[go: up one dir, main page]

JP2017208462A - Powder compact core, manufacturing method thereof, inductor with powder compact core, and electronic/electric device with inductor mounted thereon - Google Patents

Powder compact core, manufacturing method thereof, inductor with powder compact core, and electronic/electric device with inductor mounted thereon Download PDF

Info

Publication number
JP2017208462A
JP2017208462A JP2016100194A JP2016100194A JP2017208462A JP 2017208462 A JP2017208462 A JP 2017208462A JP 2016100194 A JP2016100194 A JP 2016100194A JP 2016100194 A JP2016100194 A JP 2016100194A JP 2017208462 A JP2017208462 A JP 2017208462A
Authority
JP
Japan
Prior art keywords
powder
magnetic material
core
alloy
dust core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2016100194A
Other languages
Japanese (ja)
Inventor
中林 亮
Akira Nakabayashi
亮 中林
小島 章伸
Akinobu Kojima
章伸 小島
佐藤 桂一郎
Keiichiro Sato
桂一郎 佐藤
佐藤 昭
Akira Sato
昭 佐藤
世一 安彦
Yoichi Abiko
世一 安彦
水嶋 隆夫
Takao Mizushima
隆夫 水嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alps Alpine Co Ltd
Original Assignee
Alps Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alps Electric Co Ltd filed Critical Alps Electric Co Ltd
Priority to JP2016100194A priority Critical patent/JP2017208462A/en
Priority to TW106106998A priority patent/TWI631223B/en
Priority to KR1020170040092A priority patent/KR102104701B1/en
Priority to CN201710264626.7A priority patent/CN107403676A/en
Publication of JP2017208462A publication Critical patent/JP2017208462A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F3/00Cores, Yokes, or armatures
    • H01F3/08Cores, Yokes, or armatures made from powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/10Metallic powder containing lubricating or binding agents; Metallic powder containing organic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/012Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials adapted for magnetic entropy change by magnetocaloric effect, e.g. used as magnetic refrigerating material
    • H01F1/015Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/032Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
    • H01F1/04Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys
    • H01F1/06Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials metals or alloys in the form of particles, e.g. powder
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/0206Manufacturing of magnetic cores by mechanical means
    • H01F41/0246Manufacturing of magnetic circuits by moulding or by pressing powder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/24After-treatment of workpieces or articles
    • B22F2003/248Thermal after-treatment

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Powder Metallurgy (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder compact core including crystalline magnetic material powder and amorphous magnetic material powder, which is superior in dielectric voltage resistance and which can provide a satisfactory inductor reduced in iron loss.SOLUTION: A powder compact core comprises: crystalline magnetic material powder; and amorphous magnetic material powder. The first mixing ratio, which is a mass ratio of a content of the crystalline magnetic material powder to a total content of the crystalline magnetic material powder and the amorphous magnetic material powder, is 40-90 mass%.SELECTED DRAWING: Figure 7

Description

本発明は、圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および当該インダクタが実装された電子・電気機器に関する。本明細書において、「インダクタ」とは、圧粉コアを含む芯材およびコイルを備える受動素子であって、リアクトルの概念を含むものとする。   The present invention relates to a dust core, a method for manufacturing the dust core, an inductor including the dust core, and an electronic / electrical device on which the inductor is mounted. In this specification, the “inductor” is a passive element including a core material including a dust core and a coil, and includes the concept of a reactor.

ハイブリッド自動車等の昇圧回路や、発電、変電設備に用いられるリアクトル、トランスやチョークコイル等のインダクタに使用される圧粉コアは、軟磁性粉末を圧粉成形することにより得ることができる。こうした圧粉コアを備えるインダクタは、鉄損が低いことと絶縁耐圧特性に優れること(本発明において、インダクタに直流電圧または60Hz以下の周波数の交流電圧が印加されたときに絶縁破壊が生じる電圧(絶縁破壊電圧)が高いことを意味する。)とを兼ね備えることが求められている。   A dust core used in a booster circuit such as a hybrid vehicle, a reactor used in power generation or substation equipment, an inductor such as a transformer or a choke coil can be obtained by compacting soft magnetic powder. An inductor having such a dust core has low iron loss and excellent dielectric strength characteristics (in the present invention, a voltage that causes dielectric breakdown when a DC voltage or an AC voltage having a frequency of 60 Hz or less is applied to the inductor ( It means that the dielectric breakdown voltage) is high.

特許文献1には、高温環境下における絶縁抵抗の低下を改善する手段として、鉄系の結晶質合金磁性粉と鉄系の非晶質合金磁性粉とを混合してなる混合磁性粉において、結晶質合金磁性粉と非晶質合金磁性粉の配合比をそれぞれ60〜90wt%、40〜10wt%とした複合磁性材料が開示されている。   Patent Document 1 discloses a mixed magnetic powder obtained by mixing iron-based crystalline alloy magnetic powder and iron-based amorphous alloy magnetic powder as a means for improving a decrease in insulation resistance in a high-temperature environment. A composite magnetic material is disclosed in which the blending ratio of the magnetic alloy magnetic powder and the amorphous alloy magnetic powder is 60 to 90 wt% and 40 to 10 wt%, respectively.

特許文献2には、圧粉磁心の絶縁性および耐食性を良好にする手段として、非晶質磁性合金の粉末および結晶質のFe−Cr系合金粉末を混合した混合磁性材料粉末と、絶縁性結着剤とからなる磁心材料において、非晶質磁性合金の粉末とFe−Cr合金粉末との混合比率を、Fe−Cr系合金粉末の、混合磁性材料粉末に占める重量比率を10〜60wt%とした複合磁性材料が開示されている。   In Patent Document 2, as a means for improving the insulation and corrosion resistance of a dust core, a mixed magnetic material powder obtained by mixing an amorphous magnetic alloy powder and a crystalline Fe—Cr alloy powder, and an insulating bond are disclosed. In the magnetic core material comprising the adhesive, the mixing ratio of the amorphous magnetic alloy powder and the Fe—Cr alloy powder is set to 10 to 60 wt% of the weight ratio of the Fe—Cr alloy powder to the mixed magnetic material powder. A composite magnetic material is disclosed.

特開2004−197218号公報JP 2004-197218 A 特開2007−134381号公報JP 2007-134381 A

特許文献1および特許文献2はいずれも、結晶質合金粉末の配合量が多くなると、圧粉コアの絶縁抵抗が低下することに着目し、混合磁性粉における結晶質合金磁性粉と非晶質合金磁性粉との配合比を調整することにより、絶縁抵抗の低下を防いでいる。しかしながら、特許文献1および特許文献2はいずれも、圧粉コアの絶縁耐圧特性の評価は行われていない。   Both Patent Document 1 and Patent Document 2 pay attention to the fact that the insulation resistance of the powder core decreases as the blending amount of the crystalline alloy powder increases, and the crystalline alloy magnetic powder and the amorphous alloy in the mixed magnetic powder By adjusting the blending ratio with the magnetic powder, the insulation resistance is prevented from decreasing. However, neither Patent Document 1 nor Patent Document 2 evaluates the dielectric strength characteristics of the dust core.

そこで、本発明は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、絶縁耐圧特性に優れるとともに、鉄損が低減された良好なインダクタを与える圧粉コアを提供することを目的とする。本発明は、上記の圧粉コアの製造方法、当該圧粉コアを備えるインダクタ、および当該インダクタが実装された電子・電気機器を提供することも目的とする。   Accordingly, the present invention provides a dust core containing a powder of a crystalline magnetic material and a powder of an amorphous magnetic material, which has excellent dielectric strength characteristics and provides a good inductor with reduced iron loss. The purpose is to provide a core. Another object of the present invention is to provide a method for manufacturing the above dust core, an inductor including the dust core, and an electronic / electrical device on which the inductor is mounted.

上記課題を解決するために本発明者らが検討した結果、前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率を適切に調整することにより、圧粉コアの絶縁耐圧特性を向上させることが可能であり、好ましい一形態では、圧粉コアが含有する結晶質磁性材料の粉末と非晶質磁性材料の粉末との混合比率から推測される範囲を超えて、非線形的に圧粉コアの絶縁耐圧特性を向上させること、および鉄損が低減された良好なインダクタを与える圧粉コアとなるとの新たな知見を得た。   As a result of investigations by the present inventors in order to solve the above-described problems, the crystalline magnetic material powder has a total content of the crystalline magnetic material powder content and the amorphous magnetic material powder content. By appropriately adjusting the first mixing ratio, which is the mass ratio of the content, it is possible to improve the dielectric strength characteristics of the dust core. In a preferred embodiment, the crystalline magnetic material contained in the dust core Exceeding the range estimated from the mixing ratio of the powder of the amorphous magnetic material and the powder of the amorphous magnetic material, to improve the dielectric strength characteristics of the dust core nonlinearly, and to provide a good inductor with reduced iron loss We obtained new knowledge that it becomes a powder core.

かかる知見により完成された発明は次のとおりである。
本発明の一態様は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率は、40質量%以上90質量%以下の圧粉コアである。
The invention completed by such knowledge is as follows.
One aspect of the present invention is a powder core containing a powder of a crystalline magnetic material and a powder of an amorphous magnetic material, the content of the powder of the crystalline magnetic material and the powder of the amorphous magnetic material The first mixing ratio, which is a mass ratio of the content of the powder of the crystalline magnetic material with respect to the total content, is a powder core of 40% by mass to 90% by mass.

上記第一混合比率が上記の関係を満たす場合には、前記結晶質磁性材料または前記非晶質磁性材料の粉末単体から推測される範囲を超えて、非線形的に、圧粉コアの絶縁耐圧特性を向上させること、およびインダクタの鉄損を低減させる圧粉コアとすることが可能である。   When the first mixing ratio satisfies the above relationship, the dielectric strength characteristics of the dust core exceed the range estimated from the powder of the crystalline magnetic material or the amorphous magnetic material in a non-linear manner. And a dust core that reduces the iron loss of the inductor.

前記圧粉コアは、第一混合比率が、50質量%以上70質量%以下であってもよい。   The powder core may have a first mixing ratio of 50% by mass to 70% by mass.

前記圧粉コアは、絶縁耐圧値が、磁性粉末として前記非晶質磁性材料の粉末のみを含有する圧粉コアの絶縁耐圧値を基準(100%)として、120%以上であってもよい。   The dust core may have a dielectric strength value of 120% or more with reference to the dielectric strength value of a dust core containing only the amorphous magnetic material powder as magnetic powder (100%).

前記圧粉コアは、絶縁耐圧値が、磁性粉末として前記結晶質磁性材料の粉末のみを含有する圧粉コアの絶縁耐圧値を基準(100%)として、110%以上であってもよい。   The dust core may have a dielectric strength value of 110% or more with reference to the dielectric strength value of the dust core containing only the crystalline magnetic material powder as the magnetic powder (100%).

前記結晶質磁性材料は、Fe−Si−Cr系合金、Fe−Ni系合金、Fe−Co系合金、Fe−V系合金、Fe−Al系合金、Fe−Si系合金、Fe−Si−Al系合金、カルボニル鉄および純鉄からなる群から選ばれた1種または2種以上の材料を含んでいていてもよい。   The crystalline magnetic material is Fe-Si-Cr alloy, Fe-Ni alloy, Fe-Co alloy, Fe-V alloy, Fe-Al alloy, Fe-Si alloy, Fe-Si-Al. One type or two or more types of materials selected from the group consisting of a system alloy, carbonyl iron and pure iron may be included.

前記結晶質磁性材料はFe−Si−Cr系合金からなることが好ましい。   The crystalline magnetic material is preferably made of an Fe—Si—Cr alloy.

前記非晶質磁性材料は、Fe−Si−B系合金、Fe−P−C系合金およびCo−Fe−Si−B系合金からなる群から選ばれた1種または2種以上の材料を含んでいてもよい。   The amorphous magnetic material includes one or more materials selected from the group consisting of Fe-Si-B alloys, Fe-PC-C alloys, and Co-Fe-Si-B alloys. You may go out.

前記非晶質磁性材料はFe−P−C系合金からなることが好ましい。   The amorphous magnetic material is preferably made of a Fe—PC alloy.

