JP2017208215A - Nonaqueous electrolyte for power storage device, nonaqueous electrolyte power storage device, and method for manufacturing the same - Google Patents
Nonaqueous electrolyte for power storage device, nonaqueous electrolyte power storage device, and method for manufacturing the same Download PDFInfo
- Publication number
- JP2017208215A JP2017208215A JP2016099354A JP2016099354A JP2017208215A JP 2017208215 A JP2017208215 A JP 2017208215A JP 2016099354 A JP2016099354 A JP 2016099354A JP 2016099354 A JP2016099354 A JP 2016099354A JP 2017208215 A JP2017208215 A JP 2017208215A
- Authority
- JP
- Japan
- Prior art keywords
- nonaqueous electrolyte
- nonaqueous
- storage element
- electrolyte
- solvent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011255 nonaqueous electrolyte Substances 0.000 title claims abstract description 182
- 238000003860 storage Methods 0.000 title claims abstract description 108
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 17
- 238000000034 method Methods 0.000 title abstract description 13
- 239000002904 solvent Substances 0.000 claims abstract description 52
- -1 lithium tetrafluoroborate Chemical compound 0.000 claims abstract description 51
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 claims abstract description 8
- 239000003125 aqueous solvent Substances 0.000 claims description 55
- 239000007774 positive electrode material Substances 0.000 claims description 20
- 230000005611 electricity Effects 0.000 claims description 19
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 claims description 19
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 15
- 239000003792 electrolyte Substances 0.000 abstract description 22
- 150000003839 salts Chemical class 0.000 abstract description 21
- 150000002148 esters Chemical class 0.000 abstract 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 41
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 23
- 229910001416 lithium ion Inorganic materials 0.000 description 23
- 239000010410 layer Substances 0.000 description 20
- 239000000463 material Substances 0.000 description 16
- JLEXUIVKURIPFI-UHFFFAOYSA-N tris phosphate Chemical compound OP(O)(O)=O.OCC(N)(CO)CO JLEXUIVKURIPFI-UHFFFAOYSA-N 0.000 description 13
- 239000007773 negative electrode material Substances 0.000 description 11
- 238000006864 oxidative decomposition reaction Methods 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 10
- 238000007600 charging Methods 0.000 description 9
- 239000008151 electrolyte solution Substances 0.000 description 9
- 238000007614 solvation Methods 0.000 description 9
- 239000011230 binding agent Substances 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 230000001965 increasing effect Effects 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 150000001875 compounds Chemical class 0.000 description 7
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- SBLRHMKNNHXPHG-UHFFFAOYSA-N 4-fluoro-1,3-dioxolan-2-one Chemical compound FC1COC(=O)O1 SBLRHMKNNHXPHG-UHFFFAOYSA-N 0.000 description 6
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- 239000003990 capacitor Substances 0.000 description 6
- 239000006258 conductive agent Substances 0.000 description 6
- 229910052751 metal Inorganic materials 0.000 description 6
- 229910013870 LiPF 6 Inorganic materials 0.000 description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 5
- 230000000052 comparative effect Effects 0.000 description 5
- 239000000945 filler Substances 0.000 description 5
- 229910002804 graphite Inorganic materials 0.000 description 5
- 239000010439 graphite Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000002562 thickening agent Substances 0.000 description 5
- 229910019142 PO4 Inorganic materials 0.000 description 4
- 239000011889 copper foil Substances 0.000 description 4
- 238000007599 discharging Methods 0.000 description 4
- 238000010494 dissociation reaction Methods 0.000 description 4
- 230000005593 dissociations Effects 0.000 description 4
- 238000002347 injection Methods 0.000 description 4
- 239000007924 injection Substances 0.000 description 4
- 239000010452 phosphate Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000007086 side reaction Methods 0.000 description 4
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 3
- 239000004642 Polyimide Substances 0.000 description 3
- 239000004743 Polypropylene Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- 239000013078 crystal Substances 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 229910052731 fluorine Inorganic materials 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000012046 mixed solvent Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 230000003647 oxidation Effects 0.000 description 3
- 238000007254 oxidation reaction Methods 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 3
- 229920000447 polyanionic polymer Polymers 0.000 description 3
- 229920000573 polyethylene Polymers 0.000 description 3
- 229920001721 polyimide Polymers 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 229920001155 polypropylene Polymers 0.000 description 3
- 229910052596 spinel Inorganic materials 0.000 description 3
- 239000011029 spinel Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- 229920002943 EPDM rubber Polymers 0.000 description 2
- 229910011281 LiCoPO 4 Inorganic materials 0.000 description 2
- 229910002099 LiNi0.5Mn1.5O4 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- 241000156302 Porcine hemagglutinating encephalomyelitis virus Species 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 230000002411 adverse Effects 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 150000001450 anions Chemical class 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229910052796 boron Inorganic materials 0.000 description 2
- 238000004891 communication Methods 0.000 description 2
- 239000002131 composite material Substances 0.000 description 2
- 238000012790 confirmation Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 150000004676 glycans Chemical class 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 229910052744 lithium Inorganic materials 0.000 description 2
- 229910003002 lithium salt Inorganic materials 0.000 description 2
- 159000000002 lithium salts Chemical class 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 125000000962 organic group Chemical group 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 229920001282 polysaccharide Polymers 0.000 description 2
- 239000005017 polysaccharide Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000002441 reversible effect Effects 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 229910052715 tantalum Inorganic materials 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 150000003624 transition metals Chemical class 0.000 description 2
- ZMQDTYVODWKHNT-UHFFFAOYSA-N tris(2,2,2-trifluoroethyl) phosphate Chemical compound FC(F)(F)COP(=O)(OCC(F)(F)F)OCC(F)(F)F ZMQDTYVODWKHNT-UHFFFAOYSA-N 0.000 description 2
- 229910052720 vanadium Inorganic materials 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- 125000004206 2,2,2-trifluoroethyl group Chemical group [H]C([H])(*)C(F)(F)F 0.000 description 1
- 125000004778 2,2-difluoroethyl group Chemical group [H]C([H])(*)C([H])(F)F 0.000 description 1
- DSMUTQTWFHVVGQ-UHFFFAOYSA-N 4,5-difluoro-1,3-dioxolan-2-one Chemical compound FC1OC(=O)OC1F DSMUTQTWFHVVGQ-UHFFFAOYSA-N 0.000 description 1
- GKZFQPGIDVGTLZ-UHFFFAOYSA-N 4-(trifluoromethyl)-1,3-dioxolan-2-one Chemical compound FC(F)(F)C1COC(=O)O1 GKZFQPGIDVGTLZ-UHFFFAOYSA-N 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 229910018871 CoO 2 Inorganic materials 0.000 description 1
- 229920008712 Copo Polymers 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910010707 LiFePO 4 Inorganic materials 0.000 description 1
- 229910013528 LiN(SO2 CF3)2 Inorganic materials 0.000 description 1
- 229910013392 LiN(SO2CF3)(SO2C4F9) Inorganic materials 0.000 description 1
- 229910013086 LiNiPO Inorganic materials 0.000 description 1
- 229910012258 LiPO Inorganic materials 0.000 description 1
- 229910012424 LiSO 3 Inorganic materials 0.000 description 1
- 208000022976 Liberfarb syndrome Diseases 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- 229910021314 NaFeO 2 Inorganic materials 0.000 description 1
- XIFNNKIPMXGUNQ-UHFFFAOYSA-N P(=O)(OC(C)(F)F)(OC(C)(F)F)OC(C)(F)F Chemical compound P(=O)(OC(C)(F)F)(OC(C)(F)F)OC(C)(F)F XIFNNKIPMXGUNQ-UHFFFAOYSA-N 0.000 description 1
- 229920000388 Polyphosphate Polymers 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- VMPVEPPRYRXYNP-UHFFFAOYSA-I antimony(5+);pentachloride Chemical compound Cl[Sb](Cl)(Cl)(Cl)Cl VMPVEPPRYRXYNP-UHFFFAOYSA-I 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920003235 aromatic polyamide Polymers 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 235000019241 carbon black Nutrition 0.000 description 1
- 239000003575 carbonaceous material Substances 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000000805 composite resin Substances 0.000 description 1
- 239000004020 conductor Substances 0.000 description 1
- 238000010281 constant-current constant-voltage charging Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000004807 desolvation Methods 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SBZXBUIDTXKZTM-UHFFFAOYSA-N diglyme Chemical compound COCCOCCOC SBZXBUIDTXKZTM-UHFFFAOYSA-N 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 238000003411 electrode reaction Methods 0.000 description 1
- 230000002708 enhancing effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000006232 furnace black Substances 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 229910052732 germanium Inorganic materials 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 239000003273 ketjen black Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 159000000003 magnesium salts Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 229920000609 methyl cellulose Polymers 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 239000001923 methylcellulose Substances 0.000 description 1
- 230000004001 molecular interaction Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910052758 niobium Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 238000010525 oxidative degradation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 150000003014 phosphoric acid esters Chemical class 0.000 description 1
- 239000001205 polyphosphate Substances 0.000 description 1
- 235000011176 polyphosphates Nutrition 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 159000000001 potassium salts Chemical class 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000007784 solid electrolyte Substances 0.000 description 1
- 239000012453 solvate Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229920005608 sulfonated EPDM Polymers 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- ZUHZGEOKBKGPSW-UHFFFAOYSA-N tetraglyme Chemical compound COCCOCCOCCOCCOC ZUHZGEOKBKGPSW-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229920005992 thermoplastic resin Polymers 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 238000007740 vapor deposition Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Electric Double-Layer Capacitors Or The Like (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
本発明は、蓄電素子用非水電解質、非水電解質蓄電素子及びその製造方法に関する。 The present invention relates to a nonaqueous electrolyte for a storage element, a nonaqueous electrolyte storage element, and a method for manufacturing the same.
リチウムイオン二次電池に代表される非水電解質二次電池は、エネルギー密度の高さから、パーソナルコンピュータ、通信端末等の電子機器、自動車等に多用されている。上記非水電解質二次電池は、一般的には、セパレータで電気的に隔離された一対の電極と、この電極間に介在する非水電解質(電解液)とを有し、両電極間でイオンの受け渡しを行うことで充放電するよう構成される。また、非水電解質二次電池以外の非水電解質蓄電素子として、リチウムイオンキャパシタや電気二重層キャパシタ等のキャパシタも広く普及している。 Nonaqueous electrolyte secondary batteries typified by lithium ion secondary batteries are widely used in electronic devices such as personal computers and communication terminals, automobiles and the like because of their high energy density. The non-aqueous electrolyte secondary battery generally has a pair of electrodes electrically isolated by a separator and a non-aqueous electrolyte (electrolytic solution) interposed between the electrodes, and an ion is formed between the electrodes. It is comprised so that it may charge / discharge by performing delivery. In addition, capacitors such as lithium ion capacitors and electric double layer capacitors are widely used as nonaqueous electrolyte storage elements other than nonaqueous electrolyte secondary batteries.
