[go: up one dir, main page]

JP2017211290A - X-ray irradiation equipment - Google Patents

X-ray irradiation equipment Download PDF

Info

Publication number
JP2017211290A
JP2017211290A JP2016105044A JP2016105044A JP2017211290A JP 2017211290 A JP2017211290 A JP 2017211290A JP 2016105044 A JP2016105044 A JP 2016105044A JP 2016105044 A JP2016105044 A JP 2016105044A JP 2017211290 A JP2017211290 A JP 2017211290A
Authority
JP
Japan
Prior art keywords
ray
side end
rays
face
capillary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2016105044A
Other languages
Japanese (ja)
Inventor
啓義 副島
Hiroyoshi Soejima
啓義 副島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Inst For Applied Sciences
Original Assignee
Research Inst For Applied Sciences
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Inst For Applied Sciences filed Critical Research Inst For Applied Sciences
Priority to JP2016105044A priority Critical patent/JP2017211290A/en
Publication of JP2017211290A publication Critical patent/JP2017211290A/en
Pending legal-status Critical Current

Links

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an X-ray irradiation device with which it is possible to irradiate a sample with an X-ray narrowed down to a microscopic diameter.SOLUTION: The X-ray irradiation device comprises: an X-ray source 1 that is a surface light source; and a multi-capillary X-ray lens 20 in which a large number of capillaries 20 are bundled in a generally truncated cone shape, the central axis of each having a shape of straight line, with the inside diameter gradually reduced from an incident side end face 20a toward an emission side end face 20b. A portion of the X-ray released from the X-ray source 1 is transmitted without colliding the inner wall of each capillary 20 and emitted as a linear X-ray from the emission side end face 20b. The linear X-rays emitted from each capillary 20 and unattenuated inside the capillary 20 overlap at a substantially one point F on a sample 3, making it possible for an X-ray of high X intensity to be radiated onto a very narrow area.SELECTED DRAWING: Figure 2

Description

本発明は、X線を利用して試料の分析や観察を行うX線分析装置において試料にX線を照射するX線照射装置に関し、さらに詳しくは、試料上の微小な領域又は微小な試料にX線を照射するためのX線照射装置に関する。   The present invention relates to an X-ray irradiation apparatus that irradiates a sample with X-rays in an X-ray analysis apparatus that analyzes and observes the sample using X-rays. More specifically, the present invention relates to a minute region or a minute sample on a sample. The present invention relates to an X-ray irradiation apparatus for irradiating X-rays.

X線を試料に照射し該試料から放出されるX線、電子、イオン、又はその他の各種粒子を検出したり試料を透過するX線を検出したりすることによって、該試料についての分析や観察を行うX線分析手法が従来知られている。一般にX線は次のような特徴を有する。
・X線はその波長が原子や原子間距離と同程度であるため、原子や原子配列の情報を多く有する。
・X線は物質との衝突、散乱、回折などに際して物質に対して殆ど非破壊である。
・X線が物質を通過するときX線フォトン数は減少するものの、波長やエネルギーは変化せず、X線が発生したときの元々の性質を失わない。
こうしたX線の特徴は試料の分析に非常に有用であり、X線分析手法は非常に重要な分析手法の一つであって、現在、あらゆる固体の精密組成分析に利用されるほか、液中の微量元素分析にまで利用されている。
Analyzing and observing a sample by irradiating the sample with X-rays, detecting X-rays, electrons, ions, or other various particles emitted from the sample, or detecting X-rays transmitted through the sample Conventionally, X-ray analysis techniques for performing the above are known. In general, X-rays have the following characteristics.
-Since the wavelength of X-rays is about the same as that of atoms and interatomic distances, it has much information on atoms and atomic arrangements.
-X-rays are almost non-destructive to matter upon collision, scattering, diffraction, etc.
-Although the number of X-ray photons decreases when X-rays pass through the material, the wavelength and energy do not change, and the original properties when X-rays are generated are not lost.
These X-ray features are very useful for analyzing samples, and X-ray analysis is one of the most important analysis methods, and is currently used for precise composition analysis of all solids, It is also used for trace element analysis.

最も代表的なX線分析手法は蛍光X線分析であり、微量元素も含めて、非破壊、高精度な定性、定量分析の代表的な分析法となっている。蛍光X線分析法の一つである全反射蛍光X線分析は、固体材料の表面の微量分析においてあらゆる分析法のなかで最も優れている。また、X線光電子分光は、材料表面の構造解析、元素結合解析、電子状態分析の代表的分析法である。   The most representative X-ray analysis method is X-ray fluorescence analysis, which is a typical analysis method including non-destructive, highly accurate qualitative and quantitative analysis including trace elements. Total reflection X-ray fluorescence analysis, which is one of the X-ray fluorescence analysis methods, is the best of all the analytical methods in the microanalysis of the surface of a solid material. X-ray photoelectron spectroscopy is a typical analysis method for structural analysis of material surfaces, element bond analysis, and electronic state analysis.

一方で、X線は、荷電粒子線などと異なり電場や磁場の影響を受けず、特殊な条件下でないと反射もせず、実用的な屈折物質も存在しない、という特徴もある。この特徴は次のようにX線分析の制約にもなっている。
即ち、X線分析装置において、分析や観察の空間分解能を上げるためには、試料や試料上の対象領域に照射するX線の照射径又は照射面積をできるだけ小さく絞る必要がある。また一般に、分析の感度や精度を上げるためには、或る程度高い強度のX線を試料や試料上の対象領域に照射する必要がある。例えば電子線などの荷電粒子線では電場や磁場によるレンズを利用して非常に微小な径まで照射径を絞ることが可能である。これに対し、X線では上述したように電場や磁場を利用したX線束の制御ができないため、X線照射径を微小に絞ることは大変難しく、低コスト且つ簡素な構成で、X線をごく微小径にまで絞り、しかも大きなゲインを得るX線照射装置は実現されていない。
On the other hand, unlike charged particle beams, X-rays are not affected by an electric field or magnetic field, are not reflected under special conditions, and have no characteristic refractive materials. This feature is also a limitation of X-ray analysis as follows.
That is, in the X-ray analyzer, in order to increase the spatial resolution of analysis and observation, it is necessary to reduce the irradiation diameter or irradiation area of the X-ray irradiated to the sample and the target region on the sample as small as possible. In general, in order to increase the sensitivity and accuracy of analysis, it is necessary to irradiate a sample and a target region on the sample with X-rays with a certain high intensity. For example, with a charged particle beam such as an electron beam, the irradiation diameter can be reduced to a very small diameter by using a lens based on an electric field or a magnetic field. On the other hand, X-rays cannot be controlled using an electric field or a magnetic field as described above, so it is very difficult to narrow the X-ray irradiation diameter to a very low level. An X-ray irradiator that narrows down to a very small diameter and obtains a large gain has not been realized.

蛍光X線分析装置等の従来のX線分析装置において、試料上の微小な領域に高い効率でX線を照射するためには、マルチキャピラリX線レンズを利用したX線照射装置が広く用いられている。
特許文献1等に開示されているように、マルチキャピラリは、内径が2〜十数μm程度の微小径のガラス等から成る細管(キャピラリ)を多数(数百〜100万本程度)束ねて1本の管状にしたものであり、1本のキャピラリの内側に入射されたX線がそのガラスの内壁面を臨界角以下の角度で以て全反射しながら進行してゆく原理を利用してX線を効率良く案内する素子である。通常、マルチキャピラリX線レンズでは、入射側端面又は出射側端面のいずれか一方又は両方において、多数のキャピラリの中心軸がその端面の外側の所定位置で一点に交わるように各キャピラリが形成された点焦点端面となっている。これにより、マルチキャピラリX線レンズでは、殆ど点とみなし得る微小なX線源から出射されたX線を大きな立体角で以て取り込んだり、逆に、各キャピラリを通して案内された束状のX線を略一点に集束させるように出射したりすることができる。
In a conventional X-ray analyzer such as a fluorescent X-ray analyzer, an X-ray irradiation apparatus using a multicapillary X-ray lens is widely used to irradiate a minute region on a sample with high efficiency. ing.
As disclosed in Patent Document 1 and the like, a multicapillary is formed by bundling a large number of capillaries (several hundreds to 1,000,000) made of glass or the like having a small diameter of about 2 to several tens μm. X-rays that enter the inside of one capillary and use the principle that X-rays travel while totally reflecting the inner wall surface of the glass at an angle less than the critical angle. It is an element that guides the line efficiently. Usually, in a multi-capillary X-ray lens, each capillary is formed so that the central axis of a large number of capillaries intersects at one point at a predetermined position outside the end face on one or both of the entrance-side end face and the exit-side end face. It is a point focus end face. Thereby, in a multicapillary X-ray lens, X-rays emitted from a minute X-ray source that can be regarded as almost a point are captured with a large solid angle, or conversely, bundled X-rays guided through each capillary. Can be emitted so as to be focused at approximately one point.

しかしながら、上述したようなマルチキャピラリX線レンズと点光源であるX線源とを組み合わせたX線照射装置において実現可能なX線照射径はせいぜい数十μm程度である。
その理由は明らかである。即ち、特許文献2等にも記載されているように一般的なマルチキャピラリX線レンズでは、X線は1本のキャピラリの内壁面を全反射しながら進行するため、キャピラリの出射側端面からX線が出射する際にキャピラリの中心軸に対し臨界角を最大とする開き角度を有してX線は拡がる。そのため、マルチキャピラリX線レンズの点焦点端面から出射したX線の照射領域は理想的な点とはならず、所定の大きさを有する。つまり、原理的な焦点ボケが生じることになる。また、理想的にはX線が全反射する際に強度は落ちないが、実際にはX線がキャピラリ内で全反射する度に僅かずつ強度は減衰する。そのため、最終的にマルチキャピラリX線レンズの出射側端面から出射されるX線の強度は該レンズに入射されたX線の強度よりもかなり落ちてしまうことになる。
However, the X-ray irradiation diameter that can be realized in an X-ray irradiation apparatus that combines the above-described multicapillary X-ray lens and an X-ray source that is a point light source is about several tens of μm at most.
The reason is clear. That is, as described in Patent Document 2 and the like, in a general multi-capillary X-ray lens, X-rays travel while being totally reflected on the inner wall surface of one capillary. When the line is emitted, the X-ray spreads with an opening angle that maximizes the critical angle with respect to the central axis of the capillary. Therefore, the irradiation region of the X-rays emitted from the point focal end face of the multicapillary X-ray lens is not an ideal point and has a predetermined size. That is, a fundamental defocusing occurs. Ideally, the intensity does not decrease when the X-rays are totally reflected, but actually the intensity is attenuated little by little every time the X-rays are totally reflected in the capillary. Therefore, the intensity of X-rays finally emitted from the exit end face of the multi-capillary X-ray lens is considerably lower than the intensity of X-rays incident on the lens.

特許文献2には、マルチキャピラリX線レンズの点焦点端面から出射して或る程度収束されたX線をフレネルゾーンプレートで一点に絞るX線照射装置が開示されている。また、特許文献3には、マルチキャピラリX線レンズの途中をボトルネック状に絞ることで形成したごく細径のキャピラリを平行に束ねた平行端面の外側にフレネルゾーンプレートを配置したX線照射装置が開示されている。このようにマルチキャピラリX線レンズとフレネルゾーンプレートとの組み合わせによれば、マルチキャピラリX線レンズ単体と比べて原理的にはX線照射径をかなり絞ることが可能である。しかしながら、前者では遮蔽領域と通過領域とがそれぞれプレートの厚さ方向に円錐周面状に形成されている特殊なフレネルゾーンプレートが必要となるし、後者では、特殊な形状のマルチキャピラリX線レンズが必要となる。これらはいずれも製造が困難であり、製造が可能であったとしてもかなりコストが高いものとなる。また、X線照射径を絞るにはマルチキャピラリX線レンズとフレネルゾーンプレートとを高い精度で以て配置する必要があるが、そうすると組立上のコストも高くなる。   Patent Document 2 discloses an X-ray irradiation apparatus for focusing X-rays emitted from a point focal end face of a multicapillary X-ray lens and converged to some extent with a Fresnel zone plate. Patent Document 3 discloses an X-ray irradiation apparatus in which a Fresnel zone plate is disposed outside a parallel end face in which very small diameter capillaries formed by narrowing the middle of a multicapillary X-ray lens into a bottleneck shape. Is disclosed. Thus, according to the combination of the multi-capillary X-ray lens and the Fresnel zone plate, in principle, the X-ray irradiation diameter can be considerably reduced compared to the multi-capillary X-ray lens alone. However, the former requires a special Fresnel zone plate in which the shielding region and the passage region are each formed in a conical circumferential shape in the thickness direction of the plate, and the latter requires a special-shaped multicapillary X-ray lens. Is required. All of these are difficult to manufacture, and even if they can be manufactured, the cost is considerably high. Further, in order to reduce the X-ray irradiation diameter, it is necessary to arrange the multicapillary X-ray lens and the Fresnel zone plate with high accuracy, which increases the cost of assembly.

一方、試料に照射されるX線の強度を高めるにはX線源から放出されるX線の強度を高めることが有効であるものの、比較的安価なコストで入手可能であるX線強度の高いX線源は発光面のサイズが数mm□程度の面光源である。何故なら、光源のサイズが小さくなるほどターゲットの熱損傷の影響が大きくなり、大電流を注入することが困難であるためである。そこで、点光源であるX線源の代わりに、図7に示すように面光源であるX線源50を用い、入射側端面が点焦点端面でなくキャピラリを平行に束ねた平行端面であるマルチキャピラリX線レンズ51、又は入射側端面が長焦点端面であるマルチキャピラリX線レンズ52を用いることで、面光源50から放出されたX線を効率良く収集することができる。しかしながら、その場合でも、上述したようにマルチキャピラリX線レンズの各キャピラリを通過する間にX線の強度が減衰することは避けられないため、試料に照射されるX線の強度はかなり低下してしまう。   On the other hand, increasing the intensity of X-rays emitted from an X-ray source is effective for increasing the intensity of X-rays irradiated on a sample, but the X-ray intensity is high and can be obtained at a relatively low cost. The X-ray source is a surface light source having a light emitting surface size of about several mm □. This is because the smaller the size of the light source, the greater the influence of thermal damage on the target, making it difficult to inject a large current. Therefore, instead of the X-ray source that is a point light source, an X-ray source 50 that is a surface light source as shown in FIG. 7 is used, and the end face on the incident side is not a point focus end face but a parallel end face in which capillaries are bundled in parallel. By using the capillary X-ray lens 51 or the multicapillary X-ray lens 52 whose incident side end surface is a long focal end surface, X-rays emitted from the surface light source 50 can be collected efficiently. However, even in that case, since the intensity of the X-rays is unavoidably attenuated while passing through the capillaries of the multicapillary X-ray lens as described above, the intensity of the X-rays irradiated to the sample is considerably reduced. End up.

また、面光源を用いる場合、図8に示すように、面光源60から所定距離離した位置にごく小径の絞り穴を有するアパーチャ部材61を配置し、このアパーチャ部材61により試料表面62上にX線を照射する構成も考えられる。いま、面光源60の大きさを1mm、面光源60とアパーチャ部材61との離間距離L1を200mm、アパーチャ部材61と試料表面62との離間距離L2を20mmとすると、単純計算では、絞り穴径がゼロに近くても、試料表面62上のX線照射領域の大きさd1は100μmである。しかも、微小な絞り穴の出口側には入射X線の散乱や回折によって少なくとも数十μm程度のにじみが生じる。他方、アパーチャ部材61はX線を完全に遮蔽する必要があるために、MoやCuなどの重金属を用い、或る程度の厚さ、例えば1mm程度を確保する必要がある。このような部材に数十μm以下の穴を開けるのは困難である。そのため、こうした構成によって、X線照射領域の大きさを数十μm以下にすることは実質的に困難である。   When a surface light source is used, as shown in FIG. 8, an aperture member 61 having a very small diameter aperture hole is disposed at a position separated from the surface light source 60 by a predetermined distance. A configuration for irradiating a line is also possible. Assuming that the size of the surface light source 60 is 1 mm, the distance L1 between the surface light source 60 and the aperture member 61 is 200 mm, and the distance L2 between the aperture member 61 and the sample surface 62 is 20 mm, the simple calculation calculates the diameter of the aperture hole. Is close to zero, the size d1 of the X-ray irradiation region on the sample surface 62 is 100 μm. In addition, a blur of at least about several tens of μm occurs on the exit side of the minute aperture hole due to scattering and diffraction of incident X-rays. On the other hand, since the aperture member 61 needs to completely shield X-rays, it is necessary to use a heavy metal such as Mo or Cu and ensure a certain thickness, for example, about 1 mm. It is difficult to make a hole of several tens μm or less in such a member. Therefore, with such a configuration, it is substantially difficult to make the size of the X-ray irradiation region several tens μm or less.

特公平7−11600号公報Japanese Examined Patent Publication No. 7-11600 特開2007−93316号公報JP 2007-93316 A 特開2010−276423号公報JP 2010-276423 A

吉田、副島、「顕微メスバウア分光装置の開発と応用」、日本表面科学会、表面科学、Vol. 31、No. 5、2010年、pp. 255-260Yoshida, Soejima, “Development and application of microscopic Mossbauer spectrometer”, Surface Science Society of Japan, Surface Science, Vol. 31, No. 5, 2010, pp. 255-260

近年、ごく微小な領域(例えば数μm以下)における元素分析や組成分析、或いは表面分析などが強く要望されており、それに対応した様々な分析装置の開発が進められているものの、X線分析装置については上述したようなX線照射装置における制約、即ち、低コストでX線をごく微小径にまで絞りしかも大きなゲインを得られるX線照射装置が存在しない、という点が大きな障害となっている。   In recent years, there has been a strong demand for elemental analysis, compositional analysis, or surface analysis in a very small area (for example, several μm or less). The above-mentioned limitation in the X-ray irradiation apparatus, that is, there is no X-ray irradiation apparatus that can reduce the X-ray to a very small diameter and obtain a large gain at a low cost. .

本発明はこうした課題を解決するために成されたものであり、その目的とするところは、比較的低廉なコストで以てごく微小径に絞った高い強度のX線を試料に照射することができるX線照射装置を提供することである。   The present invention has been made to solve these problems. The object of the present invention is to irradiate a sample with high-intensity X-rays with a very small diameter at a relatively low cost. It is providing the X-ray irradiation apparatus which can be performed.

上記課題を解決するためになされた本発明は、微小径に絞ったX線を被照射物に照射するX線照射装置であって、
a)面光源であるX線源と、
b)それぞれの中心軸が一直線状で入射側端面から出射側端面に向かって内径が徐々に縮小する多数のX線案内用の細管が略切頭円錐又は略切頭角錐形状に束ねられて成り、前記入射側端面が前記X線源に対向するように配置されたマルチキャピラリと、
を備え、前記マルチキャピラリの出射側端面から所定距離離れた位置に配置された被照射物に対しX線を照射することを特徴としている。
The present invention made to solve the above problems is an X-ray irradiation apparatus for irradiating an irradiation object with X-rays focused on a small diameter,
a) an X-ray source which is a surface light source;
b) A large number of X-ray guiding thin tubes whose central axes are straight and whose inner diameter gradually decreases from the incident side end surface to the output side end surface are bundled in a substantially truncated cone or substantially truncated pyramid shape. A multi-capillary arranged so that the incident side end face faces the X-ray source;
And irradiating an object to be irradiated arranged at a predetermined distance from the emission side end face of the multicapillary with X-rays.

本発明に係るX線照射装置において好ましくは、上記マルチキャピラリでは、各X線案内用細管の入射側端面と出射側端面との間を貫く直線が該出射側端面の外側で略一点に集まるように多数のX線案内用細管の形状及び配置が定められている構成とするとよい。   In the X-ray irradiation apparatus according to the present invention, preferably, in the multicapillary, straight lines passing between the incident side end face and the emission side end face of each X-ray guiding capillary tube are gathered at substantially one point outside the emission side end face. It is preferable that the configuration and the arrangement of a large number of X-ray guiding narrow tubes are determined.

上述したように従来一般的である端面が点焦点端面であるマルチキャピラリX線レンズでは、束ねられた中心部でなくその周囲に位置する細管はX線の進行方向に壁面が湾曲しており、入射したX線は必ず少なくとも1回以上(通常は多数回)細管の内壁面で反射する。これに対し本発明に係るX線照射装置において、マルチキャピラリを構成する各細管の内壁は入射側端面から出射側端面に至るまで中心軸の方向に直線状であって湾曲部を有さない。そのため、細管の中心軸に完全に平行に各細管に入射したX線の少なくとも一部、及び該中心軸に対し所定の角度以下の傾きで以て入射したX線の少なくとも一部は、一回もその細管の内壁に当たらずに、つまりは反射することなく、出射側端面に到達して出射する。このように細管の内壁で反射せずに、即ち直接的に細管内部を通過するX線は強度が殆ど減衰しない。そのため、1本の細管内部を直接的に通過して出射側端面から出射したX線が被照射物を照射する面積はごく狭いが、そのX線強度は反射を繰り返したX線で照射される部位に比べるとかなり高い。   As described above, in the multicapillary X-ray lens in which the end surface is generally a point-focus end surface as described above, the wall surface of the narrow tube located not around the bundled central portion but around it is curved in the X-ray traveling direction. The incident X-ray is always reflected at least once (usually many times) by the inner wall surface of the thin tube. On the other hand, in the X-ray irradiation apparatus according to the present invention, the inner wall of each thin tube constituting the multicapillary is linear in the direction of the central axis from the incident side end surface to the output side end surface and does not have a curved portion. For this reason, at least a part of the X-rays incident on each thin tube completely parallel to the central axis of the thin tube and at least a part of the X-rays incident with an inclination of a predetermined angle or less with respect to the central axis are However, it does not hit the inner wall of the narrow tube, that is, does not reflect, and reaches the emission side end face and emits. As described above, the intensity of X-rays that are not reflected by the inner wall of the narrow tube, that is, directly pass through the narrow tube, is hardly attenuated. Therefore, although the area of X-rays that pass directly through the inside of a single thin tube and radiate the irradiated object is very small, the X-ray intensity is irradiated with X-rays that are repeatedly reflected. It is considerably higher than the part.

各細管内部を直接的に通過して出射側端面から出射したX線が重なって照射されている部位では、その重なりの数に応じてX線強度が高くなる。例えば上記好ましい構成では、マルチキャピラリを構成する各細管内を直線的につまりは直接通過したX線が略一点に集まる、つまりごく狭い領域に重なって照射されるため、そのごく狭い領域では、従来のマルチキャピラリX線レンズを用いたX線照射装置に比べて十分に高い強度のX線を得ることができる。   The X-ray intensity increases in accordance with the number of overlaps in the portions where X-rays that pass directly through the narrow tubes and are emitted from the end face on the emission side are overlapped. For example, in the above preferred configuration, the X-rays that have passed through the narrow tubes constituting the multicapillary in a straight line, that is, directly, are collected at a substantially single point, that is, overlapped with a very narrow region. Compared with the X-ray irradiation apparatus using the multicapillary X-ray lens, sufficiently high intensity X-rays can be obtained.

なお、細管内を直接通過して来たX線以外に、細管内壁で反射を繰り返して来たX線も各細管の出射側端面から出射し、そのX線による照射領域は直接X線による照射領域の外側に広く存在する。この領域におけるX線強度は直接X線による照射領域に比べるとかなり小さいものの、X線をごく狭い領域に照射するのではなく、或る程度広い領域に照射してより高感度の分析や観察を行いたい場合には、この反射X線による照射領域も十分に利用可能である。   In addition to the X-rays that have passed directly through the narrow tubes, X-rays that have repeatedly reflected from the inner walls of the thin tubes are also emitted from the emission side end face of each thin tube, and the irradiation region of the X-rays is directly irradiated by the X-rays. Widely outside the region. Although the X-ray intensity in this region is considerably smaller than the region irradiated by direct X-rays, X-rays are not irradiated to a very narrow region, but rather a certain wide region is irradiated for more sensitive analysis and observation. In the case where it is desired to perform this, the irradiation region by this reflected X-ray can be sufficiently utilized.

本発明に係るX線照射装置によれば従来のX線照射装置に比べて、高い強度のX線をごく微小な領域に集中的に照射することができる。それによって、例えば本発明に係るX線照射装置を各種X線分析装置に利用することで、従来では実現し得ない高い空間分解能で且つ高い感度や精度の分析又は観察を行うことが可能となる。また、本発明に係るX線照射装置で使用しているマルチキャピラリは基本的には直管状の多数の細管を束ねたものであるため、従来の点焦点型のマルチキャピラリX線レンズに比べても製造は容易であり量産化もし易い。そのため、本発明に係るX線照射装置は低廉なコストで装置を実現可能である。   According to the X-ray irradiation apparatus according to the present invention, high-intensity X-rays can be intensively irradiated onto a very small region as compared with the conventional X-ray irradiation apparatus. Accordingly, for example, by using the X-ray irradiation apparatus according to the present invention for various X-ray analysis apparatuses, it becomes possible to perform analysis or observation with high spatial resolution and high sensitivity and accuracy that cannot be realized conventionally. . In addition, since the multicapillary used in the X-ray irradiation apparatus according to the present invention is basically a bundle of a large number of straight tubes, it is compared with a conventional point-focus type multicapillary X-ray lens. However, manufacturing is easy and mass production is also easy. Therefore, the X-ray irradiation apparatus according to the present invention can be realized at a low cost.

また例えば非特許文献1に記載のメスバウア効果を利用した顕微メスバウア分光装置では、数十μm程度以下のごく微小な領域に非常に狭いエネルギー幅(10-9eV程度)のγ線を照射することが可能なX線照射装置が要望されている。上述した従来のマルチキャピラリX線レンズを用いたX線照射装置では、X線照射径をごく微小に絞るのが難しいだけでなく、X線が全反射を繰り返す間にエネルギー幅がなまってしまうため、メスバウアスペクトルのSN比が非常に悪くなる。これに対し本発明に係るX線照射装置によれば、X線がキャピラリ(細管)内で全反射することによるエネルギー幅のなまりがないので、ごく狭いエネルギー幅のX線(γ線)を試料に照射することができ、顕微メスバウア分光装置用にも好適である。 Further, for example, in a microscopic Mossbauer spectrometer described in Non-Patent Document 1, a very small region of about several tens of μm or less is irradiated with γ-rays with a very narrow energy width (about 10 −9 eV). There is a demand for an X-ray irradiation apparatus capable of performing the above. In the X-ray irradiation apparatus using the above-described conventional multi-capillary X-ray lens, not only is it difficult to narrow the X-ray irradiation diameter to a very small size, but the energy width is reduced while the X-ray repeats total reflection. The S / N ratio of the Mossbauer spectrum becomes very bad. On the other hand, according to the X-ray irradiation apparatus according to the present invention, since there is no rounding of the energy width due to the total reflection of the X-rays in the capillaries (capillaries), X-rays (γ rays) with a very narrow energy width are sampled. It is also suitable for a microscopic Mossbauer spectrometer.

本発明の一実施例であるX線照射装置の概略構成図。The schematic block diagram of the X-ray irradiation apparatus which is one Example of this invention. 図1においてマルチキャピラリの構造及び各キャピラリ内部のX線の経路を描いた概略構成図。FIG. 2 is a schematic configuration diagram illustrating a multi-capillary structure and an X-ray path inside each capillary in FIG. 1. 1本のキャピラリを通過したX線による照射領域を示す図。The figure which shows the irradiation area | region by the X-ray which passed through one capillary. X線照射領域内のX線強度分布を示す図。The figure which shows X-ray intensity distribution in a X-ray irradiation area | region. 本実施例のX線照射装置に基づく実験装置により得られたX線像を示す図。The figure which shows the X-ray image obtained by the experimental apparatus based on the X-ray irradiation apparatus of a present Example. 上記実験装置によるX線像のX線強度分布の測定結果(a)及び従来装置によるX線像のX線強度分布の測定結果(b)を示す図。The figure which shows the measurement result (a) of the X-ray intensity distribution of the X-ray image by the said experimental apparatus, and the measurement result (b) of the X-ray intensity distribution of the X-ray image by a conventional apparatus. 面光源とマルチキャピラリX線レンズとを組み合わせた従来のX線照射装置の概略構成図。The schematic block diagram of the conventional X-ray irradiation apparatus which combined the surface light source and the multicapillary X-ray lens. 面光源と単純絞りとを組み合わせた従来のX線照射装置の概略構成図。The schematic block diagram of the conventional X-ray irradiation apparatus which combined the surface light source and the simple aperture_diaphragm | restriction.

以下、本発明に係るX線照射装置の一実施例について、添付図面を参照しつつ説明する。図1は本実施例であるX線照射装置の概略構成図、図2は図1においてマルチキャピラリの構造及び各キャピラリ内部のX線の経路を描いた概略構成図である。   Hereinafter, an embodiment of an X-ray irradiation apparatus according to the present invention will be described with reference to the accompanying drawings. FIG. 1 is a schematic configuration diagram of an X-ray irradiation apparatus according to the present embodiment, and FIG. 2 is a schematic configuration diagram illustrating a multi-capillary structure and an X-ray path inside each capillary in FIG.

本実施例のX線照射装置は、図1に示した三軸(X、Y、Z)のうちのX軸−Y軸方向に二次元的に広がりを有する発光面を持つX線源1と、該X線源1の平坦な発光面に対向して略平面である入射側端面2aを有するマルチキャピラリX線レンズ2と、を備え、マルチキャピラリX線レンズ2の出射側端面2bから所定距離離れた位置に置かれた試料3の表面に絞ったX線を照射する。   The X-ray irradiation apparatus of the present embodiment includes an X-ray source 1 having a light emitting surface that extends two-dimensionally in the X-axis-Y-axis direction among the three axes (X, Y, Z) shown in FIG. A multi-capillary X-ray lens 2 having an incident-side end face 2a that is substantially flat facing the flat light-emitting surface of the X-ray source 1, and a predetermined distance from the emission-side end face 2b of the multi-capillary X-ray lens 2 The focused X-ray is irradiated on the surface of the sample 3 placed at a distant position.

マルチキャピラリX線レンズ2は全体としては略切頭円錐形状である。その略切頭円錐形状体の中心軸はZ軸方向、つまりはX線源1の発光面に直交した方向に延伸し、その延長上に試料3が置かれている。図2に示すように、マルチキャピラリX線レンズ2は、それぞれの中心軸が直線状であり、入射側端面20aから出射側端面20bに向かって内径が徐々に小さくなる例えば硼珪酸ガラス製のキャピラリ(細管)20の集合体である。即ち、各キャピラリ20は基本的に直管であるが、マルチキャピラリX線レンズ2の中心軸からの距離に応じたテーパ状に形成された直管である。なお、キャピラリ20の本数は図2に示したものよりも遙かに多く、例えば数百本〜100万本程度である。   The multicapillary X-ray lens 2 has a substantially truncated cone shape as a whole. The central axis of the substantially truncated cone-shaped body extends in the Z-axis direction, that is, the direction perpendicular to the light emitting surface of the X-ray source 1, and the sample 3 is placed on the extension. As shown in FIG. 2, the multicapillary X-ray lens 2 has a linear central axis, and the inner diameter gradually decreases from the incident side end surface 20a toward the output side end surface 20b, for example, a capillary made of borosilicate glass. (Thin tube) 20 is an aggregate. That is, each capillary 20 is basically a straight tube, but is a straight tube formed in a tapered shape corresponding to the distance from the central axis of the multicapillary X-ray lens 2. The number of capillaries 20 is much larger than that shown in FIG. 2, for example, about several hundred to one million.

また、各キャピラリ20は直管であるため、各キャピラリ20の中心軸又はそれ以外で入射側端面20aから出射側端面20bまでを貫く直線が必ず存在する。このマルチキャピラリX線レンズ2において各キャピラリ20は、それぞれのキャピラリ20の上記直線が出射側端面20bの外側の一点(焦点F)を通過するようにその形状及び配置が定められている。図2に示すように、通常、その焦点Fが試料3の表面3a上に位置するように、マルチキャピラリX線レンズ2の出射側端面2bと試料3との距離が定められる。   Further, since each capillary 20 is a straight tube, there is always a straight line extending from the incident side end face 20a to the emission side end face 20b at the central axis of each capillary 20 or other than that. In the multi-capillary X-ray lens 2, the shape and arrangement of each capillary 20 are determined so that the straight line of each capillary 20 passes through one point (focal point F) outside the emission side end face 20b. As shown in FIG. 2, the distance between the emission side end face 2 b of the multicapillary X-ray lens 2 and the sample 3 is usually determined so that the focal point F is positioned on the surface 3 a of the sample 3.

X線源1の発光面上の各点からはZ軸方向(発光面に直交する方向)のみならず、Z軸方向を中心とした所定の立体角の範囲内にほぼ均一の強度でX線が放出される。そのため、図2に示すように、X線源1から放出されたX線はマルチキャピラリX線レンズ2のいずれの位置にあるキャピラリ20に対しても入射し、しかもその一部はキャピラリ20の内壁に当たることなくキャピラリ20を通過して出射側端面20bから出射する。このように、各キャピラリ20の内壁で1回も反射することなく通過した直接X線は殆ど減衰せず、それぞれその強度を維持したまま焦点Fの位置で重なる。   From each point on the light emitting surface of the X-ray source 1, X-rays with substantially uniform intensity within a predetermined solid angle range centered on the Z axis direction as well as the Z axis direction (direction orthogonal to the light emitting surface). Is released. Therefore, as shown in FIG. 2, the X-rays emitted from the X-ray source 1 are incident on the capillaries 20 at any position of the multicapillary X-ray lens 2, and a part thereof is the inner wall of the capillaries 20. The light passes through the capillary 20 without hitting and exits from the exit-side end face 20b. In this way, the direct X-rays that have passed through the inner wall of each capillary 20 without being reflected once are hardly attenuated and overlap each other at the position of the focal point F while maintaining their respective intensities.

図3は1本のキャピラリ20を通過したX線による照射領域を示す図である。ただし、この図では、キャピラリ20は内径が一定な単なる直管で示している。図中、一点鎖線で示すX線はキャピラリ20の内壁に当たらない直接X線であり、キャピラリ20から出射した直接X線が照射される領域Faはごく狭い。一方、図中に点線で示すように、例えばキャピラリ20の中心軸に対し上記直接X線よりも大きな角度を有して(ただし所定角度よりも小さい角度を有して)入射するX線はキャピラリ20の内壁に1回以上当たって全反射しながら進行し、直接X線よりも大きく拡がりながらキャピラリ20から出射する。そのため、このX線が照射される領域Fbは上記領域Faの周囲に広がることになる。   FIG. 3 is a diagram showing an irradiation region by X-rays that have passed through one capillary 20. However, in this figure, the capillary 20 is shown as a simple straight pipe having a constant inner diameter. In the drawing, the X-rays indicated by the alternate long and short dash line are direct X-rays that do not hit the inner wall of the capillary 20, and the region Fa irradiated with the direct X-rays emitted from the capillary 20 is very narrow. On the other hand, as indicated by a dotted line in the figure, for example, X-rays incident on the central axis of the capillary 20 with an angle larger than the direct X-ray (but with an angle smaller than a predetermined angle) are capillary The light strikes the inner wall 20 at least once and travels while being totally reflected, and is directly emitted from the capillary 20 while being broadened more than X-rays. Therefore, the region Fb irradiated with this X-ray spreads around the region Fa.

本実施例のX線照射装置では、試料3の表面3aにおいて各キャピラリ20から出射した直接X線による領域Faが重なることでX線強度が高い微小な領域が形成される。また、その領域の周囲には、各キャピラリ20において1回以上反射したあとに出射したX線による領域Fbが重なることで領域Faに比べてX線強度がかなり低い領域が形成される。   In the X-ray irradiation apparatus according to the present embodiment, the area Fa by the direct X-rays emitted from the capillaries 20 overlaps on the surface 3a of the sample 3 so that a minute area having a high X-ray intensity is formed. In addition, an area having a considerably lower X-ray intensity than the area Fa is formed around the area by overlapping the area Fb of X-rays emitted after being reflected at each capillary 20 at least once.

図4は本実施例のX線照射装置によるX線照射領域内のX線強度分布を示す図である。図中、点線で示すカーブは従来のマルチキャピラリX線レンズを用いたX線照射装置による強度分布であり、実線で示すカーブは本実施例のX線照射装置における直接X線(無反射X線)による強度分布、一点鎖線で示すカーブは本実施例のX線照射装置における全反射X線による強度分布である。従来のマルチキャピラリX線レンズを用いたX線照射装置では、照射される全てのX線がキャピラリの内壁で多数回全反射したものであり、図3における領域Faは存在せず上記領域Fbが存在するだけである。基本的にこの領域FbにおけるX線強度分布はガウス分布形状を呈する。一方、本実施例のX線照射装置では、狭い領域Faに集中的に直接X線が当たるため、この直接X線の強度分布のピーク幅は従来装置におけるX線強度分布のピーク幅に比べてかなり狭く、そのピーク高さは大幅に高くなる。即ち、本実施例のX線照射装置では従来装置に比べて、狭い範囲に高い強度のX線を照射することができる。   FIG. 4 is a diagram showing the X-ray intensity distribution in the X-ray irradiation region by the X-ray irradiation apparatus of the present embodiment. In the figure, a curve indicated by a dotted line is an intensity distribution by an X-ray irradiation apparatus using a conventional multicapillary X-ray lens, and a curve indicated by a solid line is a direct X-ray (non-reflective X-ray) in the X-ray irradiation apparatus of the present embodiment. ), And the curve indicated by the alternate long and short dash line is the intensity distribution by total reflection X-rays in the X-ray irradiation apparatus of the present embodiment. In a conventional X-ray irradiation apparatus using a multi-capillary X-ray lens, all irradiated X-rays are totally reflected many times on the inner wall of the capillary, and the region Fa in FIG. It only exists. Basically, the X-ray intensity distribution in this region Fb has a Gaussian distribution shape. On the other hand, in the X-ray irradiation apparatus of the present embodiment, since the direct X-ray hits the narrow area Fa intensively, the peak width of the direct X-ray intensity distribution is larger than the peak width of the X-ray intensity distribution in the conventional apparatus. It is quite narrow and its peak height is significantly higher. That is, the X-ray irradiation apparatus of the present embodiment can irradiate high-intensity X-rays in a narrow range as compared with the conventional apparatus.

なお、全反射臨界角はX線の波長に依存するため、マルチキャピラリX線レンズ2の出射側端面から一定距離だけ離れた置かれた試料3の表面3a上における全反射X線による照射領域の大きさはX線の波長に依存する。これは、従来装置におけるX線照射領域の大きさにおいても同様である。一方、直接X線による照射領域の大きさは全反射臨界角と無関係であるから、この大きさの最小値はX線の波長には依存せず、主としてマルチキャピラリX線レンズ2の構造、つまり各キャピラリ20の内径(入射側端面20a及び出射側端面20bの内径)や長さなどによって決まる。そのため、マルチキャピラリX線レンズの作製上の精度を向上させることにより、高強度のX線照射領域を微小化することが可能である。   Since the critical angle for total reflection depends on the wavelength of X-rays, the irradiation region of the total reflection X-rays on the surface 3a of the sample 3 placed a fixed distance away from the emission side end face of the multicapillary X-ray lens 2 is used. The size depends on the wavelength of the X-ray. The same applies to the size of the X-ray irradiation area in the conventional apparatus. On the other hand, since the size of the irradiation region by direct X-rays is independent of the total reflection critical angle, the minimum value of this size does not depend on the wavelength of X-rays, and is mainly the structure of the multicapillary X-ray lens 2, that is, It is determined by the inner diameter of each capillary 20 (the inner diameter of the incident side end face 20a and the outgoing side end face 20b), the length, and the like. Therefore, it is possible to miniaturize the high-intensity X-ray irradiation region by improving the accuracy in manufacturing the multicapillary X-ray lens.

本発明者は上記実施例のX線照射装置に基づく実験装置を作製し、X線収束効果を確認した。この実験装置では、マルチキャピラリX線レンズとして、全長が17mm、入射側端面の外径が3.5mm、出射側端面の外径が2.3mm、焦点距離が約35mmである形状のものを用いた。
図5は実験装置により得られたX線像を示す図である。また、図6(a)は図5に示したX線像のX線強度分布の測定結果を示す図、図6(b)は従来のマルチキャピラリX線レンズを用いた装置によるX線像のX線強度分布の測定結果を示す図である。
The inventor manufactured an experimental apparatus based on the X-ray irradiation apparatus of the above-described embodiment and confirmed the X-ray convergence effect. In this experimental apparatus, a multicapillary X-ray lens having a total length of 17 mm, an outer diameter of the incident side end face of 3.5 mm, an outer diameter of the exit side end face of 2.3 mm, and a focal length of about 35 mm was used.
FIG. 5 is a view showing an X-ray image obtained by the experimental apparatus. FIG. 6A is a diagram showing a measurement result of the X-ray intensity distribution of the X-ray image shown in FIG. 5, and FIG. 6B is an X-ray image obtained by an apparatus using a conventional multicapillary X-ray lens. It is a figure which shows the measurement result of X-ray intensity distribution.

図5に示すように、本実験装置により得られたX線像では、中心のきわめて明るいつまりはX線強度の高い部位の周囲に、明るさに顕著な差異がある領域が拡がって入ることが分かる。図6(a)と図6(b)とを比較すれば分かるように、本実験装置では幅(大きさ)が狭く且つ高い顕著なピーク状のX線強度分布が現れている。一方、従来装置では裾の拡がりが大きく且つ高さは低いガウス状のX線強度分布が現れている。この結果から、実験装置では従来装置に比べてより狭い領域にX線が高い強度で照射されていることを確認することができる。
なお、実験装置では、使用したマルチキャピラリX線レンズの仕様の制約上、高いX線強度が得られるX線照射領域の大きさは十分に絞れていないものの、上述したように、マルチキャピラリX線レンズの作製上の精度の向上等より、高強度のX線照射領域を微小化できることは明らかである。
As shown in FIG. 5, in the X-ray image obtained by this experimental apparatus, an area having a remarkable difference in brightness may be spread around a very bright center, that is, a portion having a high X-ray intensity. I understand. As can be seen from a comparison between FIG. 6A and FIG. 6B, a remarkable peak-shaped X-ray intensity distribution appears narrow and high in this experimental apparatus. On the other hand, in the conventional apparatus, a Gaussian X-ray intensity distribution appears with a wide skirt and a low height. From this result, it can be confirmed that the X-ray is irradiated with high intensity in a narrower region in the experimental device than in the conventional device.
In the experimental apparatus, the size of the X-ray irradiation region where high X-ray intensity can be obtained is not sufficiently limited due to the limitations of the specifications of the used multi-capillary X-ray lens. It is clear that the high-intensity X-ray irradiation region can be miniaturized by improving the accuracy in manufacturing the lens.

なお、上記実施例は本発明の一例であり、本発明の趣旨の範囲で適宜変形、修正又は追加を行っても本願特許請求の範囲に包含されることは当然である。
例えば、面光源であるX線源は厳密な意味での面光源でなくてもよく、例えば或る程度の凹凸面や曲面、傾斜面を有する面光源でも構わない。また、点光源(点光源であるとみなせる程度の小さなX線源)から拡がりつつ放出されたX線をAl、Mo等の薄膜に照射し、該薄膜から発生したX線を出射X線とする擬似的な面光源であってもよい。
The above-described embodiment is an example of the present invention, and it is a matter of course that the present invention is encompassed by the scope of the claims of the present application even if appropriate modifications, corrections or additions are made within the scope of the present invention.
For example, an X-ray source that is a surface light source may not be a surface light source in a strict sense, and may be a surface light source having, for example, a certain uneven surface, curved surface, or inclined surface. Further, X-rays emitted while spreading from a point light source (a small X-ray source that can be regarded as a point light source) are irradiated to a thin film such as Al or Mo, and the X-rays generated from the thin film are used as outgoing X-rays. A pseudo surface light source may be used.

1…X線源
2…マルチキャピラリX線レンズ
2a…入射側端面
2b…出射側端面
20…キャピラリ
20a…入射側端面
20b…出射側端面
3…試料
3a…表面
DESCRIPTION OF SYMBOLS 1 ... X-ray source 2 ... Multicapillary X-ray lens 2a ... Incident side end surface 2b ... Output side end surface 20 ... Capillary 20a ... Incident side end surface 20b ... Output side end surface 3 ... Sample 3a ... Surface

Claims (2)

微小径に絞ったX線を被照射物に照射するX線照射装置であって、
a)面光源であるX線源と、
b)それぞれの中心軸が一直線状で入射側端面から出射側端面に向かって内径が徐々に縮小する多数のX線案内用の細管が略切頭円錐又は略切頭角錐形状に束ねられて成り、前記入射側端面が前記X線源に対向するように配置されたマルチキャピラリと、
を備え、前記マルチキャピラリの出射側端面から所定距離離れた位置に配置された被照射物に対しX線を照射することを特徴とするX線照射装置。
An X-ray irradiation apparatus for irradiating an object with X-rays focused on a minute diameter,
a) an X-ray source which is a surface light source;
b) A large number of X-ray guiding thin tubes whose central axes are straight and whose inner diameter gradually decreases from the incident side end surface to the output side end surface are bundled in a substantially truncated cone or substantially truncated pyramid shape. A multi-capillary arranged so that the incident side end face faces the X-ray source;
And an X-ray irradiation apparatus for irradiating an irradiation object disposed at a predetermined distance from the emission side end face of the multicapillary.
請求項1に記載のX線照射装置であって、
前記マルチキャピラリでは、各細管の入射側端面と出射側端面との間を貫く直線が該出射側端面の外側で略一点に集まるように多数の細管の形状及び配置が定められていることを特徴とするX線照射装置。
The X-ray irradiation apparatus according to claim 1,
In the multicapillary, the shape and arrangement of a large number of capillaries are determined such that straight lines passing between the incident side end face and the exit side end face of each narrow tube are gathered at substantially one point outside the exit side end face. X-ray irradiation apparatus.
JP2016105044A 2016-05-26 2016-05-26 X-ray irradiation equipment Pending JP2017211290A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016105044A JP2017211290A (en) 2016-05-26 2016-05-26 X-ray irradiation equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016105044A JP2017211290A (en) 2016-05-26 2016-05-26 X-ray irradiation equipment

Publications (1)

Publication Number Publication Date
JP2017211290A true JP2017211290A (en) 2017-11-30

Family

ID=60475401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016105044A Pending JP2017211290A (en) 2016-05-26 2016-05-26 X-ray irradiation equipment

Country Status (1)

Country Link
JP (1) JP2017211290A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164077A (en) * 2018-09-05 2019-01-08 中国工程物理研究院激光聚变研究中心 A kind of fluorescence imaging method and device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109164077A (en) * 2018-09-05 2019-01-08 中国工程物理研究院激光聚变研究中心 A kind of fluorescence imaging method and device
CN109164077B (en) * 2018-09-05 2020-10-30 中国工程物理研究院激光聚变研究中心 Fluorescence imaging method and device

Similar Documents

Publication Publication Date Title
JP6937380B2 (en) Methods for performing X-ray spectroscopy and X-ray absorption spectroscopy systems
JP6851107B2 (en) X-ray analyzer
US7508907B2 (en) X-ray analysis apparatus
US9418767B2 (en) X-ray focusing device
US10049850B2 (en) X-ray apparatus with deflectable electron beam
US10614992B2 (en) Electrostatic lens, and parallel beam generation device and parallel beam convergence device which use electrostatic lens and collimator
JP4492507B2 (en) X-ray focusing device
JP2017211290A (en) X-ray irradiation equipment
JP4470816B2 (en) X-ray focusing device
JP5489412B2 (en) High resolution X-ray microscope with X-ray fluorescence analysis function
JP2014211367A (en) Fluorescent x-ray analyzer
JP4837964B2 (en) X-ray focusing device
JP6430208B2 (en) X-ray irradiation equipment
WO2022091749A1 (en) Radiation detection module and radiation detection device
JP4349146B2 (en) X-ray analyzer
JP5347559B2 (en) X-ray analyzer
KR102041212B1 (en) Measurement system for x-ray spectroscopy and imaging
CN116868048B (en) Total reflection fluorescent X-ray analysis device
JP2015184092A (en) X-ray analyzer
JP4639971B2 (en) X-ray analyzer
KR101939465B1 (en) Positron microscope using device of focsing positron beam
JP6876519B2 (en) Charged particle beam device
CN106872502A (en) A kind of EDXRF detection means with light beam adjustment
CN110208302A (en) A kind of device and method of particle excitated x-ray fluorescence analysis depth resolution
JP2002090320A (en) X-ray irradiation device

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20160603

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160603

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20181212

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20181212

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20190117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190416

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20191015