前記結晶質磁性材料の粉末は絶縁処理が施された材料からなることが好ましい。絶縁処理が施されることにより、圧粉コアの絶縁耐圧特性や絶縁抵抗の向上や高周波帯域での鉄損の低減がより安定的に実現される。   The powder of the crystalline magnetic material is preferably made of an insulating material. By performing the insulation treatment, it is possible to more stably realize an improvement in the dielectric strength characteristics and insulation resistance of the dust core and a reduction in iron loss in the high frequency band.

前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末を、前記圧粉コアに含有される他の材料に対して結着させる結着成分を、上記の圧粉コアが含有していてもよい。この場合において、前記結着成分は、樹脂材料に基づく成分を含むことが好ましい。   The dust core contains a binding component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to another material contained in the dust core. Also good. In this case, the binding component preferably includes a component based on a resin material.

本発明の別の一態様は、上記の圧粉コアの製造方法であって、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末ならびに前記樹脂材料からなるバインダー成分を含む混合物の加圧成形を含む成形処理により成形製造物を得る成形工程を備えることを特徴とする圧粉コアの製造方法である。かかる製造方法により、上記の圧粉コアをより効率的に製造することが実現される。   Another aspect of the present invention is the above-described method for producing a dust core, wherein the addition of a mixture comprising the crystalline magnetic material powder, the amorphous magnetic material powder, and the binder component comprising the resin material is performed. A method for producing a powder core, comprising a molding step of obtaining a molded product by a molding process including pressure molding. By such a manufacturing method, it is possible to more efficiently manufacture the powder core.

上記の製造方法は、前記成形工程により得られた前記成形製造物が前記圧粉コアであってもよい。あるいは、前記成形工程により得られた前記成形製造物を加熱する熱処理により前記圧粉コアを得る熱処理工程を備えていてもよい。   In the above manufacturing method, the molded product obtained by the molding step may be the powder core. Or you may provide the heat processing process which obtains the said powder core by the heat processing which heats the said molded product obtained by the said shaping | molding process.

本発明のさらに別の一態様は、上記の圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備えるインダクタであって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されているインダクタである。かかるインダクタは、上記の圧粉コアの優れた特性に基づき、優れた絶縁耐圧特性および低損失を両立することが可能である。   Still another aspect of the present invention is an inductor including the dust core, the coil, and a connection terminal connected to each end of the coil, wherein at least a part of the dust core is the connection. It is an inductor disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via a terminal. Such an inductor can achieve both excellent dielectric strength characteristics and low loss based on the excellent characteristics of the dust core.

本発明のさらにまた別の一態様は、上記のインダクタが実装された電子・電気機器であって、前記インダクタは前記接続端子にて基板に接続されている電子・電気機器である。かかる電子・電気機器として、電源スイッチング回路、電圧昇降回路、平滑回路等を備えた電源装置や小型携帯通信機器等が例示される。本発明に係る電子・電気機器は、上記のインダクタを備えるため、高電圧化や高周波化に対応しやすい。   Still another embodiment of the present invention is an electronic / electrical device in which the inductor is mounted, and the inductor is an electronic / electrical device connected to a substrate by the connection terminal. Examples of such electronic / electrical equipment include a power supply device including a power supply switching circuit, a voltage raising / lowering circuit, and a smoothing circuit, and a small portable communication device. Since the electronic / electrical device according to the present invention includes the inductor, the electronic / electrical device can easily cope with higher voltages and higher frequencies.

上記の発明に係る圧粉コアは、第一混合比率が適切に調整されているため、かかる圧粉コアの絶縁耐圧特性を向上させることが可能である。また、本発明によれば、上記の圧粉コアの製造方法、当該圧粉コアを備えるインダクタ、および当該インダクタが実装された電子・電気機器が提供される。   Since the 1st mixing ratio is adjusted appropriately for the dust core which concerns on said invention, it is possible to improve the dielectric strength characteristic of this dust core. Moreover, according to this invention, the manufacturing method of said powder core, the inductor provided with the said powder core, and the electronic / electrical device by which the said inductor was mounted are provided.

本発明の一実施形態に係る圧粉コアの形状を概念的に示す斜視図である。It is a perspective view which shows notionally the shape of the powder core which concerns on one Embodiment of this invention. 造粒粉を製造する方法の一例において使用されるスプレードライヤー装置およびその動作を概念的に示す図である。It is a figure which shows notionally the spray dryer apparatus used in an example of the method of manufacturing granulated powder, and its operation | movement. 本発明の一実施形態に係る圧粉コアを備えるインダクタの一種であるトロイダルコイルの形状を概念的に示す斜視図である。It is a perspective view which shows notionally the shape of the toroidal coil which is 1 type of an inductor provided with the dust core which concerns on one Embodiment of this invention. 本発明の一実施形態に係る圧粉コアを備えるインダクタの一種であるコイル埋設型インダクタの形状を概念的に示す斜視図である。It is a perspective view which shows notionally the shape of the coil embedding type | mold inductor which is a kind of inductor provided with the powder core which concerns on one Embodiment of this invention. 実施例1における、絶縁耐圧の第一混合比率に対する依存性を示したグラフである。5 is a graph showing the dependency of the withstand voltage on the first mixing ratio in Example 1. 実施例2における、絶縁耐圧の第一混合比率に対する依存性を示したグラフである。It is the graph which showed the dependence with respect to the 1st mixing ratio of the withstand voltage in Example 2. 実施例1および実施例2における、絶縁耐圧の第一混合比率に対する依存性を示したグラフである。It is the graph which showed the dependence with respect to the 1st mixing ratio of the withstand voltage in Example 1 and Example 2. FIG. 実施例1および実施例2における、非晶質磁性材料の粉末単体を基準とした各第1混合比率における絶縁耐圧比を示したグラフである。It is the graph which showed the dielectric strength ratio in each 1st mixing ratio on the basis of the simple substance powder of an amorphous magnetic material in Example 1 and Example 2. FIG. 実施例1および実施例2における、結晶質磁性材料の粉末単体を基準とした各第1混合比率における絶縁耐圧比を示したグラフである。It is the graph which showed the dielectric strength ratio in each 1st mixing ratio on the basis of the powder single-piece | unit of the crystalline magnetic material in Example 1 and Example 2. FIG. 実施例1における、絶縁抵抗の第一混合比率に対する依存性を示したグラフである。6 is a graph showing the dependency of the insulation resistance on the first mixing ratio in Example 1. FIG. 実施例1における、コア密度の第一混合比率に対する依存性を示したグラフである。4 is a graph showing the dependence of the core density on the first mixing ratio in Example 1. FIG. 実施例1における、透磁率の第一混合比率に対する依存性を示したグラフである。4 is a graph showing the dependence of the magnetic permeability on the first mixing ratio in Example 1. 実施例2における、絶縁抵抗の第一混合比率に対する依存性を示したグラフである。It is the graph which showed the dependence with respect to the 1st mixing ratio of the insulation resistance in Example 2. FIG. 実施例2における、コア密度の第一混合比率に対する依存性を示したグラフである。6 is a graph showing the dependence of the core density on the first mixing ratio in Example 2. 実施例2における、透磁率の第一混合比率に対する依存性を示したグラフである。6 is a graph showing the dependence of the magnetic permeability on the first mixing ratio in Example 2.

以下、本発明の実施形態について詳しく説明する。
1.圧粉コア
図1に示す本発明の一実施形態に係る圧粉コア1は、その外観がリング状のトロイダルコアであって、結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する。本実施形態に係る圧粉コア1は、これらの粉末を含む混合物を加圧成形することを含む成形処理を備える製造方法により製造されたものである。限定されない一例として、本実施形態に係る圧粉コア1は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を、圧粉コア1に含有される他の材料(同種の材料である場合もあれば、異種の材料である場合もある。)に対して結着させる結着成分を含有する。
Hereinafter, embodiments of the present invention will be described in detail.
1. A dust core 1 according to one embodiment of the present invention shown in FIG. 1 is a ring-shaped toroidal core, and contains a powder of a crystalline magnetic material and a powder of an amorphous magnetic material. . The powder core 1 according to the present embodiment is manufactured by a manufacturing method including a forming process including pressure forming a mixture containing these powders. As a non-limiting example, the dust core 1 according to the present embodiment includes a crystalline magnetic material powder and an amorphous magnetic material powder as other materials (same type of material) contained in the dust core 1. Or it may be a dissimilar material).

(1)結晶質磁性材料の粉末
本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末を与える結晶質磁性材料は、結晶質であること(一般的なX線回折測定により、材料種類を特定できる程度に明確なピークを有する回折スペクトルが得られること)、および強磁性体、特に軟磁性体であることを満たす限り、具体的な種類は限定されない。結晶質磁性材料の具体例として、Fe−Si−Cr系合金、Fe−Ni系合金、Fe−Co系合金、Fe−V系合金、Fe−Al系合金、Fe−Si系合金、Fe−Si−Al系合金、カルボニル鉄および純鉄が挙げられる。上記の結晶質磁性材料は1種類の材料から構成されていてもよいし複数種類の材料から構成されていてもよい。結晶質磁性材料の粉末を与える結晶質磁性材料は、上記の材料からなる群から選ばれた1種または2種以上の材料であることが好ましく、これらの中でも、Fe−Si−Cr系合金を含有することが好ましく、Fe−Si−Cr系合金からなることがより好ましい。Fe−Si−Cr系合金は結晶質磁性材料の中では鉄損Pcvを比較的低くすることが可能な材料であるため、圧粉コア1における結晶質磁性材料の粉末の含有量と非晶質磁性材料の粉末の含有量との総和に対する結晶質磁性材料の粉末の含有量の質量比率(本明細書において「第一混合比率」ともいう。)を高めても、圧粉コア1を備えるインダクタの鉄損Pcvが高まりにくい。Fe−Si−Cr系合金におけるSiの含有量およびCrの含有量は限定されない。限定されない例示として、Siの含有量を2〜7質量%程度とし、Crの含有量を2〜7質量%程度とすることが挙げられる。
(1) Powder of crystalline magnetic material The crystalline magnetic material that gives the powder of crystalline magnetic material contained in the dust core 1 according to one embodiment of the present invention is crystalline (general X-ray diffraction) The specific type is not limited as long as a diffraction spectrum having a clear peak that can identify the material type is obtained by measurement) and that the material is a ferromagnetic material, particularly a soft magnetic material. Specific examples of crystalline magnetic materials include Fe-Si-Cr alloys, Fe-Ni alloys, Fe-Co alloys, Fe-V alloys, Fe-Al alloys, Fe-Si alloys, Fe-Si. -Al-based alloys, carbonyl iron and pure iron are mentioned. Said crystalline magnetic material may be comprised from one type of material, and may be comprised from multiple types of material. The crystalline magnetic material that gives the powder of the crystalline magnetic material is preferably one or more materials selected from the group consisting of the above materials, and among these, an Fe—Si—Cr alloy is used. It is preferable to contain, and it is more preferable to consist of a Fe-Si-Cr type alloy. Since the Fe—Si—Cr alloy is a material capable of relatively reducing the iron loss Pcv among the crystalline magnetic materials, the content of the crystalline magnetic material powder in the dust core 1 and the amorphous Even if the mass ratio of the content of the crystalline magnetic material powder to the total content of the magnetic material powder (also referred to as a “first mixing ratio” in this specification) is increased, the inductor provided with the dust core 1 Iron loss Pcv is difficult to increase. The Si content and the Cr content in the Fe—Si—Cr alloy are not limited. As an example which is not limited, it is mentioned that content of Si shall be about 2-7 mass%, and content of Cr shall be about 2-7 mass%.

本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末の形状は限定されない。粉末の形状は球状であってもよいし非球状であってもよい。非球状である場合には、鱗片状、楕円球状、液滴状、針状といった形状異方性を有する形状であってもよいし、特段の形状異方性を有しない不定形であってもよい。不定形の粉体の例として、球状の粉体の複数が、互いに接して結合していたり、他の粉体に部分的に埋没するように結合していたりする場合が挙げられる。このような不定形の粉体は、カルボニル鉄において観察されやすい。   The shape of the powder of the crystalline magnetic material contained in the dust core 1 according to the embodiment of the present invention is not limited. The shape of the powder may be spherical or non-spherical. In the case of a non-spherical shape, it may have a shape anisotropy such as a scale shape, an oval sphere shape, a droplet shape, a needle shape, or an indefinite shape having no special shape anisotropy. Good. Examples of the amorphous powder include a case where a plurality of spherical powders are bonded in contact with each other, or are bonded so as to be partially embedded in other powders. Such amorphous powder is easily observed in carbonyl iron.

粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、液滴状、針状などが例示され、後者の形状としては、鱗片状が例示される。   The shape of the powder may be a shape obtained at the stage of producing the powder, or may be a shape obtained by secondary processing of the produced powder. Examples of the former shape include a spherical shape, an oval shape, a droplet shape, and a needle shape, and examples of the latter shape include a scale shape.

本発明の一実施形態に係る圧粉コア1が含有する結晶質磁性材料の粉末の粒径は限定されない。結晶質磁性材料の粉末における、体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(本明細書において「メジアン径」ともいう。)D50Cが15μm以下であることが好ましい場合がある。非晶質磁性材料の粉末に比べて結晶質磁性材料の粉末は軟質であるため、圧粉コア1の内部で結晶質磁性材料の粉末は変形している可能性が高い。このため、粒径の大小が圧粉コア1の特性に与える影響は比較的低い。結晶質磁性材料の粉末のメジアン径D50Aは、10μm以下であることが好ましい場合があり、5μm以下であることがより好ましい場合があり、2μm以下であることが特に好ましい場合がある。 The particle size of the powder of the crystalline magnetic material contained in the powder core 1 according to the embodiment of the present invention is not limited. In the powder of the crystalline magnetic material, the particle size at which the cumulative particle size distribution from the small particle size side becomes 50% in the volume-based particle size distribution (also referred to as “median diameter” in this specification) D 50 C is 15 μm or less. May be preferred. Since the crystalline magnetic material powder is softer than the amorphous magnetic material powder, there is a high possibility that the crystalline magnetic material powder is deformed inside the powder core 1. For this reason, the influence which the magnitude of a particle size has on the characteristic of the powder core 1 is relatively low. The median diameter D 50 A of the crystalline magnetic material powder is preferably 10 μm or less, more preferably 5 μm or less, and particularly preferably 2 μm or less.

圧粉コア1における結晶質磁性材料の粉末の含有量は、第一混合比率が40質量%以上90質量%以下となる量である。第一混合比率が40質量%以上90質量%以下であることにより、非晶質磁性材料のみからなる場合に比べて、圧粉コア1の絶縁耐圧特性が向上する。この絶縁耐圧特性の向上は、圧粉コア1が結晶質磁性材料の粉末を上記範囲で含むことにより、絶縁破壊エネルギーが全体に分散されたためと考えられる。圧粉コア1の絶縁耐圧特性を安定的に向上させる観点から、第一混合比率は、45質量%以上85質量%以下であることがより好ましく、50質量%以上80質量%以下であることが特に好ましい。第一混合比率を上記範囲内にすることにより、例えば、D50Aが3μm以上20μm程度の非晶質磁性材料を用いて絶縁耐圧特性の良好な圧粉コア1を作製することができる。 The content of the crystalline magnetic material powder in the dust core 1 is such that the first mixing ratio is 40% by mass or more and 90% by mass or less. When the first mixing ratio is 40% by mass or more and 90% by mass or less, the dielectric strength characteristics of the dust core 1 are improved as compared with the case where the first magnetic material is made of only an amorphous magnetic material. The improvement in the dielectric strength characteristics is considered to be because the dielectric breakdown energy is dispersed throughout the powder core 1 containing the crystalline magnetic material powder in the above range. From the viewpoint of stably improving the dielectric strength characteristics of the dust core 1, the first mixing ratio is more preferably 45% by mass to 85% by mass, and more preferably 50% by mass to 80% by mass. Particularly preferred. By setting the first mixing ratio within the above range, for example, a dust core 1 having good withstand voltage characteristics can be manufactured using an amorphous magnetic material having a D 50 A of about 3 μm to 20 μm.

圧粉コア1の絶縁耐圧値が、磁性粉末として非晶質磁性材料の粉末のみを含有する圧粉コアの絶縁耐圧値の1.2倍以上であることが好ましく、1.25倍以上であることがより好ましく、1.3倍以上であることが好ましい。ここで、「磁性粉末」とは、圧粉コア1に含有される結晶質磁性材料の粉末および非晶質磁性材料の粉末をいう。「磁性粉末として前記非晶質磁性材料の粉末のみを含有する圧粉コア」とは、圧粉コア中の結晶質磁性材料をすべて非晶質磁性材料に置換したこと以外は、同じ成分および条件で製造した圧粉コアのことをいう。   The withstand voltage value of the dust core 1 is preferably 1.2 times or more, more preferably 1.25 times or more of the withstand voltage value of the dust core containing only the powder of the amorphous magnetic material as the magnetic powder. It is more preferable that the ratio is 1.3 times or more. Here, the “magnetic powder” refers to a crystalline magnetic material powder and an amorphous magnetic material powder contained in the dust core 1. “The dust core containing only the powder of the amorphous magnetic material as the magnetic powder” means the same components and conditions except that the crystalline magnetic material in the dust core is all replaced with an amorphous magnetic material. It refers to the powder core manufactured in

結晶質磁性材料の粉末の少なくとも一部は表面絶縁処理が施された材料からなることが好ましく、結晶質磁性材料の粉末は表面絶縁処理が施された材料からなることがより好ましい。結晶質磁性材料の粉末に表面絶縁処理が施されている場合には、圧粉コア1の絶縁抵抗が向上する傾向がみられる。結晶質磁性材料の粉末に施す表面絶縁処理の種類は限定されない。リン酸処理、リン酸塩処理、酸化処理などが例示される。   At least a part of the powder of the crystalline magnetic material is preferably made of a material subjected to surface insulation treatment, and the powder of the crystalline magnetic material is more preferably made of a material subjected to surface insulation treatment. When the surface insulation treatment is performed on the powder of the crystalline magnetic material, the insulation resistance of the dust core 1 tends to be improved. The type of surface insulation treatment applied to the crystalline magnetic material powder is not limited. Examples include phosphoric acid treatment, phosphate treatment, and oxidation treatment.

(2)非晶質磁性材料の粉末
本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末を与える非晶質磁性材料は、非晶質であること(一般的なX線回折測定により、材料種類を特定できる程度に明確なピークを有する回折スペクトルが得られないこと)、および強磁性体、特に軟磁性体であることを満たす限り、具体的な種類は限定されない。非晶質磁性材料の具体例として、Fe−Si−B系合金、Fe−P−C系合金およびCo−Fe−Si−B系合金が挙げられる。上記の非晶質磁性材料は1種類の材料から構成されていてもよいし複数種類の材料から構成されていてもよい。非晶質磁性材料の粉末を構成する磁性材料は、上記の材料からなる群から選ばれた1種または2種以上の材料であることが好ましく、これらの中でも、Fe−P−C系合金を含有することが好ましく、Fe−P−C系合金からなることがより好ましい。
(2) Amorphous Magnetic Material Powder The amorphous magnetic material that provides the amorphous magnetic material powder contained in the dust core 1 according to an embodiment of the present invention is amorphous (generally As long as the X-ray diffraction measurement does not provide a diffraction spectrum with a clear peak that can identify the material type), and the material is a ferromagnetic material, particularly a soft magnetic material, the specific types are limited. Not. Specific examples of the amorphous magnetic material include an Fe-Si-B alloy, an Fe-PC-C alloy, and a Co-Fe-Si-B alloy. Said amorphous magnetic material may be comprised from one type of material, and may be comprised from multiple types of material. The magnetic material constituting the powder of the amorphous magnetic material is preferably one or more materials selected from the group consisting of the above materials, and among these, an Fe—PC alloy is used. It is preferable to contain it, and it is more preferable that it consists of a Fe-PC-type alloy.

Fe−P−C系合金の具体例として、組成式が、Fe100原子%−a−b−c−x−y−z−tNiSnCrSiで示され、0原子%≦a≦10原子%、0原子%≦b≦3原子%、0原子%≦c≦6原子%、6.8原子%≦x≦13原子%、2.2原子%≦y≦13原子%、0原子%≦z≦9原子%、0原子%≦t≦7原子%であるFe基非晶質合金が挙げられる。上記の組成式において、Ni,Sn,Cr,BおよびSiは任意添加元素である。 Specific examples of the Fe-P-C-based alloy, composition formula, shown in Fe 100 atomic% -a-b-c-x -y-z-t Ni a Sn b Cr c P x C y B z Si t 0 atom% ≦ a ≦ 10 atom%, 0 atom% ≦ b ≦ 3 atom%, 0 atom% ≦ c ≦ 6 atom%, 6.8 atom% ≦ x ≦ 13 atom%, 2.2 atom% ≦ Examples include Fe-based amorphous alloys in which y ≦ 13 atomic%, 0 atomic% ≦ z ≦ 9 atomic%, and 0 atomic% ≦ t ≦ 7 atomic%. In the above composition formula, Ni, Sn, Cr, B, and Si are optional added elements.

Niの添加量aは、0原子%以上6原子%以下とすることが好ましく、0原子%以上4原子%以下とすることがより好ましい。Snの添加量bは、0原子%以上2原子%以下とすることが好ましく、1原子%以上2原子%以下の範囲で添加されていても良い。Crの添加量cは、0原子%以上2原子%以下とすることが好ましく、1原子%以上2原子%以下とすることがより好ましい。Pの添加量xは、8.8原子%以上とすることが好ましい場合もある。Cの添加量yは、4原子%以上10原子%以下とすることが好ましく、5.8原子%以上8.8原子%以下とすることが好ましい場合もある。Bの添加量zは、0原子%以上6原子%以下とすることが好ましく、0原子%以上2原子%以下とすることがより好ましい。Siの添加量tは、0原子%以上6原子%以下とすることが好ましく、0原子%以上2原子%以下とすることがより好ましい。   The addition amount a of Ni is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 4 atom% or less. The addition amount b of Sn is preferably 0 atom% or more and 2 atom% or less, and may be added in the range of 1 atom% or more and 2 atom% or less. The addition amount c of Cr is preferably 0 atom% or more and 2 atom% or less, and more preferably 1 atom% or more and 2 atom% or less. In some cases, the addition amount x of P is preferably 8.8 atomic% or more. The addition amount y of C is preferably 4 atom% or more and 10 atom% or less, and may preferably be 5.8 atom% or more and 8.8 atom% or less. The addition amount z of B is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 2 atom% or less. The addition amount t of Si is preferably 0 atom% or more and 6 atom% or less, and more preferably 0 atom% or more and 2 atom% or less.

本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の形状は限定されない。粉末の形状の種類については結晶質磁性材料の粉末の場合と同様であるから説明を省略する。製造方法の関係で非晶質磁性材料は球状または楕円球状とすることが容易である場合もある。また、一般論として非晶質磁性材料は結晶質磁性材料よりも硬質であるから、結晶質磁性材料を非球状として加圧成形の際に変形しやすいようにすることが好ましい場合もある。   The shape of the powder of the amorphous magnetic material contained in the dust core 1 according to the embodiment of the present invention is not limited. Since the kind of the powder shape is the same as that of the crystalline magnetic material powder, the description thereof is omitted. In some cases, the amorphous magnetic material can be easily formed into a spherical shape or an elliptical spherical shape because of the manufacturing method. In general, since an amorphous magnetic material is harder than a crystalline magnetic material, it may be preferable to make the crystalline magnetic material non-spherical so that it is easily deformed during pressure molding.

本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の形状は、粉末を製造する段階で得られた形状であってもよいし、製造された粉末を二次加工することにより得られた形状であってもよい。前者の形状としては、球状、楕円球状、針状などが例示され、後者の形状としては、鱗片状が例示される。   The shape of the powder of the amorphous magnetic material contained in the dust core 1 according to the embodiment of the present invention may be the shape obtained in the stage of producing the powder, or the produced powder is secondary The shape obtained by processing may be sufficient. Examples of the former shape include a sphere, an oval sphere, and a needle shape, and examples of the latter shape include a scale shape.

本発明の一実施形態に係る圧粉コア1が含有する非晶質磁性材料の粉末の粒径は、非晶質磁性材料の粉末のメジアン径D50Aが50μm以下であることが好ましい場合がある。非晶質磁性材料の粉末のメジアン径D50Aが50μm以下であることにより、圧粉コア1の絶縁抵抗を向上させつつ鉄損Pcvを低減させることが容易となる場合がある。圧粉コア1の絶縁抵抗を向上させつつ鉄損Pcvを低減させることをより安定的に実現させる観点から、非晶質磁性材料の粉末のメジアン径D50Aは、20μm以下であることが好ましい場合があり、10μm以下、さらに好ましくは7μm以下であることが好ましい場合があり、5μm以下であることが特に好ましい場合がある。 As for the particle size of the powder of the amorphous magnetic material contained in the powder core 1 according to the embodiment of the present invention, the median diameter D 50 A of the powder of the amorphous magnetic material is preferably 50 μm or less. is there. When the median diameter D 50 A of the powder of the amorphous magnetic material is 50 μm or less, it may be easy to reduce the iron loss Pcv while improving the insulation resistance of the powder core 1. From the viewpoint of more stably realizing the reduction of the iron loss Pcv while improving the insulation resistance of the dust core 1, the median diameter D 50 A of the powder of the amorphous magnetic material is preferably 20 μm or less. In some cases, it is preferably 10 μm or less, more preferably 7 μm or less, and particularly preferably 5 μm or less.

(3)結着成分
圧粉コア1は、結晶質磁性材料の粉末および非晶質磁性材料の粉末を圧粉コア1に含有される他の材料に対して結着させる結着成分を含有していてもよい。結着成分は、本実施形態に係る圧粉コア1に含有される結晶質磁性材料の粉末および非晶質磁性材料の粉末(本明細書において、これらの粉末を「磁性粉末」と総称することもある。)を固定することに寄与する材料である限り、その組成は限定されない。結着成分を構成する材料として、樹脂材料および樹脂材料の熱分解残渣(本明細書において、これらを「樹脂材料に基づく成分」と総称する。)などの有機系の材料、無機系の材料などが例示される。樹脂材料として、アクリル樹脂、シリコーン樹脂、エポキシ樹脂、フェノール樹脂、尿素樹脂、メラミン樹脂などが例示される。無機系の材料からなる結着成分は水ガラスなどガラス系材料が例示される。結着成分は一種類の材料から構成されていてもよいし、複数の材料から構成されていてもよい。結着成分は有機系の材料と無機系の材料との混合体であってもよい。
(3) Binder Component The powder core 1 includes a binder component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to the other materials contained in the powder core 1. It may be. The binder component is a powder of crystalline magnetic material and powder of amorphous magnetic material contained in the dust core 1 according to the present embodiment (in this specification, these powders are collectively referred to as “magnetic powder”). The composition is not limited as long as the material contributes to fixing. As a material constituting the binder component, an organic material such as a resin material and a thermal decomposition residue of the resin material (in this specification, these are collectively referred to as “components based on a resin material”), an inorganic material, and the like Is exemplified. Examples of the resin material include acrylic resin, silicone resin, epoxy resin, phenol resin, urea resin, and melamine resin. The binder component made of an inorganic material is exemplified by a glass-based material such as water glass. The binder component may be composed of one type of material or may be composed of a plurality of materials. The binder component may be a mixture of an organic material and an inorganic material.

結着成分として、通常、絶縁性の材料が使用される。これにより、圧粉コア1としての絶縁性を高めることが可能となる。   As the binding component, an insulating material is usually used. Thereby, it becomes possible to improve the insulation as the dust core 1.

2.圧粉コアの製造方法
上記の本発明の一実施形態に係る圧粉コア1の製造方法は特に限定されないが、次に説明する製造方法を採用すれば、圧粉コア1をより効率的に製造することが実現される。
2. Manufacturing method of powder core Although the manufacturing method of the powder core 1 which concerns on one embodiment of said this invention is not specifically limited, if the manufacturing method demonstrated below is employ | adopted, the powder core 1 will be manufactured more efficiently. Is realized.

本発明の一実施形態に係る圧粉コア1の製造方法は、次に説明する成形工程を備え、さらに熱処理工程を備えていてもよい。   The manufacturing method of the powder core 1 which concerns on one Embodiment of this invention is equipped with the shaping | molding process demonstrated below, and may be further provided with the heat processing process.

(1)成形工程
まず、磁性粉末、および圧粉コア1において結着成分を与える成分を含む混合物を用意する。結着成分を与える成分(本明細書において、「バインダー成分」ともいう。)とは、結着成分そのものである場合もあれば、結着成分と異なる材料である場合もある。後者の具体例として、バインダー成分が樹脂材料であって、結着成分がその熱分解残渣である場合が挙げられる。
(1) Molding step First, a mixture containing magnetic powder and a component that provides a binding component in the powder core 1 is prepared. The component that gives the binding component (also referred to as “binder component” in this specification) may be the binding component itself or may be a material different from the binding component. Specific examples of the latter include a case where the binder component is a resin material and the binder component is a thermal decomposition residue thereof.

この混合物の加圧成形を含む成形処理により成形製造物を得ることができる。加圧条件は限定されず、バインダー成分の組成などに基づき適宜決定される。例えば、バインダー成分が熱硬化性の樹脂からなる場合には、加圧とともに加熱して、金型内で樹脂の硬化反応を進行させることが好ましい。一方、圧縮成形の場合には、加圧力が高いものの、加熱は必要条件とならず、短時間の加圧となる。   A molded product can be obtained by a molding process including pressure molding of the mixture. The pressurizing condition is not limited and is appropriately determined based on the composition of the binder component. For example, when the binder component is made of a thermosetting resin, it is preferable to heat the resin together with pressure to advance the resin curing reaction in the mold. On the other hand, in the case of compression molding, although the pressing force is high, heating is not a necessary condition and pressurization is performed for a short time.

以下、混合物が造粒粉であって、圧縮成形を行う場合について、やや詳しく説明する。造粒粉は取り扱い性に優れるため、成形時間が短く生産性に優れる圧縮成形工程の作業性を向上させることができる。   Hereinafter, the case where the mixture is granulated powder and compression molding will be described in some detail. Since the granulated powder is excellent in handleability, it is possible to improve the workability of the compression molding process in which the molding time is short and the productivity is excellent.

(1−1)造粒粉
造粒粉は、磁性粉末およびバインダー成分を含有する。造粒粉におけるバインダー成分の含有量は特に限定されない。かかる含有量が過度に低い場合には、バインダー成分が磁性粉末を保持しにくくなる。また、バインダー成分の含有量が過度に低い場合には、熱処理工程を経て得られた圧粉コア1中で、バインダー成分の熱分解残渣からなる結着成分が、複数の磁性粉末を互いに他から絶縁しにくくなる。一方、上記のバインダー成分の含有量が過度に高い場合には、熱処理工程を経て得られた圧粉コア1に含有される結着成分の含有量が高くなりやすい。圧粉コア1中の結着成分の含有量が高くなると、圧粉コア1の磁気特性が低下しやすくなる。それゆえ、造粒粉中のバインダー成分の含有量は、造粒粉全体に対して、0.5質量%以上5.0質量%以下となる量にすることが好ましい。圧粉コア1の磁気特性が低下する可能性をより安定的に低減させる観点から、造粒粉中のバインダー成分の含有量は、造粒粉全体に対して、1.0質量%以上3.5質量%以下となる量にすることが好ましく、1.2質量%以上3.0質量%以下となる量にすることがより好ましい。
(1-1) Granulated powder Granulated powder contains magnetic powder and a binder component. The content of the binder component in the granulated powder is not particularly limited. When this content is too low, it becomes difficult for the binder component to hold the magnetic powder. In addition, when the content of the binder component is excessively low, in the powder core 1 obtained through the heat treatment step, the binder component composed of the thermal decomposition residue of the binder component causes a plurality of magnetic powders to be separated from each other. It becomes difficult to insulate. On the other hand, when the content of the binder component is excessively high, the content of the binder component contained in the powder core 1 obtained through the heat treatment step tends to be high. When the content of the binder component in the dust core 1 is increased, the magnetic properties of the dust core 1 are likely to be reduced. Therefore, the content of the binder component in the granulated powder is preferably set to an amount that is 0.5% by mass or more and 5.0% by mass or less with respect to the entire granulated powder. From the viewpoint of more stably reducing the possibility that the magnetic properties of the dust core 1 will decrease, the content of the binder component in the granulated powder is 1.0 mass% or more with respect to the entire granulated powder. The amount is preferably 5% by mass or less, and more preferably 1.2% by mass or more and 3.0% by mass or less.

造粒粉は、上記の磁性粉末およびバインダー成分以外の材料を含有してもよい。そのような材料として、潤滑剤、シランカップリング剤、絶縁性のフィラーなどが例示される。潤滑剤を含有させる場合において、その種類は特に限定されない。有機系の潤滑剤であってもよいし、無機系の潤滑剤であってもよい。有機系の潤滑剤の具体例として、ステアリン酸亜鉛、ステアリン酸アルミニウムなどの金属石鹸が挙げられる。こうした有機系の潤滑剤は、熱処理工程において気化し、圧粉コア1にはほとんど残留していないと考えられる。   The granulated powder may contain materials other than the above magnetic powder and binder component. Examples of such materials include lubricants, silane coupling agents, and insulating fillers. In the case of containing a lubricant, the type is not particularly limited. It may be an organic lubricant or an inorganic lubricant. Specific examples of the organic lubricant include metal soaps such as zinc stearate and aluminum stearate. It is considered that such an organic lubricant is vaporized in the heat treatment step and hardly remains in the powder core 1.

造粒粉の製造方法は特に限定されない。上記の造粒粉を与える成分をそのまま混錬し、得られた混練物を公知の方法で粉砕するなどして造粒粉を得てもよいし、上記の成分に分散媒(水が一例として挙げられる。)を添加してなるスラリーを調製し、このスラリーを乾燥させて粉砕することにより造粒粉を得てもよい。粉砕後にふるい分けや分級を行って、造粒粉の粒度分布を制御してもよい。   The manufacturing method of granulated powder is not specifically limited. The ingredients that give the granulated powder may be kneaded as they are, and the resulting kneaded product may be pulverized by a known method to obtain granulated powder, or a dispersion medium (water as an example) It is also possible to obtain a granulated powder by preparing a slurry to which is added, and drying and pulverizing the slurry. Screening and classification may be performed after pulverization to control the particle size distribution of the granulated powder.

上記のスラリーから造粒粉を得る方法の一例として、スプレードライヤーを用いる方法が挙げられる。図2に示されるように、スプレードライヤー装置200内には回転子201が設けられ、スプレードライヤー装置200の上部からスラリーSを回転子201に向けて注入する。回転子201は所定の回転数により回転しており、スプレードライヤー装置200内部のチャンバーにてスラリーSを遠心力により小滴状として噴霧する。さらにスプレードライヤー装置200内部のチャンバーに熱風を導入し、これにより小滴状のスラリーSに含有される分散媒(水)を、小滴形状を維持したまま揮発させる。その結果、スラリーSから造粒粉Pが形成される。この造粒粉Pをスプレードライヤー装置200の下部から回収する。回転子201の回転数、スプレードライヤー装置200内に導入する熱風温度、チャンバー下部の温度など各パラメータは適宜設定すればよい。これらのパラメータの設定範囲の具体例として、回転子201の回転数として4000〜8000rpm、スプレードライヤー装置200内に導入する熱風温度として130〜170℃、チャンバー下部の温度として80〜90℃が挙げられる。またチャンバー内の雰囲気およびその圧力も適宜設定すればよい。一例として、チャンバー内をエアー(空気)雰囲気として、その圧力を大気圧との差圧で2mmHO(約0.02kPa)とすることが挙げられる。得られた造粒粉Pの粒度分布をふるい分けなどによりさらに制御してもよい。 As an example of a method for obtaining granulated powder from the above slurry, a method using a spray dryer can be mentioned. As shown in FIG. 2, a rotator 201 is provided in the spray dryer apparatus 200, and the slurry S is injected toward the rotor 201 from the upper part of the spray dryer apparatus 200. The rotor 201 rotates at a predetermined number of revolutions, and sprays the slurry S as droplets by centrifugal force in a chamber inside the spray dryer apparatus 200. Further, hot air is introduced into the chamber inside the spray dryer apparatus 200, whereby the dispersion medium (water) contained in the droplet-like slurry S is volatilized while maintaining the droplet shape. As a result, the granulated powder P is formed from the slurry S. The granulated powder P is collected from the lower part of the spray dryer apparatus 200. Each parameter such as the number of rotations of the rotor 201, the temperature of hot air introduced into the spray dryer apparatus 200, and the temperature at the bottom of the chamber may be set as appropriate. As specific examples of the setting ranges of these parameters, the rotation speed of the rotor 201 is 4000 to 8000 rpm, the hot air temperature introduced into the spray dryer apparatus 200 is 130 to 170 ° C., and the temperature at the bottom of the chamber is 80 to 90 ° C. . The atmosphere in the chamber and its pressure may be set as appropriate. As an example, the inside of the chamber is an air atmosphere, and the pressure is 2 mmH 2 O (about 0.02 kPa) as a differential pressure from the atmospheric pressure. You may further control the particle size distribution of the obtained granulated powder P by sieving.

(1−2)加圧条件
圧縮成形における加圧条件は特に限定されない。造粒粉の組成、成形品の形状などを考慮して適宜設定すればよい。造粒粉を圧縮成形する際の加圧力が過度に低い場合には、成形品の機械的強度が低下する。このため、成形品の取り扱い性が低下する、成形品から得られた圧粉コア1の機械的強度が低下する、といった問題が生じやすくなる。また、圧粉コア1の磁気特性が低下したり絶縁性が低下したりする場合もある。一方、造粒粉を圧縮成形する際の加圧力が過度に高い場合には、その圧力に耐えうる成形金型を作製するのが困難になってくる。圧縮加圧工程が圧粉コア1の機械特性や磁気特性に悪影響を与える可能性をより安定的に低減させ、工業的に大量生産を容易に行う観点から、造粒粉を圧縮成形する際の加圧力は、0.3GPa以上2GPa以下とすることが好ましく、0.5GPa以上2GPa以下とすることがより好ましく、0.8GPa以上2GPa以下とすることが特に好ましい。
(1-2) Pressing conditions The pressing conditions in compression molding are not particularly limited. What is necessary is just to set suitably considering the composition of granulated powder, the shape of a molded article, etc. If the pressure applied when the granulated powder is compression-molded is excessively low, the mechanical strength of the molded product decreases. For this reason, it becomes easy to produce the problem that the handleability of a molded article falls and the mechanical strength of the compacting core 1 obtained from the molded article falls. Moreover, the magnetic characteristics of the dust core 1 may deteriorate or the insulating properties may decrease. On the other hand, when the pressing force when the granulated powder is compression-molded is excessively high, it becomes difficult to produce a molding die that can withstand the pressure. From the viewpoint of more stably reducing the possibility that the compression and pressurization process will adversely affect the mechanical properties and magnetic properties of the dust core 1 and facilitating mass production industrially, The applied pressure is preferably 0.3 GPa to 2 GPa, more preferably 0.5 GPa to 2 GPa, and particularly preferably 0.8 GPa to 2 GPa.

圧縮成形では、加熱しながら加圧を行ってもよいし、常温で加圧を行ってもよい。   In compression molding, pressurization may be performed while heating, or pressurization may be performed at room temperature.

(2)熱処理工程
成形工程により得られた成形製造物が本実施形態に係る圧粉コア1であってもよいし、次に説明するように成形製造物に対して熱処理工程を実施して圧粉コア1を得てもよい。
(2) Heat treatment step The molded product obtained in the molding step may be the powder core 1 according to the present embodiment, or the molded product may be subjected to a heat treatment step and pressed as described below. A powder core 1 may be obtained.

熱処理工程では、上記の成形工程により得られた成形製造物を加熱することにより、磁性粉末間の距離を修正することによる磁気特性の調整および成形工程において磁性粉末に付与された歪を緩和させて磁気特性の調整を行って、圧粉コア1を得る。   In the heat treatment process, the molded product obtained by the above molding process is heated to adjust the magnetic properties by correcting the distance between the magnetic powders and to relax the strain applied to the magnetic powder in the molding process. The powder core 1 is obtained by adjusting the magnetic characteristics.

熱処理工程は上記のように圧粉コア1の磁気特性の調整が目的であるから、熱処理温度などの熱処理条件は、圧粉コア1の磁気特性が最も良好となるように設定される。熱処理条件を設定する方法の一例として、成形製造物の加熱温度を変化させ、昇温速度および加熱温度での保持時間など他の条件は一定とすることが挙げられる。   Since the purpose of the heat treatment step is to adjust the magnetic properties of the dust core 1 as described above, the heat treatment conditions such as the heat treatment temperature are set so that the magnetic properties of the dust core 1 are the best. As an example of a method for setting the heat treatment conditions, it is possible to change the heating temperature of the molded product and to make other conditions constant, such as the heating rate and the holding time at the heating temperature.

熱処理条件を設定する際の圧粉コア1の磁気特性の評価基準は特に限定されない。評価項目の具体例として圧粉コア1の鉄損Pcvを挙げることができる。この場合には、圧粉コア1の鉄損Pcvが最低となるように成形製造物の加熱温度を設定すればよい。鉄損Pcvの測定条件は適宜設定され、一例として、周波数を100kHz、実効最大磁束密度Bmを100mTとする条件が挙げられる。   The evaluation criteria for the magnetic properties of the dust core 1 when setting the heat treatment conditions are not particularly limited. The iron loss Pcv of the powder core 1 can be given as a specific example of the evaluation item. In this case, what is necessary is just to set the heating temperature of a molded product so that the iron loss Pcv of the powder core 1 may become the minimum. The measurement conditions of the iron loss Pcv are set as appropriate. As an example, the conditions are a frequency of 100 kHz and an effective maximum magnetic flux density Bm of 100 mT.

熱処理の際の雰囲気は特に限定されない。酸化性雰囲気の場合には、バインダー成分の熱分解が過度に進行する可能性や、磁性粉末の酸化が進行する可能性が高まるため、窒素、アルゴンなどの不活性雰囲気や、水素などの還元性雰囲気で熱処理を行うことが好ましい。   The atmosphere during the heat treatment is not particularly limited. In the case of an oxidizing atmosphere, the possibility of excessive thermal decomposition of the binder component and the possibility of progress of oxidation of the magnetic powder increases, so that an inert atmosphere such as nitrogen or argon, or a reducing property such as hydrogen Heat treatment is preferably performed in an atmosphere.

3.インダクタ、電子・電気機器
本発明の一実施形態に係るインダクタは、上記の本発明の一実施形態に係る圧粉コア1、コイルおよびこのコイルのそれぞれの端部に接続された接続端子を備える。ここで、圧粉コア1の少なくとも一部は、接続端子を介してコイルに電流を流したときにこの電流により生じた誘導磁界内に位置するように配置されている。本発明の一実施形態に係るインダクタは、上記の本発明の一実施形態に係る圧粉コア1を備えるため、絶縁耐圧特性に優れるとともに、高周波であっても鉄損が増大しにくい。したがって、従来技術に係るインダクタに比べて、小型化することも可能である。
3. Inductor, Electronic / Electric Device An inductor according to an embodiment of the present invention includes the dust core 1 according to the embodiment of the present invention, a coil, and a connection terminal connected to each end of the coil. Here, at least a part of the dust core 1 is disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via the connection terminal. Since the inductor according to an embodiment of the present invention includes the dust core 1 according to the above-described embodiment of the present invention, it has excellent withstand voltage characteristics and hardly increases iron loss even at high frequencies. Therefore, it is possible to reduce the size as compared with the inductor according to the prior art.

このようなインダクタの一例として、図3に示されるトロイダルコイル10が挙げられる。トロイダルコイル10は、リング状の圧粉コア(トロイダルコア)1に、被覆導電線2を巻回することによって形成されたコイル2aを備える。巻回された被覆導電線2からなるコイル2aと被覆導電線2の端部2b,2cとの間に位置する導電線の部分において、コイル2aの端部2d,2eを定義することができる。このように、本実施形態に係るインダクタは、コイルを構成する部材と接続端子を構成する部材とが同一の部材から構成されていてもよい。   An example of such an inductor is the toroidal coil 10 shown in FIG. The toroidal coil 10 includes a coil 2 a formed by winding a coated conductive wire 2 around a ring-shaped dust core (toroidal core) 1. The ends 2d and 2e of the coil 2a can be defined in the portion of the conductive wire located between the coil 2a formed of the wound covered conductive wire 2 and the ends 2b and 2c of the covered conductive wire 2. Thus, in the inductor according to the present embodiment, the member constituting the coil and the member constituting the connection terminal may be composed of the same member.

本発明の一実施形態に係るインダクタの他の一例として、図4に示されるコイル埋設型インダクタ20が挙げられる。コイル埋設型インダクタ20は、数mm角の小形のチップ状に形成することが可能であり、箱型の形状を有する圧粉コア21を備え、その内部に、被覆導電線22におけるコイル部22cが埋設されている。被覆導電線22の端部22a,22bは、圧粉コア21の表面に位置し、露出している。圧粉コア21の表面の一部は、互いに電気的に独立な接続端部23a,23bによって覆われている。接続端部23aは被覆導電線22の端部22aと電気的に接続され、接続端部23bは被覆導電線22の端部22bと電気的に接続されている。図4に示されるコイル埋設型インダクタ20では、覆導電線22の端部22aは接続端部23aによって覆われ、覆導電線22の端部22bは接続端部23bによって覆われている。   As another example of the inductor according to the embodiment of the present invention, a coil embedded type inductor 20 shown in FIG. 4 can be cited. The coil-embedded inductor 20 can be formed in a small chip shape of several mm square, and includes a dust core 21 having a box shape, and a coil portion 22c in the covered conductive wire 22 is provided therein. Buried. End portions 22a and 22b of the coated conductive wire 22 are located on the surface of the powder core 21 and exposed. Part of the surface of the dust core 21 is covered with connection end portions 23a and 23b that are electrically independent from each other. The connection end portion 23 a is electrically connected to the end portion 22 a of the covered conductive wire 22, and the connection end portion 23 b is electrically connected to the end portion 22 b of the covered conductive wire 22. In the coil-embedded inductor 20 shown in FIG. 4, the end portion 22a of the covered conductive wire 22 is covered with the connection end portion 23a, and the end portion 22b of the covered conductive wire 22 is covered with the connection end portion 23b.

被覆導電線22のコイル部22cの圧粉コア21内への埋設方法は限定されない。被覆導電線22を巻回した部材を金型内に配置し、さらに磁性粉末を含む混合物(造粒粉)を金型内に供給して、加圧成形を行ってもよい。あるいは、磁性粉末を含む混合物(造粒粉)をあらかじめ予備成形してなる複数の部材を用意し、これらの部材を組み合わせ、その際画成される空隙部内に被覆導電線22を配置して組立体を得て、この組立体を加圧成形してもよい。コイル部22cを含む被覆導電線22の材質は限定されない。例えば、銅合金とすることが挙げられる。コイル部22cはエッジワイズコイルであってもよい。接続端部23a,23bの材質も限定されない。生産性に優れる観点から、銀ペーストなどの導電ペーストから形成されたメタライズ層とこのメタライズ層上に形成されためっき層とを備えることが好ましい場合がある。このめっき層を形成する材料は限定されない。当該材料が含有する金属元素として、銅、アルミ、亜鉛、ニッケル、鉄、スズなどが例示される。   The method for embedding the coil portion 22c of the coated conductive wire 22 in the dust core 21 is not limited. A member around which the coated conductive wire 22 is wound may be placed in a mold, and a mixture (granulated powder) containing magnetic powder may be supplied into the mold to perform pressure molding. Alternatively, a plurality of members prepared by preforming a mixture (granulated powder) containing magnetic powder in advance are prepared, and these members are combined, and the coated conductive wires 22 are arranged in the gaps defined at that time. A solid may be obtained and this assembly may be pressure molded. The material of the covered conductive wire 22 including the coil portion 22c is not limited. For example, a copper alloy can be used. The coil portion 22c may be an edgewise coil. The material of the connection end portions 23a and 23b is not limited. From the viewpoint of excellent productivity, it may be preferable to include a metallized layer formed from a conductive paste such as a silver paste and a plating layer formed on the metallized layer. The material for forming the plating layer is not limited. Examples of the metal element contained in the material include copper, aluminum, zinc, nickel, iron, and tin.

本発明の一実施形態に係る電子・電気機器は、上記の本発明の一実施形態に係るインダクタが実装された電子・電気機器であって、前記接続端子にて基板に接続されているものである。本発明の一実施形態に係る電子・電気機器は、本発明の一実施形態に係るインダクタが実装されているため、機器内に高電圧が印加されたり、高周波信号が印加されたりすることがあっても、インダクタの機能低下や発熱に起因する不具合が生じにくく、機器の小型化も容易である。   An electronic / electrical device according to an embodiment of the present invention is an electronic / electrical device in which the inductor according to the above-described embodiment of the present invention is mounted, and is connected to a substrate at the connection terminal. is there. Since the electronic device according to an embodiment of the present invention has the inductor according to the embodiment of the present invention mounted thereon, a high voltage or a high frequency signal may be applied to the device. However, it is difficult to cause problems due to the reduced function and heat generation of the inductor, and the device can be easily downsized.

以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

以下、実施例等により本発明をさらに具体的に説明するが、本発明の範囲はこれらの実施例等に限定されるものではない。
(実施例1)
EXAMPLES Hereinafter, although an Example etc. demonstrate this invention further more concretely, the scope of the present invention is not limited to these Examples etc.
Example 1

(1)Fe基非晶質合金粉末の作製
Fe残部Ni5〜7原子%Cr2〜4原子%10〜13原子%5〜6原子%2〜4原子%なる組成になるように原料を秤量して、水アトマイズ法を用いて非晶質磁性材料の粉末(アモルファス粉末)を作製した。得られた非晶質磁性材料の粉末の粒度分布を日機装社製「マイクロトラック粒度分布測定装置 MT3300EX」を用いて体積分布で測定した。体積基準の粒度分布において小粒径側からの積算粒径分布が50%となる粒径(メジアン径)D50Aは5μmであった。
また、結晶質磁性材料の粉末として、Fe−Si−Cr系合金、具体的には、Siの含有量が6〜7質量%、Crの含有量が3〜4質量%であって、残部はFeおよび不可避的不純物からなる合金からなり、メジアン径D50Cが2μmの粉末を用意した。
(1) Preparation of Fe-based amorphous alloy powder Fe balance Ni 5-7 atomic% Cr 2-4 atomic% P 10-13 atomic% C 5-6 atomic% B 2-4 atomic% The raw materials were weighed, and an amorphous magnetic material powder (amorphous powder) was prepared using a water atomization method. The particle size distribution of the obtained amorphous magnetic material powder was measured by volume distribution using “Microtrack particle size distribution measuring device MT3300EX” manufactured by Nikkiso Co., Ltd. In the volume-based particle size distribution, the particle size (median diameter) D 50 A at which the cumulative particle size distribution from the small particle size side becomes 50% was 5 μm.
Further, as a powder of crystalline magnetic material, Fe-Si-Cr-based alloy, specifically, Si content is 6-7 mass%, Cr content is 3-4 mass%, and the balance is A powder comprising an alloy composed of Fe and inevitable impurities and having a median diameter D 50 C of 2 μm was prepared.

(2)造粒粉の作製
上記の非晶質磁性材料の粉末および結晶質磁性材料の粉末を表1に示される第一混合比率となるように混合して磁性粉末を得た。磁性粉末を97.2質量部、アクリル樹脂またはフェノール樹脂からなる絶縁性結着材を2〜3質量部、およびステアリン酸亜鉛からなる潤滑剤0〜0.5質量部を、溶媒としての水に混合してスラリーを得た。
(2) Production of Granulated Powder The above-mentioned amorphous magnetic material powder and crystalline magnetic material powder were mixed so as to have the first mixing ratio shown in Table 1 to obtain a magnetic powder. 97.2 parts by mass of magnetic powder, 2 to 3 parts by mass of an insulating binder made of acrylic resin or phenol resin, and 0 to 0.5 parts by mass of a lubricant made of zinc stearate are added to water as a solvent. A slurry was obtained by mixing.

得られたスラリーを、図2に示されるスプレードライヤー装置200を用いて、上述した条件にて造粒し、造粒粉を得た。   The obtained slurry was granulated under the conditions described above using a spray dryer apparatus 200 shown in FIG. 2 to obtain granulated powder.

(3)圧縮成形
得られた造粒粉を金型に充填し、面圧0.5〜1.5GPaで加圧成形して、外径20mm×内径12mm×厚さ3mmのリング形状を有する成形体を得た。
(3) Compression molding The obtained granulated powder is filled in a mold and press-molded at a surface pressure of 0.5 to 1.5 GPa to form a ring shape having an outer diameter of 20 mm, an inner diameter of 12 mm and a thickness of 3 mm. Got the body.

(4)熱処理
得られた成形体を、窒素気流雰囲気の炉内に載置し、炉内温度を、室温(23℃)から昇温速度10℃/分で最適コア熱処理温度である200〜400℃まで加熱し、この温度にて1時間保持し、その後、炉内で室温まで冷却する熱処理を行い、圧粉コアからなるトロイダルコアを得た。
(4) Heat treatment The obtained molded body was placed in a furnace in a nitrogen stream atmosphere, and the furnace temperature was an optimum core heat treatment temperature from room temperature (23 ° C.) to a heating rate of 10 ° C./min. The mixture was heated to 0 ° C., held at this temperature for 1 hour, and then heat-treated to cool to room temperature in a furnace to obtain a toroidal core composed of a dust core.

下記表1に示す、第一混合比率の異なるトロイダルコアを作製し、下記の測定方法により、コア密度、絶縁抵抗、絶縁耐圧、透磁率および鉄損Pcvを測定した。   Toroidal cores having different first mixing ratios shown in Table 1 below were prepared, and the core density, insulation resistance, withstand voltage, magnetic permeability, and iron loss Pcv were measured by the following measurement methods.

(試験例1)絶縁耐圧の測定
測定装置としてKikusui社製「TOS5051A」なる耐圧測定器を用い、平行平板電極でサンプルとしてのトロイダルコアをはさみ、AC(50Hz)にて印加電圧を加えた。絶縁破壊する電圧を絶縁耐圧として求めた。
上記のようにして測定した、実施例1−2〜実施例1−8の絶縁耐圧値を、磁性粉末として非晶質磁性材料の粉末のみを含有する実施例1−1のトロイダルコアの絶縁耐圧値を基準(100%)とした場合の絶縁耐圧比(非晶質100%基準)および、磁性粉末として結晶質磁性材料の粉末のみを含有する実施例1−8のトロイダルコアの絶縁耐圧値を基準(100%)とした場合の絶縁耐圧比(結晶質100%基準)を求めた。
(Test Example 1) Measurement of dielectric strength voltage Using a pressure resistance measuring device “TOS5051A” manufactured by Kikusui as a measuring device, a toroidal core as a sample was sandwiched between parallel plate electrodes, and an applied voltage was applied at AC (50 Hz). The breakdown voltage was determined as the withstand voltage.
The withstand voltage values of Examples 1-2 to 1-8 measured as described above are the withstand voltages of the toroidal core of Example 1-1 containing only the powder of the amorphous magnetic material as the magnetic powder. The withstand voltage ratio (100% of amorphous) with respect to the value (100%) as the reference value, and the withstand voltage value of the toroidal core of Example 1-8 containing only the powder of the crystalline magnetic material as the magnetic powder The dielectric strength ratio (100% crystalline basis) was determined when the standard (100%) was used.

(試験例2)絶縁抵抗の測定
測定装置として旧Agilent(現Keysight)社「4339B」なる高抵抗測定器を用い、印加電圧20Vにて2端子法で測定した。
(Test Example 2) Measurement of Insulation Resistance A high resistance measuring instrument “4339B” (former Agilent (currently Keysight)) was used as a measuring apparatus, and the measurement was performed by a two-terminal method at an applied voltage of 20V.

(試験例3)コア密度ρの測定
実施例1において作製したトロイダルコアの寸法および重量を測定して、これらの数値から各トロイダルコアの密度ρ(単位:g/cc)を算出した。
(Test Example 3) Measurement of core density ρ The dimensions and weight of the toroidal core produced in Example 1 were measured, and the density ρ (unit: g / cc) of each toroidal core was calculated from these numerical values.

(試験例4)透磁率の測定
実施例1において作製したトロイダルコアに被覆銅線をそれぞれ1次側40回、2次側10回巻いて得られたトロイダルコイルについて、インピーダンスアナライザー(HP社製「4192A」)を用いて、100kHzの条件で初透磁率μ0を測定した。
(Test Example 4) Measurement of Magnetic Permeability The toroidal coil obtained by winding the coated copper wire on the toroidal core produced in Example 1 40 times on the primary side and 10 times on the secondary side, respectively, was analyzed using an impedance analyzer (manufactured by HP, “ 4192A "), the initial permeability μ0 was measured under the condition of 100 kHz.

(試験例5)鉄損Pcvの測定
実施例1において作製したトロイダルコアに被覆銅線をそれぞれ1次側15回、2次側10回巻いて得られたトロイダルコイルについて、BHアナライザー(岩崎通信機社製「SY−8217」)を用いて、実効最大磁束密度Bmを15mTとする条件で、測定周波数2MHzで鉄損Pcv(単位:kW/m)を測定した。
上述した試験例1〜5の方法を用いて測定した結果を表1に示す。
(Test Example 5) Measurement of Iron Loss Pcv For the toroidal coils obtained by winding the coated copper wire around the toroidal core produced in Example 1 15 times on the primary side and 10 times on the secondary side, BH analyzer (Iwasaki Tsushinki) The core loss Pcv (unit: kW / m 3 ) was measured at a measurement frequency of 2 MHz under the condition that the effective maximum magnetic flux density Bm was 15 mT.
Table 1 shows the results measured using the methods of Test Examples 1 to 5 described above.

図5は、実施例1についての絶縁耐圧の第一混合比率に対する依存性を示したグラフである。同図の絶縁耐圧のグラフに示されるように、実施例1では、非晶質磁性材料の粉末に結晶質磁性材料の粉末を混合することにより、各磁性粉末を単独で用いた場合と比較して、絶縁耐圧特性が向上した。すなわち、上記の異なる磁性粉末を混合することにより、相乗的に圧粉コアの絶縁耐圧値を増加させる効果が得られた。実施例1では、第一混合比率が30質量%〜40質量%付近から絶縁耐圧値が急激に高くなり、40質量%〜70質量%の範囲では絶縁耐圧比が120%以上となり、50質量%〜70質量%の範囲では絶縁耐圧比が130%以上となり、実施例1−1の非晶質磁性材料の粉末単体を基準(100%)とする絶縁耐圧比の値が30%以上向上した。   FIG. 5 is a graph showing the dependence of the withstand voltage on the first mixing ratio for Example 1. As shown in the graph of dielectric strength voltage in the figure, in Example 1, by mixing the powder of the crystalline magnetic material with the powder of the amorphous magnetic material, compared with the case where each magnetic powder is used alone. As a result, the dielectric strength characteristics improved. That is, by mixing the above different magnetic powders, an effect of synergistically increasing the dielectric strength value of the dust core was obtained. In Example 1, the withstand voltage value suddenly increases when the first mixing ratio is in the vicinity of 30% by mass to 40% by mass. In the range of 40% by mass to 70% by mass, the withstand voltage ratio becomes 120% or more and 50% by mass. In the range of ˜70 mass%, the withstand voltage ratio was 130% or more, and the value of the withstand voltage ratio with respect to the single powder of the amorphous magnetic material of Example 1-1 was improved by 30% or more.

(実施例2)
実施例1において用いた磁性粉末とは、非晶質磁性材料の粉末の粒径、結晶質磁性材料の粉末の表面処理および粒径が異なる磁性粉末を用いて、実施例1と同様にして圧粉コアからなるトロイダルコアを得た。
具体的には、非晶質磁性材料の粉末として、組成が実施例1と同じであり、メジアン径D50Aが15μmであるFe基非晶質合金粉末を作製した。なお、実施例2において用いた非晶質磁性材料の粉末は、ガスアトマイズと水アトマイズとを連続的に行うアトマイズ法により作製した。
結晶質磁性材料の粉末として、Fe−Si−Cr系合金、具体的には、Siの含有量が6〜7質量%、Crの含有量が3〜4質量%であって、残部はFeおよび不可避的不純物からなる合金からなり、メジアン径D50Cが4μmの粉末を用意した。結晶質磁性材料の粉末は、リン酸塩系の表面絶縁処理が施されたものを用いた。
加圧成形の加圧力は0.5〜1.5GPaであって、熱処理では、窒素雰囲気内にて200〜400℃で1時間加熱した。
(Example 2)
The magnetic powder used in Example 1 is a magnetic powder having a different particle diameter of amorphous magnetic material powder, surface treatment of crystalline magnetic material powder, and different particle diameter, as in Example 1. A toroidal core consisting of a powder core was obtained.
Specifically, an Fe-based amorphous alloy powder having the same composition as in Example 1 and a median diameter D50A of 15 μm was prepared as an amorphous magnetic material powder. In addition, the powder of the amorphous magnetic material used in Example 2 was produced by an atomizing method in which gas atomization and water atomization are continuously performed.
As a powder of crystalline magnetic material, Fe—Si—Cr-based alloy, specifically, Si content is 6-7 mass%, Cr content is 3-4 mass%, the balance is Fe and A powder made of an alloy composed of inevitable impurities and having a median diameter D50C of 4 μm was prepared. The crystalline magnetic material powder used was subjected to phosphate surface insulation treatment.
The pressing force of the pressure molding was 0.5 to 1.5 GPa, and in the heat treatment, heating was performed at 200 to 400 ° C. for 1 hour in a nitrogen atmosphere.

下記表2に示す、第一混合比率の異なるトロイダルコアを作製し、絶縁耐圧、絶縁抵抗、コア密度、透磁率および鉄損Pcvを測定した。
(試験例1〜5)
絶縁耐圧の測定、絶縁抵抗の測定、コア密度ρの測定、透磁率の測定および鉄損Pcvの測定を実施例1と同様にして行った。
非晶質磁性材料の粉末のみを含有する実施例2−1のトロイダルコアの絶縁耐圧値を基準(100%)とした場合の絶縁耐圧比(非晶質100%基準)および、磁性粉末として結晶質磁性材料の粉末のみを含有する実施例2−7のトロイダルコアの絶縁耐圧値を基準(100%)とした場合の絶縁耐圧比(結晶質100%基準)を求めた。
透磁率は、初透磁率μ0に加えて、トロイダルコイルに、100kHzの条件で直流電流を重畳し、それによる直流印加磁場が5500A/mのときの比透磁率μ5500をも測定した。測定結果を表2に示す。
Toroidal cores having different first mixing ratios shown in Table 2 below were produced, and dielectric strength voltage, insulation resistance, core density, magnetic permeability, and iron loss Pcv were measured.
(Test Examples 1 to 5)
The measurement of the withstand voltage, the measurement of the insulation resistance, the measurement of the core density ρ, the measurement of the magnetic permeability, and the measurement of the iron loss Pcv were performed in the same manner as in Example 1.
Dielectric strength ratio (amorphous 100% standard) and crystal as magnetic powder when the dielectric strength value of the toroidal core of Example 2-1 containing only amorphous magnetic material powder is used as the standard (100% amorphous) The dielectric strength ratio (100% crystalline basis) was determined when the dielectric strength value of the toroidal core of Example 2-7 containing only the magnetic material powder was taken as the standard (100%).
As for the magnetic permeability, in addition to the initial magnetic permeability μ0, a relative magnetic permeability μ5500 was measured when a direct current was superimposed on the toroidal coil under the condition of 100 kHz and the DC applied magnetic field was 5500 A / m. The measurement results are shown in Table 2.

図6は、実施例2についての絶縁耐圧の第一混合比率に対する依存性を示したグラフである。図6の絶縁耐圧のグラフに示されるように、実施例2でも実施例1同様、非晶質磁性材料の粉末に結晶質磁性材料の粉末を混合することにより、各粉末を単独で用いた場合と比較して絶縁耐圧特性が向上し、相乗的な効果が認められた。実施例2では、第一混合比率が40質量%付近から非晶質磁性材料の粉末よりも絶縁耐圧値が高くなり、70質量%〜90質量%の範囲で絶縁耐圧比が180%以上となり、実施例2−6の非晶質磁性材料の粉末単体を基準(100%)とする絶縁耐圧比の値が80%以上も向上した。   FIG. 6 is a graph showing the dependence of the withstand voltage on the first mixing ratio for Example 2. As shown in the dielectric strength graph of FIG. 6, in Example 2 as well as Example 1, each powder was used alone by mixing the powder of the amorphous magnetic material with the powder of the amorphous magnetic material. Compared with the above, the dielectric strength characteristics were improved and a synergistic effect was recognized. In Example 2, the withstand voltage value is higher than the amorphous magnetic material powder from the first mixing ratio of around 40% by mass, and the withstand voltage ratio is 180% or more in the range of 70% by mass to 90% by mass, The value of the withstand voltage ratio based on the single powder of the amorphous magnetic material of Example 2-6 (100%) was improved by 80% or more.

図7は、実施例1および実施例2における、絶縁耐圧の第一混合比率に対する依存性を示したグラフである。同図の結果から、非晶質磁性材料の粉末に結晶質磁性材料の粉末を混合することにより、各粉末を単独で用いた場合よりも、絶縁耐圧の高い圧粉コアが得られることが分かった。すなわち、図7は、圧粉コアに含まれる結晶質磁性材料の粉末と非晶質磁性材料の粉末との混合比率に基づき期待される以上に、すなわち、単なる加成性を超えた相乗的な効果により、絶縁耐圧特性に優れる圧粉コアが得られたことを示している。   FIG. 7 is a graph showing the dependence of the withstand voltage on the first mixing ratio in Example 1 and Example 2. From the results shown in the figure, it is understood that a powder core with higher withstand voltage can be obtained by mixing crystalline magnetic material powder with amorphous magnetic material powder than when each powder is used alone. It was. That is, FIG. 7 is more than expected based on the mixing ratio of the crystalline magnetic material powder and the amorphous magnetic material powder contained in the dust core, that is, synergistic beyond simple additivity. It shows that a dust core having excellent dielectric strength characteristics was obtained due to the effect.

図8は、実施例1および実施例2における、非晶質磁性材料の粉末単体を基準としたときの各第1混合比率における絶縁耐圧比を示したグラフであり、図9は、実施例1および実施例2における、結晶質材料の粉末単体を基準としたときの各第1混合比率における絶縁耐圧比を示したグラフである。
図5〜図9の結果から、この絶縁耐圧の値を向上させる効果は、非晶質磁性材料のメジアン径D50Aを適宜調整するともに、第一混合比率を40質量%以上90質量%以下の範囲内にすることにより、安定的に奏される。また、第1混合比率を50〜70質量%とすることで、非晶質磁性材料のメジアン径D50Aが大きい場合であっても小さい場合であっても、圧電コアの絶縁耐圧特性を向上させることが出来る。さらに、図9から上記のような第1混合比率(50〜70質量%)であると、磁性粉末として結晶質材料粉末のみを含有する圧粉コアを基準(100%)とした場合の絶縁耐圧比の値が110%以上、あるいは125%以上である圧粉コアが得られることがわかる。
FIG. 8 is a graph showing the withstand voltage ratio at each first mixing ratio when the amorphous magnetic material powder alone is used as a reference in Example 1 and Example 2. FIG. 4 is a graph showing a dielectric strength ratio at each first mixing ratio when a crystalline material powder alone is used as a reference in Example 2.
From the results of FIG. 5 to FIG. 9, the effect of improving the value of the withstand voltage is that the median diameter D 50 A of the amorphous magnetic material is appropriately adjusted and the first mixing ratio is 40 mass% or more and 90 mass% or less. By making it within the range, it is stably produced. In addition, by setting the first mixing ratio to 50 to 70% by mass, the dielectric strength characteristics of the piezoelectric core are improved regardless of whether the median diameter D 50 A of the amorphous magnetic material is large or small. It can be made. Furthermore, with the first mixing ratio (50 to 70% by mass) as shown above from FIG. 9, the dielectric strength with respect to the powder core containing only the crystalline material powder as the magnetic powder is set as the reference (100%). It can be seen that a powder core having a ratio value of 110% or more, or 125% or more can be obtained.

図10〜図12は、この順に、実施例1についての絶縁抵抗、コア密度、および透磁率の第一混合比率に対する依存性を示したグラフである。
図13〜図15は、この順に、実施例2についての絶縁耐圧、絶縁抵抗、コア密度および透磁率の第一混合比率に対する依存性を示したグラフである。
10 to 12 are graphs showing the dependency of the insulation resistance, the core density, and the magnetic permeability on the first mixing ratio in Example 1 in this order.
FIGS. 13 to 15 are graphs showing the dependency of the withstand voltage, the insulation resistance, the core density, and the magnetic permeability on the first mixing ratio in Example 2 in this order.

表1および表2ならびに図5〜図15に示すように、非晶質磁性材料の粉末に結晶質磁性材料の粉末を混合することにより得られる優れる圧粉コアは、絶縁耐圧特性の向上に加えて、鉄損Pcvをほとんど増加させることなく絶縁耐圧を増加させることが可能となり、良好なインダクタを与えるものであった。   As shown in Tables 1 and 2 and FIGS. 5 to 15, the excellent dust core obtained by mixing the powder of the amorphous magnetic material with the powder of the amorphous magnetic material has improved dielectric strength characteristics. Thus, the withstand voltage can be increased without increasing the iron loss Pcv, and a good inductor can be obtained.

本発明によれば、絶縁耐圧特性に優れるとともに鉄損が低減された良好なインダクタを与える圧粉コアが得られ、その良好さの程度は、圧粉コアに含まれる結晶質磁性材料の粉末と非晶質磁性材料の粉末との混合比率に基づく期待を超える程度であることが本実施例により確認された。   According to the present invention, it is possible to obtain a dust core that provides a good inductor with excellent dielectric strength characteristics and reduced iron loss, and the degree of goodness is the same as the crystalline magnetic material powder contained in the dust core. It was confirmed by this example that the degree exceeded the expectation based on the mixing ratio of the amorphous magnetic material with the powder.

本発明の圧粉コアを備えるインダクタは、ハイブリッド自動車等の昇圧回路の構成部品、発電・変電設備の構成部品、トランスやチョークコイル等の構成部品などとして好適に使用されうる。   The inductor having the dust core of the present invention can be suitably used as a component of a booster circuit such as a hybrid vehicle, a component of a power generation / transforming facility, a component of a transformer, a choke coil, or the like.

1…圧粉コア(トロイダルコア)
10…トロイダルコイル
2…被覆導電線
2a…コイル
2b,2c…被覆導電線2の端部
2d,2e…コイル2aの端部
20…コイル埋設型インダクタ
21…圧粉コア
22…被覆導電線
22a,22b…端部
23a,23b…接続端部
22c…コイル部
200…スプレードライヤー装置
201…回転子
S…スラリー
P…造粒粉
1 ... Compact core (toroidal core)
DESCRIPTION OF SYMBOLS 10 ... Toroidal coil 2 ... Coated conductive wire 2a ... Coils 2b, 2c ... End 2d, 2e of coated conductive wire 2 ... End 20 of coil 2a ... Coil buried type inductor 21 ... Powder core 22 ... Coated conductive wire 22a, 22b ... Ends 23a, 23b ... Connection end 22c ... Coil part 200 ... Spray dryer device 201 ... Rotor S ... Slurry P ... Granulated powder

Claims (16)

結晶質磁性材料の粉末および非晶質磁性材料の粉末を含有する圧粉コアであって、
前記結晶質磁性材料の粉末の含有量と前記非晶質磁性材料の粉末の含有量との総和に対する前記結晶質磁性材料の粉末の含有量の質量比率である第一混合比率は、40質量%以上90質量%以下である圧粉コア。
A powder core containing a powder of crystalline magnetic material and a powder of amorphous magnetic material,
The first mixing ratio, which is the mass ratio of the content of the crystalline magnetic material powder to the total content of the crystalline magnetic material powder and the amorphous magnetic material powder, is 40% by mass. A powder core of 90% by mass or less.
前記第一混合比率は、50質量%以上70質量%以下である請求項1に記載の圧粉コア。   The powder core according to claim 1, wherein the first mixing ratio is 50 mass% or more and 70 mass% or less. 前記圧粉コアは、絶縁耐圧値が、磁性粉末として前記非晶質磁性材料の粉末のみを含有する圧粉コアの絶縁耐圧値を基準(100%)として、120%以上である、請求項1または2に記載の圧粉コア。   The said powder core has a dielectric strength value of 120% or more with reference to the dielectric strength value of a powder core containing only the amorphous magnetic material powder as a magnetic powder (100%). Or the compacting core of 2. 前記圧粉コアは、絶縁耐圧値が、磁性粉末として前記結晶質磁性材料の粉末のみを含有する圧粉コアの絶縁耐圧値を基準(100%)として、110%以上である、請求項1、2、または3に記載の圧粉コア。   The said dust core is 110% or more, with the dielectric strength value of the dust core containing only the powder of the said crystalline magnetic material as magnetic powder as a reference | standard (100%). 2. The powder core according to 2 or 3. 前記結晶質磁性材料は、Fe−Si−Cr系合金、Fe−Ni系合金、Fe−Co系合金、Fe−V系合金、Fe−Al系合金、Fe−Si系合金、Fe−Si−Al系合金、カルボニル鉄および純鉄からなる群から選ばれた1種または2種以上の材料を含む、請求項1から4のいずれか一項に記載の圧粉コア。   The crystalline magnetic material is Fe-Si-Cr alloy, Fe-Ni alloy, Fe-Co alloy, Fe-V alloy, Fe-Al alloy, Fe-Si alloy, Fe-Si-Al. The powder core as described in any one of Claim 1 to 4 containing the 1 type, or 2 or more types of material chosen from the group which consists of a system alloy, carbonyl iron, and pure iron. 前記結晶質磁性材料はFe−Si−Cr系合金からなる、請求項1から5のいずれか一項に記載の圧粉コア。   The dust core according to any one of claims 1 to 5, wherein the crystalline magnetic material is made of an Fe-Si-Cr-based alloy. 前記非晶質磁性材料は、Fe−Si−B系合金、Fe−P−C系合金およびCo−Fe−Si−B系合金からなる群から選ばれた1種または2種以上の材料を含む、請求項1から6のいずれか一項に記載の圧粉コア。   The amorphous magnetic material includes one or more materials selected from the group consisting of Fe-Si-B alloys, Fe-PC-C alloys, and Co-Fe-Si-B alloys. The powder core according to any one of claims 1 to 6. 前記非晶質磁性材料はFe−P−C系合金からなる、請求項7に記載の圧粉コア。   The dust core according to claim 7, wherein the amorphous magnetic material is made of a Fe—P—C alloy. 前記結晶質磁性材料の粉末は絶縁処理が施された材料からなる、請求項1から8のいずれか一項に記載の圧粉コア。   The powder core according to any one of claims 1 to 8, wherein the powder of the crystalline magnetic material is made of an insulating material. 前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末を、前記圧粉コアに含有される他の材料に対して結着させる結着成分を含有する、請求項1から9のいずれか一項に記載の圧粉コア。   10. The binder according to claim 1, further comprising a binding component that binds the powder of the crystalline magnetic material and the powder of the amorphous magnetic material to another material contained in the powder core. The dust core according to one item. 前記結着成分は、樹脂材料に基づく成分を含む、請求項10に記載の圧粉コア。   The powder core according to claim 10, wherein the binder component includes a component based on a resin material. 請求項11に記載される圧粉コアの製造方法であって、前記結晶質磁性材料の粉末および前記非晶質磁性材料の粉末ならびに前記樹脂材料からなるバインダー成分を含む混合物の加圧成形を含む成形処理により成形製造物を得る成形工程を備えることを特徴とする圧粉コアの製造方法。   12. The method for producing a dust core according to claim 11, comprising pressure molding of a mixture comprising the crystalline magnetic material powder and the amorphous magnetic material powder and a binder component comprising the resin material. A method for producing a powder core, comprising a molding step of obtaining a molded product by a molding process. 前記成形工程により得られた前記成形製造物が前記圧粉コアである、請求項12に記載の圧粉コアの製造方法。   The method for producing a dust core according to claim 12, wherein the molded product obtained by the molding step is the dust core. 前記成形工程により得られた前記成形製造物を加熱する熱処理により前記圧粉コアを得る熱処理工程を備える、請求項12に記載の圧粉コアの製造方法。   The manufacturing method of the powder core of Claim 12 provided with the heat processing process of obtaining the said powder core by the heat processing which heats the said molded product obtained by the said shaping | molding process. 請求項1から11のいずれかに記載される圧粉コア、コイルおよび前記コイルのそれぞれの端部に接続された接続端子を備えるインダクタであって、前記圧粉コアの少なくとも一部は、前記接続端子を介して前記コイルに電流を流したときに前記電流により生じた誘導磁界内に位置するように配置されているインダクタ。   It is an inductor provided with the connecting terminal connected to each end part of the dust core, coil, and said coil as described in any one of Claim 1-11, Comprising: At least one part of the said dust core is the said connection. An inductor disposed so as to be located in an induced magnetic field generated by the current when a current is passed through the coil via a terminal. 請求項15に記載されるインダクタが実装された電子・電気機器であって、前記インダクタは前記接続端子にて基板に接続されている電子・電気機器。   16. An electronic / electrical device on which the inductor according to claim 15 is mounted, wherein the inductor is connected to a substrate at the connection terminal.
JP2016100194A 2016-05-19 2016-05-19 Powder compact core, manufacturing method thereof, inductor with powder compact core, and electronic/electric device with inductor mounted thereon Withdrawn JP2017208462A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2016100194A JP2017208462A (en) 2016-05-19 2016-05-19 Powder compact core, manufacturing method thereof, inductor with powder compact core, and electronic/electric device with inductor mounted thereon
TW106106998A TWI631223B (en) 2016-05-19 2017-03-03 Powder magnetic core, method for manufacturing the powder magnetic core, inductor provided with the powder magnetic core, and electronic / electrical equipment equipped with the inductor
KR1020170040092A KR102104701B1 (en) 2016-05-19 2017-03-29 Compressed powder core, method of manufacturing the compressed powder core, inductor comprising the compressed powder core and electronic-electric device mounted with the inductor
CN201710264626.7A CN107403676A (en) 2016-05-19 2017-04-20 Compressed-core and its manufacture method, possess the inductor of the compressed-core and be equipped with the electronic/electrical gas equipment of the inductor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016100194A JP2017208462A (en) 2016-05-19 2016-05-19 Powder compact core, manufacturing method thereof, inductor with powder compact core, and electronic/electric device with inductor mounted thereon

Publications (1)

Publication Number Publication Date
JP2017208462A true JP2017208462A (en) 2017-11-24

Family

ID=60404687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016100194A Withdrawn JP2017208462A (en) 2016-05-19 2016-05-19 Powder compact core, manufacturing method thereof, inductor with powder compact core, and electronic/electric device with inductor mounted thereon

Country Status (4)

Country Link
JP (1) JP2017208462A (en)
KR (1) KR102104701B1 (en)
CN (1) CN107403676A (en)
TW (1) TWI631223B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072453A (en) * 2021-01-21 2021-05-06 株式会社タムラ製作所 Core, reactor, manufacturing method of the core, and manufacturing method of the reactor

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7607215B2 (en) * 2019-01-08 2024-12-27 パナソニックIpマネジメント株式会社 Manufacturing method of powder magnetic core
JP7074927B2 (en) * 2019-02-22 2022-05-24 アルプスアルパイン株式会社 Powder magnetic core and its manufacturing method
TWI705146B (en) * 2019-04-23 2020-09-21 奇力新電子股份有限公司 Alloy powder composition, moldings and the manufacturing method thereof, and inductors
CN115642031A (en) * 2022-12-26 2023-01-24 兰州大学 Method for optimizing height of soft magnetic Fe composite material high cut-off frequency magnetic ring

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004197218A (en) * 2002-11-22 2004-07-15 Toko Inc Composite magnetic material, core and magnetic element using the same
JP2007134381A (en) 2005-11-08 2007-05-31 Nec Tokin Corp Composite magnetic material, dust core using the same, and magnetic element
CN100490029C (en) * 2005-12-28 2009-05-20 安泰科技股份有限公司 Composite powder for magnetic powder core and preparation process for magnetic powder core
JP5428230B2 (en) 2008-07-18 2014-02-26 東レ株式会社 Electrical insulating paper and method for producing electrical insulating paper
JP5174758B2 (en) * 2009-08-07 2013-04-03 株式会社タムラ製作所 Powder magnetic core and manufacturing method thereof
WO2012081884A2 (en) * 2010-12-13 2012-06-21 주식회사 아모텍 Amorphous magnetic component, electric motor using same and method for manufacturing same
US9117582B2 (en) 2011-01-28 2015-08-25 Sumida Corporation Magnetic powder material, low-loss composite magnetic material containing same, and magnetic element using same
JP6513458B2 (en) * 2014-06-06 2019-05-15 アルプスアルパイン株式会社 Dust core, method of manufacturing the dust core, electronic / electrical component comprising the dust core, and electronic / electrical device on which the electronic / electrical component is mounted
CN105304259B (en) * 2014-06-06 2018-05-04 阿尔卑斯电气株式会社 Compressed-core and its manufacture method, electronic and electric components and electronic electric equipment

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021072453A (en) * 2021-01-21 2021-05-06 株式会社タムラ製作所 Core, reactor, manufacturing method of the core, and manufacturing method of the reactor
JP7138736B2 (en) 2021-01-21 2022-09-16 株式会社タムラ製作所 CORE, REACTOR, CORE MANUFACTURING METHOD AND REACTOR MANUFACTURING METHOD

Also Published As

Publication number Publication date
KR102104701B1 (en) 2020-04-24
TWI631223B (en) 2018-08-01
CN107403676A (en) 2017-11-28
TW201741469A (en) 2017-12-01
KR20170131209A (en) 2017-11-29

Similar Documents

Publication Publication Date Title
KR101296818B1 (en) Powder magnetic core and choke
JP6513458B2 (en) Dust core, method of manufacturing the dust core, electronic / electrical component comprising the dust core, and electronic / electrical device on which the electronic / electrical component is mounted
WO2016185940A1 (en) Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
JP2017108098A (en) Dust core, method of producing dust core, inductor including dust core, and electronic/electrical apparatus mounting inductor
JP6393345B2 (en) Dust core, method for producing the dust core, electric / electronic component including the dust core, and electric / electronic device on which the electric / electronic component is mounted
KR102104701B1 (en) Compressed powder core, method of manufacturing the compressed powder core, inductor comprising the compressed powder core and electronic-electric device mounted with the inductor
KR102069475B1 (en) Green powder core, the manufacturing method of the green powder core, the electrical / electronic component provided with this powder core, and the electrical / electronic device in which the electrical / electronic component was mounted.
US10283266B2 (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
WO2017038295A1 (en) Dust core, method for producing said dust core, electric/electronic component provided with said dust core, and electric/electronic device on which said electric/electronic component is mounted
WO2018207521A1 (en) Dust core, method for producing said dust core, inductor provided with said dust core, and electronic/electrical device on which said inductor is mounted
JP6035490B2 (en) Compact core, electrical / electronic components and electrical / electronic equipment
JP7152504B2 (en) Compacted core, method for manufacturing the compacted core, inductor provided with the compacted core, and electronic/electrical device mounted with the inductor
WO2019044698A1 (en) Dust core, method for producing said dust core, electrical/electronic component provided with said dust core, and electrical/electronic device equipped with said electrical/electronic component
JP6326185B1 (en) Dust core, method for producing the dust core, electric / electronic component including the dust core, and electric / electronic device on which the electric / electronic component is mounted
JP6944313B2 (en) Magnetic powder, powder core, inductor, and electronic and electrical equipment
JP2024118237A (en) Powder cores, inductors, and electronic and electrical equipment
WO2017221475A1 (en) Magnetic powder, powder mixture, dust core, method for producing dust core, inductor, and electronic/electrical device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190118

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20190517