このような非水電解質蓄電素子においては、充放電の繰り返しによって電解液の酸化分解等の副反応が生じ、充放電性能が徐々に低下することが知られている。これに対し、電解液における塩濃度を高めることにより、電解液の酸化分解が抑制されることが報告されている(非特許文献1、2参照)。また、非特許文献2には、LiBF4(テトラフルオロホウ酸リチウム)を用いた高濃度電解液が、LiPF6(ヘキサフルオロリン酸リチウム)を用いた高濃度電解液と比べて、これを適用した非水電解質二次電池の初期クーロン効率が優れ、過電圧(充電状態50%時の電圧と放電深度50%時の電圧との差)が抑制されることも記載されている。 In such a non-aqueous electrolyte electricity storage element, it is known that side reactions such as oxidative decomposition of an electrolytic solution occur due to repeated charge and discharge, and charge / discharge performance gradually decreases. On the other hand, it has been reported that the oxidative decomposition of the electrolytic solution is suppressed by increasing the salt concentration in the electrolytic solution (see Non-Patent Documents 1 and 2). In Non-Patent Document 2, a high concentration electrolytic solution using LiBF 4 (lithium tetrafluoroborate) is applied as compared with a high concentration electrolytic solution using LiPF 6 (lithium hexafluorophosphate). It is also described that the initial coulombic efficiency of the non-aqueous electrolyte secondary battery is excellent, and overvoltage (the difference between the voltage when the charge state is 50% and the voltage when the discharge depth is 50%) is suppressed.
上記のように、LiBF4を用いた高濃度電解液は、LiPF6を用いた場合と比べて、非水電解質蓄電素子に適用した場合に、初期クーロン効率を向上させる効果や過電圧を抑制する効果があることが確認されている。一方、非水電解質蓄電素子には、これらの性能のみならず、高率放電性能等が要求される。しかし、LiBF4を用いた高濃度電解液を適用した非水電解質蓄電素子は、この高率放電性能について十分であるとはいえず、改善の余地がある。 As described above, the high-concentration electrolytic solution using LiBF 4 has an effect of improving initial coulomb efficiency and an effect of suppressing overvoltage when applied to a non-aqueous electrolyte electricity storage device as compared with the case of using LiPF 6. It has been confirmed that there is. On the other hand, non-aqueous electrolyte storage elements are required to have not only these performances but also high rate discharge performance. However, a nonaqueous electrolyte storage element to which a high concentration electrolytic solution using LiBF 4 is applied is not sufficient for this high rate discharge performance, and there is room for improvement.
本発明は、以上のような事情に基づいてなされたものであり、その目的は、電解質塩としてLiBF4が溶解された非水電解質において、非水電解質蓄電素子の高率放電性能を高めることができる蓄電素子用非水電解質、これを備える非水電解質蓄電素子、及びこの非水電解質蓄電素子の製造方法を提供することである。 The present invention has been made based on the circumstances as described above, and its purpose is to improve the high rate discharge performance of a nonaqueous electrolyte storage element in a nonaqueous electrolyte in which LiBF 4 is dissolved as an electrolyte salt. A nonaqueous electrolyte for a storage element, a nonaqueous electrolyte storage element including the nonaqueous electrolyte, and a method for manufacturing the nonaqueous electrolyte storage element are provided.
上記課題を解決するためになされた本発明の一態様に係る蓄電素子用非水電解質は、非水溶媒、及びこの非水溶媒に溶解しているテトラフルオロホウ酸リチウムを含有する蓄電素子用非水電解質であって、上記非水溶媒が、ドナー数が15以上の第1非水溶媒、及びフッ素化リン酸エステルを含み、上記テトラフルオロホウ酸リチウムの含有量に対する上記第1非水溶媒の含有量が、モル比で4以下であることを特徴とする。 A nonaqueous electrolyte for an electricity storage device according to one embodiment of the present invention made to solve the above problems is a nonaqueous electrolyte for an electricity storage device containing a nonaqueous solvent and lithium tetrafluoroborate dissolved in the nonaqueous solvent. A water electrolyte, wherein the non-aqueous solvent includes a first non-aqueous solvent having a donor number of 15 or more, and a fluorinated phosphate ester, and the first non-aqueous solvent with respect to the lithium tetrafluoroborate content. Content is 4 or less by molar ratio, It is characterized by the above-mentioned.
本発明の他の一態様に係る非水電解質蓄電素子は、上記蓄電素子用非水電解質を備える非水電解質蓄電素子である。 A nonaqueous electrolyte storage element according to another embodiment of the present invention is a nonaqueous electrolyte storage element including the above nonaqueous electrolyte for a storage element.
本発明の他の一態様に係る非水電解質蓄電素子の製造方法は、正極、負極及び非水電解質を有する非水電解質蓄電素子の製造方法であって、上記非水電解質として、上記蓄電素子用非水電解質を用いる。 A method for producing a non-aqueous electrolyte electricity storage device according to another aspect of the present invention is a method for producing a non-aqueous electrolyte electricity storage device having a positive electrode, a negative electrode, and a non-aqueous electrolyte, wherein the non-aqueous electrolyte is used for the electricity storage device. A non-aqueous electrolyte is used.
本発明によれば、電解質塩としてLiBF4が溶解された非水電解質において、非水電解質蓄電素子の高率放電性能を高めることができる蓄電素子用非水電解質、これを備える非水電解質蓄電素子、及びこの非水電解質蓄電素子の製造方法を提供することができる。 According to the present invention, in a non-aqueous electrolyte in which LiBF 4 is dissolved as an electrolyte salt, a non-aqueous electrolyte for a power storage element capable of enhancing the high rate discharge performance of the non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element including the same And the manufacturing method of this nonaqueous electrolyte electrical storage element can be provided.
以下、本発明の一実施形態に係る蓄電素子用非水電解質、非水電解質蓄電素子、及び非水電解質蓄電素子の製造方法について詳説する。 Hereinafter, a nonaqueous electrolyte for a storage element, a nonaqueous electrolyte storage element, and a method for manufacturing a nonaqueous electrolyte storage element according to an embodiment of the present invention will be described in detail.
<蓄電素子用非水電解質>
本発明の一実施形態に係る蓄電素子用非水電解質(以下、単に「非水電解質」ということもある。)は、非水溶媒、及びこの非水溶媒に溶解しているLiBF4を含有する蓄電素子用非水電解質であって、上記非水溶媒が、ドナー数が15以上の第1非水溶媒、及びフッ素化リン酸エステルを含み、上記LiBF4の含有量に対する上記第1非水溶媒の含有量が、モル比で4以下である。なお、当該非水電解質は、液体に限定されるものではない。すなわち、当該非水電解質は、液体状のものだけに限定されず、固体状やゲル状のもの等も含まれる。
<Nonaqueous electrolyte for power storage element>
A nonaqueous electrolyte for a storage element according to an embodiment of the present invention (hereinafter sometimes simply referred to as “nonaqueous electrolyte”) contains a nonaqueous solvent and LiBF 4 dissolved in the nonaqueous solvent. The nonaqueous electrolyte for a storage element, wherein the nonaqueous solvent includes a first nonaqueous solvent having a donor number of 15 or more, and a fluorinated phosphate ester, and the first nonaqueous solvent with respect to the content of LiBF 4 Is 4 or less in molar ratio. The non-aqueous electrolyte is not limited to a liquid. That is, the nonaqueous electrolyte is not limited to a liquid form, and includes a solid form or a gel form.
ドナー数とは、溶媒の電子対供与能を表すパラメーターであり、1,2−ジクロロエタン中の五塩化アンチモンと、対象とする溶媒との間の1:1付加化合物の生成エンタルピーの負値で定義される。本明細書において、ドナー数は、Viktor Gutmann,“The Donor−Acceptor Approach to Molecular Interactions”,Springer,1978(ISBN−13:978−0306310645)に記載の方法で求めたものを採用する。 The number of donors is a parameter that represents the electron-donating ability of a solvent, and is defined by the negative value of the enthalpy of formation of a 1: 1 addition compound between antimony pentachloride in 1,2-dichloroethane and the solvent of interest. Is done. In this specification, the number of donors is determined by the method described in Victor Gutmann, “The Donor-Acceptor Approach to Molecular Interactions”, Springer, 1978 (ISBN-13: 978-0306310645).
当該非水電解質は、LiBF4を電解質塩として用いた場合に非水電解質蓄電素子の高率放電性能を高めることができる。この理由は定かではないが、以下が推察される。当該非水電解質においては、ドナー数が大きい第1非水溶媒を用い、電解質塩であるLiBF4の含有量に対する第1非水溶媒の含有量がモル比で4以下と、第1非水溶媒に対して高濃度のLiBF4を含有している。これによって、非水溶媒等の酸化分解が抑えられると共に、非水電解質蓄電素子の初期クーロン効率が向上し、過電圧が抑制される。これらの効果は、第1非水溶媒の大部分がリチウムイオンに溶媒和した状態になることによって生じていると推察されている。しかし、この場合、LiBF4と第1非水溶媒との間の相互作用の増加によってリチウムイオンの移動が抑制され、リチウムイオンの伝導性が低下するため、非水電解質蓄電素子の高率放電性能が低下する。これに対し、非水電解質に、リチウムイオンに対する溶媒和能力が低いフッ素化リン酸エステルを第2の非水溶媒としてさらに含有させることで、第1非水溶媒のLiBF4への溶媒和を阻害せず、LiBF4の解離が促進され、リチウムイオンの伝導性が高まり、非水電解質蓄電素子の高率放電性能が改善されると推察される。すなわち、LiBF4と第1溶媒とフッ素化リン酸エステルとの組み合わせにより、非水電解質蓄電素子の高率放電性能を高めることができると推察される。なお、非特許文献2には、LiBF4を用いた高濃度電解液は、粘度が高いにもかかわらず、非水電解質二次電池の過電圧が抑制される旨の記載がある。従って、粘度は高いが溶媒和能力が低いフッ素化リン酸エステルを含有させることにより、非水電解質の粘度が高いままでも、非水電解質蓄電素子の過電圧は抑制されるものと推察される。 The non-aqueous electrolyte can enhance the high-rate discharge performance of the nonaqueous electrolyte electricity storage device in the case of using LiBF 4 as an electrolyte salt. The reason for this is not clear, but the following can be inferred. In the non-aqueous electrolyte, the first non-aqueous solvent having a large donor number is used, and the content of the first non-aqueous solvent with respect to the content of the electrolyte salt LiBF 4 is 4 or less in terms of molar ratio. In contrast, it contains a high concentration of LiBF 4 . This suppresses oxidative decomposition of a non-aqueous solvent or the like, improves the initial coulomb efficiency of the non-aqueous electrolyte storage element, and suppresses overvoltage. These effects are presumed to be caused by the fact that most of the first nonaqueous solvent is solvated with lithium ions. However, in this case, since the movement of lithium ions is suppressed due to an increase in the interaction between LiBF 4 and the first nonaqueous solvent, and the conductivity of the lithium ions is reduced, the high rate discharge performance of the nonaqueous electrolyte storage element Decreases. On the other hand, the solvation of the first nonaqueous solvent to LiBF 4 is inhibited by further containing a fluorinated phosphate ester having a low solvation ability with respect to lithium ions as the second nonaqueous solvent in the nonaqueous electrolyte. Without dissociation, it is presumed that the dissociation of LiBF 4 is promoted, the conductivity of lithium ions is increased, and the high-rate discharge performance of the nonaqueous electrolyte storage element is improved. That is, it is speculated that the high rate discharge performance of the nonaqueous electrolyte electricity storage device can be enhanced by the combination of LiBF 4 , the first solvent, and the fluorinated phosphate ester. Non-Patent Document 2 describes that a high-concentration electrolytic solution using LiBF 4 suppresses overvoltage of a non-aqueous electrolyte secondary battery even though the viscosity is high. Therefore, it is presumed that by containing a fluorinated phosphate ester having a high viscosity but a low solvating ability, the overvoltage of the nonaqueous electrolyte storage element is suppressed even when the viscosity of the nonaqueous electrolyte remains high.
また、当該非水電解質は、上述のように、第1非水溶媒に対して高濃度のLiBF4を含有するため、非水電解質蓄電素子の充放電の繰り返しによる非水溶媒等の酸化分解の発生を抑制することができる。このため、特に、当該非水電解質は、通常使用時の充電終止電圧における正極電位が比較的貴となる充電条件が採用される非水電解質蓄電素子や、比較的貴な電位となり得る正極活物質を含む正極を備えた非水電解質蓄電素子に適用した場合に、非水溶媒等の酸化分解の抑制能を効果的に発揮することができる。通常使用時の充電終止電圧における正極電位が比較的貴となる充電条件とは、例えば、通常使用時の充電終止電圧における正極電位が4.4V(vs.Li/Li+)より貴となる充電条件である。ここで、通常使用時とは、当該非水電解質蓄電素子について推奨され、又は指定される充電条件を採用して当該非水電解質蓄電素子を使用する場合であり、当該非水電解質蓄電素子のための充電器が用意されている場合は、その充電器を適用して当該非水電解質蓄電素子を使用する場合をいう。また、比較的貴な電位となり得る正極活物質とは、例えば、4.4V(vs.Li/Li+)より貴な特定の電位となり得る正極活物質であり、リチウムイオン二次電池用正極活物質においては4.4V(vs.Li/Li+)より貴な特定の電位に至って可逆的なリチウムイオンの挿入脱離が可能な正極活物質である。 In addition, since the non-aqueous electrolyte contains LiBF 4 at a high concentration relative to the first non-aqueous solvent as described above, the non-aqueous electrolyte is subjected to oxidative decomposition such as non-aqueous solvent due to repeated charge / discharge of the non-aqueous electrolyte storage element. Occurrence can be suppressed. For this reason, in particular, the non-aqueous electrolyte is a non-aqueous electrolyte storage element that adopts a charging condition in which the positive electrode potential at the end-of-charge voltage during normal use is relatively noble, or a positive electrode active material that can have a relatively noble potential. When applied to a non-aqueous electrolyte electricity storage device having a positive electrode containing, the ability to suppress oxidative decomposition of a non-aqueous solvent or the like can be effectively exhibited. The charging condition in which the positive electrode potential at the end-of-charge voltage in normal use is relatively noble is, for example, charging in which the positive-electrode potential at the end-of-charge voltage in normal use is more noble than 4.4 V (vs. Li / Li + ). It is a condition. Here, the normal use is a case where the nonaqueous electrolyte storage element is used by adopting the recommended charging condition or the specified charging condition for the nonaqueous electrolyte storage element. When the battery charger is prepared, the battery charger is applied to use the nonaqueous electrolyte storage element. Further, the positive electrode active material that can be a relatively noble potential is a positive electrode active material that can be a specific potential nobler than 4.4 V (vs. Li / Li + ), for example, and is a positive electrode active material for a lithium ion secondary battery. The material is a positive electrode active material capable of reversible insertion and desorption of lithium ions reaching a specific potential nobler than 4.4 V (vs. Li / Li + ).
なお、例えば、グラファイトを負極活物質とする非水電解質二次電池では、電池設計にもよるが、充電終止電圧が5.0Vのとき、正極電位は約5.1V(vs.Li/Li+)である。 For example, in a non-aqueous electrolyte secondary battery using graphite as a negative electrode active material, the positive electrode potential is about 5.1 V (vs. Li / Li +) when the end-of-charge voltage is 5.0 V, depending on the battery design. ).
(電解質塩)
当該非水電解質は、非水溶媒に溶解している電解質塩としてLiBF4を含有する。電解質塩としてLiBF4を高濃度で用いた場合、非水電解質の耐酸化分解性やこれを適用した非水電解質蓄電素子の初期クーロン効率を高め、過電圧も抑制される。
(Electrolyte salt)
The non-aqueous electrolyte contains LiBF 4 as an electrolyte salt dissolved in a non-aqueous solvent. When LiBF 4 is used at a high concentration as the electrolyte salt, the oxidation resistance of the non-aqueous electrolyte and the initial coulomb efficiency of the non-aqueous electrolyte storage element to which the non-aqueous electrolyte is applied are increased, and overvoltage is also suppressed.
当該非水電解質は、本発明の効果に影響を与えない範囲で、LiBF4以外のその他の電解質塩が含有されていてもよい。その他の電解質塩としては、LiPF6、LiPO2F2、LiClO4、LiN(SO2F)2等の無機リチウム塩、LiSO3CF3、LiN(SO2CF3)2、LiN(SO2C2F5)2、LiN(SO2CF3)(SO2C4F9)、LiC(SO2CF3)3、LiC(SO2C2F5)3等のフッ化炭化水素基を有するリチウム塩や、ナトリウム塩、カリウム塩、マグネシウム塩、オニウム塩等を挙げることができる。 The nonaqueous electrolyte may contain other electrolyte salt other than LiBF 4 as long as the effect of the present invention is not affected. Other electrolyte salts include inorganic lithium salts such as LiPF 6 , LiPO 2 F 2 , LiClO 4 , LiN (SO 2 F) 2 , LiSO 3 CF 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 C). 2 F 5 ) 2 , a fluorinated hydrocarbon group such as LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), LiC (SO 2 CF 3 ) 3 , LiC (SO 2 C 2 F 5 ) 3 Examples thereof include lithium salts, sodium salts, potassium salts, magnesium salts, onium salts, and the like.
全電解質塩に占めるLiBF4の含有量の下限としては、例えば80質量%が好ましく、95質量%がより好ましく、99質量%がさらに好ましい。LiBF4の含有量を上記下限以上とすることにより、リチウムイオンの良好な溶媒和状態をより好適に達成することができる。 The lower limit of the content of LiBF 4 to the total electrolyte salts, for example, preferably 80 wt%, more preferably 95 wt%, more preferably 99% by mass. By setting the content of LiBF 4 to be equal to or higher than the above lower limit, a favorable solvation state of lithium ions can be achieved more suitably.
当該非水電解質におけるLiBF4の質量モル濃度(非水溶媒の質量に対するLiBF4のモル数)の下限としては、1mol/kgが好ましく、1.5mol/kgがより好ましく、2mol/kgがさらに好ましい。一方、この上限としては、例えば5mol/kgである。このように高塩濃度とすることによって、非水電解質の良好な耐酸化分解性を発揮することができ、これを適用した非水電解質蓄電素子の初期クーロン効率や過電圧抑制能もより高めることができる。 The lower limit of the molar concentration of LiBF 4 in the non-aqueous electrolyte (the number of moles of LiBF 4 with respect to the mass of the non-aqueous solvent) is preferably 1 mol / kg, more preferably 1.5 mol / kg, and even more preferably 2 mol / kg. . On the other hand, the upper limit is, for example, 5 mol / kg. By making the salt concentration high in this way, it is possible to demonstrate good oxidative decomposition resistance of the nonaqueous electrolyte, and it is possible to further improve the initial coulomb efficiency and overvoltage suppression capability of the nonaqueous electrolyte storage element to which this is applied. it can.
(非水溶媒)
上記非水溶媒は、ドナー数が15以上の第1非水溶媒、及びフッ素化リン酸エステルを含む。上記非水溶媒は、フッ素化環状カーボネートをさらに含むことが好ましい。また、上記非水溶媒は、本発明の効果を阻害しない範囲で、さらにその他の非水溶媒を含有していてもよい。
(Non-aqueous solvent)
The non-aqueous solvent includes a first non-aqueous solvent having a donor number of 15 or more and a fluorinated phosphate ester. The non-aqueous solvent preferably further contains a fluorinated cyclic carbonate. Moreover, the said nonaqueous solvent may contain the other nonaqueous solvent in the range which does not inhibit the effect of this invention.
(第1非水溶媒)
上記第1非水溶媒は、ドナー数が15以上の非水溶媒である。
(First non-aqueous solvent)
The first nonaqueous solvent is a nonaqueous solvent having a donor number of 15 or more.
上記第1非水溶媒としては、例えばプロピレンカーボネート(ドナー数:15.1)、エチレンカーボネート(16.4)、ジエチルカーボネート(16.4)、ジメチルカーボネート(15.2)、γ−ブチロラクトン(18)、酢酸エチル(17.1)、テトラヒドロフラン(20)、1,2−ジメトキシエタン(20)、ジグライム(19.2)、テトラグライム(16.6)等を挙げることができる。上記第1非水溶媒は、1種を単独で、又は2種以上を混合して用いることができる。 Examples of the first non-aqueous solvent include propylene carbonate (donor number: 15.1), ethylene carbonate (16.4), diethyl carbonate (16.4), dimethyl carbonate (15.2), γ-butyrolactone (18 ), Ethyl acetate (17.1), tetrahydrofuran (20), 1,2-dimethoxyethane (20), diglyme (19.2), tetraglyme (16.6), and the like. The said 1st non-aqueous solvent can be used individually by 1 type or in mixture of 2 or more types.
上記第1非水溶媒としては、ドナー数が大きすぎない非水溶媒を選択して用いることが好ましい。ドナー数が大きすぎない非水溶媒を選択して用いることにより、第1非水溶媒がリチウムイオンへ溶媒和する配位力が強くなりすぎることを低減できる。すなわち、活物質表面でのリチウムイオンの脱溶媒和に要するエネルギーが大きくなりすぎることを低減でき、電極反応をより効率的に進行させることができる。このような観点から、第1非水溶媒のドナー数の上限は、17が好ましく、16.5がより好ましく、16がさらに好ましく、15.5が特に好ましい。具体的な第1非水溶媒としては、プロピレンカーボネート(PC)が好ましい。すなわち、上記第1非水溶媒は、PCを含むことが好ましい。上記第1非水溶媒におけるPCの含有量としては、80質量%が好ましく、90質量%がより好ましく、第1非水溶媒は実質的にPCのみからなっていてもよい。 As the first nonaqueous solvent, it is preferable to select and use a nonaqueous solvent having a donor number that is not too large. By selecting and using a non-aqueous solvent having a donor number that is not too large, it is possible to reduce the fact that the first non-aqueous solvent has too strong a coordination force to solvate to lithium ions. That is, it is possible to reduce the energy required for the desolvation of lithium ions on the active material surface from becoming too large, and the electrode reaction can proceed more efficiently. From such a viewpoint, the upper limit of the number of donors in the first nonaqueous solvent is preferably 17, more preferably 16.5, still more preferably 16, and particularly preferably 15.5. As a specific first non-aqueous solvent, propylene carbonate (PC) is preferable. That is, the first non-aqueous solvent preferably contains PC. The content of PC in the first non-aqueous solvent is preferably 80% by mass, more preferably 90% by mass, and the first non-aqueous solvent may consist essentially of PC.
LiBF4に対する上記第1非水溶媒の含有量(第1非水溶媒/LiBF4)の上限は、モル比で4であり、2.5が好ましい。このように、LiBF4に対する第1非水溶媒の含有量を少なくすることで、溶媒和していない第1非水溶媒が少なくなり、非水電解質の耐酸化分解性を高めることができる。 The upper limit of the content of the first nonaqueous solvent relative to LiBF 4 (first nonaqueous solvent / LiBF 4 ) is 4 in molar ratio, and 2.5 is preferable. Thus, by reducing the content of the first non-aqueous solvent relative to LiBF 4 , the first non-aqueous solvent that is not solvated is reduced, and the oxidative decomposition resistance of the non-aqueous electrolyte can be improved.
一方、LiBF4に対する上記第1非水溶媒の含有量(第1非水溶媒/LiBF4)の下限は、モル比で0.5が好ましく、1がより好ましく、1.5がさらに好ましく、2が特に好ましい。この比を上記下限以上とすることで、LiBF4に対する第1非水溶媒の溶媒和の状態がより好適に達成され、非水電解質蓄電素子の放電容量や高率放電性能をより高めることができる。 On the other hand, the lower limit of the content of the first non-aqueous solvent for LiBF 4 (first non-aqueous solvent / LiBF 4) is preferably 0.5 molar ratio, more preferably 1, more preferably 1.5, 2 Is particularly preferred. By setting this ratio to be equal to or higher than the above lower limit, the state of solvation of the first nonaqueous solvent with respect to LiBF 4 can be more suitably achieved, and the discharge capacity and high rate discharge performance of the nonaqueous electrolyte storage element can be further increased. .
全非水溶媒に占める上記第1非水溶媒の含有量の下限としては、30体積%が好ましく、40体積%がより好ましく、50体積%がさらに好ましく、60体積%が特に好ましい。一方、この上限としては、80体積%が好ましく、70体積%がより好ましい。全非水溶媒に占める第1非水溶媒の含有量を上記範囲とすることで、非水電解質蓄電素子の高率放電性能等をより高めることができる。 The lower limit of the content of the first nonaqueous solvent in the total nonaqueous solvent is preferably 30% by volume, more preferably 40% by volume, still more preferably 50% by volume, and particularly preferably 60% by volume. On the other hand, as this upper limit, 80 volume% is preferable and 70 volume% is more preferable. By setting the content of the first nonaqueous solvent in the total nonaqueous solvent in the above range, the high rate discharge performance of the nonaqueous electrolyte electricity storage element can be further enhanced.
(フッ素化リン酸エステル)
上記非水溶媒は、第2の非水溶媒としてフッ素化リン酸エステルを含有する。フッ素化リン酸エステルは、フッ素化されていてリチウムイオンに対する溶媒和性が低いため、リチウムイオンの移動が抑制されている状態を緩和することができる。なお、上記非水溶媒は、ドナー数が15以上のフッ素化リン酸エステルを含有してもよく、その場合、該フッ素化リン酸エステルは上記フッ素化リン酸エステルに含まれ、第1非水溶媒には含まれない。上記フッ素化リン酸エステルのドナー数は、上記第1非水溶媒のドナー数よりも小さいことが好ましく、15未満であることがより好ましい。
(Fluorinated phosphate ester)
The non-aqueous solvent contains a fluorinated phosphate ester as the second non-aqueous solvent. Since the fluorinated phosphate ester is fluorinated and has low solvability with respect to lithium ions, the state in which the movement of lithium ions is suppressed can be relaxed. The non-aqueous solvent may contain a fluorinated phosphate ester having a donor number of 15 or more. In that case, the fluorinated phosphate ester is contained in the fluorinated phosphate ester, and the first non-aqueous solvent is used. It is not included in the solvent. The number of donors in the fluorinated phosphate is preferably smaller than the number of donors in the first non-aqueous solvent, and more preferably less than 15.
上記フッ素化リン酸エステルとは、リン酸(O=P(OH)3)が有する水素の一部又は全部が、フッ素原子を有する有機基で置換された化合物をいう。フッ素原子を有する有機基としては、通常、フッ化炭化水素基であり、フッ化アルキル基が好ましい。すなわち、上記フッ素化リン酸エステルとしては、フルオロアルキルリン酸エステル(リン酸フルオロアルキル)が好ましく、トリスフルオロアルキルリン酸エステル(リン酸トリスフルオロアルキル)がより好ましい。 The fluorinated phosphate ester refers to a compound in which part or all of hydrogen contained in phosphoric acid (O = P (OH) 3 ) is substituted with an organic group having a fluorine atom. The organic group having a fluorine atom is usually a fluorinated hydrocarbon group, preferably a fluorinated alkyl group. That is, as the fluorinated phosphate ester, a fluoroalkyl phosphate ester (fluoroalkyl phosphate) is preferable, and a trisfluoroalkyl phosphate ester (trisfluoroalkyl phosphate) is more preferable.
上記フッ素化リン酸エステルとしては、例えばリン酸トリス(2,2−ジフルオロエチル)、リン酸トリス(2,2,3,3−テトラフルオロプロピル)、リン酸トリス(2,2,3,3,4,4−ヘキサフルオロブチル)、リン酸トリス(1H,1H,5H−オクタフルオロペンチル)、リン酸トリス(1H,1H,7H−ドデカフルオロへプチル)、リン酸トリス(1H,1H,3H,7H−パーフルオロへプチル)、リン酸トリス(1H,1H,9H−ヘキサデカフルオロノニル)、リン酸トリス(2,2,2−トリフルオロエチル)、リン酸トリス(2,2,3,3,3−ペンタフルオロプロピル)、リン酸トリス(1H,1H−パーフルオロブチル)、リン酸トリス(1H,1H−パーフルオロペンチル)、リン酸トリス(1H,1H−パーフルオロへプチル)、リン酸トリス(1H,1H−パーフルオロノニル)、リン酸トリス(1,1−ジフルオロエチル)リン酸トリス(1,1,2,2−テトラフルオロプロピル)等を挙げることができる。上記フッ素化リン酸エステルとしては、リン酸トリス(2,2,2−トリフルオロエチル)(TFEP)が好ましい。上記フッ素化リン酸エステルは、1種を単独で、又は2種以上を混合して用いることができる。 Examples of the fluorinated phosphate ester include tris phosphate (2,2-difluoroethyl), tris phosphate (2,2,3,3-tetrafluoropropyl), and tris phosphate (2,2,3,3). , 4,4-hexafluorobutyl), tris phosphate (1H, 1H, 5H-octafluoropentyl), tris phosphate (1H, 1H, 7H-dodecafluoroheptyl), tris phosphate (1H, 1H, 3H) , 7H-perfluoroheptyl), tris phosphate (1H, 1H, 9H-hexadecafluorononyl), tris phosphate (2,2,2-trifluoroethyl), tris phosphate (2,2,3,3) 3,3-pentafluoropropyl), tris phosphate (1H, 1H-perfluorobutyl), tris phosphate (1H, 1H-perfluoropentyl), tris phosphate (1H, H-perfluoroheptyl), tris phosphate (1H, 1H-perfluorononyl), tris (1,1-difluoroethyl) phosphate tris (1,1,2,2-tetrafluoropropyl), etc. Can be mentioned. As the fluorinated phosphate ester, tris (2,2,2-trifluoroethyl) phosphate (TFEP) is preferable. The said fluorinated phosphate ester can be used individually by 1 type or in mixture of 2 or more types.
上記第1非水溶媒と上記フッ素化リン酸エステルとの体積比(第1非水溶媒:フッ素化リン酸エステル)における第1非水溶媒の値の下限としては、例えば30:70であってもよいが、50:50が好ましく、60:40がより好ましい。一方、この上限としては、例えば99:1であってもよいが、90:10が好ましく、80:20がより好ましく、70:30がさらに好ましい。上記第1非水溶媒と上記フッ素化リン酸エステルとの体積比を上記下限以上及び/又は上限以下とすることで、非水電解質蓄電素子の高率放電性能等をより高めることができる。また、この体積比を上記下限以上とすることで、非水電解質蓄電素子の放電容量を高めることもできる。これは、上記第1非水溶媒と上記フッ素化リン酸エステルとの体積比を上記範囲とすることによって、非水電解質の溶媒和の状態がより好適に達成され、粘度及びリチウムイオンの伝導性が好適化されることによると推察される。 The lower limit of the value of the first nonaqueous solvent in the volume ratio of the first nonaqueous solvent to the fluorinated phosphate ester (first nonaqueous solvent: fluorinated phosphate ester) is, for example, 30:70, However, 50:50 is preferable, and 60:40 is more preferable. On the other hand, the upper limit may be 99: 1, for example, but is preferably 90:10, more preferably 80:20, and even more preferably 70:30. By setting the volume ratio of the first non-aqueous solvent and the fluorinated phosphate ester to the above lower limit and / or the upper limit, the high rate discharge performance of the non-aqueous electrolyte storage element can be further enhanced. Moreover, the discharge capacity of the nonaqueous electrolyte storage element can be increased by setting the volume ratio to be equal to or higher than the lower limit. This is because, by setting the volume ratio of the first non-aqueous solvent to the fluorinated phosphate ester within the above range, the solvation state of the non-aqueous electrolyte is more suitably achieved, and the viscosity and the conductivity of lithium ions are improved. Is presumed to be optimized.
全非水溶媒に占める上記フッ素化リン酸エステルの含有量の下限としては、10体積%が好ましく、20体積%がより好ましく、30体積%がさらに好ましい。一方、この上限としては、70体積%が好ましく、50体積%がより好ましく、40体積%がさらに好ましく、35体積%が特に好ましい。全非水溶媒に占める上記フッ素化リン酸エステルの含有量を上記範囲とすることで、非水電解質蓄電素子の高率放電性能等をより高めることができる。 The lower limit of the content of the fluorinated phosphate in the total non-aqueous solvent is preferably 10% by volume, more preferably 20% by volume, and still more preferably 30% by volume. On the other hand, the upper limit is preferably 70% by volume, more preferably 50% by volume, still more preferably 40% by volume, and particularly preferably 35% by volume. By setting the content of the fluorinated phosphate in the entire nonaqueous solvent within the above range, the high rate discharge performance of the nonaqueous electrolyte electricity storage element can be further enhanced.
(フッ素化環状カーボネート)
上記非水溶媒は、第3の非水溶媒としてフッ素化環状カーボネートを含有することが好ましい。上記非水溶媒がフッ素化環状カーボネートを含有することによって、非水電解質蓄電素子の充放電時に生じうる副反応(非水溶媒等の酸化分解等)を抑制すること等ができる。なお、上記非水溶媒は、ドナー数が15以上のフッ素化環状カーボネートを含有してもよく、その場合、該フッ素化環状カーボネートは上記フッ素化環状カーボネートに含まれ、第1非水溶媒には含まれない。上記フッ素化環状カーボネートのドナー数は、上記第1非水溶媒のドナー数よりも小さいことが好ましく、15未満であることがより好ましい。
(Fluorinated cyclic carbonate)
The non-aqueous solvent preferably contains a fluorinated cyclic carbonate as a third non-aqueous solvent. When the non-aqueous solvent contains a fluorinated cyclic carbonate, side reactions (such as oxidative decomposition of a non-aqueous solvent) that may occur during charging / discharging of the non-aqueous electrolyte storage element can be suppressed. The non-aqueous solvent may contain a fluorinated cyclic carbonate having a donor number of 15 or more. In that case, the fluorinated cyclic carbonate is contained in the fluorinated cyclic carbonate, and the first non-aqueous solvent includes Not included. The number of donors in the fluorinated cyclic carbonate is preferably smaller than the number of donors in the first non-aqueous solvent, and more preferably less than 15.
上記フッ素化環状カーボネートとしては、フルオロエチレンカーボネート、ジフルオロエチレンカーボネート、トリフルオロプロピレンカーボネート等を挙げることができるが、フルオロエチレンカーボネート(FEC)が好ましい。上記フッ素化環状カーボネートは、1種を単独で、又は2種以上を混合して用いることができる。 Examples of the fluorinated cyclic carbonate include fluoroethylene carbonate, difluoroethylene carbonate, trifluoropropylene carbonate, and the like, and fluoroethylene carbonate (FEC) is preferable. The said fluorinated cyclic carbonate can be used individually by 1 type or in mixture of 2 or more types.
上記フッ素化環状カーボネートの含有量としては特に制限されないが、上記第1非水溶媒と上記フッ素化リン酸エステルとの合計質量に対する下限としては、1質量%が好ましく、3質量%がより好ましい。一方、この上限としては、20質量%が好ましく、10質量%がより好ましい。また、全非水溶媒に占める上記第1非水溶媒の含有量の下限としては、1体積%が好ましく、3体積%がより好ましい。一方、この上限としては、20体積%が好ましく、10体積%がより好ましい。フッ素化環状カーボネートの含有量を上記下限以上とすることにより、非水電解質蓄電素子の充放電時に生じうる副反応をより効果的に抑制することができる。一方、フッ素化環状カーボネートの含有量を上記上限以下とすることにより、非水電解質の粘度やリチウムイオンの伝導性等を好適化することができる。 Although it does not restrict | limit especially as content of the said fluorinated cyclic carbonate, As a minimum with respect to the total mass of the said 1st non-aqueous solvent and the said fluorinated phosphate ester, 1 mass% is preferable and 3 mass% is more preferable. On the other hand, as this upper limit, 20 mass% is preferable and 10 mass% is more preferable. Moreover, as a minimum of content of the said 1st nonaqueous solvent which occupies for all the nonaqueous solvents, 1 volume% is preferable and 3 volume% is more preferable. On the other hand, as this upper limit, 20 volume% is preferable and 10 volume% is more preferable. By setting the content of the fluorinated cyclic carbonate to the above lower limit or more, side reactions that can occur during charging and discharging of the nonaqueous electrolyte storage element can be more effectively suppressed. On the other hand, by setting the content of the fluorinated cyclic carbonate below the upper limit, the viscosity of the non-aqueous electrolyte, the conductivity of lithium ions, and the like can be optimized.
(その他の溶媒等)
上記非水溶媒は、上記第1非水溶媒、上記フッ素化リン酸エステル及び上記フッ素化環状カーボネート以外のその他の非水溶媒を含有することができる。但し、全非水溶媒に占める上記その他の非水溶媒の含有量としては、10体積%以下が好ましく、1体積%以下が好ましいこともある。上記その他の非水溶媒の含有量が多い場合、非水電解質の溶媒和状態、リチウムイオンの伝導性、粘度等に影響を与える場合がある。
(Other solvents, etc.)
The non-aqueous solvent may contain other non-aqueous solvents other than the first non-aqueous solvent, the fluorinated phosphate ester, and the fluorinated cyclic carbonate. However, the content of the other nonaqueous solvent in the total nonaqueous solvent is preferably 10% by volume or less, and sometimes 1% by volume or less. When the content of the other non-aqueous solvent is large, the solvation state of the non-aqueous electrolyte, lithium ion conductivity, viscosity, and the like may be affected.
また、当該非水電解質は、本発明の効果を阻害しない限り、電解質塩及び非水溶媒以外の他の成分を含有していてもよい。上記他の成分としては、一般的な蓄電素子用非水電解質に含有される各種添加剤を挙げることができる。但し、当該非水電解質における上記他の成分の含有量としては、5質量%以下が好ましく、1質量%以下がより好ましいこともある。 Moreover, the said nonaqueous electrolyte may contain other components other than electrolyte salt and a nonaqueous solvent, unless the effect of this invention is inhibited. As said other component, the various additives contained in the general nonaqueous electrolyte for electrical storage elements can be mentioned. However, the content of the other components in the nonaqueous electrolyte is preferably 5% by mass or less, and more preferably 1% by mass or less.
当該非水電解質は、上記非水溶媒にLiBF4等を添加し、溶解させることにより得ることができる。 The non-aqueous electrolyte can be obtained by adding LiBF 4 or the like to the non-aqueous solvent and dissolving it.
<非水電解質蓄電素子>
本発明の一実施形態に係る非水電解質蓄電素子は、正極、負極及び非水電解質を有する。以下、非水電解質蓄電素子の一例として、非水電解質二次電池について説明する。上記正極及び負極は、通常、セパレータを介して積層又は巻回により交互に重畳された電極体を形成する。この電極体はケースに収納され、このケース内に上記非水電解質が充填される。当該非水電解質二次電池においては、非水電解質として、上述した当該蓄電素子用非水電解質が用いられている。上記非水電解質は、正極と負極との間に介在する。また、上記ケースとしては、非水電解質二次電池のケースとして通常用いられる公知のアルミニウムケース等を用いることができる。
<Nonaqueous electrolyte storage element>
A nonaqueous electrolyte storage element according to an embodiment of the present invention includes a positive electrode, a negative electrode, and a nonaqueous electrolyte. Hereinafter, a nonaqueous electrolyte secondary battery will be described as an example of a nonaqueous electrolyte storage element. The positive electrode and the negative electrode usually form an electrode body that is alternately superposed by stacking or winding via a separator. The electrode body is housed in a case, and the case is filled with the nonaqueous electrolyte. In the non-aqueous electrolyte secondary battery, the above-described non-aqueous electrolyte for a storage element is used as the non-aqueous electrolyte. The non-aqueous electrolyte is interposed between the positive electrode and the negative electrode. In addition, as the case, a known aluminum case that is usually used as a case of a nonaqueous electrolyte secondary battery can be used.
当該非水電解質二次電池によれば、LiBF4を電解質塩として用いた非水電解質を有しているにもかかわらず、これを適用した非水電解質二次電池の高率放電性能を高めることができる。また、当該非水電解質二次電池は、非水電解質の耐酸化分解性に優れる。そのため、当該非水電解質二次電池(蓄電素子)は、高い作動電圧で用いることができる。例えば、満充電状態の当該非水電解質二次電池における正極電位を4.4V(vs.Li/Li+)より貴とすることができる。一方、この満充電状態の当該非水電解質二次電池における正極電位の上限は、例えば5.1V(vs.Li/Li+)であり、5.0V(vs.Li/Li+)であってもよい。 According to the non-aqueous electrolyte secondary battery, although it has a non-aqueous electrolyte using LiBF 4 as an electrolyte salt, the high-rate discharge performance of the non-aqueous electrolyte secondary battery to which this is applied is improved. Can do. In addition, the nonaqueous electrolyte secondary battery is excellent in the oxidative decomposition resistance of the nonaqueous electrolyte. Therefore, the nonaqueous electrolyte secondary battery (storage element) can be used at a high operating voltage. For example, the positive electrode potential in the fully charged nonaqueous electrolyte secondary battery can be made nobler than 4.4 V (vs. Li / Li + ). On the other hand, the upper limit of the positive electrode potential in the fully charged nonaqueous electrolyte secondary battery is, for example, 5.1 V (vs. Li / Li + ), and 5.0 V (vs. Li / Li + ). Also good.
(正極)
上記正極は、正極基材、及びこの正極基材に直接又は中間層を介して配される正極活物質層を有する。
(Positive electrode)
The positive electrode has a positive electrode base material and a positive electrode active material layer disposed on the positive electrode base material directly or via an intermediate layer.
上記正極基材は、導電性を有する。基材の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼等の金属又はそれらの合金が用いられる。これらの中でも、耐電位性、導電性の高さ及びコストのバランスからアルミニウム及びアルミニウム合金が好ましい。また、正極基材の形成形態としては、箔、蒸着膜等が挙げられ、コストの面から箔が好ましい。つまり、正極基材としてはアルミニウム箔が好ましい。なお、アルミニウム又はアルミニウム合金としては、JIS−H−4000(2014年)に規定されるA1085P、A3003P等が例示できる。 The positive electrode base material has conductivity. As the material of the substrate, metals such as aluminum, titanium, tantalum, stainless steel, or alloys thereof are used. Among these, aluminum and aluminum alloys are preferable from the balance of potential resistance, high conductivity and cost. Moreover, foil, a vapor deposition film, etc. are mentioned as a formation form of a positive electrode base material, and foil is preferable from the surface of cost. That is, an aluminum foil is preferable as the positive electrode base material. Examples of aluminum or aluminum alloy include A1085P and A3003P defined in JIS-H-4000 (2014).
中間層は、正極基材の表面の被覆層であり、炭素粒子等の導電性粒子を含むことで正極基材と正極活物質層との接触抵抗を低減する。中間層の構成は特に限定されず、例えば樹脂バインダー及び導電性粒子を含有する組成物により形成できる。なお、「導電性」を有するとは、JIS−H−0505(1975年)に準拠して測定される体積抵抗率が107Ω・cm以下であることを意味し、「非導電性」とは、上記体積抵抗率が107Ω・cm超であることを意味する。 An intermediate | middle layer is a coating layer of the surface of a positive electrode base material, and reduces the contact resistance of a positive electrode base material and a positive electrode active material layer by including electroconductive particles, such as a carbon particle. The structure of an intermediate | middle layer is not specifically limited, For example, it can form with the composition containing a resin binder and electroconductive particle. “Conductive” means that the volume resistivity measured in accordance with JIS-H-0505 (1975) is 10 7 Ω · cm or less, and “nonconductive” Means that the volume resistivity is more than 10 7 Ω · cm.
正極活物質層は、正極活物質を含むいわゆる正極合材から形成される。また、正極活物質層を形成する正極合材は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。 The positive electrode active material layer is formed from a so-called positive electrode mixture containing a positive electrode active material. In addition, the positive electrode mixture for forming the positive electrode active material layer contains optional components such as a conductive agent, a binder (binder), a thickener, and a filler as necessary.
上記正極活物質としては、例えばLixMOy(Mは少なくとも一種の遷移金属を表す)で表される複合酸化物(層状のα―NaFeO2型結晶構造を有するLixCoO2,LixNiO2,LixMnO3,LixNiαCo(1−α)O2,LixNiαMnβCo(1−α−β)O2等、スピネル型結晶構造を有するLixMn2O4,LixNiαMn(2−α)O4等)、LiwMex(XOy)z(Meは少なくとも一種の遷移金属を表し、Xは例えばP、Si、B、V等を表す)で表されるポリアニオン化合物(LiFePO4,LiMnPO4,LiNiPO4,LiCoPO4,Li3V2(PO4)3,Li2MnSiO4,Li2CoPO4F等)が挙げられる。これらの化合物中の元素又はポリアニオンは、他の元素又はアニオン種で一部が置換されていてもよい。正極活物質層においては、これら化合物の1種を単独で用いてもよく、2種以上を混合して用いてもよい。 As the positive electrode active material, for example, a composite oxide represented by Li x MO y (M represents at least one transition metal) (Li x CoO 2 having a layered α-NaFeO 2 type crystal structure, Li x NiO) 2, Li x MnO 3, Li x Ni α Co (1-α) O 2, Li x Ni α Mn β Co (1-α-β) O 2 , etc., Li x Mn 2 O 4 having a spinel type crystal structure , Li x Ni α Mn (2-α) O 4 ), Li w Me x (XO y ) z (Me represents at least one transition metal, X represents P, Si, B, V, etc.) And a polyanion compound represented by the formula (LiFePO 4 , LiMnPO 4 , LiNiPO 4 , LiCoPO 4 , Li 3 V 2 (PO 4 ) 3 , Li 2 MnSiO 4 , Li 2 CoPO 4 F, etc.). The elements or polyanions in these compounds may be partially substituted with other elements or anion species. In the positive electrode active material layer, one kind of these compounds may be used alone, or two or more kinds may be mixed and used.
上記正極は、非水電解質二次電池の通常使用時の充電終止電圧における正極電位が4.4V(vs.Li/Li+)より貴となり得る正極活物質を含むことが好ましい。当該非水電解質二次電池は、上述のように高率放電性能が高く、また、非水電解質の耐酸化分解性が高い。従って、このような貴な電位となり得る正極活物質を含む場合も、非水電解質の分解が良好に抑制される。従って、4.4V(vs.Li/Li+)より貴な特定の電位となり得る正極活物質を用いることで、高エネルギー密度を有し、高率放電性能にも優れる非水電解質蓄電素子とすることができる。 It is preferable that the positive electrode includes a positive electrode active material in which the positive electrode potential at the end-of-charge voltage during normal use of the nonaqueous electrolyte secondary battery can be nobler than 4.4 V (vs. Li / Li + ). The non-aqueous electrolyte secondary battery has high discharge performance as described above, and the non-aqueous electrolyte has high oxidative decomposition resistance. Therefore, even when such a positive electrode active material that can be a noble potential is included, the decomposition of the nonaqueous electrolyte is satisfactorily suppressed. Therefore, by using a positive electrode active material that can have a specific potential nobler than 4.4 V (vs. Li / Li + ), a non-aqueous electrolyte storage element having high energy density and excellent high-rate discharge performance can be obtained. be able to.
4.4V(vs.Li/Li+)より貴な特定の電位に至って可逆的なリチウムイオンの挿入脱離が可能な正極活物質としては、例えば、スピネル型結晶構造を有するLixNiαMn(2−α)O4の一例であるLiNi0.5Mn1.5O4や、ポリアニオン化合物LiwCox(PO4)yXzの一例であるLiCoPO4等を挙げることができる。 As a positive electrode active material capable of reversible insertion / extraction of lithium ions reaching a specific potential nobler than 4.4 V (vs. Li / Li + ), for example, Li x Ni α Mn having a spinel crystal structure LiNi 0.5 Mn 1.5 O 4 which is an example of (2-α) O 4 , LiCoPO 4 which is an example of a polyanion compound Li w Co x (PO 4 ) y X z and the like can be mentioned.
上記導電剤としては、電池性能に悪影響を与えない導電性材料であれば特に限定されない。このような導電剤としては、天然又は人造の黒鉛、ファーネスブラック、アセチレンブラック、ケッチェンブラック等のカーボンブラック、金属、導電性セラミックス等が挙げられる。導電剤の形状としては、粉状、繊維状等が挙げられる。 The conductive agent is not particularly limited as long as it is a conductive material that does not adversely affect battery performance. Examples of such a conductive agent include natural or artificial graphite, furnace black, acetylene black, ketjen black and other carbon blacks, metals, conductive ceramics, and the like. Examples of the shape of the conductive agent include powder and fiber.
上記バインダー(結着剤)としては、フッ素樹脂(ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)等)、ポリエチレン、ポリプロピレン、ポリイミド等の熱可塑性樹脂;エチレン−プロピレン−ジエンゴム(EPDM)、スルホン化EPDM、スチレンブタジエンゴム(SBR)、フッ素ゴム等のエラストマー;多糖類高分子等が挙げられる。 Examples of the binder (binder) include fluororesins (polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), etc.), thermoplastic resins such as polyethylene, polypropylene, polyimide; ethylene-propylene-diene rubber (EPDM), Examples thereof include elastomers such as sulfonated EPDM, styrene butadiene rubber (SBR) and fluororubber; polysaccharide polymers and the like.
上記増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース等の多糖類高分子が挙げられる。また、増粘剤がリチウムと反応する官能基を有する場合、予めメチル化等によりこの官能基を失活させておくことが好ましい。 Examples of the thickener include polysaccharide polymers such as carboxymethylcellulose (CMC) and methylcellulose. When the thickener has a functional group that reacts with lithium, it is preferable to deactivate this functional group in advance by methylation or the like.
上記フィラーとしては、電池性能に悪影響を与えないものであれば特に限定されない。フィラーの主成分としては、ポリプロピレン、ポリエチレン等のポリオレフィン、シリカ、アルミナ、ゼオライト、ガラス、炭素等が挙げられる。 The filler is not particularly limited as long as it does not adversely affect battery performance. Examples of the main component of the filler include polyolefins such as polypropylene and polyethylene, silica, alumina, zeolite, glass, and carbon.
(負極)
上記負極は、負極基材、及びこの負極基材に直接又は中間層を介して配される負極活物質層を有する。上記中間層は正極の中間層と同様の構成とすることができる。
(Negative electrode)
The negative electrode includes a negative electrode base material and a negative electrode active material layer disposed on the negative electrode base material directly or via an intermediate layer. The intermediate layer can have the same configuration as the positive electrode intermediate layer.
上記負極基材は、正極基材と同様の構成とすることができるが、材質としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属又はそれらの合金が用いられ、銅又は銅合金が好ましい。つまり、負極基材としては銅箔が好ましい。銅箔としては、圧延銅箔、電解銅箔等が例示される。 The negative electrode base material can have the same configuration as the positive electrode base material, but as a material, a metal such as copper, nickel, stainless steel, nickel-plated steel or an alloy thereof is used, and copper or a copper alloy is used. preferable. That is, copper foil is preferable as the negative electrode substrate. Examples of the copper foil include rolled copper foil and electrolytic copper foil.
負極活物質層は、負極活物質を含むいわゆる負極合材から形成される。また、負極活物質層を形成する負極合材は、必要に応じて導電剤、バインダー(結着剤)、増粘剤、フィラー等の任意成分を含む。導電剤、結着剤、増粘剤、フィラー等の任意成分は、正極活物質層と同様のものを用いることができる。 The negative electrode active material layer is formed from a so-called negative electrode mixture containing a negative electrode active material. Moreover, the negative electrode composite material which forms a negative electrode active material layer contains arbitrary components, such as a electrically conductive agent, a binder (binder), a thickener, and a filler as needed. The same components as those for the positive electrode active material layer can be used as optional components such as a conductive agent, a binder, a thickener, and a filler.
負極活物質としては、通常、リチウムイオンを吸蔵及び放出することができる材質が用いられる。具体的な負極活物質としては、例えばSi、Sn等の金属又は半金属;Si酸化物、Sn酸化物等の金属酸化物又は半金属酸化物;ポリリン酸化合物;黒鉛(グラファイト)、非晶質炭素(易黒鉛化性炭素又は難黒鉛化性炭素)等の炭素材料等が挙げられる。 As the negative electrode active material, a material that can occlude and release lithium ions is usually used. Specific negative electrode active materials include, for example, metals or semimetals such as Si and Sn; metal oxides or semimetal oxides such as Si oxide and Sn oxide; polyphosphate compounds; graphite (graphite) and amorphous Examples thereof include carbon materials such as carbon (easily graphitizable carbon or non-graphitizable carbon).
さらに、負極合材(負極活物質層)は、B、N、P、F、Cl、Br、I等の典型非金属元素、Li、Na、Mg、Al、K、Ca、Zn、Ga、Ge等の典型金属元素、Sc、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Mo、Zr、Ta、Hf、Nb、W等の遷移金属元素を含有してもよい。 Furthermore, the negative electrode mixture (negative electrode active material layer) includes typical nonmetallic elements such as B, N, P, F, Cl, Br, and I, Li, Na, Mg, Al, K, Ca, Zn, Ga, and Ge. Typical metal elements such as Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Mo, Zr, Ta, Hf, Nb, and W may be contained.
(セパレータ)
上記セパレータの材質としては、例えば織布、不織布、多孔質樹脂フィルム等が用いられる。これらの中でも、強度の観点から多孔質樹脂フィルムが好ましく、非水電解質の保液性の観点から不織布が好ましい。上記セパレータの主成分としては、強度の観点から例えばポリエチレン、ポリプロピレン等のポリオレフィンが好ましく、耐酸化分解性の観点から例えばポリイミドやアラミド等が好ましい。また、これらの樹脂を複合してもよい。
(Separator)
As the material of the separator, for example, a woven fabric, a nonwoven fabric, a porous resin film, or the like is used. Among these, a porous resin film is preferable from the viewpoint of strength, and a nonwoven fabric is preferable from the viewpoint of liquid retention of the nonaqueous electrolyte. The main component of the separator is preferably a polyolefin such as polyethylene or polypropylene from the viewpoint of strength, and is preferably polyimide or aramid from the viewpoint of resistance to oxidative degradation. These resins may be combined.
<非水電解質蓄電素子の製造方法>
本発明の一実施形態に係る非水電解質蓄電素子の製造方法は、正極、負極及び非水電解質を有する非水電解質二次電池の製造方法であって、上記非水電解質として、当該蓄電素子用非水電解質を用いることを特徴とする。当該製造方法は、例えば、正極及び負極(電極体)をケースに収容する工程、及び上記ケースに上記非水電解質を注入する工程を備える。
<Method for Manufacturing Nonaqueous Electrolyte Storage Element>
A method for producing a nonaqueous electrolyte storage element according to an embodiment of the present invention is a method for producing a nonaqueous electrolyte secondary battery having a positive electrode, a negative electrode, and a nonaqueous electrolyte, and the nonaqueous electrolyte is used for the storage element. A non-aqueous electrolyte is used. The manufacturing method includes, for example, a step of housing a positive electrode and a negative electrode (electrode body) in a case, and a step of injecting the nonaqueous electrolyte into the case.
上記注入は、公知の方法により行うことができる。注入後、注入口を封止することにより非水電解質二次電池(非水電解質蓄電素子)を得ることができる。当該製造方法によって得られる非水電解質二次電池を構成する各要素についての詳細は上述したとおりである。当該製造方法によれば、当該蓄電素子用非水電解質を用いることで、高率放電性能の高い非水電解質蓄電素子を得ることができる。 The injection can be performed by a known method. After the injection, the non-aqueous electrolyte secondary battery (non-aqueous electrolyte storage element) can be obtained by sealing the injection port. The details of each element constituting the nonaqueous electrolyte secondary battery obtained by the manufacturing method are as described above. According to the manufacturing method, by using the non-aqueous electrolyte for a storage element, a non-aqueous electrolyte storage element having high high-rate discharge performance can be obtained.
<その他の実施形態>
本発明は上記実施形態に限定されるものではなく、上記態様の他、種々の変更、改良を施した態様で実施することができる。例えば、上記正極又は負極において、中間層を設けなくてもよい。また、例えば、非水電解質としてポリマー固体電解質を用いる場合、本発明の非水電解質蓄電素子の製造方法において、上述した注入工程を備えなくてもよい。
<Other embodiments>
The present invention is not limited to the above-described embodiment, and can be implemented in a mode in which various changes and improvements are made in addition to the above-described mode. For example, the intermediate layer may not be provided in the positive electrode or the negative electrode. Further, for example, when a polymer solid electrolyte is used as the non-aqueous electrolyte, the above-described injection step may not be provided in the method for manufacturing a non-aqueous electrolyte electricity storage device of the present invention.
また、上記実施の形態においては、非水電解質蓄電素子が非水電解質二次電池である形態を中心に説明したが、その他の非水電解質蓄電素子であってもよい。その他の非水電解質蓄電素子としては、キャパシタ(電気二重層キャパシタ、リチウムイオンキャパシタ)等が挙げられる。 In the above embodiment, the non-aqueous electrolyte storage element is mainly described as a non-aqueous electrolyte secondary battery. However, other non-aqueous electrolyte storage elements may be used. Examples of other nonaqueous electrolyte storage elements include capacitors (electric double layer capacitors, lithium ion capacitors) and the like.
図1に、本発明に係る非水電解質蓄電素子の一実施形態である矩形状の非水電解質二次電池1の概略図を示す。なお、同図は、容器内部を透視した図としている。図1に示す非水電解質二次電池1は、電極体2が電池容器3に収納されている。電極体2は、正極活物質を備える正極と、負極活物質を備える負極とが、セパレータを介して捲回されることにより形成されている。正極は、正極リード4’を介して正極端子4と電気的に接続され、負極は、負極リード5’を介して負極端子5と電気的に接続されている。
FIG. 1 shows a schematic view of a rectangular nonaqueous electrolyte secondary battery 1 which is an embodiment of a nonaqueous electrolyte storage element according to the present invention. In the figure, the inside of the container is seen through. In the nonaqueous electrolyte secondary battery 1 shown in FIG. 1, an electrode body 2 is accommodated in a
本発明に係る非水電解質二次電池の構成については特に限定されるものではなく、円筒型電池、角型電池(矩形状の電池)、扁平型電池等が一例として挙げられる。本発明は、上記の非水電解質二次電池を複数備える蓄電装置としても実現することができる。蓄電装置の一実施形態を図2に示す。図2において、蓄電装置30は、複数の蓄電ユニット20を備えている。それぞれの蓄電ユニット20は、複数の非水電解質二次電池1を備えている。上記蓄電装置30は、電気自動車(EV)、ハイブリッド自動車(HEV)、プラグインハイブリッド自動車(PHEV)等の自動車用電源として搭載することができる。
The configuration of the nonaqueous electrolyte secondary battery according to the present invention is not particularly limited, and examples thereof include a cylindrical battery, a square battery (rectangular battery), a flat battery, and the like. The present invention can also be realized as a power storage device including a plurality of the above non-aqueous electrolyte secondary batteries. One embodiment of a power storage device is shown in FIG. In FIG. 2, the
以下、実施例によって本発明をさらに具体的に説明するが、本発明は以下の実施例に限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to the following examples.
[実施例1]
(非水電解質の調製)
第1非水溶媒としてのプロピレンカーボネート(PC)とリン酸トリス(2,2,2−トリフルオロエチル)(TFEP)とを1:0.5の体積比で混合した。次いで、この2種の混合溶媒に対して、フルオロエチレンカーボネート(FEC)を4.9質量%の割合で添加し、3種の混合溶媒からなる非水溶媒を得た。この非水溶媒1kgに対して、電解質塩としてのLiBF4を2.5molの割合で添加し、溶解させ、実施例1の非水電解質を得た。LiBF4のモル数(Liのモル数と同一)に対するPCのモル数は、2.2と計算される。
[Example 1]
(Preparation of non-aqueous electrolyte)
Propylene carbonate (PC) as a first nonaqueous solvent and tris (2,2,2-trifluoroethyl) phosphate (TFEP) were mixed at a volume ratio of 1: 0.5. Next, fluoroethylene carbonate (FEC) was added to the two mixed solvents at a ratio of 4.9% by mass to obtain a nonaqueous solvent composed of the three mixed solvents. LiBF 4 as an electrolyte salt was added at a rate of 2.5 mol with respect to 1 kg of this non-aqueous solvent and dissolved to obtain the non-aqueous electrolyte of Example 1. The number of moles of PC relative to the number of moles of LiBF 4 (same as the number of moles of Li) is calculated to be 2.2.
(非水電解質蓄電素子の作製)
LiNi0.5Mn1.5O4を正極活物質とする正極板を作製した。また、グラファイトを負極活物質とする負極板を作製した。次いで、ポリイミド製不織布からなるセパレータを介して、上記正極板と上記負極板とを積層することにより電極体を作製した。この電極体を金属樹脂複合フィルム製のケースに収納し、内部に上記非水電解質を注入した後、熱溶着により封口し、非水電解質蓄電素子(リチウムイオン二次電池)を得た。
(Preparation of nonaqueous electrolyte storage element)
A positive electrode plate using LiNi 0.5 Mn 1.5 O 4 as a positive electrode active material was produced. Moreover, the negative electrode plate which uses a graphite as a negative electrode active material was produced. Subsequently, the said positive electrode plate and the said negative electrode plate were laminated | stacked through the separator which consists of a polyimide nonwoven fabric, and the electrode body was produced. The electrode body was housed in a case made of a metal resin composite film, and the nonaqueous electrolyte was injected into the inside, and then sealed by thermal welding to obtain a nonaqueous electrolyte storage element (lithium ion secondary battery).
[実施例2〜3、比較例1〜5、参考例1〜4]
電解質塩の種類及び濃度、TFEPの使用量(PCとの体積比)、並びにFECの添加量(PC又はPCとTFEPとの混合溶媒に対する添加量)を表1のとおりとしたこと以外は実施例1と同様にして、実施例2〜3、比較例1〜5、参考例1〜4の各非水電解質蓄電素子を得た。なお、表1には、PCとLiとのモル比、及び各溶媒の体積比をあわせて示している。
[Examples 2-3, Comparative Examples 1-5, Reference Examples 1-4]
Except that the type and concentration of the electrolyte salt, the amount of TFEP used (volume ratio with PC), and the amount of FEC added (added to the mixed solvent of PC or PC and TFEP) are as shown in Table 1. In the same manner as in Example 1, the nonaqueous electrolyte electricity storage elements of Examples 2 to 3, Comparative Examples 1 to 5, and Reference Examples 1 to 4 were obtained. Table 1 also shows the molar ratio of PC and Li and the volume ratio of each solvent.
[評価]
(0.2CmA放電容量確認試験)
得られた各非水電解質蓄電素子について、25℃において定電流過程の充電電流0.2CmA、充電終止電圧5.0V、定電圧過程の充電終止電流0.02CmAとして定電流定電圧充電を行い、その後、10分間の休止期間を設けた。その後、放電電流0.2CmA、放電終止電圧3.0Vとして定電流放電を行い、その後、10分間の休止期間を設けた。この充放電を2サイクル実施し、2サイクル目の放電容量を「0.2CmA放電容量(mAh)」とした。
[Evaluation]
(0.2 CmA discharge capacity confirmation test)
About each obtained nonaqueous electrolyte storage element, constant current constant voltage charging was performed at 25 ° C. with a constant current process charge current of 0.2 CmA, a charge end voltage of 5.0 V, and a constant voltage process charge end current of 0.02 CmA, A 10 minute rest period was then provided. Thereafter, a constant current discharge was performed with a discharge current of 0.2 CmA and a discharge end voltage of 3.0 V, and then a 10-minute rest period was provided. This charging / discharging was performed for 2 cycles, and the discharge capacity at the second cycle was set to “0.2 CmA discharge capacity (mAh)”.
(1.0CmA放電容量確認試験)
次いで、25℃において定電流過程の充電電流0.2CmA、充電終止電圧5.0V、定電圧過程の充電終止電流0.02CmAとして定電流定電圧充電を行い、その後、10分間の休止期間を設けた。その後、放電電流1.0CmA、放電終止電圧3.0Vとして定電流放電を行い、このときの放電容量を「1.0CmA放電容量(mAh)」とした。
(1.0 CmA discharge capacity confirmation test)
Next, constant current and constant voltage charge is performed at 25 ° C. with a constant current process charge current of 0.2 CmA, a charge end voltage of 5.0 V, and a constant voltage process charge end current of 0.02 CmA, and then a 10-minute rest period is provided. It was. Thereafter, constant current discharge was performed with a discharge current of 1.0 CmA and a discharge end voltage of 3.0 V, and the discharge capacity at this time was defined as “1.0 CmA discharge capacity (mAh)”.
上記「0.2CmA放電容量(mAh)」に対する上記「1.0CmA放電容量(mAh)」の百分率を「高率放電性能(%)」とした。以上の結果を表1に示す。 The percentage of the “1.0 CmA discharge capacity (mAh)” relative to the “0.2 CmA discharge capacity (mAh)” was defined as “high rate discharge performance (%)”. The results are shown in Table 1.
上記表1に示されるように、実施例1〜3の非水電解質蓄電素子は、非水電解質に電解質塩として高濃度のLiBF4を用いているにもかかわらず、フッ素化リン酸エステルであるTFEPが含有されていることで、優れた高率放電性能を有することがわかる。これは、TFEPが、PCのLiBF4への溶媒和を阻害せず、かつ、LiBF4の解離が促進されるように機能しているためと推察される。 As shown in Table 1 above, the nonaqueous electrolyte electricity storage devices of Examples 1 to 3 are fluorinated phosphate esters despite using high concentration LiBF 4 as the electrolyte salt in the nonaqueous electrolyte. It turns out that it has the outstanding high-rate discharge performance by containing TFEP. This is presumably because TFEP does not inhibit the solvation of PC to LiBF 4 and functions so as to promote the dissociation of LiBF 4 .
一方、比較例1では、非水電解液のLiBF4濃度が低く、溶媒和していないPCが多く存在するために副反応(非水溶媒等の酸化分解反応や負極活物質であるグラファイト層間へのPCの共挿入等)が生じ、非水電解質蓄電素子は試験途中において充放電ができなくなった。さらに、比較例2〜5では、比較例1よりも非水電解液のLiBF4濃度を増加させたため溶媒和していないPCの量が減り、非水電解質蓄電素子の充放電は行えた。しかし、PCのLiBF4への溶媒和により電解質中の分子又はイオン間に働く相互作用が増加し、リチウムイオンの移動が妨げられるため、非水電解質蓄電素子の高率放電性能が低い結果となった。 On the other hand, in Comparative Example 1, since the concentration of LiBF 4 in the non-aqueous electrolyte solution is low and there are many unsolvated PCs, side reactions (oxidative decomposition reactions such as non-aqueous solvents and negative electrode active materials into the graphite layer) In other words, the non-aqueous electrolyte storage element could not be charged / discharged during the test. Furthermore, in Comparative Examples 2-5, since the LiBF 4 concentration of the nonaqueous electrolyte was increased as compared with Comparative Example 1, the amount of PC that was not solvated was reduced, and charging / discharging of the nonaqueous electrolyte storage element was performed. However, the solvation of PC with LiBF 4 increases the interaction between molecules or ions in the electrolyte and prevents the movement of lithium ions, resulting in a low rate discharge performance of the nonaqueous electrolyte storage element. It was.
なお、電解質塩としてLiPF6を用いた参考例1〜4の結果からは、TFEPを混合することで逆に非水電解質蓄電素子の高率放電性能が低下することが示されている。これは、PC(25℃における粘度2.5mPa・s)に対し、粘度の高いTFEP(25℃における粘度4.6mPa・s)を混合することで非水電解質の粘度が増大し、リチウムイオンの伝導性が低下したことによると推測される。すなわち、TFEPの混合により非水電解質蓄電素子の高率放電性能が高まる効果は、電解質塩としてLiBF4を用いた場合の特有の効果であるといえる。これは、LIBF4とLiPF6との解離度やアニオンのサイズの差異により、非水電解質中での挙動(相互作用等)が異なるためと推察される。実施例1〜3の非水電解質においては、LiBF4、第1非水溶媒(PC)及びフッ素化リン酸エステル(TFEP)の組み合わせによって、非水電解質の溶媒和状態がより好適に形成され、粘度及びリチウムイオンの伝導性が好適化されたものと推察される。 In addition, from the results of Reference Examples 1 to 4 using LiPF 6 as the electrolyte salt, it is shown that the high rate discharge performance of the nonaqueous electrolyte electricity storage element is decreased by mixing TFEP. This is because the viscosity of the non-aqueous electrolyte is increased by mixing TFEP (viscosity at 25 ° C. of 4.6 mPa · s) with PC (viscosity of 2.5 mPa · s at 25 ° C.). It is presumed that the conductivity decreased. That is, it can be said that the effect of increasing the high rate discharge performance of the nonaqueous electrolyte electricity storage element by mixing TFEP is a unique effect when LiBF 4 is used as the electrolyte salt. This is presumably because the behavior (interaction etc.) in the non-aqueous electrolyte differs depending on the degree of dissociation between LIBF 4 and LiPF 6 and the size of the anion. In the nonaqueous electrolytes of Examples 1 to 3, the solvation state of the nonaqueous electrolyte is more suitably formed by the combination of LiBF 4 , the first nonaqueous solvent (PC) and the fluorinated phosphate ester (TFEP). It is presumed that the viscosity and the conductivity of lithium ions are optimized.
本発明は、パーソナルコンピュータ、通信端末等の電子機器、自動車等の電源として使用される非水電解質蓄電素子、及びこれに備わる蓄電素子用非水電解質等に適用できる。 The present invention can be applied to electronic devices such as personal computers and communication terminals, nonaqueous electrolyte storage elements used as power sources for automobiles, and nonaqueous electrolytes for storage elements provided therein.
1 非水電解質二次電池
2 電極体
3 電池容器
4 正極端子
4’ 正極リード
5 負極端子
5’ 負極リード
20 蓄電ユニット
30 蓄電装置
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte secondary battery 2
Claims (8)
上記非水溶媒が、ドナー数が15以上の第1非水溶媒、及びフッ素化リン酸エステルを含み、
上記テトラフルオロホウ酸リチウムの含有量に対する上記第1非水溶媒の含有量が、モル比で4以下であることを特徴とする蓄電素子用非水電解質。 A non-aqueous electrolyte for a storage element containing a non-aqueous solvent and lithium tetrafluoroborate dissolved in the non-aqueous solvent,
The non-aqueous solvent includes a first non-aqueous solvent having a donor number of 15 or more, and a fluorinated phosphate ester,
The nonaqueous electrolyte for a storage element, wherein the content of the first nonaqueous solvent with respect to the content of lithium tetrafluoroborate is 4 or less in terms of molar ratio.
上記非水電解質として、請求項1から請求項4のいずれか1項に記載の蓄電素子用非水電解質を用いる非水電解質蓄電素子の製造方法。 A method for producing a nonaqueous electrolyte storage element having a positive electrode, a negative electrode, and a nonaqueous electrolyte,
The manufacturing method of the nonaqueous electrolyte electrical storage element which uses the nonaqueous electrolyte for electrical storage elements of any one of Claim 1 to 4 as said nonaqueous electrolyte.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016099354A JP6794658B2 (en) | 2016-05-18 | 2016-05-18 | Non-aqueous electrolyte for power storage element, non-aqueous electrolyte power storage element and its manufacturing method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016099354A JP6794658B2 (en) | 2016-05-18 | 2016-05-18 | Non-aqueous electrolyte for power storage element, non-aqueous electrolyte power storage element and its manufacturing method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2017208215A true JP2017208215A (en) | 2017-11-24 |
JP6794658B2 JP6794658B2 (en) | 2020-12-02 |
Family
ID=60416570
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016099354A Active JP6794658B2 (en) | 2016-05-18 | 2016-05-18 | Non-aqueous electrolyte for power storage element, non-aqueous electrolyte power storage element and its manufacturing method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6794658B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2019031598A1 (en) * | 2017-08-10 | 2019-02-14 | 株式会社Gsユアサ | Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element |
JP2019212442A (en) * | 2018-06-01 | 2019-12-12 | 株式会社日本触媒 | Nonaqueous electrolyte solution and lithium ion secondary battery |
JP2020145054A (en) * | 2019-03-05 | 2020-09-10 | 株式会社日立製作所 | Nonaqueous electrolyte solution, semisolid electrolyte layer, sheet for secondary battery and secondary battery |
WO2020213268A1 (en) * | 2019-04-17 | 2020-10-22 | 株式会社日立製作所 | Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery |
JP2021077608A (en) * | 2019-11-13 | 2021-05-20 | 株式会社Gsユアサ | Nonaqueous electrolyte, nonaqueous electrolyte power storage element and method for manufacturing nonaqueous electrolyte power storage element |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013020713A (en) * | 2011-07-07 | 2013-01-31 | Tosoh F-Tech Inc | Non-flammable electrolyte |
WO2013129428A1 (en) * | 2012-03-02 | 2013-09-06 | 日本電気株式会社 | Lithium secondary cell |
JP2015065052A (en) * | 2013-09-25 | 2015-04-09 | 国立大学法人 東京大学 | Power storage device |
US20150333315A1 (en) * | 2014-05-13 | 2015-11-19 | Samsung Sdi Co., Ltd. | Negative electrode and lithium battery including the same |
-
2016
- 2016-05-18 JP JP2016099354A patent/JP6794658B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2013020713A (en) * | 2011-07-07 | 2013-01-31 | Tosoh F-Tech Inc | Non-flammable electrolyte |
WO2013129428A1 (en) * | 2012-03-02 | 2013-09-06 | 日本電気株式会社 | Lithium secondary cell |
JP2015065052A (en) * | 2013-09-25 | 2015-04-09 | 国立大学法人 東京大学 | Power storage device |
US20150333315A1 (en) * | 2014-05-13 | 2015-11-19 | Samsung Sdi Co., Ltd. | Negative electrode and lithium battery including the same |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11450888B2 (en) | 2017-08-10 | 2022-09-20 | Gs Yuasa International Ltd. | Nonaqueous electrolyte and nonaqueous electrolyte energy storage device |
WO2019031598A1 (en) * | 2017-08-10 | 2019-02-14 | 株式会社Gsユアサ | Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element |
JP2019212442A (en) * | 2018-06-01 | 2019-12-12 | 株式会社日本触媒 | Nonaqueous electrolyte solution and lithium ion secondary battery |
JP7257109B2 (en) | 2018-06-01 | 2023-04-13 | 株式会社日本触媒 | Non-aqueous electrolyte and lithium-ion secondary battery |
WO2020179126A1 (en) * | 2019-03-05 | 2020-09-10 | 株式会社日立製作所 | Non-aqueous electrolyte, semi-solid electrolyte membrane, sheet for secondary battery, and secondary battery |
KR20210087515A (en) * | 2019-03-05 | 2021-07-12 | 가부시키가이샤 히타치세이사쿠쇼 | Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery and secondary battery |
CN113169379A (en) * | 2019-03-05 | 2021-07-23 | 株式会社日立制作所 | Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery, and secondary battery |
JP2020145054A (en) * | 2019-03-05 | 2020-09-10 | 株式会社日立製作所 | Nonaqueous electrolyte solution, semisolid electrolyte layer, sheet for secondary battery and secondary battery |
JP7270210B2 (en) | 2019-03-05 | 2023-05-10 | 株式会社日立製作所 | Non-aqueous electrolyte, semi-solid electrolyte layer, sheet for secondary battery and secondary battery |
KR102610616B1 (en) | 2019-03-05 | 2023-12-07 | 가부시키가이샤 히타치세이사쿠쇼 | Non-aqueous electrolyte, semi-solid electrolyte layer, secondary battery sheet and secondary battery |
JP2020177779A (en) * | 2019-04-17 | 2020-10-29 | 株式会社日立製作所 | Non-aqueous electrolyte, non-volatile electrolyte, secondary battery |
WO2020213268A1 (en) * | 2019-04-17 | 2020-10-22 | 株式会社日立製作所 | Nonaqueous electrolytic solution, nonvolatile electrolyte, and secondary battery |
JP7267823B2 (en) | 2019-04-17 | 2023-05-02 | 株式会社日立製作所 | Non-volatile electrolyte, secondary battery |
JP2021077608A (en) * | 2019-11-13 | 2021-05-20 | 株式会社Gsユアサ | Nonaqueous electrolyte, nonaqueous electrolyte power storage element and method for manufacturing nonaqueous electrolyte power storage element |
JP7552013B2 (en) | 2019-11-13 | 2024-09-18 | 株式会社Gsユアサ | Nonaqueous electrolyte, nonaqueous electrolyte storage element, and method for producing nonaqueous electrolyte storage element |
Also Published As
Publication number | Publication date |
---|---|
JP6794658B2 (en) | 2020-12-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN114447437B (en) | Electrolyte and separator for lithium metal battery | |
CN105322218B (en) | Nonaqueous electrolyte secondary battery, production method thereof, and nonaqueous electrolytic solution | |
JP6848330B2 (en) | Non-aqueous electrolyte power storage element | |
CN111316494B (en) | Non-aqueous electrolyte storage element and method for producing the same | |
JP6794658B2 (en) | Non-aqueous electrolyte for power storage element, non-aqueous electrolyte power storage element and its manufacturing method | |
US12155060B2 (en) | Energy storage device | |
JP2018181772A (en) | Nonaqueous electrolyte power storage element and manufacturing method thereof | |
JP6652072B2 (en) | Nonaqueous electrolyte, power storage element and method for manufacturing power storage element | |
JP7062975B2 (en) | Non-water electrolyte and non-water electrolyte storage element | |
JP6899312B2 (en) | Non-aqueous electrolyte and non-aqueous electrolyte power storage elements | |
JP6911655B2 (en) | A method for manufacturing a non-aqueous electrolyte for a power storage element, a non-aqueous electrolyte power storage element, and a non-aqueous electrolyte power storage element. | |
JP6747312B2 (en) | Non-aqueous electrolyte, power storage element and method for manufacturing power storage element | |
WO2019031598A1 (en) | Nonaqueous electrolyte and nonaqueous electrolyte electricity storage element | |
CN109964346A (en) | Active material, positive electrode and the battery cell of positive electrode for battery cell | |
CN109643828B (en) | Nonaqueous electrolyte storage element | |
JP7076067B2 (en) | Non-aqueous electrolyte secondary battery and method for manufacturing non-aqueous electrolyte secondary battery | |
JP2019145343A (en) | Nonaqueous electrolyte, nonaqueous electrolyte power storage element, and method for manufacturing nonaqueous electrolyte power storage element | |
JP7363792B2 (en) | Non-aqueous electrolyte storage element and method for manufacturing the non-aqueous electrolyte storage element | |
JP2018116906A (en) | Nonaqueous electrolyte, power storage element, and manufacturing method of the power storage element | |
JP7062976B2 (en) | Non-water electrolyte and non-water electrolyte storage element | |
JP6733443B2 (en) | Composite electrode material, negative electrode, and non-aqueous electrolyte secondary battery | |
JP2020173998A (en) | Non-aqueous electrolyte storage element and manufacturing method thereof | |
WO2017145507A1 (en) | Non-aqueous electrolyte for secondary batteries, non-aqueous electrolyte secondary battery, and method for manufacturing non-aqueous electrolyte secondary battery | |
JP2019087350A (en) | Power storage element and manufacturing method thereof | |
JP2018106895A (en) | Positive electrode active material, positive electrode, and nonaqueous electrolyte power storage device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20190218 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20191023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20191112 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20191226 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20200602 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20200727 |
|
C60 | Trial request (containing other claim documents, opposition documents) |
Free format text: JAPANESE INTERMEDIATE CODE: C60 Effective date: 20200727 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20200805 |
|
C21 | Notice of transfer of a case for reconsideration by examiners before appeal proceedings |
Free format text: JAPANESE INTERMEDIATE CODE: C21 Effective date: 20200811 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20201013 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20201026 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6794658 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |