出することが可能となる。   In addition, from the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness in a precipitation hardening type aluminum alloy member, the abnormally high temperature exposure of the precipitation hardening type aluminum alloy member is detected. Since it is not necessary to consider the heat exposure time of the alloy member, it is possible to detect an abnormally high temperature exposure even when the heat exposure time is unknown.

なお、熱曝露前後の導電率の変化量及び硬さの変化量に基づいて異常高温曝露を検出することにより、熱曝露前(未曝露)のときの析出硬化型アルミニウム合金部材の調質状態や加工状態等が異なる場合でも、同じマスター曲線を用いて異常高温曝露を検出することができる。より詳細には、同一組成の析出硬化型アルミニウム合金で形成されており、熱処理条件や加工条件が異なる析出硬化型アルミニウム合金部材の場合でも、熱曝露前後の導電率の変化量及び硬さの変化量に基づいて検出することから、熱曝露前の影響を除くことができる。これにより、調質状態や加工状態等が異なる析出硬化型アルミニウム合金部材の場合でも、同じマスター曲線を用いて異常高温曝露を検出することが可能となる。   In addition, by detecting abnormally high temperature exposure based on the change in conductivity and the change in hardness before and after heat exposure, the tempered state of the precipitation hardening type aluminum alloy member before heat exposure (unexposed) Even when the processing state is different, it is possible to detect abnormally high temperature exposure using the same master curve. More specifically, even in the case of precipitation-hardening aluminum alloy members that are formed of precipitation-hardening aluminum alloys of the same composition and have different heat treatment conditions and processing conditions, the amount of change in conductivity and the change in hardness before and after thermal exposure. Since the detection is based on the amount, the influence before the heat exposure can be eliminated. Thereby, even in the case of precipitation hardening type aluminum alloy members having different tempering states, processing states, etc., it becomes possible to detect abnormally high temperature exposure using the same master curve.

次に、析出硬化型アルミニウム合金部材の異常高温曝露検出装置について説明する。図4は、析出硬化型アルミニウム合金部材の異常高温曝露検出装置10の構成を示すブロック図である。析出硬化型アルミニウム合金部材の異常高温曝露検出装置10は、導電率測定手段12と、硬さ測定手段14と、制御手段16と、出力手段18と、を備えている。   Next, an abnormally high temperature exposure detection apparatus for precipitation hardening type aluminum alloy members will be described. FIG. 4 is a block diagram showing a configuration of the abnormally high temperature exposure detection apparatus 10 for a precipitation hardening type aluminum alloy member. The abnormally high temperature exposure detection apparatus 10 for a precipitation hardening type aluminum alloy member includes a conductivity measuring means 12, a hardness measuring means 14, a control means 16, and an output means 18.

導電率測定手段12は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する機能を有している。導電率測定手段12は、渦電流式導電率測定装置等で構成されている。   The conductivity measuring means 12 has a function of measuring the conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member. The conductivity measuring means 12 is composed of an eddy current conductivity measuring device or the like.

硬さ測定手段14は、析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する機能を有している。硬さ測定手段14は、ビッカース硬さ試験機、ロックウエル硬さ試験機、ブリネル硬さ試験機、ヌープ硬さ試験機、超音波硬度計等で構成されている。   The hardness measuring means 14 has a function of measuring the hardness of the precipitation hardening type aluminum alloy member before and after thermal exposure. The hardness measuring means 14 includes a Vickers hardness tester, a Rockwell hardness tester, a Brinell hardness tester, a Knoop hardness tester, an ultrasonic hardness tester, and the like.

制御手段16は、異常高温曝露検出手段20と、記憶手段22と、を有している。制御手段16は、例えば、一般的なパーソナルコンピュータ等で構成されている。   The control means 16 has an abnormally high temperature exposure detection means 20 and a storage means 22. The control means 16 is comprised by the general personal computer etc., for example.

