[go: up one dir, main page]

JP2017198119A - Control device for internal combustion engine - Google Patents

Control device for internal combustion engine Download PDF

Info

Publication number
JP2017198119A
JP2017198119A JP2016088327A JP2016088327A JP2017198119A JP 2017198119 A JP2017198119 A JP 2017198119A JP 2016088327 A JP2016088327 A JP 2016088327A JP 2016088327 A JP2016088327 A JP 2016088327A JP 2017198119 A JP2017198119 A JP 2017198119A
Authority
JP
Japan
Prior art keywords
passage
temperature
combustion engine
internal combustion
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016088327A
Other languages
Japanese (ja)
Other versions
JP6672992B2 (en
Inventor
崇 発田
Takashi Hotta
崇 発田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2016088327A priority Critical patent/JP6672992B2/en
Publication of JP2017198119A publication Critical patent/JP2017198119A/en
Application granted granted Critical
Publication of JP6672992B2 publication Critical patent/JP6672992B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Output Control And Ontrol Of Special Type Engine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a novel constitution which can efficiently transmit heat to an internal passage from exhaust emission when introducing the exhaust emission into the internal passage of a cylinder block at a cold start of an internal combustion engine.SOLUTION: In start-time valve-opening control, the value-opening timing of a control valve 22 and a valve-closing period are controlled in order to move heat which is discharged accompanied by the condensation of vapor in exhaust emission flowing in an internal passage 20 to a wall face of the internal passage 20. Concretely, the control valve 22 is opened at timing at which a temperature of exhaust emission flowing in an exhaust passage 14 at an upstream side rather than a branch passage 16 is determined to be higher than a cooling temperature of an internal combustion engine 10. Then, while it is determined that a temperature Tof exhaust emission flowing in a branch passage 18 goes below a dew point after the control valve 22 is opened, the control valve 22 is continued to be opened, and at timing at which the temperature Texceeds the dew point, the control valve 22 is closed.SELECTED DRAWING: Figure 3

Description

この発明は、内燃機関の制御装置に関し、より詳細には、排気を導入可能に構成されたシリンダブロックを備える内燃機関を制御する内燃機関の制御装置に関する。   The present invention relates to an internal combustion engine control apparatus, and more particularly to an internal combustion engine control apparatus that controls an internal combustion engine that includes a cylinder block configured to be able to introduce exhaust gas.

特開2004−108256号公報には、内燃機関の冷間始動時に、当該内燃機関の排気通路を流れる排気の一部を当該内燃機関のシリンダブロックに形成した内部通路に導入するように構成した内燃機関の制御装置が開示されている。内燃機関の冷間始動時に排気の一部をシリンダブロックに形成した内部通路に導入すれば、当該内燃機関の暖機を促進でき、また、当該内燃機関のピストンとシリンダ壁とのフリクションを低減して燃費向上を図ることもできる。   Japanese Patent Laid-Open No. 2004-108256 discloses an internal combustion engine configured to introduce a part of exhaust gas flowing through an exhaust passage of the internal combustion engine into an internal passage formed in a cylinder block of the internal combustion engine when the internal combustion engine is cold-started. An engine control device is disclosed. If a part of the exhaust gas is introduced into the internal passage formed in the cylinder block during the cold start of the internal combustion engine, warming up of the internal combustion engine can be promoted, and friction between the piston and the cylinder wall of the internal combustion engine can be reduced. This can also improve fuel efficiency.

特開2004−108256号公報JP 2004-108256 A 特開2001−152960号公報JP 2001-152960 A

ところで、上述した排気の内部通路への導入は、シリンダブロックの構成部材(例えばシリンダ壁)よりも高温の排気による当該構成部材への伝熱を期待したものであり、内部通路に導入される排気の流量が多くなるほど当該構成部材への伝熱量を多くすることができる。しかし、排気から内部通路への熱伝達は基本的に効率が低い。また、内燃機関の冷間始動時は、そもそも、高温の排気が得られ難く、排気の流量もそれ程多くない。故に、内燃機関の冷間始動時にシリンダブロックの内部通路に排気を導入する場合は、排気から内部通路への効率的な熱伝達を実現するための改良が必要であるといえる。   By the way, the introduction of the exhaust into the internal passage described above is intended to transfer heat to the constituent member by exhaust gas having a temperature higher than that of the constituent member (for example, the cylinder wall) of the cylinder block, and the exhaust introduced into the internal passage. As the flow rate increases, the amount of heat transfer to the constituent member can be increased. However, heat transfer from the exhaust to the internal passage is basically inefficient. In addition, when the internal combustion engine is cold started, it is difficult to obtain high-temperature exhaust in the first place, and the exhaust flow rate is not so high. Therefore, when exhaust gas is introduced into the internal passage of the cylinder block at the time of cold start of the internal combustion engine, it can be said that improvement for realizing efficient heat transfer from the exhaust gas to the internal passage is necessary.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、内燃機関の冷間始動時にシリンダブロックの内部通路に排気を導入する場合において、排気から内部通路への熱伝達を効率的に行うことのできる新たな構成を提供することにある。   The present invention has been made in view of the above-described problems, and an object thereof is to efficiently transfer heat from the exhaust to the internal passage when the exhaust is introduced into the internal passage of the cylinder block during a cold start of the internal combustion engine. It is to provide a new configuration that can be performed automatically.