異常高温曝露検出手段20は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する機能を有している。   The abnormally high temperature exposure detection means 20 is the same as the precipitation hardening aluminum alloy member obtained in advance and the relationship between the change in conductivity before and after the heat exposure in the precipitation hardening aluminum alloy member and the change in hardness. Compare the relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness in a precipitation-hardened aluminum alloy that has been exposed to heat with a known composition. It has a function of detecting abnormally high temperature exposure by determining whether the temperature is less than 250 ° C.

記憶手段22は、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び硬さの変化量、予め求めておいた析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量及び硬さの変化量、導電率の変化量及び硬さの変化量の関係を示すマスター曲線等のデータを記憶する機能を有している。   The storage means 22 was subjected to known heat exposure with the same composition as the precipitation hardening type aluminum alloy member obtained in advance, the change in conductivity and the change in hardness before and after heat exposure in the precipitation hardening type aluminum alloy member. It has a function to store data such as a master curve indicating the relationship between the amount of change in conductivity and the amount of hardness before and after thermal exposure, and the amount of change in conductivity and the amount of change in hardness in a precipitation hardening aluminum alloy. Yes.

出力手段18は、析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを出力する機能を有している。出力手段18は、ディスプレイやプリンタ等で構成されている。   The output means 18 has a function of outputting whether or not the heat exposure temperature of the precipitation hardening type aluminum alloy member is less than 250 ° C. The output means 18 is constituted by a display, a printer, or the like.

以上、上記構成によれば、析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量及び硬さの変化量の関係から、析出硬化型アルミニウム合金部材の異常高温曝露を検出することにより、析出硬化型アルミニウム合金部材から直接情報を得て検出しているので、異常高温曝露をより精度よく検出することが可能となる。   As described above, according to the relationship between the amount of change in conductivity and the amount of change in hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member, by detecting abnormally high temperature exposure of the precipitation hardening type aluminum alloy member, Since the information is directly obtained and detected from the precipitation hardening type aluminum alloy member, it is possible to detect the abnormally high temperature exposure with higher accuracy.

過給機等に用いられるコンプレッサインペラにおいて、異常高温曝露を検出する場合について説明する。コンプレッサインペラは、Al−Cu−Mg系合金である2618合金(調質状態T6:溶体化処理後の人工時効処理)で形成されている。コンプレッサインペラの使用環境温度は、250℃未満である。まず、コンプレッサインペラの異常高温曝露を検出するためのマスター曲線の作成について説明する。   A case where an abnormally high temperature exposure is detected in a compressor impeller used for a supercharger or the like will be described. The compressor impeller is made of 2618 alloy (tempered state T6: artificial aging treatment after solution treatment) which is an Al—Cu—Mg alloy. The operating environment temperature of the compressor impeller is less than 250 ° C. First, the creation of a master curve for detecting abnormally high temperature exposure of a compressor impeller will be described.

マスター曲線用供試体には、コンプレッサインペラと同一組成の2618合金材(調質状態T6)を、120℃から350℃(120℃、140℃、160℃、180℃、200℃、250℃、300℃、350℃)の各熱曝露温度で最長10000時間まで各々熱曝露したものと、未曝露のものと、を使用した。   For the master curve specimen, 2618 alloy material (tempered state T6) having the same composition as that of the compressor impeller was used at 120 to 350 ° C. (120 ° C., 140 ° C., 160 ° C., 180 ° C., 200 ° C., 250 ° C., 300 ° C.). C. and 350.degree. C.) at each heat exposure temperature up to 10,000 hours each and those not exposed were used.

マスター曲線用供試体について、室温で、熱曝露前後の導電率を測定した。導電率測定は、渦電流式導電率測定法で行った。測定装置には、GE社製シグマテスタautoSigma3000(渦電流式)を用いた。   About the test piece for master curves, the electrical conductivity before and behind heat exposure was measured at room temperature. The conductivity measurement was performed by an eddy current type conductivity measurement method. As a measuring device, Sigma tester autoSigma 3000 (eddy current type) manufactured by GE was used.

マスター曲線用供試体について、室温で、熱曝露前後の硬さ測定を行った。硬さ測定は、マイクロビッカース硬さ測定法により行った。硬さ測定用サンプルについては、マスター曲線用供試体から小片(長さ10mm×幅5mm×厚み3mm)を切り出して樹脂埋めし、耐水研磨紙(エメリー紙)で#2000番まで研磨して用意した。硬さ試験機には、明石製作所製 AKASHI MVK−Hardness Testerを用いた。試験条件は、荷重1kgf、負荷時間15sとした。 About the test piece for master curves, the hardness measurement before and after heat exposure was performed at room temperature. The hardness was measured by a micro Vickers hardness measurement method. For the sample for hardness measurement, a small piece (length 10 mm x width 5 mm x thickness 3 mm t ) is cut out from the master curve specimen, filled with resin, and polished to # 2000 with water-resistant abrasive paper (emery paper). did. An AKASHI MVK-Hardness Tester manufactured by Akashi Seisakusho was used as the hardness tester. The test conditions were a load of 1 kgf and a load time of 15 s.

熱曝露前後の導電率の変化量と、硬さの変化量との関係を示すマスター曲線を作成した。図5は、マスター曲線を示すグラフである。図5のグラフでは、横軸に硬さの変化量を取り、縦軸に導電率の変化量を取り、熱曝露温度が250℃未満の場合の熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を実線で表し、熱曝露温度が250℃以上の場合の熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線を破線で表している。   A master curve showing the relationship between the amount of change in conductivity before and after heat exposure and the amount of change in hardness was created. FIG. 5 is a graph showing a master curve. In the graph of FIG. 5, the horizontal axis represents the amount of change in hardness, the vertical axis represents the amount of change in conductivity, and the amount of change in conductivity before and after heat exposure when the heat exposure temperature is less than 250 ° C. The curve showing the relationship with the amount of change in thickness is represented by a solid line, and the curve showing the relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness when the heat exposure temperature is 250 ° C. or higher is indicated by a broken line Represents.

熱曝露温度が250℃未満の場合の曲線と、熱曝露温度が250℃以上の場合の曲線とは、異なる曲線となり、2つの曲線に区分できることを見出した。このように、熱曝露温度が250℃未満の場合と、熱曝露温度が250℃以上の場合とは、熱曝露前後の導電率の変化量と、硬さの変化量との関係を示す曲線が異なることが明らかとなった。   It was found that the curve when the heat exposure temperature is less than 250 ° C. and the curve when the heat exposure temperature is 250 ° C. or more are different curves and can be divided into two curves. Thus, when the heat exposure temperature is less than 250 ° C. and when the heat exposure temperature is 250 ° C. or more, there is a curve indicating the relationship between the change in conductivity before and after the heat exposure and the change in hardness. It became clear that it was different.

次に、250℃未満の使用環境下で熱曝露されたコンプレッサインペラの異常高温曝露を検出する方法について説明する。まず、コンプレッサインペラにおける熱曝露前後の導電率を、渦電流式導電率測定法で測定する。そして、コンプレッサインペラにおける熱曝露前後の導電率の変化量を算出する。コンプレッサインペラにおける熱曝露前後の硬さを、マイクロビッカース硬さ試験法で測定する。そして、コンプレッサインペラにおける熱曝露前後の硬さの変化量を算出する。   Next, a method for detecting abnormally high temperature exposure of a compressor impeller exposed to heat in a use environment of less than 250 ° C. will be described. First, the electrical conductivity before and after thermal exposure in the compressor impeller is measured by an eddy current conductivity measurement method. Then, the amount of change in conductivity before and after heat exposure in the compressor impeller is calculated. The hardness of the compressor impeller before and after heat exposure is measured by the micro Vickers hardness test method. And the amount of change in hardness before and after heat exposure in the compressor impeller is calculated.

予め求めておいたマスター曲線用供試体における熱曝露前後の導電率の変化量及び硬さの変化量との関係を示すデータとして、図5に示すマスター曲線を用いることにより、コンプレッサインペラの異常高温曝露を検出する。例えば、コンプレッサインペラにおける熱曝露前後の導電率の変化量が3.0(%IACS)で、硬さの変化量ΔHVが−10である場合には、図5の実線で示した曲線に対応する。これにより、コンプレッサインペラの熱曝露温度は250℃未満であると判定されて、異常高温曝露が生じていないと判断される。また、例えば、コンプレッサインペラにおける熱曝露前後の導電率の変化量が5.0(%IACS)で、硬さの変化量ΔHVが−50である場合には、図5の破線で示した曲線に対応する。これにより、コンプレッサインペラの熱曝露温度は250℃以上であると判定されて、異常高温曝露が検出される。   By using the master curve shown in FIG. 5 as data indicating the relationship between the change in conductivity and the change in hardness before and after thermal exposure in the master curve specimen obtained in advance, the abnormally high temperature of the compressor impeller Detect exposure. For example, when the amount of change in conductivity before and after heat exposure in the compressor impeller is 3.0 (% IACS) and the amount of change in hardness ΔHV is −10, this corresponds to the curve indicated by the solid line in FIG. . Thereby, it is determined that the heat exposure temperature of the compressor impeller is lower than 250 ° C., and it is determined that the abnormally high temperature exposure has not occurred. Further, for example, when the amount of change in conductivity before and after heat exposure in a compressor impeller is 5.0 (% IACS) and the amount of change in hardness ΔHV is −50, the curve shown by the broken line in FIG. Correspond. Thereby, it is determined that the heat exposure temperature of the compressor impeller is 250 ° C. or higher, and abnormally high temperature exposure is detected.

10 異常高温曝露検出装置
12 導電率測定手段
14 硬さ測定手段
16 制御手段
18 出力手段
20 異常高温曝露検出手段
22 記憶手段
DESCRIPTION OF SYMBOLS 10 Abnormally high temperature exposure detection apparatus 12 Conductivity measuring means 14 Hardness measuring means 16 Control means 18 Output means 20 Abnormally high temperature exposure detecting means 22 Storage means

Claims (4)

250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定工程と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出工程と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出方法。
A method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member exposed to heat under a use environment of less than 250 ° C., comprising:
A conductivity measuring step for measuring conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member;
A hardness measurement step for measuring the hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member;
The relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness in the precipitation hardening aluminum alloy member, and the known heat exposure with the same composition as the precipitation hardening aluminum alloy member obtained in advance. Compare the relationship between the amount of change in conductivity before and after heat exposure in the received precipitation hardening type aluminum alloy and the amount of change in hardness, and whether the heat exposure temperature of the precipitation hardening type aluminum alloy member is less than 250 ° C. An abnormally high temperature exposure detection step of detecting abnormally high temperature exposure by determining whether or not,
An abnormally high temperature exposure detection method for a precipitation hardening type aluminum alloy member, comprising:
請求項1に記載の析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、
前記導電率測定工程は、渦電流式導電率測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出方法。
It is an abnormally high temperature exposure detection method of the precipitation hardening type aluminum alloy member according to claim 1,
The method of detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member, wherein the conductivity measuring step is measured by an eddy current type conductivity measuring method.
請求項1または2に記載の析出硬化型アルミニウム合金部材の異常高温曝露検出方法であって、
前記硬さ測定工程は、ビッカース硬さ測定法、ロックウエル硬さ測定法、ブリネル硬さ測定法またはヌープ硬さ測定法で測定することを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出方法。
It is an abnormally high temperature exposure detection method of the precipitation hardening type aluminum alloy member according to claim 1 or 2,
The hardness measurement step is performed by a Vickers hardness measurement method, a Rockwell hardness measurement method, a Brinell hardness measurement method, or a Knoop hardness measurement method, and a method for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member, .
250℃未満の使用環境下で熱曝露される析出硬化型アルミニウム合金部材の異常高温曝露を検出する析出硬化型アルミニウム合金部材の異常高温曝露検出装置であって、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率を測定する導電率測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の硬さを測定する硬さ測定手段と、
前記析出硬化型アルミニウム合金部材における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、予め求めておいた前記析出硬化型アルミニウム合金部材と同一組成で既知の熱曝露を受けた析出硬化型アルミニウム合金における熱曝露前後の導電率の変化量と、硬さの変化量との関係と、を比較して、前記析出硬化型アルミニウム合金部材の熱曝露温度が250℃未満か否かを判定することにより異常高温曝露を検出する異常高温曝露検出手段と、
を備えることを特徴とする析出硬化型アルミニウム合金部材の異常高温曝露検出装置。
An apparatus for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member exposed to heat in a use environment of less than 250 ° C,
Conductivity measuring means for measuring conductivity before and after thermal exposure in the precipitation hardening type aluminum alloy member;
Hardness measuring means for measuring the hardness before and after thermal exposure in the precipitation hardening type aluminum alloy member;
The relationship between the amount of change in conductivity before and after thermal exposure and the amount of change in hardness in the precipitation hardening aluminum alloy member, and the known heat exposure with the same composition as the precipitation hardening aluminum alloy member obtained in advance. Compare the relationship between the amount of change in conductivity before and after heat exposure in the received precipitation hardening type aluminum alloy and the amount of change in hardness, and whether the heat exposure temperature of the precipitation hardening type aluminum alloy member is less than 250 ° C. Abnormally high temperature exposure detection means for detecting abnormally high temperature exposure by determining whether or not,
An apparatus for detecting an abnormally high temperature exposure of a precipitation hardening type aluminum alloy member, comprising:
JP2016105045A 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member Active JP6736979B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105045A JP6736979B2 (en) 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105045A JP6736979B2 (en) 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member

Publications (2)

Publication Number Publication Date
JP2017211291A true JP2017211291A (en) 2017-11-30
JP6736979B2 JP6736979B2 (en) 2020-08-05

Family

ID=60475410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105045A Active JP6736979B2 (en) 2016-05-26 2016-05-26 Abnormal high temperature exposure detection method and abnormal high temperature exposure detection device for precipitation hardening type aluminum alloy member

Country Status (1)

Country Link
JP (1) JP6736979B2 (en)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837492B1 (en) * 1969-06-18 1973-11-12
JPS55141653A (en) * 1979-04-20 1980-11-05 Mitsubishi Heavy Ind Ltd Deterioration state deciding method of strong precipitation hardness type iron base alloy
JPS6275341A (en) * 1985-09-30 1987-04-07 Toshiba Corp Monitor for vacuum container
JPH02183986A (en) * 1989-01-09 1990-07-18 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
US4947117A (en) * 1989-01-03 1990-08-07 Iowa State University Research Foundation Nondestructive detection of an undesirable metallic phase, T1, during processing of aluminum-lithium alloys
JPH06336628A (en) * 1993-05-31 1994-12-06 Kobe Steel Ltd Production of alloy
JPH0961260A (en) * 1995-08-29 1997-03-07 Suzuki Motor Corp Method for estimating distribution of piston temperature
JP2005528530A (en) * 2002-04-24 2005-09-22 ケステック イノベーションズ エルエルシー Nanophase precipitation strengthened Al alloy processed via amorphous state
JP2006208214A (en) * 2005-01-28 2006-08-10 Babcock Hitachi Kk Thermal history estimating method of heat-resistant member
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4837492B1 (en) * 1969-06-18 1973-11-12
JPS55141653A (en) * 1979-04-20 1980-11-05 Mitsubishi Heavy Ind Ltd Deterioration state deciding method of strong precipitation hardness type iron base alloy
JPS6275341A (en) * 1985-09-30 1987-04-07 Toshiba Corp Monitor for vacuum container
US4947117A (en) * 1989-01-03 1990-08-07 Iowa State University Research Foundation Nondestructive detection of an undesirable metallic phase, T1, during processing of aluminum-lithium alloys
JPH02183986A (en) * 1989-01-09 1990-07-18 Ngk Spark Plug Co Ltd Spark plug for internal combustion engine
JPH06336628A (en) * 1993-05-31 1994-12-06 Kobe Steel Ltd Production of alloy
JPH0961260A (en) * 1995-08-29 1997-03-07 Suzuki Motor Corp Method for estimating distribution of piston temperature
JP2005528530A (en) * 2002-04-24 2005-09-22 ケステック イノベーションズ エルエルシー Nanophase precipitation strengthened Al alloy processed via amorphous state
JP2006208214A (en) * 2005-01-28 2006-08-10 Babcock Hitachi Kk Thermal history estimating method of heat-resistant member
JP2006257505A (en) * 2005-03-17 2006-09-28 Kobe Steel Ltd Aluminum alloy sheet having excellent extension flange formability

Also Published As

Publication number Publication date
JP6736979B2 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
Cox et al. Recrystallisation of single crystal superalloy CMSX–4
JP2019007838A (en) Fatigue life estimation method of metal material and optimum design method applied with life fatigue estimation method
Grieb et al. Thermomechanical fatigue of cast aluminium alloys for cylinder head applications–experimental characterization and life prediction
Wu et al. Enhanced high-cycle fatigue strength of Al–12Si–4Cu-1.2 Mn-T6 cast aluminum alloy at room temperature and 350 C
CN104049069A (en) Furnace-front quick evaluation method of structure and performance of gray cast iron
CN101034013A (en) Methods for detecting water induction in steam turbines
Ilangovan et al. Effect of composition and aging time on hardness and wear behavior of Cu-Ni-Sn spinodal alloy
Kakitani et al. Morphology of intermetallics tailoring tensile properties and quality index of a eutectic Al–Si–Ni alloy
Zhou et al. Prediction of Shrinkage Microporosity in Gravity‐Cast and Low‐Pressure Sand‐Cast Mg–6Gd–3Y–0.5 Zr Magnesium Alloys
JP2017211291A (en) Method and apparatus for detecting exposure of precipitation-hardened aluminum alloy members to abnormally high temperature
JP2017211303A (en) Method and apparatus for estimating heat history of precipitation-hardened aluminum alloy members
Mackay et al. An evaluation of the staircase and over-stress probe methods for fatigue life characterization in aluminum sand castings
Motoyama et al. Elasto-plastic-creep constitutive equation of an Al-Si-Cu high-pressure die casting alloy for thermal stress analysis
TerBush et al. Partitioning of solute to the primary α-Mg phase in creep-resistant Mg-Al-Ca–based cast alloys
Beddoes Prediction of creep properties for two nickel-base superalloys from stress relaxation testing
Arora et al. Enhancing the Mechanical Properties of AE 42 Magnesium Alloy through Friction Stir Processing
JP2018054519A (en) Evaluation method of metallic material
Ceschini et al. Estimation of local fatigue behaviour in A356–T6 gravity die cast engine head based on solidification defects content
Schetz et al. Do we have reliable biochemical markers to predict the outcome of critical illness?
Park et al. Kullback-Leibler information of the equilibrium distribution function and its application to goodness of fit test
JPH09311100A (en) Material Life Prediction Method and Material Thermal Fatigue Life Prediction Method
Aune et al. Properties of Die Cast Magnesium Alloys of Varying Aluminum Content
JP2018205232A (en) Strain amount estimation method and strain amount estimation device for precipitation hardening type aluminum alloy member
TWI472939B (en) Yield loss prediction method and associated computer readable medium
Sadeler Influence of contact pressure on fretting fatigue behaviour of AA 2014 alloy with dissimilar mating material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200303

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200420

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200616

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200629

R151 Written notification of patent or utility model registration

Ref document number: 6736979

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151