本発明に係る内燃機関の制御装置は、内燃機関のシリンダブロックに形成されて前記内燃機関の排気通路から分岐した第1分岐通路に接続された内部通路と、前記第1分岐通路よりも下流側において前記排気通路から分岐すると共に前記内部通路に接続された第2分岐通路と、前記第1分岐通路に設けられて前記第1分岐通路から前記内部通路への排気の流入を制御する制御弁と、前記第2分岐通路に設けられて前記第2分岐通路を流れる排気の温度を検出する温度センサと、を備える内燃機関を制御するように構成されており、前記内燃機関の始動時において、前記第1分岐通路との接続部よりも上流側の前記排気通路を流れる排気の温度が前記内部通路の壁面温度よりも高く、尚且つ、前記第2分岐通路を流れる排気の温度が前記第2分岐通路を流れる排気中の水蒸気が凝縮し始める温度を下回る場合に、前記第1分岐通路から前記内部通路への排気の流入を許可するように構成されていることを特徴とする。   An internal combustion engine control apparatus according to the present invention includes an internal passage formed in a cylinder block of an internal combustion engine and connected to a first branch passage branched from an exhaust passage of the internal combustion engine, and a downstream side of the first branch passage. A second branch passage branched from the exhaust passage and connected to the internal passage, and a control valve provided in the first branch passage for controlling an inflow of exhaust gas from the first branch passage to the internal passage; And a temperature sensor that is provided in the second branch passage and detects a temperature of exhaust gas flowing through the second branch passage, and is configured to control the internal combustion engine at the time of starting the internal combustion engine, The temperature of the exhaust gas flowing through the exhaust passage upstream of the connecting portion with the first branch passage is higher than the wall surface temperature of the internal passage, and the temperature of the exhaust gas flowing through the second branch passage is the second portion. If below the temperature at which water vapor in the exhaust gas flowing through the passage begins to condense, characterized in that it is composed of the first branch passage to allow the flow of exhaust gas into the internal passage.

本発明に係る内燃機関の制御装置では、内燃機関の始動時において、内燃機関からの排出直後の排気の温度が内部通路の壁面温度よりも高く、尚且つ、第2分岐通路を流れる排気の温度が第2分岐通路を流れる排気中の水蒸気が凝縮し始める温度を下回る場合に、第1分岐通路から内部通路への排気の流入が許可される。内燃機関からの排出直後の排気の温度が内部通路の壁面温度よりも高ければ、第1分岐通路から内部通路へ排気を流入させることで内部通路の壁面を温めることができる。また、第2分岐通路を流れる排気の温度が第2分岐通路を流れる排気中の水蒸気が凝縮し始める温度を下回るということは、第2分岐通路よりも上流側の内部通路を流れた際に、内部通路の壁面に排気が接することで冷やされた結果、当該排気中の水蒸気が凝縮していることを意味する。従って本発明に係る内燃機関の制御装置によれば、内部通路に流す排気中の水蒸気の凝縮に伴って放出される熱を内部通路の壁面に移動させることができるので、内燃機関の冷間始動時においても内部通路の壁面を効率よく温めることができる。   In the control apparatus for an internal combustion engine according to the present invention, when the internal combustion engine is started, the temperature of the exhaust gas immediately after being discharged from the internal combustion engine is higher than the wall surface temperature of the internal passage, and the temperature of the exhaust gas flowing through the second branch passage Is lower than the temperature at which water vapor in the exhaust gas flowing through the second branch passage begins to condense, the inflow of exhaust gas from the first branch passage to the internal passage is permitted. If the temperature of the exhaust gas immediately after being discharged from the internal combustion engine is higher than the wall surface temperature of the internal passage, the wall surface of the internal passage can be warmed by flowing the exhaust gas from the first branch passage into the internal passage. Further, the fact that the temperature of the exhaust gas flowing through the second branch passage is lower than the temperature at which the water vapor in the exhaust gas flowing through the second branch passage begins to condense means that when flowing through the internal passage on the upstream side of the second branch passage, It means that the water vapor in the exhaust is condensed as a result of being cooled by the exhaust coming into contact with the wall surface of the internal passage. Therefore, according to the control apparatus for an internal combustion engine according to the present invention, the heat released along with the condensation of the water vapor in the exhaust flowing through the internal passage can be moved to the wall surface of the internal passage. Even at times, the wall surface of the internal passage can be efficiently heated.

本発明の各実施の形態に係るシステム構成を説明する図である。It is a figure explaining the system configuration concerning each embodiment of the present invention. 水蒸気含有量の異なる2種類の排気をエンジン壁に接触させたときに当該排気から当該エンジン壁に移動する熱量と、エンジン壁への接触後における当該2種類の排気の温度との関係を示した図である。The relationship between the amount of heat transferred from the exhaust to the engine wall when two types of exhaust with different water vapor contents are brought into contact with the engine wall and the temperature of the two types of exhaust after contact with the engine wall is shown. FIG. 本発明の実施の形態1においてECU30が実行する処理の一例を示すフローチャートである。It is a flowchart which shows an example of the process which ECU30 performs in Embodiment 1 of this invention.

以下、図面に基づいて本発明の実施の形態について説明する。尚、各図において共通する要素には、同一の符号を付して重複する説明を省略する。また、以下の実施の形態によりこの発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, the same code | symbol is attached | subjected to the element which is common in each figure, and the overlapping description is abbreviate | omitted. The present invention is not limited to the following embodiments.

実施の形態1.
先ず、図1乃至図3を参照して、本発明の実施の形態1について説明する。
Embodiment 1 FIG.
First, Embodiment 1 of the present invention will be described with reference to FIGS.

[システム構成の説明]
図1は、本発明の実施の形態1に係るシステム構成を説明する図である。図1に示すシステムは、内燃機関10を備えている。内燃機関10は例えば車両に搭載される直列4気筒ガソリンエンジンであり、内燃機関10に吸入されるガス(吸気)が流れる吸気通路12と、内燃機関10から排出されるガス(排気)が流れる排気通路14と、を備えている。排気通路14は途中2箇所で分岐しており、排気流れ方向の上流側に分岐通路(第1分岐流路)16が位置し、同方向の下流側に分岐通路(第2分岐流路)18が位置している。分岐通路16,18は、内燃機関10の内部(より正確には内燃機関10のシリンダブロックの内部)に形成された内部通路20を介して接続されている。分岐通路16には、分岐通路16から内部通路20に流入する排気の流量を調整可能な制御弁22が設けられている。分岐通路18には、分岐通路18を流れる排気の温度TEXを検出する温度センサ24が設けられている。
[Description of system configuration]
FIG. 1 is a diagram illustrating a system configuration according to Embodiment 1 of the present invention. The system shown in FIG. 1 includes an internal combustion engine 10. The internal combustion engine 10 is, for example, an in-line four-cylinder gasoline engine mounted on a vehicle, and an intake passage 12 through which gas (intake) sucked into the internal combustion engine 10 flows and exhaust through which gas (exhaust) discharged from the internal combustion engine 10 flows. And a passage 14. The exhaust passage 14 is branched at two points along the way, a branch passage (first branch passage) 16 is located upstream in the exhaust flow direction, and a branch passage (second branch passage) 18 is located downstream in the same direction. Is located. The branch passages 16 and 18 are connected via an internal passage 20 formed inside the internal combustion engine 10 (more precisely, inside the cylinder block of the internal combustion engine 10). The branch passage 16 is provided with a control valve 22 capable of adjusting the flow rate of the exhaust gas flowing from the branch passage 16 into the internal passage 20. The branch passage 18 is provided with a temperature sensor 24 that detects the temperature T EX of the exhaust gas flowing through the branch passage 18.

また、図1に示すシステムは、制御装置としてのECU(Electronic Control Unit)30を備えている。ECU30は、例えばRAM(Random Access Memory)、ROM(Read Only Memory)、CPU(Central Processing Unit)を備えている。ECU30は、車両に搭載された各種センサの信号を取り込んで処理する。各種センサには、上述した温度センサ24が少なくとも含まれている。ECU30は、取り込んだ各センサの信号を処理して所定の制御プログラムに従って各種アクチュエータを操作する。ECU30によって操作されるアクチュエータには、上述した制御弁22が少なくとも含まれている。   The system shown in FIG. 1 includes an ECU (Electronic Control Unit) 30 as a control device. The ECU 30 includes, for example, a RAM (Random Access Memory), a ROM (Read Only Memory), and a CPU (Central Processing Unit). The ECU 30 captures and processes signals from various sensors mounted on the vehicle. The various sensors include at least the temperature sensor 24 described above. ECU30 processes the signal of each taken-in sensor, and operates various actuators according to a predetermined control program. The actuator operated by the ECU 30 includes at least the control valve 22 described above.

[ECU30による始動時制御]
本実施の形態では、図1に示したECU30による内燃機関10の冷間始動時の制御として、制御弁22を開く制御(以下「始動時開弁制御」ともいう。)が行われる。図1に示した内燃機関10の排気側に示す矢印は、制御弁22を開いた場合に生じる排気の流れを表したものである。この矢印から分かるように、制御弁22を開くと、内燃機関10からの排気の一部が分岐通路16に導入され、ここから内部通路20、分岐通路18の順に流れ、排気通路14に戻る。排気が内部通路20を流れる際、当該排気の温度が内部通路20の壁面の温度よりも高いと、当該排気から当該壁面へ熱が移動する。これにより、内部通路20の壁面が温められて内燃機関10の冷却水やオイルが温められる。
[Control at start-up by ECU 30]
In the present embodiment, as control during cold start of the internal combustion engine 10 by the ECU 30 shown in FIG. 1, control for opening the control valve 22 (hereinafter also referred to as “start-up valve opening control”) is performed. The arrow shown on the exhaust side of the internal combustion engine 10 shown in FIG. 1 represents the flow of exhaust that occurs when the control valve 22 is opened. As can be seen from this arrow, when the control valve 22 is opened, a part of the exhaust gas from the internal combustion engine 10 is introduced into the branch passage 16, flows from here to the internal passage 20 and the branch passage 18 in this order, and returns to the exhaust passage 14. When the exhaust gas flows through the internal passage 20, if the temperature of the exhaust gas is higher than the temperature of the wall surface of the internal passage 20, heat moves from the exhaust gas to the wall surface. Thereby, the wall surface of the internal passage 20 is warmed, and the cooling water and oil of the internal combustion engine 10 are warmed.

始動時開弁制御では、内部通路20に流す排気中の水蒸気の凝縮に伴って放出される熱を内部通路20の壁面に移動させるべく、制御弁22の開弁タイミングと開弁期間とが制御される。具体的には、分岐通路16よりも上流側の排気通路14を流れる排気の温度が内燃機関10の冷却水温よりも高いと判断されたタイミングで制御弁22を開き始める。また、制御弁22を開いた後において、分岐通路18を流れる排気の温度TEXが露点を下回っていると判断されている間は制御弁22を開き側にする制御を続けて排気流量を多くして伝達熱量を増加させる。また、温度TEXが露点を上回ったと判断されたタイミングで制御弁22を閉じ側に制御し、排気流量を減らす。それにより、排気側が冷え易くなり、温度TEXが露点よりも僅かに低くなる状態で制御できるので、水蒸気の凝縮熱を制御弁22が完全に閉じるまで有効に内部通路20の壁面に与え続けることができる。ここでいう露点とは、分岐通路18を流れる排気中の水蒸気が凝縮し始める温度を意味している。 In the start valve opening control, the valve opening timing and the valve opening period of the control valve 22 are controlled so that the heat released along with the condensation of water vapor in the exhaust gas flowing through the internal passage 20 is moved to the wall surface of the internal passage 20. Is done. Specifically, the control valve 22 starts to open at the timing when it is determined that the temperature of the exhaust gas flowing through the exhaust passage 14 upstream of the branch passage 16 is higher than the cooling water temperature of the internal combustion engine 10. Further, after the control valve 22 is opened, the control for opening the control valve 22 to the open side is continued while it is determined that the temperature T EX of the exhaust gas flowing through the branch passage 18 is below the dew point. To increase the amount of heat transferred. Further, the control valve 22 is controlled to the closed side at the timing when it is determined that the temperature T EX has exceeded the dew point, and the exhaust flow rate is reduced. As a result, the exhaust side can be easily cooled and control can be performed in a state where the temperature T EX is slightly lower than the dew point. Therefore, the heat of condensation of water vapor can be effectively applied to the wall surface of the internal passage 20 until the control valve 22 is completely closed. Can do. The dew point here means a temperature at which water vapor in the exhaust gas flowing through the branch passage 18 begins to condense.

内燃機関10から排出された直後の排気の温度、つまり、分岐通路16との接続部よりも上流側の排気通路14を流れる排気の温度は水の沸点(約100℃)よりも高くなることから、ここを流れる間に排気中の水蒸気が凝縮することは殆どない。また、制御弁22を開けば、上述したように、内燃機関10からの排気の一部が分岐通路16に導入され、ここから内部通路20、分岐通路18の順に流れることになる。従って、分岐通路18を流れる排気の温度TEXが露点を下回っているということは、分岐通路18よりも上流側の内部通路20を流れた際に、内部通路20の壁面に排気が接することで冷やされた結果、当該排気中の水蒸気が凝縮していることを意味する。 The temperature of the exhaust gas immediately after being discharged from the internal combustion engine 10, that is, the temperature of the exhaust gas flowing through the exhaust gas passage 14 upstream of the connecting portion with the branch passage 16 is higher than the boiling point of water (about 100 ° C.). The water vapor in the exhaust gas hardly condenses during this flow. When the control valve 22 is opened, as described above, a part of the exhaust from the internal combustion engine 10 is introduced into the branch passage 16 and flows from the internal passage 20 to the branch passage 18 in this order. Therefore, the fact that the temperature T EX of the exhaust gas flowing through the branch passage 18 is below the dew point means that the exhaust gas contacts the wall surface of the internal passage 20 when it flows through the internal passage 20 upstream of the branch passage 18. As a result of being cooled, it means that water vapor in the exhaust is condensed.

ここで、水蒸気含有量の異なる2種類の排気が有する熱量を比較すると、相対的に水蒸気含有量の多い排気の熱量の方が、水蒸気の潜熱差分だけ高くなる。図2は、水蒸気含有量の異なる2種類の排気をエンジン壁(具体的には内部通路20の壁面)に接触させたときに当該排気から当該エンジン壁に移動する熱量と、エンジン壁への接触後における当該2種類の排気の温度(具体的には温度TEX)との関係を示した図である。但し、この図の関係は、水蒸気含有量のみを変えた排気をエンジン壁に接触させることを前提としている。すなわち、エンジン壁に接触させる排気の流量や、排気接触前のエンジン壁の温度は同一条件とされている。 Here, when the calorific values of the two types of exhaust having different water vapor contents are compared, the calorific value of the exhaust having a relatively large water vapor content is higher by the latent heat difference of the water vapor. FIG. 2 shows the amount of heat transferred from the exhaust to the engine wall when two types of exhaust having different water vapor contents are brought into contact with the engine wall (specifically, the wall surface of the internal passage 20), and the contact with the engine wall. It is the figure which showed the relationship with the temperature (specifically temperature TEX ) of the said 2 types of exhaust_gas | exhaustion later. However, the relationship in this figure is based on the premise that the exhaust with only the water vapor content changed is brought into contact with the engine wall. That is, the flow rate of the exhaust to be brought into contact with the engine wall and the temperature of the engine wall before the exhaust contact are set to the same condition.

図2に実線で示す排気(乾燥ガス)と破線で示す排気(湿潤ガス)を比較すると分かるように、排気の水分凝縮温度(約100℃)よりも低い温度域では、排気から当該エンジン壁に移動する熱量が多くなる。エンジン壁への接触後における排気の温度が水分凝縮温度よりも低いということは、エンジン壁への接触によって排気中の水蒸気が凝縮するまで排気が冷やされていることを意味しており、故に、水分凝縮温度よりも低い温度域では、排気からエンジン壁へ移動する熱量が、排気がエンジン壁に接触することで移動する熱量(排気ガス−エンジン壁熱伝達熱量)と、水蒸気の凝縮に伴って放出される熱量(排気中の水分の凝縮伝達熱量)との和に等しくなる。   As can be seen by comparing the exhaust gas (dry gas) indicated by the solid line in FIG. 2 with the exhaust gas (wet gas) indicated by the broken line, in the temperature range lower than the moisture condensation temperature (about 100 ° C.) of the exhaust gas, The amount of heat that travels increases. The fact that the temperature of the exhaust gas after contact with the engine wall is lower than the moisture condensation temperature means that the exhaust gas is cooled until the water vapor in the exhaust gas is condensed due to the contact with the engine wall. In the temperature range lower than the moisture condensation temperature, the amount of heat that moves from the exhaust to the engine wall is reduced by the amount of heat that moves when the exhaust contacts the engine wall (exhaust gas-engine wall heat transfer heat amount) and the condensation of water vapor. It becomes equal to the sum of the amount of heat released (condensation transfer heat amount of moisture in the exhaust gas).

従って、内部通路20に流す排気中の水蒸気の凝縮に伴って放出される熱を内部通路20の壁面に移動させる始動時開弁制御によれば、高温の排気が得られ難く、また、排気の流量もそれ程多くない内燃機関10の冷間始動時においても、内部通路20の壁面を効率よく温めて、内燃機関10の冷却水やオイルを温めることができる。よって、内燃機関10のピストンとシリンダ壁とのフリクションの更なる低減や、燃費の向上を実現することができる。   Therefore, according to the valve opening control at the time of starting to move the heat released along with the condensation of the water vapor in the exhaust gas flowing through the internal passage 20 to the wall surface of the internal passage 20, it is difficult to obtain high-temperature exhaust gas. Even during the cold start of the internal combustion engine 10 where the flow rate is not so high, the wall surface of the internal passage 20 can be efficiently warmed and the cooling water and oil of the internal combustion engine 10 can be warmed. Therefore, further reduction of friction between the piston and the cylinder wall of the internal combustion engine 10 and improvement of fuel consumption can be realized.

[具体的処理]
図3は、本発明の実施の形態1においてECU30が実行する処理の一例を示すフローチャートである。なお、図3に示すルーチンは、内燃機関10の始動直後から繰り返し実行されるものとする。
[Specific processing]
FIG. 3 is a flowchart showing an example of processing executed by the ECU 30 in the first embodiment of the present invention. Note that the routine shown in FIG. 3 is repeatedly executed immediately after the internal combustion engine 10 is started.

図3に示すルーチンでは、先ず、被加熱部の温度が内燃機関10からの排気の温度を下回るか否かが判定される(ステップS10)。本ステップにおいてECU30は、例えば内燃機関10のウォータージャケットの出口部に設けた温度センサの検出値を用いて被加熱部(つまり、内部通路20の壁面)の温度を推定すると共に、推定した被加熱部の温度を、内燃機関10の排気マニホルドに設けた温度センサの検出値と比較することで両者の大小関係を判定する。判定の結果、被加熱部の温度が排気の温度を下回ると判定された場合(“YES”の場合)、ECU30は制御弁22を開き側に制御する(ステップS12)。一方、そうでないと判定された場合(“NO”の場合)は、制御弁22を開いても排気から被加熱部に熱が移動しないと判断できるので、ステップS16に進み制御弁22を閉じ側に制御する。   In the routine shown in FIG. 3, first, it is determined whether or not the temperature of the heated portion is lower than the temperature of the exhaust gas from the internal combustion engine 10 (step S10). In this step, the ECU 30 estimates the temperature of the heated part (that is, the wall surface of the internal passage 20) using the detected value of the temperature sensor provided at the outlet of the water jacket of the internal combustion engine 10, for example, and estimates the heated object. By comparing the temperature of the part with the detection value of the temperature sensor provided in the exhaust manifold of the internal combustion engine 10, the magnitude relationship between the two is determined. As a result of the determination, when it is determined that the temperature of the heated portion is lower than the temperature of the exhaust (in the case of “YES”), the ECU 30 controls the control valve 22 to open (step S12). On the other hand, if it is determined that this is not the case (in the case of “NO”), it can be determined that heat does not move from the exhaust to the heated portion even if the control valve 22 is opened. To control.

ステップS12に続き、ECU30は、被加熱部に接触した後の排気の温度が水分凝縮温度を上回るか否かが判定される(ステップS14)。本ステップにおいてECU30は、温度センサ24の検出値(つまり温度TEX)と、別途算出した分岐通路18を流れる排気の露点とを比較することで両者の大小関係を判定する。判定の結果、被加熱部に接触した後の排気の温度が水分凝縮温度を上回ると判定された場合(“YES”の場合)は、内部通路20の壁面の温度がある程度上昇しており、内部通路20に流した排気中の水蒸気を凝縮することができないと判断できるので、ECU30はステップS16に進み制御弁22を閉じ側に制御する。一方、そうでないと判定された場合(“NO”の場合)、ECU30はステップS10に戻る。 Subsequent to step S12, the ECU 30 determines whether or not the temperature of the exhaust gas after contacting the heated part exceeds the moisture condensation temperature (step S14). In this step, the ECU 30 determines the magnitude relationship between the detected value of the temperature sensor 24 (that is, the temperature T EX ) and the dew point of the exhaust gas flowing through the branch passage 18 calculated separately. As a result of the determination, when it is determined that the temperature of the exhaust gas after contacting the heated portion exceeds the moisture condensation temperature (in the case of “YES”), the temperature of the wall surface of the internal passage 20 has increased to some extent, Since it can be determined that the water vapor in the exhaust gas flowing through the passage 20 cannot be condensed, the ECU 30 proceeds to step S16 and controls the control valve 22 to the closed side. On the other hand, if it is determined that this is not the case (“NO”), the ECU 30 returns to step S10.

ステップS16に続き、ECU30は、制御弁22が完全に閉じられたか否かを判定する(ステップS18)。そして、制御弁22が完全に閉じられたと判定された場合(“YES”の場合)、ECU30本ルーチンによる処理を終了する。一方、そうでないと判定された場合(“NO”の場合)、ECU30はステップS10に戻る。   Following step S16, the ECU 30 determines whether or not the control valve 22 is completely closed (step S18). When it is determined that the control valve 22 is completely closed (in the case of “YES”), the processing by the ECU 30 routine is terminated. On the other hand, if it is determined that this is not the case (“NO”), the ECU 30 returns to step S10.

以上、図3に示したルーチンによれば、被加熱部の温度が排気の温度を下回ると判定された場合に、制御弁22を開き側に制御することができる。そのため、内部通路20に流す排気中の水蒸気の凝縮に伴って放出される熱を内部通路20の壁面に移動させることができるので、内燃機関10の冷間始動時においても、内部通路20の壁面を効率よく温めて、内燃機関10の冷却水やオイルを温めることができる。
また、図3に示したルーチンによれば、ステップS10において被加熱部の温度が排気の温度を上回ると判定された場合(“NO”の場合)、ステップS16に進んで制御弁22を閉じ側に制御することができる。ステップS10において被加熱部の温度が排気の温度を上回ると判定された場合に制御弁22を閉じ側に制御することで、排気側が冷え易くなり、温度TEXが露点よりも僅かに低くなる状態で制御できるので、水蒸気の凝縮熱を制御弁22が完全に閉じるまで有効に内部通路20の壁面に与え続けることができる。また、ステップS10において被加熱部の温度が排気の温度を上回ると判定された場合に制御弁22を閉じ側に制御することで、内燃機関10の一時的な停止の後の再始動時といった、被加熱部の温度が排気の温度よりも高いような場合に低温の排気によって被加熱部の温度が下がり、燃費が悪化するような事態を未然に防ぐこともできる。
As described above, according to the routine shown in FIG. 3, when it is determined that the temperature of the heated portion is lower than the temperature of the exhaust, the control valve 22 can be controlled to open. Therefore, since the heat released along with the condensation of water vapor in the exhaust gas flowing through the internal passage 20 can be moved to the wall surface of the internal passage 20, the wall surface of the internal passage 20 can be used even when the internal combustion engine 10 is cold started. It is possible to warm the cooling water and oil of the internal combustion engine 10 efficiently.
Further, according to the routine shown in FIG. 3, when it is determined in step S10 that the temperature of the heated portion exceeds the temperature of the exhaust (in the case of “NO”), the routine proceeds to step S16 and the control valve 22 is closed. Can be controlled. When it is determined in step S10 that the temperature of the heated portion exceeds the temperature of the exhaust, the control valve 22 is controlled to the closed side so that the exhaust side is easily cooled and the temperature T EX is slightly lower than the dew point. Therefore, the heat of condensation of the water vapor can be effectively applied to the wall surface of the internal passage 20 until the control valve 22 is completely closed. Further, when it is determined in step S10 that the temperature of the heated portion exceeds the temperature of the exhaust, the control valve 22 is controlled to be closed so that the internal combustion engine 10 is restarted after being temporarily stopped. When the temperature of the heated part is higher than the temperature of the exhaust, it is possible to prevent a situation in which the temperature of the heated part is lowered due to low-temperature exhaust and the fuel consumption is deteriorated.

実施の形態2.
次に、本発明の実施の形態2について説明する。
なお、本実施の形態のシステムは図1で説明した構成を前提としている。
Embodiment 2. FIG.
Next, a second embodiment of the present invention will be described.
The system according to the present embodiment is based on the configuration described with reference to FIG.

本実施の形態では、始動時開弁制御を行っている際に、内燃機関10の運転状態(一例としてエンジン回転速度とエンジン負荷)と、制御弁22の開度とに基づいて内部通路20に生じている凝縮水の蓄積量をECU30において推測する。そして、推測した蓄積量が設定値以上の場合には、内燃機関10の暖機完了後であって、内燃機関10から排出された直後の排気の温度と流量が各設定値以上であることを条件として、ECU30によって制御弁22を一時的に開く制御(暖機後水除去制御)を行う。内燃機関10から排出された直後の排気の温度は、例えば内燃機関10のウォータージャケットの出口部に設けた温度センサの検出値から取得できる。内燃機関10から排出された直後の排気の流量は、例えば吸気通路12の入口部に設けたエアフローメータから推定できる。   In the present embodiment, when the valve opening control at the time of starting is being performed, the internal passage 20 is moved to the internal passage 20 based on the operating state of the internal combustion engine 10 (for example, the engine speed and the engine load) and the opening of the control valve 22. The accumulated amount of condensed water generated is estimated in the ECU 30. If the estimated accumulated amount is equal to or greater than the set value, it is confirmed that the exhaust gas temperature and flow rate after the warm-up of the internal combustion engine 10 and immediately after being discharged from the internal combustion engine 10 is equal to or greater than the set value. As a condition, the ECU 30 performs control for temporarily opening the control valve 22 (warm-up water removal control). The temperature of the exhaust gas immediately after being discharged from the internal combustion engine 10 can be obtained from, for example, a detection value of a temperature sensor provided at the outlet of the water jacket of the internal combustion engine 10. The flow rate of the exhaust gas immediately after being discharged from the internal combustion engine 10 can be estimated from, for example, an air flow meter provided at the inlet of the intake passage 12.

上記実施の形態1で説明した始動時開弁制御を行えば、内部通路20で凝縮水が生じることになる。そのため、内部通路20で生じた凝縮水が溜まり続けると、内部通路20の詰まりが生じるおそれがある。また、排気中には酸性成分が含まれることから、内部通路20に凝縮水が長時間留まり続ければこの凝縮水が酸性化して内部通路20の壁面を腐食するおそれもある。この点、内燃機関10から排出された直後の排気の温度と流量が各設定値以上である場合に暖機後水除去制御を行えば、内部通路20に導入した高温の排気によって内部通路20に溜まった凝縮水を分岐通路18側に排出し、または、蒸発させることができる。よって、上述した不具合の発生を抑えることができる。   If the start valve opening control described in the first embodiment is performed, condensed water is generated in the internal passage 20. Therefore, if the condensed water generated in the internal passage 20 continues to accumulate, the internal passage 20 may be clogged. Moreover, since acidic components are contained in the exhaust gas, if the condensed water stays in the internal passage 20 for a long time, the condensed water may be acidified to corrode the wall surface of the internal passage 20. In this regard, if the water removal control after warm-up is performed when the temperature and flow rate of the exhaust gas immediately after being discharged from the internal combustion engine 10 are equal to or higher than the set values, the high-temperature exhaust gas introduced into the internal passage 20 causes The accumulated condensed water can be discharged to the branch passage 18 side or evaporated. Therefore, the occurrence of the above-described problems can be suppressed.

実施の形態3.
次に、本発明の実施の形態3について説明する。
なお、本実施の形態のシステムは図1で説明した構成を前提としている。
Embodiment 3 FIG.
Next, a third embodiment of the present invention will be described.
The system according to the present embodiment is based on the configuration described with reference to FIG.

本実施の形態では、内燃機関10の暖機完了後において、機関温度を高温に維持する要求がある場合には、内燃機関10から排出された直後の排気の温度が温度TEXよりも設定値以上高く、尚且つ、当該排気の流量が設定値以上であることを条件として、ECU30によって制御弁22を開く制御(暖機後加熱制御)を行う。内燃機関10から排出された直後の排気の温度は、例えば内燃機関10のウォータージャケットの出口部に設けた温度センサの検出値から取得できる。内燃機関10から排出された直後の排気の流量は、例えば吸気通路12の入口部に設けたエアフローメータから推定できる。 In the present embodiment, after the warm-up of the internal combustion engine 10 is completed, when there is a request to maintain the engine temperature at a high temperature, the temperature of the exhaust gas immediately after being discharged from the internal combustion engine 10 is set to a value that is higher than the temperature T EX. Control that opens the control valve 22 by the ECU 30 (heating control after warm-up) is performed on the condition that the flow rate of the exhaust gas is higher than the set value. The temperature of the exhaust gas immediately after being discharged from the internal combustion engine 10 can be obtained from, for example, a detection value of a temperature sensor provided at the outlet of the water jacket of the internal combustion engine 10. The flow rate of the exhaust gas immediately after being discharged from the internal combustion engine 10 can be estimated from, for example, an air flow meter provided at the inlet of the intake passage 12.

上記実施の形態2で説明したように、内部通路20には凝縮水が溜まっていることから、暖機後水除去制御を行ってこの凝縮水を蒸発させれば、内部通路20の壁面から熱が奪われることになる。本実施の形態でも同様で、暖機後加熱制御を行えば、内部通路20に溜まった凝縮水の蒸発に伴って内部通路20の壁面から熱が奪われることになる。但し、暖機後加熱制御は、内燃機関10から排出された直後の排気の温度が温度TEXよりも設定値以上高く、尚且つ、当該排気の流量が設定値以上である場合に行われることから、凝縮水の気化による損失よりも多くの熱を、排気から内部通路20の壁面に移動させることができる。よって、内部通路20の壁面を効率よく温めて機関温度を高温に維持し、燃費を向上させることができる。 As described in the second embodiment, since the condensed water is accumulated in the internal passage 20, if the condensed water is evaporated by performing the warm-up water removal control, heat is generated from the wall surface of the internal passage 20. Will be taken away. Similarly, in the present embodiment, if heating control is performed after warming up, heat is removed from the wall surface of the internal passage 20 as the condensed water accumulated in the internal passage 20 evaporates. However, the post-warm-up heating control is performed when the temperature of the exhaust gas immediately after being discharged from the internal combustion engine 10 is higher than the set value by the temperature T EX and the flow rate of the exhaust gas is higher than the set value. Therefore, more heat than the loss due to vaporization of the condensed water can be transferred from the exhaust to the wall surface of the internal passage 20. Therefore, the wall surface of the internal passage 20 can be efficiently warmed to maintain the engine temperature at a high temperature, and fuel efficiency can be improved.

10 内燃機関
12 吸気通路
14 排気通路
16,18 分岐通路
20 内部通路
22 制御弁
24 温度センサ
30 ECU
DESCRIPTION OF SYMBOLS 10 Internal combustion engine 12 Intake passage 14 Exhaust passage 16, 18 Branch passage 20 Internal passage 22 Control valve 24 Temperature sensor 30 ECU

Claims (1)

内燃機関のシリンダブロックに形成されて前記内燃機関の排気通路から分岐した第1分岐通路に接続された内部通路と、前記第1分岐通路よりも下流側において前記排気通路から分岐すると共に前記内部通路に接続された第2分岐通路と、前記第1分岐通路に設けられて前記第1分岐通路から前記内部通路への排気の流入を制御する制御弁と、前記第2分岐通路に設けられて前記第2分岐通路を流れる排気の温度を検出する温度センサと、を備える内燃機関を制御するように構成された内燃機関の制御装置であって、
前記内燃機関の始動時において、前記第1分岐通路との接続部よりも上流側の前記排気通路を流れる排気の温度が前記内部通路の壁面温度よりも高く、尚且つ、前記第2分岐通路を流れる排気の温度が前記第2分岐通路を流れる排気中の水蒸気が凝縮し始める温度を下回る場合に、前記第1分岐通路から前記内部通路への排気の流入を許可するように構成されていることを特徴とする内燃機関の制御装置。
An internal passage formed in a cylinder block of the internal combustion engine and connected to a first branch passage branched from the exhaust passage of the internal combustion engine; a branch from the exhaust passage downstream from the first branch passage; and the internal passage A second branch passage connected to the first branch passage, a control valve provided in the first branch passage for controlling an inflow of exhaust gas from the first branch passage to the internal passage, and provided in the second branch passage. A control device for an internal combustion engine configured to control an internal combustion engine comprising: a temperature sensor that detects a temperature of exhaust gas flowing through the second branch passage;
At the start of the internal combustion engine, the temperature of the exhaust gas flowing through the exhaust passage upstream of the connection with the first branch passage is higher than the wall surface temperature of the internal passage, and the second branch passage is When the temperature of the flowing exhaust gas is lower than the temperature at which the water vapor in the exhaust gas flowing through the second branch passage starts to condense, the exhaust gas is allowed to flow into the internal passage from the first branch passage. A control device for an internal combustion engine.
JP2016088327A 2016-04-26 2016-04-26 Control device for internal combustion engine Expired - Fee Related JP6672992B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016088327A JP6672992B2 (en) 2016-04-26 2016-04-26 Control device for internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016088327A JP6672992B2 (en) 2016-04-26 2016-04-26 Control device for internal combustion engine

Publications (2)

Publication Number Publication Date
JP2017198119A true JP2017198119A (en) 2017-11-02
JP6672992B2 JP6672992B2 (en) 2020-03-25

Family

ID=60237577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016088327A Expired - Fee Related JP6672992B2 (en) 2016-04-26 2016-04-26 Control device for internal combustion engine

Country Status (1)

Country Link
JP (1) JP6672992B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547689A (en) * 2018-03-07 2018-09-18 潍柴动力股份有限公司 The control method and control device and its vehicle of a kind of vehicle

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108547689A (en) * 2018-03-07 2018-09-18 潍柴动力股份有限公司 The control method and control device and its vehicle of a kind of vehicle

Also Published As

Publication number Publication date
JP6672992B2 (en) 2020-03-25

Similar Documents

Publication Publication Date Title
JP6213322B2 (en) Internal combustion engine
US9528475B2 (en) Method and system for EGR control
US7971577B2 (en) EGR cooler defouling
JP5076822B2 (en) Control device for internal combustion engine
JP2009299631A (en) Control device for internal combustion engine
JP5692135B2 (en) In-cylinder moisture detection device for internal combustion engine, control device for internal combustion engine
JP6281504B2 (en) Engine blow-by gas control device
JP6112299B2 (en) Engine control device
JP6672992B2 (en) Control device for internal combustion engine
CN108661778B (en) Cooling device for internal combustion engine
JP6210706B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP4770758B2 (en) Control device for internal combustion engine
JP2007262956A (en) Control device for internal combustion engine with EGR device
JP2008014144A (en) Sensor control device for internal combustion engine
JP4621984B2 (en) Exhaust gas sensor heater control device
CN108730011B (en) Cooling device for internal combustion engine
JP2012255396A (en) Control device of internal combustion engine
JP5817202B2 (en) Exhaust circulation device for internal combustion engine
JP2016223319A (en) Control device for internal combustion engine
CN108678852B (en) Cooling device for internal combustion engine
JP5896955B2 (en) Exhaust gas recirculation control device for internal combustion engine
JP2018159272A (en) Control method for internal combustion engine
JP2024085751A (en) Engine System
JP2016186288A (en) Control device for internal combustion engine
JP2022107934A (en) engine system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20200204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20200217

R151 Written notification of patent or utility model registration

Ref document number: 6672992

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees