[go: up one dir, main page]

JP2017197708A - Polishing composition - Google Patents

Polishing composition Download PDF

Info

Publication number
JP2017197708A
JP2017197708A JP2016185783A JP2016185783A JP2017197708A JP 2017197708 A JP2017197708 A JP 2017197708A JP 2016185783 A JP2016185783 A JP 2016185783A JP 2016185783 A JP2016185783 A JP 2016185783A JP 2017197708 A JP2017197708 A JP 2017197708A
Authority
JP
Japan
Prior art keywords
polishing
polishing composition
abrasive grains
acid
alloy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016185783A
Other languages
Japanese (ja)
Other versions
JP6099067B1 (en
Inventor
恭祐 天▲高▼
Kyosuke Tenko
恭祐 天▲高▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujimi Inc
Original Assignee
Fujimi Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujimi Inc filed Critical Fujimi Inc
Priority to CN201610964365.5A priority Critical patent/CN106811176A/en
Priority to PCT/JP2017/006954 priority patent/WO2017187749A1/en
Priority to TW106106862A priority patent/TWI822654B/en
Application granted granted Critical
Publication of JP6099067B1 publication Critical patent/JP6099067B1/en
Publication of JP2017197708A publication Critical patent/JP2017197708A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives
    • C09K3/1454Abrasive powders, suspensions and pastes for polishing
    • C09K3/1463Aqueous liquid suspensions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/14Anti-slip materials; Abrasives

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)

Abstract

【課題】合金または樹脂、さらには金属や半金属、その酸化物等の材料の表面に対し優れた研磨性能を有しつつ、砥粒の分散性を向上させ、且つ、砥粒の再分散性を向上させた研磨用組成物の提供。【解決手段】砥粒と、層状ケイ酸塩化合物と、分散媒とを含む、研磨用組成物。前記砥粒の体積平均粒子径は、3.0〜9.5μmが好ましく、pHは2.0〜7.0が好ましい。前記砥粒は金属酸化物および金属炭化物から選択される少なくとも1種であることが好ましい研磨用組成物。【選択図】なし[PROBLEMS] To improve the dispersibility of abrasive grains while having excellent polishing performance on the surface of materials such as alloys or resins, as well as metals, metalloids and oxides thereof, and to redisperse abrasive grains. Of a polishing composition with improved surface roughness. A polishing composition comprising abrasive grains, a layered silicate compound, and a dispersion medium. The volume average particle diameter of the abrasive grains is preferably 3.0 to 9.5 μm, and the pH is preferably 2.0 to 7.0. The polishing composition is preferably at least one selected from metal oxides and metal carbides. [Selection figure] None

Description

本発明は、研磨用組成物に関する。   The present invention relates to a polishing composition.

合金とは、1種の金属元素に対して、1種以上の金属元素や、炭素、窒素、ケイ素などの非金属元素を共有させた共有体であり、純金属に対し機械的強度や耐薬品性、耐食性、耐熱性等の性質を向上させることを目的として製造される。それらの中でもアルミニウム合金は、軽量かつ優れた強度を有することから、建材や容器等の構造材料、自動車、船舶、航空機などの輸送機器の他、各種電化製品や、電子部品等様々な用途に用いられている。また、チタン合金は、軽量なうえに耐食性に優れていることから、精密機器、装飾品、工具、スポーツ用品、医療部品等に広く用いられている。また、鉄系合金であるステンレスやニッケル合金は、優れた耐食性を有することから、構造材料や輸送機器の他、工具、機械器具、調理器具など様々な用途で使用されている。また、銅合金は、電気伝導性、熱伝導性、耐食性に優れているほか、加工性に優れておりまた仕上げの美しさから、装飾品、食器、楽器や電気材料の部品等に広く用いられている。さらに、最近では上記のような用途で、樹脂を含む材料も使用されてきている。   An alloy is a common body in which one kind of metal element and one or more kinds of metal elements and non-metal elements such as carbon, nitrogen and silicon are shared with one kind of metal element. It is manufactured for the purpose of improving properties such as heat resistance, corrosion resistance and heat resistance. Among them, aluminum alloys are lightweight and have excellent strength, so they are used for various applications such as structural materials such as building materials and containers, transportation equipment such as automobiles, ships and aircraft, as well as various electrical appliances and electronic parts. It has been. In addition, titanium alloys are widely used in precision instruments, ornaments, tools, sports equipment, medical parts and the like because they are lightweight and have excellent corrosion resistance. In addition, stainless steel and nickel alloys, which are iron-based alloys, have excellent corrosion resistance, and thus are used in various applications such as tools, machinery, and cooking utensils in addition to structural materials and transportation equipment. Copper alloys are not only excellent in electrical conductivity, thermal conductivity, and corrosion resistance, but also in processability, and because of their beautiful finish, they are widely used in decorative items, tableware, musical instruments and parts of electrical materials. ing. Furthermore, recently, a material containing a resin has been used for the above-mentioned purposes.

上記のような合金または樹脂、さらには金属や半金属、その酸化物等の材料の表面に対し、平滑化を主な目的として、研磨用組成物を用いた研磨が行われている。   Polishing using a polishing composition is performed mainly on the surface of an alloy or a resin as described above, or a metal, a semimetal, an oxide thereof, or the like for the main purpose.

たとえば、特許文献1には、平均粒径が0.05〜1μmの砥粒を0.1〜10重量%水性媒体に分散させた研磨剤スラリーであって、研磨剤スラリー中の粒径が5μm以上の砥粒の含有量が50ppm以下である研磨剤スラリーが開示されている。また、特許文献2には、水、研磨材料、研磨促進剤、および、ヒドロキシプロピルセルロース及びヒドロキシアルキルアルキルセルロースの少なくとも一方を含む研磨用組成物が開示されている。   For example, Patent Document 1 discloses an abrasive slurry in which abrasive grains having an average particle size of 0.05 to 1 μm are dispersed in an aqueous medium of 0.1 to 10% by weight, and the particle size in the abrasive slurry is 5 μm. An abrasive slurry in which the content of the abrasive grains is 50 ppm or less is disclosed. Patent Document 2 discloses a polishing composition containing water, a polishing material, a polishing accelerator, and at least one of hydroxypropylcellulose and hydroxyalkylalkylcellulose.

特開2000−15560号公報JP 2000-15560 A 特表2003−510446号公報Special table 2003-510446 gazette

しかしながら、上記特許文献1および2に記載の研磨用組成物は、砥粒の分散性が悪いため、研磨性能が安定せず、また研磨用組成物の製造中や使用中に、配管やスラリー供給チューブ内に砥粒が沈降し、配管等を閉塞させてしまうという問題があった。さらに長期保存後の砥粒の再分散性も悪いという問題があった。   However, the polishing compositions described in Patent Documents 1 and 2 have poor abrasive dispersibility, so that the polishing performance is not stable, and pipes and slurries are supplied during the production and use of the polishing composition. There was a problem that the abrasive grains settled in the tube and closed the piping. Furthermore, there was a problem that the redispersibility of the abrasive grains after long-term storage was poor.

本発明は、上記問題に鑑みてなされたものであり、その目的は、研磨性能を維持しつつ、砥粒の分散性を向上させる手段を提供することにある。   This invention is made | formed in view of the said problem, The objective is to provide the means to improve the dispersibility of an abrasive grain, maintaining polishing performance.

また、本発明の他の目的は、研磨性能を維持しつつ、砥粒の再分散性を向上させる手段を提供することにある。   Another object of the present invention is to provide means for improving the redispersibility of abrasive grains while maintaining the polishing performance.

上記課題を解決すべく、本発明者は鋭意研究を積み重ねた。その結果、砥粒、層状ケイ酸塩化合物、および分散媒を含む研磨用組成物を使用することで、上記課題が解決されうることを見出した。そして、上記知見に基づいて、本発明を完成するに至った。   In order to solve the above-mentioned problems, the present inventor has intensively studied. As a result, it has been found that the above problem can be solved by using a polishing composition containing abrasive grains, a layered silicate compound, and a dispersion medium. And based on the said knowledge, it came to complete this invention.

本発明によれば、研磨性能を維持しつつ砥粒の分散性を向上させる手段が提供される。また、本発明によれば、研磨性能を維持しつつ砥粒の再分散性を向上させる手段が提供される。   According to the present invention, there is provided means for improving the dispersibility of abrasive grains while maintaining the polishing performance. The present invention also provides means for improving the redispersibility of abrasive grains while maintaining the polishing performance.

本発明は、砥粒、層状ケイ酸塩化合物、および分散媒を含む、研磨用組成物である。かような構成を有する本発明の研磨用組成物は、高い研磨速度や研磨対象物の表面粗さの低減といった研磨性能を維持しつつ、砥粒の分散性を向上させることができる。また、上記構成を有する本発明の研磨用組成物は、高い研磨速度や研磨対象物の表面粗さの低減といった研磨性能を維持しつつ、砥粒の再分散性を向上させることができる。   The present invention is a polishing composition comprising abrasive grains, a layered silicate compound, and a dispersion medium. The polishing composition of the present invention having such a configuration can improve the dispersibility of abrasive grains while maintaining polishing performance such as a high polishing rate and a reduction in surface roughness of an object to be polished. In addition, the polishing composition of the present invention having the above-described configuration can improve the redispersibility of abrasive grains while maintaining polishing performance such as a high polishing rate and a reduction in surface roughness of an object to be polished.

[研磨対象物]
本発明に係る研磨対象物は、特に制限されないが、合金材料および樹脂材料からなる群より選択される少なくとも1種を含むことが好ましい。
[Polishing object]
The polishing object according to the present invention is not particularly limited, but preferably contains at least one selected from the group consisting of alloy materials and resin materials.

以下、合金材料および樹脂材料について説明する。   Hereinafter, the alloy material and the resin material will be described.

〔合金材料〕
合金材料は、主成分となる金属種と、主成分とは異なる金属種と、を含有する。
[Alloy materials]
The alloy material contains a metal species as a main component and a metal species different from the main component.

合金材料は、主成分となる金属種に基づいて名称が付される。合金材料としては、たとえば、アルミニウム合金、鉄合金、チタン合金、ニッケル合金、および銅合金等が挙げられる。これら合金材料は、単独でもまたは2種以上組み合わせて適用してもよい。中でも、アルミニウム合金および鉄合金からなる群より選択される少なくとも1種を含むことが好ましい。   The alloy material is given a name based on the metal species as the main component. Examples of the alloy material include an aluminum alloy, an iron alloy, a titanium alloy, a nickel alloy, and a copper alloy. These alloy materials may be applied singly or in combination of two or more. Among these, it is preferable to include at least one selected from the group consisting of aluminum alloys and iron alloys.

アルミニウム合金は、アルミニウムを主成分とし、主成分と異なる金属種として、好ましくは、マグネシウム、ケイ素、銅、亜鉛、マンガン、クロム、および鉄からなる群より選択される少なくとも1種が含有される。アルミニウム合金中における、上記の主成分とは異なる金属種の含有量の下限は、特に制限されないが、アルミニウム合金全体に対して0.1質量%以上であることが好ましい。また、アルミニウム合金中における、上記の主成分とは異なる金属種の含有量の上限は、特に制限されないが、アルミニウム合金全体に対して10質量%以下であることが好ましい。   The aluminum alloy contains aluminum as a main component, and preferably contains at least one selected from the group consisting of magnesium, silicon, copper, zinc, manganese, chromium, and iron as a metal species different from the main component. The lower limit of the content of the metal species different from the main component in the aluminum alloy is not particularly limited, but is preferably 0.1% by mass or more based on the entire aluminum alloy. Moreover, the upper limit of the content of the metal species different from the main component in the aluminum alloy is not particularly limited, but is preferably 10% by mass or less with respect to the entire aluminum alloy.

アルミニウム合金の具体例としては、たとえば、JIS H4000:2006に記載されているような、Al−Cu系、Al−Cu−Mg系の合金番号2000番台、Al−Mn系の合金番号3000番台、Al−Si系の合金番号4000番台、Al−Mg系の合金番号5000番台、Al−Mg−Si系の合金番号6000番台、Al−Zn−Mg系の合金番号7000番台、Al−Fe−Mn系の合金番号8000番台等が挙げられる。   Specific examples of the aluminum alloy include, for example, Al-Cu-based, Al-Cu-Mg-based alloy number 2000 series, Al-Mn-based alloy number 3000 series, as described in JIS H4000: 2006, Al -Si alloy number 4000 series, Al-Mg alloy number 5000 series, Al-Mg-Si alloy number 6000 series, Al-Zn-Mg alloy number 7000 series, Al-Fe-Mn series Alloy number 8000 series etc. are mentioned.

鉄合金は、鉄を主成分とし、主成分とは異なる金属種として、好ましくは、クロム、ニッケル、モリブデン、およびマンガンからなる群より選択される少なくとも1種が含有される。鉄合金中における、上記の主成分とは異なる金属種の含有量の下限は、特に制限されないが、鉄合金全体に対して10質量%以上であることが好ましい。また、鉄合金中における、上記の主成分とは異なる金属種の含有量の上限は、特に制限されないが、鉄合金全体に対して50質量%以下であることが好ましい。   The iron alloy contains iron as a main component and preferably contains at least one selected from the group consisting of chromium, nickel, molybdenum, and manganese as a metal species different from the main component. The lower limit of the content of the metal species different from the main component in the iron alloy is not particularly limited, but is preferably 10% by mass or more based on the entire iron alloy. Moreover, the upper limit of the content of the metal species different from the main component in the iron alloy is not particularly limited, but is preferably 50% by mass or less based on the entire iron alloy.

鉄合金は、好ましくはステンレス鋼である。ステンレス鋼の具体的な例としては、たとえば、JIS G4303:2005に記載される種類の記号において、SUS201、SUS303、303Se、SUS304、SUS304L、SUS304NI、SUS305、SUS305JI、SUS309S、SUS310S、SUS316、SUS316L、SUS321、SUS347、SUS384、SUSXM7、SUS303F、SUS303C、SUS430、SUS430F、SUS434、SUS410、SUS416、SUS420J1、SUS420J2、SUS420F、SUS420C、SUS631J1等が挙げられる。   The iron alloy is preferably stainless steel. Specific examples of stainless steel include, for example, SUS201, SUS303, 303Se, SUS304, SUS304L, SUS304NI, SUS305, SUS305JI, SUS309S, SUS310S, SUS316, SUS316L, and SUS321 in the type of symbols described in JIS G4303: 2005. SUS347, SUS384, SUSXM7, SUS303F, SUS303C, SUS430, SUS430F, SUS434, SUS410, SUS416, SUS420J1, SUS420J2, SUS420F, SUS420C, SUS631J1, and the like.

チタン合金は、チタンを主成分とし、主成分とは異なる金属種として、たとえば、アルミニウム、鉄、およびバナジウム等が含有される。チタン合金中における主成分とは異なる金属種の含有量は、チタン合金全体に対してたとえば3.5質量%以上30質量%以下である。チタン合金としては、たとえば、JIS H4600:2012に記載される種類において、11〜23種、50種、60種、61種、および80種のものが挙げられる。   The titanium alloy contains titanium as a main component and contains, for example, aluminum, iron, vanadium, and the like as metal species different from the main component. Content of the metal seed | species different from the main component in a titanium alloy is 3.5 to 30 mass% with respect to the whole titanium alloy, for example. Examples of the titanium alloy include those of 11 to 23 types, 50 types, 60 types, 61 types, and 80 types in the types described in JIS H4600: 2012.

ニッケル合金は、ニッケルを主成分とし、主成分とは異なる金属種として、たとえば、鉄、クロム、モリブデン、およびコバルトから選択される少なくとも1種が含有される。ニッケル合金中における主成分とは異なる金属種の含有量は、ニッケル合金全体に対してたとえば20質量%以上75質量%以下である。ニッケル合金としては、たとえば、JIS H4551:2000に記載される合金番号において、NCF600,601、625、750、800、800H、825、NW0276、4400、6002、6022等が挙げられる。   The nickel alloy contains nickel as a main component and contains at least one selected from, for example, iron, chromium, molybdenum, and cobalt as a metal species different from the main component. The content of the metal species different from the main component in the nickel alloy is, for example, 20% by mass to 75% by mass with respect to the entire nickel alloy. Examples of the nickel alloy include NCF600, 601, 625, 750, 800, 800H, 825, NW0276, 4400, 6002, 6022 and the like in the alloy number described in JIS H4551: 2000.

銅合金は、銅を主成分とし、主成分とは異なる金属種として、たとえば、鉄、鉛、亜鉛、および錫から選択される少なくとも1種が含有される。銅合金中における主成分とは異なる金属種の含有量は、銅合金全体に対してたとえば3質量%以上50質量%以下である。銅合金としては、たとえば、JIS H3100:2006に記載される合金番号において、C2100、2200、2300、2400、2600、2680、2720、2801、3560、3561、3710、3713、4250、4430、4621、4640、6140、6161、6280、6301、7060、7150、1401、2051、6711、6712等が挙げられる。   The copper alloy contains copper as a main component and contains at least one selected from, for example, iron, lead, zinc, and tin as a metal species different from the main component. Content of the metal seed | species different from the main component in a copper alloy is 3 to 50 mass% with respect to the whole copper alloy, for example. As the copper alloy, for example, in the alloy number described in JIS H3100: 2006, C2100, 2200, 2300, 2400, 2600, 2680, 2720, 2801, 3560, 3561, 3710, 3713, 4250, 4430, 4621, 4640 6140, 6161, 6280, 6301, 7060, 7150, 1401, 2051, 6711, 6712 and the like.

〔樹脂材料〕
樹脂材料の種類としては特に制限されず、熱硬化性樹脂、熱可塑性樹脂のいずれであってもよい。
[Resin material]
The type of the resin material is not particularly limited, and may be either a thermosetting resin or a thermoplastic resin.

熱硬化性樹脂の例としては、たとえば、エポキシ樹脂、ポリイミド樹脂、フェノール樹脂、アミノ樹脂、不飽和ポリエステル樹脂、熱硬化性ポリウレタン樹脂などが挙げられる。   Examples of thermosetting resins include, for example, epoxy resins, polyimide resins, phenol resins, amino resins, unsaturated polyester resins, thermosetting polyurethane resins, and the like.

熱可塑性樹脂の例としては、たとえば、ポリスチレン樹脂、アクリロニトリル−ブタジエン−スチレン共重合体樹脂(ABS樹脂)、(メタ)アクリル樹脂、有機酸ビニルエステル樹脂またはその誘導体、ビニルエーテル樹脂、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン等のハロゲン含有樹脂、ポリエチレン、ポリプロピレン等のオレフィン樹脂、ポリカーボネート樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート等の飽和ポリエステル樹脂、ポリアミド樹脂、熱可塑性ポリウレタン樹脂、ポリスルホン樹脂(ポリエーテルスルホン、ポリスルホンなど)、ポリフェニレンエーテル樹脂(2,6−キシレノールの重合体など)、セルロース誘導体(セルロースエステル類、セルロースカーバメート類、セルロースエーテル類など)、シリコーン樹脂(ポリジメチルシロキサン、ポリメチルフェニルシロキサンなど)などが挙げられる。   Examples of thermoplastic resins include, for example, polystyrene resins, acrylonitrile-butadiene-styrene copolymer resins (ABS resins), (meth) acrylic resins, organic acid vinyl ester resins or derivatives thereof, vinyl ether resins, polyvinyl chloride, poly Halogen-containing resins such as vinylidene chloride and polyvinylidene fluoride, olefin resins such as polyethylene and polypropylene, saturated polyester resins such as polycarbonate resin, polyethylene terephthalate and polyethylene naphthalate, polyamide resins, thermoplastic polyurethane resins, polysulfone resins (polyethersulfone, Polysulfone, etc.), polyphenylene ether resin (2,6-xylenol polymer, etc.), cellulose derivatives (cellulose esters, cellulose carbamates, cells) Etc. Sueteru acids), silicone resin (a polydimethylsiloxane and polymethylphenylsiloxane), and the like.

上記樹脂は、単独でもまたは2種以上組み合わせても使用することができる。これら樹脂の中でも、耐衝撃性や耐候性の観点から熱可塑性樹脂が好ましく、ポリカーボネート樹脂がより好ましい。   These resins can be used alone or in combination of two or more. Among these resins, a thermoplastic resin is preferable from the viewpoint of impact resistance and weather resistance, and a polycarbonate resin is more preferable.

樹脂材料を含む研磨対象物は、たとえば、樹脂材料から形成された部材(樹脂製部材)の形態であってもよいし、金属基板等の表面に樹脂塗膜を有する複合材料の形態であってもよいし、特に制限されない。塗膜に用いられる樹脂としては、熱硬化性ポリウレタン樹脂、(メタ)アクリル樹脂等が挙げられる。樹脂塗膜は透明なクリア塗膜であってもよい。   The polishing object including the resin material may be, for example, in the form of a member (resin member) formed from the resin material, or in the form of a composite material having a resin coating on the surface of a metal substrate or the like. There is no particular limitation. Examples of the resin used for the coating film include thermosetting polyurethane resins and (meth) acrylic resins. The resin coating film may be a transparent clear coating film.

次に、本発明の研磨用組成物の構成について、詳細に説明する。   Next, the structure of the polishing composition of the present invention will be described in detail.

[砥粒]
本発明の研磨用組成物は、砥粒を含む。砥粒は、研磨対象物を機械的に研磨する作用を有する。
[Abrasive grain]
The polishing composition of the present invention contains abrasive grains. The abrasive grains have an action of mechanically polishing the object to be polished.

本発明で用いられる砥粒の具体的な例としては、たとえば、酸化アルミニウム(アルミナ)、酸化ケイ素(シリカ)、酸化セリウム(セリア)、酸化ジルコニウム、酸化チタン(チタニア)、酸化マンガン等の金属酸化物、炭化ケイ素、炭化チタン等の金属炭化物、窒化ケイ素、窒化チタン等の金属窒化物、ホウ化チタン、ホウ化タングステン等の金属ホウ化物などが挙げられる。該砥粒は、単独でもまたは2種以上混合して用いてもよい。また、該砥粒は、市販品を用いてもよいし合成品を用いてもよい。   Specific examples of the abrasive grains used in the present invention include metal oxides such as aluminum oxide (alumina), silicon oxide (silica), cerium oxide (ceria), zirconium oxide, titanium oxide (titania), manganese oxide and the like. Metal carbides such as silicon carbide and titanium carbide, metal nitrides such as silicon nitride and titanium nitride, and metal borides such as titanium boride and tungsten boride. These abrasive grains may be used alone or in combination of two or more. The abrasive grains may be commercially available products or synthetic products.

これら砥粒の中でも、様々な粒子径を有するものが容易に入手でき、優れた研磨速度が得られるという観点から、金属酸化物および金属炭化物からなる群より選択される少なくとも1種が好ましく、酸化アルミニウムまたは炭化ケイ素がより好ましい。   Among these abrasive grains, at least one selected from the group consisting of metal oxides and metal carbides is preferable from the viewpoint that those having various particle diameters can be easily obtained and an excellent polishing rate can be obtained. Aluminum or silicon carbide is more preferred.

砥粒の体積平均粒子径の下限は、2.0μm以上であることが好ましく、2.5μm以上であることがより好ましく、3.0μm以上であることがさらに好ましく、3.5μm以上が特に好ましい。砥粒の体積平均粒子径が大きくなるにつれて、研磨対象物の研磨速度が向上する。また、砥粒の体積平均粒子径の上限は、25.0μm以下であることが好ましく、15.0μm以下であることがより好ましく、9.5μm以下であることがさらに好ましく、9.0μm以下が特に好ましい。砥粒の体積平均粒子径が小さくなるにつれて、低欠陥で粗度の小さな表面を得ることが容易となる。上記より、砥粒の体積平均粒子径は、3.0μm以上9.5μm以下であることがさらに好ましく、3.5μm以上9.0μm以下が特に好ましい。   The lower limit of the volume average particle diameter of the abrasive grains is preferably 2.0 μm or more, more preferably 2.5 μm or more, further preferably 3.0 μm or more, and particularly preferably 3.5 μm or more. . As the volume average particle diameter of the abrasive grains increases, the polishing rate of the object to be polished improves. Further, the upper limit of the volume average particle diameter of the abrasive grains is preferably 25.0 μm or less, more preferably 15.0 μm or less, further preferably 9.5 μm or less, and 9.0 μm or less. Particularly preferred. As the volume average particle diameter of the abrasive grains decreases, it becomes easier to obtain a surface with low defects and low roughness. From the above, the volume average particle diameter of the abrasive grains is more preferably 3.0 μm or more and 9.5 μm or less, and particularly preferably 3.5 μm or more and 9.0 μm or less.

金属材料の鏡面化の方法としては、通常、金属材料の機械研削等によって生じた深い傷(スクラッチ)を高速に除去したり、平滑性を向上させたりするための粗研磨工程と、この粗研磨工程の後に、金属材料表面を鏡面にするための鏡面研磨工程等とを、順次に行う方法が挙げられる。   As a method of mirroring a metal material, a rough polishing process for removing high-quality scratches (scratches) caused by mechanical grinding of the metal material at a high speed or improving smoothness is generally performed. A method of sequentially performing a mirror polishing step and the like for making the metal material surface into a mirror surface after the step is mentioned.

たとえば、一般的な粗研磨工程では、金属材料からなる基体(研磨対象物)を研磨装置の上下定盤間に挟み、上部から押圧しながら、水等の溶媒に分散させたアルミナ砥粒、炭化珪素砥粒、酸化珪素砥粒等の遊離砥粒、即ち研磨液を供給し、上下定盤を回転させることにより、基体を粗研磨できる。この粗研磨工程を行うことにより、基体の機械研削等によって生じた深い傷を除去したり、平滑性を向上させたりすることができる。上記のような砥粒の体積平均粒子径の範囲であれば、かような粗研磨工程に好適に用いられる研磨用組成物となり、深い傷の除去や平滑性の向上といった効果を得ることができる。   For example, in a general rough polishing process, an alumina abrasive grain or carbonized material that is dispersed in a solvent such as water while sandwiching a base material (polishing object) made of a metal material between upper and lower surface plates of a polishing apparatus and pressing from above. The substrate can be roughly polished by supplying free abrasive grains such as silicon abrasive grains and silicon oxide abrasive grains, that is, a polishing liquid, and rotating the upper and lower surface plates. By performing this rough polishing step, it is possible to remove deep scratches caused by mechanical grinding or the like of the substrate and improve smoothness. If it is the range of the above volume average particle diameters of an abrasive grain, it will become a polishing composition used suitably for such a rough | crude grinding | polishing process, and the effect of the removal of a deep flaw and improvement in smoothness can be acquired. .

なお、本明細書において、砥粒の体積平均粒子径は、体積基準の粒度分布に基づく積算50%粒子径(D50)と定義する。砥粒のD50は、市販の粒度測定装置を利用して測定することができる。かかる粒度測定装置は、動的光散乱法、レーザー回折法、レーザー散乱法、または細孔電気抵抗法等のいずれの手法に基づくものであってもよい。D50の測定方法および測定装置の一例として、実施例に記載の測定方法および測定装置が挙げられる。 In the present specification, the volume average particle diameter of the abrasive grains is defined as an integrated 50% particle diameter (D 50 ) based on a volume-based particle size distribution. The D 50 of the abrasive grains can be measured using a commercially available particle size measuring device. Such a particle size measuring apparatus may be based on any method such as a dynamic light scattering method, a laser diffraction method, a laser scattering method, or a pore electrical resistance method. As an example of a measuring method and apparatus for D 50, include measuring method and apparatus of example.

研磨用組成物中の砥粒の含有量の下限は、0.1質量%以上であることが好ましく、5質量%以上であることがより好ましく、10質量%以上であることがさらに好ましい。砥粒の含有量が多くなるにつれて、研磨速度が上昇する。   The lower limit of the content of the abrasive grains in the polishing composition is preferably 0.1% by mass or more, more preferably 5% by mass or more, and further preferably 10% by mass or more. As the abrasive content increases, the polishing rate increases.

また、研磨用組成物中の砥粒の含有量の上限は、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。砥粒の含有量が少なくなるにつれて、研磨用組成物の製造コストが低減するのに加えて、研磨用組成物を用いた研磨により傷等の欠陥が少ない表面を得ることが容易となる。   Moreover, it is preferable that the upper limit of content of the abrasive grain in polishing composition is 50 mass% or less, and it is more preferable that it is 40 mass% or less. As the abrasive grain content decreases, the manufacturing cost of the polishing composition decreases, and it becomes easy to obtain a surface with few defects such as scratches by polishing using the polishing composition.

[層状ケイ酸塩化合物]
本発明の研磨用組成物は、層状ケイ酸塩化合物を含む。本発明の研磨用組成物において、層状ケイ酸塩化合物は、砥粒の粒子間に立体障害となるような状態で存在しうるため、砥粒の分散性や再分散性を向上させる作用を有する。該層状ケイ酸塩化合物は、ケイ酸四面体が平面的につながっている構造が基本となり、単位構造の中にケイ酸四面体シート1枚または2枚と、アルミナ八面体シート1枚とを含むことを特徴とする構造体である。その層間(単位構造間)においては、ナトリウム、カリウム、カルシウム等の陽イオンが存在する。また、該層状ケイ酸塩化合物は、結晶が薄く剥がれる性質を有する物質である。
[Layered silicate compound]
The polishing composition of the present invention contains a layered silicate compound. In the polishing composition of the present invention, the layered silicate compound can exist in a state that causes steric hindrance between the abrasive grains, and thus has an effect of improving the dispersibility and redispersibility of the abrasive grains. . The layered silicate compound is basically based on a structure in which silicic acid tetrahedrons are connected in a plane, and the unit structure includes one or two silicic acid tetrahedral sheets and one alumina octahedron sheet. It is a structure characterized by the above. Between the layers (between unit structures), cations such as sodium, potassium and calcium are present. The layered silicate compound is a substance having a property that crystals are peeled off thinly.

本発明で用いられる層状ケイ酸塩化合物は、天然物であってもよく、合成品であってもよく、市販品であってもよく、これらの混合物であってもよい。層状ケイ酸塩化合物の合成方法としては、たとえば、水熱合成反応法、固相反応法、溶融合成法等が挙げられる。   The layered silicate compound used in the present invention may be a natural product, a synthetic product, a commercial product, or a mixture thereof. Examples of the synthesis method of the layered silicate compound include a hydrothermal synthesis reaction method, a solid phase reaction method, and a melt synthesis method.

該層状ケイ酸塩化合物の具体的な例としては、タルク、パイロフィライト、スメクタイト(サポナイト、ヘクトライト、ソーコナイト、スティブンサイト、ベントナイト、モンモリロナイト、バイデライト、ノントロナイト等)、バーミキュライト、雲母(金雲母、黒雲母、チンワルド雲母、白雲母、パラゴナイト、セラドナイト、海緑石等)、緑泥石(クリノクロア、シャモサイト、ニマイト、ペナンタイト、スドーアイト、ドンバサイト等)、脆雲母(クリントナイト、マーガライト等)、スーライト、蛇紋石(アンチゴライト、リザーダイト、クリソタイル、アメサイト、クロンステダイト、バーチェリン、グリーナライト、ガーニエライト等)、カオリン(カオリナイト、ディッカイト、ナクライト、ハロイサイト等)等が挙げられる。   Specific examples of the layered silicate compound include talc, pyrophyllite, smectite (saponite, hectorite, saconite, stevensite, bentonite, montmorillonite, beidellite, nontronite, etc.), vermiculite, mica (gold). Mica, biotite, chinwald mica, muscovite, paragonite, ceradonite, sea chlorite, etc.), chlorite (clinochlore, chamosite, nimite, penantite, sudowite, donbasite, etc.), brittle mica (clintonite, margarite, etc.) , Sulite, Serpentine (Antigolite, Lizardite, Chrysotile, Amesite, Klonsteadite, Burcellin, Greenerite, Garnierite, etc.), Kaolin (Kaolinite, Dickite, Nacrite, Halloysite, etc.) .

これら層状ケイ酸塩化合物は、単独でもまたは2種以上組み合わせて用いてもよい。中でもチキソ性や膨潤性に優れており砥粒の分散性や再分散性をより向上させやすいという観点から、層間イオンがナトリウムイオンであるベントナイト(ナトリウムベントナイト)、ヘクトライト(ナトリウムヘクトライト)、雲母(ナトリウム四ケイ素雲母)が好ましく、層間イオンがナトリウムイオンであるベントナイト(ナトリウムベントナイト)がより好ましい。   These layered silicate compounds may be used alone or in combination of two or more. Among them, bentonite (sodium bentonite), hectorite (sodium hectorite), mica whose interlayer ions are sodium ions from the standpoint of superior thixotropy and swelling properties and easier dispersibility and redispersibility of abrasive grains. (Sodium tetrasilicon mica) is preferable, and bentonite (sodium bentonite) whose interlayer ions are sodium ions is more preferable.

研磨用組成物中の層状ケイ酸塩化合物の含有量の下限は、0.01質量%以上であることが好ましく、0.1質量%以上であることがより好ましい。また、研磨用組成物中の層状ケイ酸塩化合物の含有量の上限は、5質量%以下であることが好ましく、2質量%以下であることがより好ましい。このような範囲であれば、上記本発明の効果が効率よく得られる。   The lower limit of the content of the layered silicate compound in the polishing composition is preferably 0.01% by mass or more, and more preferably 0.1% by mass or more. Moreover, it is preferable that the upper limit of content of the layered silicate compound in polishing composition is 5 mass% or less, and it is more preferable that it is 2 mass% or less. Within such a range, the effect of the present invention can be obtained efficiently.

[分散媒]
本発明に係る研磨用組成物は、各成分を分散するための分散媒を含む。分散媒としては水が好ましい。他の成分の作用を阻害することを抑制するという観点から、不純物をできる限り含有しない水が好ましく、具体的には、イオン交換樹脂にて不純物イオンを除去した後、フィルタを通して異物を除去した純水や超純水、または蒸留水が好ましい。
[Dispersion medium]
The polishing composition according to the present invention contains a dispersion medium for dispersing each component. As the dispersion medium, water is preferable. From the viewpoint of suppressing the inhibition of the action of other components, water that contains as little impurities as possible is preferable. Water, ultrapure water, or distilled water is preferred.

[研磨用組成物のpH]
本発明の研磨用組成物のpHの下限は、特に制限されないが、2.0以上であることが好ましく、2.3以上であることがより好ましく、2.5以上であることがさらに好ましい。また、pHの上限は、特に制限されないが、12.0以下であることが好ましく、10.0以下であることがより好ましく、7.0以下であることがさらに好ましく、4.0以下であることが特に好ましい。
[PH of polishing composition]
The lower limit of the pH of the polishing composition of the present invention is not particularly limited, but is preferably 2.0 or more, more preferably 2.3 or more, and even more preferably 2.5 or more. Further, the upper limit of the pH is not particularly limited, but is preferably 12.0 or less, more preferably 10.0 or less, further preferably 7.0 or less, and 4.0 or less. It is particularly preferred.

研磨対象物が合金材料(例えば、アルミニウム合金、鉄合金、チタン合金、ニッケル合金、および銅合金等)である場合、pHが酸性領域であると研磨速度は速くなり好ましい。また、研磨対象物が樹脂材料である場合も、上記と同様に、pHが酸性領域であると研磨速度は速くなり好ましい。   When the object to be polished is an alloy material (for example, an aluminum alloy, an iron alloy, a titanium alloy, a nickel alloy, or a copper alloy), it is preferable that the polishing rate is high when the pH is in the acidic region. In addition, when the object to be polished is a resin material, it is preferable that the pH is in the acidic region, as described above, because the polishing rate is increased.

研磨用組成物のpHがアルカリ領域である場合、層状ケイ酸塩化合物の添加量を増やすことにより、砥粒の分散性および/または再分散性を向上させることができる。層状ケイ酸塩化合物の添加量を少なくして、砥粒の分散性および/または再分散性をより向上させるという観点から、研磨用組成物のpHは酸性領域であることが好ましい。すなわち、本発明の研磨用組成物のpHは2.0以上7.0以下であることがさらに好ましい。層状ケイ酸塩化合物は、層表面に負電荷を有していることから、pHが酸性領域であると、砥粒と層状ケイ酸塩化合物とが立体構造を作りやすくなり、層状ケイ酸塩化合物の添加量が少なくても、砥粒の分散性および/または再分散性が向上しやすくなると考えられる。   When pH of polishing composition is an alkali area | region, the dispersibility and / or redispersibility of an abrasive grain can be improved by increasing the addition amount of a layered silicate compound. From the viewpoint of improving the dispersibility and / or redispersibility of the abrasive grains by reducing the amount of the layered silicate compound added, the polishing composition preferably has an acidic pH range. That is, the pH of the polishing composition of the present invention is more preferably 2.0 or more and 7.0 or less. Since the layered silicate compound has a negative charge on the surface of the layer, if the pH is in the acidic region, the abrasive grains and the layered silicate compound can easily form a three-dimensional structure, and the layered silicate compound Even if the addition amount is small, it is considered that the dispersibility and / or redispersibility of the abrasive grains is likely to be improved.

研磨用組成物のpHは、下記で説明する酸またはその塩や、塩基またはその塩の添加により調整することができる。   The pH of the polishing composition can be adjusted by adding an acid or a salt thereof described below, or a base or a salt thereof.

[酸またはその塩]
本発明の研磨用組成物は、酸またはその塩を含むことが好ましい。酸またはその塩は、研磨用組成物のpHを調整する役割を果たす。
[Acid or its salt]
The polishing composition of the present invention preferably contains an acid or a salt thereof. The acid or a salt thereof serves to adjust the pH of the polishing composition.

酸としては、無機酸および有機酸のいずれも用いることができる。無機酸の例としては、たとえば、塩酸、硫酸、硝酸、フッ酸、ホウ酸、炭酸、次亜リン酸、亜リン酸、およびリン酸等が挙げられる。また、有機酸としては、たとえば、ギ酸、酢酸、プロピオン酸、酪酸、吉草酸、2−メチル酪酸、n−ヘキサン酸、3,3−ジメチル酪酸、2−エチル酪酸、4−メチルペンタン酸、n−ヘプタン酸、2−メチルヘキサン酸、n−オクタン酸、2−エチルヘキサン酸、安息香酸、グリコール酸、サリチル酸、グリセリン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、ピメリン酸、マレイン酸、フタル酸、リンゴ酸、酒石酸、クエン酸、乳酸、ジグリコール酸、2−フランカルボン酸、2,5−フランジカルボン酸、3−フランカルボン酸、2−テトラヒドロフランカルボン酸、メトキシ酢酸、メトキシフェニル酢酸、フェノキシ酢酸、メタンスルホン酸、エタンスルホン酸、スルホコハク酸、ベンゼンスルホン酸、トルエンスルホン酸、フェニルホスホン酸、ヒドロキシエタン−1,1−ジホスホン酸等が挙げられる。さらに、塩としては、1族元素塩、2族元素塩、アルミニウム塩、アンモニウム塩、アミン塩、および第四級アンモニウム塩等が挙げられる。これら酸またはその塩は、単独でもまたは2種以上混合しても用いることができる。これらの中でも、硝酸、クエン酸が好ましい。   As the acid, either an inorganic acid or an organic acid can be used. Examples of inorganic acids include hydrochloric acid, sulfuric acid, nitric acid, hydrofluoric acid, boric acid, carbonic acid, hypophosphorous acid, phosphorous acid, and phosphoric acid. Examples of organic acids include formic acid, acetic acid, propionic acid, butyric acid, valeric acid, 2-methylbutyric acid, n-hexanoic acid, 3,3-dimethylbutyric acid, 2-ethylbutyric acid, 4-methylpentanoic acid, n -Heptanoic acid, 2-methylhexanoic acid, n-octanoic acid, 2-ethylhexanoic acid, benzoic acid, glycolic acid, salicylic acid, glyceric acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, Maleic acid, phthalic acid, malic acid, tartaric acid, citric acid, lactic acid, diglycolic acid, 2-furancarboxylic acid, 2,5-furandicarboxylic acid, 3-furancarboxylic acid, 2-tetrahydrofurancarboxylic acid, methoxyacetic acid, methoxy Phenylacetic acid, phenoxyacetic acid, methanesulfonic acid, ethanesulfonic acid, sulfosuccinic acid, benzenesulfonic acid, toluene Sulfonic acid, phenylphosphonic acid, such as hydroxyethyl-1,1-diphosphonic acid. Furthermore, examples of the salt include a group 1 element salt, a group 2 element salt, an aluminum salt, an ammonium salt, an amine salt, and a quaternary ammonium salt. These acids or salts thereof can be used alone or in combination. Among these, nitric acid and citric acid are preferable.

研磨用組成物中の酸またはその塩の含有量は、上記のpHの範囲となるように適宜調整すればよい。   What is necessary is just to adjust suitably content of the acid or its salt in polishing composition so that it may become said pH range.

[塩基またはその塩]
上記pHの範囲に調整するために、塩基またはその塩を用いてもよい。塩基またはその塩の例としては、脂肪族アミン、芳香族アミン等のアミン、水酸化第四アンモニウムなどの有機塩基、水酸化ナトリウム、水酸化カリウム等のアルカリ金属の水酸化物、水酸化マグネシウム、水酸化カルシウム等の第2族元素の水酸化物、およびアンモニア等が挙げられる。
[Base or salt thereof]
In order to adjust to the above pH range, a base or a salt thereof may be used. Examples of bases or salts thereof include amines such as aliphatic amines and aromatic amines, organic bases such as quaternary ammonium hydroxide, alkali metal hydroxides such as sodium hydroxide and potassium hydroxide, magnesium hydroxide, Examples include Group 2 element hydroxides such as calcium hydroxide, and ammonia.

研磨用組成物中の塩基またはその塩の含有量は、上記のpHの範囲となるように適宜調整すればよい。   What is necessary is just to adjust suitably content of the base or its salt in polishing composition so that it may become said pH range.

[他の成分]
本発明の研磨用組成物は、必要に応じて、研磨対象物の表面を酸化させる酸化剤、研磨対象物の表面や砥粒表面に作用する水溶性高分子、研磨対象物の腐食を抑制する防食剤やキレート剤、その他の機能を有する防腐剤、防黴剤等の他の成分をさらに含んでもよい。
[Other ingredients]
The polishing composition of the present invention suppresses the corrosion of the polishing target, an oxidizing agent that oxidizes the surface of the polishing target, a water-soluble polymer that acts on the surface of the polishing target and the surface of the abrasive grains, if necessary. You may further contain other components, such as anticorrosive, a chelating agent, the preservative which has another function, and an antifungal agent.

酸化剤の例としては、過酸化水素、過酢酸、過炭酸塩、過酸化尿素、過塩素酸塩、過硫酸塩等が挙げられる。   Examples of the oxidizing agent include hydrogen peroxide, peracetic acid, percarbonate, urea peroxide, perchlorate, persulfate, and the like.

水溶性高分子の例としては、ポリアクリル酸などのポリカルボン酸、ポリホスホン酸、ポリスチレンスルホン酸などのポリスルホン酸、キタンサンガム、アルギン酸ナトリウムなどの多糖類、ヒドロキシエチルセルロース、カルボキシメチルセルロースなどのセルロース誘導体、ポリエチレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルキルフェニルエーテル、ソルビタンモノオレエート、単一種または複数種のオキシアルキレン単位を有するオキシアルキレン系重合体等が挙げられる。また、上記の化合物の塩も水溶性高分子として好適に用いることができる。   Examples of water-soluble polymers include polycarboxylic acids such as polyacrylic acid, polysulfonic acids such as polyphosphonic acid and polystyrene sulfonic acid, polysaccharides such as chitansan gum and sodium alginate, cellulose derivatives such as hydroxyethyl cellulose and carboxymethyl cellulose, polyethylene glycol , Polyvinyl alcohol, polyvinyl pyrrolidone, polyoxyethylene alkyl ether, polyoxyethylene alkyl phenyl ether, sorbitan monooleate, oxyalkylene polymers having a single kind or plural kinds of oxyalkylene units. Moreover, the salt of said compound can also be used suitably as a water-soluble polymer.

防食剤の例としては、アミン類、ピリジン類、テトラフェニルホスホニウム塩、ベンゾトリアゾール類、トリアゾール類、テトラゾール類、安息香酸等が挙げられる。キレート剤の例としては、グルコン酸等のカルボン酸系キレート剤、エチレンジアミン、ジエチレントリアミン、トリメチルテトラアミンなどのアミン系キレート剤、エチレンジアミン四酢酸、ニトリロ三酢酸、ヒドロキシエチルエチレンジアミン三酢酸、トリエチレンテトラミン六酢酸、ジエチレントリアミン五酢酸などのポリアミノポリカルボン系キレート剤、2−アミノエチルホスホン酸、1−ヒドロキシエチリデン−1,1−ジホスホン酸、アミノトリ(メチレンホスホン酸)、エチレンジアミンテトラキス(メチレンホスホン酸)、ジエチレントリアミンペンタ(メチレンホスホン酸)、エタン−1,1−ジホスホン酸、エタン−1,1,2−トリホスホン酸、メタンヒドロキシホスホン酸、1−ホスホノブタン−2,3,4−トリカルボン酸などの有機ホスホン酸系キレート剤、フェノール誘導体、1,3−ジケトン等が挙げられる。   Examples of the anticorrosive include amines, pyridines, tetraphenylphosphonium salts, benzotriazoles, triazoles, tetrazoles, benzoic acid and the like. Examples of chelating agents include carboxylic acid chelating agents such as gluconic acid, amine chelating agents such as ethylenediamine, diethylenetriamine, and trimethyltetraamine, ethylenediaminetetraacetic acid, nitrilotriacetic acid, hydroxyethylethylenediaminetriacetic acid, triethylenetetraminehexaacetic acid. , Polyaminopolycarboxylic chelating agents such as diethylenetriaminepentaacetic acid, 2-aminoethylphosphonic acid, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotri (methylenephosphonic acid), ethylenediaminetetrakis (methylenephosphonic acid), diethylenetriaminepenta ( Methylenephosphonic acid), ethane-1,1-diphosphonic acid, ethane-1,1,2-triphosphonic acid, methanehydroxyphosphonic acid, 1-phosphonobutane-2,3,4-to Organic phosphonic acid chelating agents such as carboxylic acid, phenol derivatives, 1,3-diketones and the like.

防腐剤の例としては、次亜塩素酸ナトリウム等が挙げられる。防黴剤の例としてはオキサゾリジン−2,5−ジオンなどのオキサゾリン等が挙げられる。   Examples of preservatives include sodium hypochlorite and the like. Examples of the antifungal agent include oxazolines such as oxazolidine-2,5-dione.

[研磨用組成物の製造方法]
本発明の研磨用組成物の製造方法は、特に制限されず、たとえば、砥粒、層状ケイ酸塩化合物、および必要に応じて他の成分を、分散媒中で攪拌混合することにより得ることができる。
[Method for producing polishing composition]
The method for producing the polishing composition of the present invention is not particularly limited, and can be obtained, for example, by stirring and mixing abrasive grains, a layered silicate compound, and other components as necessary in a dispersion medium. it can.

各成分を混合する際の温度は特に制限されないが、10℃以上40℃以下が好ましく、溶解速度を上げるために加熱してもよい。また、混合時間も特に制限されない。   The temperature at which each component is mixed is not particularly limited, but is preferably 10 ° C. or higher and 40 ° C. or lower, and may be heated to increase the dissolution rate. Further, the mixing time is not particularly limited.

[研磨方法]
上述のように、本発明の研磨用組成物は、合金材料および/または樹脂材料を含む研磨対象物の研磨に好適に用いられる。
[Polishing method]
As described above, the polishing composition of the present invention is suitably used for polishing an object to be polished containing an alloy material and / or a resin material.

本発明の研磨用組成物を用いて研磨対象物を研磨する際には、通常の金属研磨に用いられる装置や条件を用いて行うことができる。一般的な研磨装置としては、片面研磨装置や、両面研磨装置があり、片面研磨装置では、キャリアと呼ばれる保持具を用いて研磨対象物(好ましくは基板状の研磨対象物)を保持し、研磨用組成物を供給しながら研磨対象物の片面に研磨布を貼付した定盤を押しつけて定盤を回転させることにより、研磨対象物の片面を研磨する。両面研磨装置では、キャリアと呼ばれる保持具を用いて研磨対象物を保持し、上方より研磨用組成物を供給しながら、研磨対象物の対向面に研磨布が貼付された定盤を押しつけ、それらを相対方向に回転させることにより研磨対象物の両面を研磨する。このとき、研磨パッドおよび研磨用組成物と、研磨対象物との摩擦による物理的作用と、研磨用組成物が研磨対象物にもたらす化学的作用とによって研磨される。   When polishing an object to be polished using the polishing composition of the present invention, it can be performed using an apparatus and conditions used for normal metal polishing. As a general polishing apparatus, there are a single-side polishing apparatus and a double-side polishing apparatus. In the single-side polishing apparatus, a polishing object (preferably a substrate-shaped polishing object) is held by using a holding tool called a carrier and polished. One surface of the polishing object is polished by rotating the surface plate by pressing a surface plate having a polishing cloth affixed to one surface of the object to be polished while supplying the composition for polishing. In a double-side polishing apparatus, a polishing object is held using a holder called a carrier, and a polishing plate is pressed against a surface opposite to the polishing object while a polishing composition is supplied from above, and these are pressed. The both sides of the object to be polished are polished by rotating in a relative direction. At this time, the polishing is performed by a physical action caused by friction between the polishing pad and the polishing composition and the object to be polished, and a chemical action that the polishing composition brings to the object to be polished.

本発明に係る研磨方法における研磨条件として、研磨荷重が挙げられる。一般に荷重が高くなればなるほど砥粒による摩擦力が高くなり、機械的な加工力が向上するため研磨速度が上昇する。本発明による研磨方法における研磨荷重の下限は特に限定されないが、20g/cm以上であることが好ましく、50g/cm以上であることがより好ましい。研磨荷重が高くなるにつれ、機械的な加工特性が向上するため研磨速度が高まる。また、該研磨荷重の上限は、1000g/cm以下であることが好ましく、500g/cm以下であることがより好ましい。研磨荷重が低くなるにつれて、研磨面の表面荒れが抑制される。 An example of the polishing condition in the polishing method according to the present invention is a polishing load. In general, the higher the load, the higher the frictional force caused by the abrasive grains, and the higher the mechanical working force, the higher the polishing rate. The lower limit of the polishing load in the polishing method according to the present invention is not particularly limited, is preferably 20 g / cm 2 or more, more preferably 50 g / cm 2 or more. As the polishing load increases, the polishing rate increases because the mechanical processing characteristics improve. Further, the upper limit of the polishing load is preferably 1000 g / cm 2 or less, and more preferably 500 g / cm 2 or less. As the polishing load decreases, surface roughness of the polished surface is suppressed.

また、本発明に係る研磨方法における研磨条件として、研磨における線速度(研磨線速度)が挙げられる。一般に研磨パッドの回転数、キャリアの回転数、研磨対象物の大きさ、研磨対象物の数等が線速度に影響するが、線速度が大きい場合は研磨対象物にかかる摩擦力が大きくなるため、研磨対象物が機械的に研磨されやすくなる。また、摩擦によって摩擦熱が発生し、研磨用組成物による化学的作用が大きくなることがある。本発明による研磨方法における研磨線速度の下限は特に限定されないが、10m/分以上であることが好ましく、20m/分以上であることがより好ましい。また、研磨線速度の上限は300m/分以下であることが好ましく、150m/分以下であることがより好ましい。この範囲であれば、十分に高い研磨速度が得られることに加えて、研磨対象物に対して適度な摩擦力を付与することができる。すなわち、本発明においては、研磨線速度は、10m/分以上300m/分以下であることが好ましく、20m/分以上150m/分以下であることがより好ましい。   Further, as a polishing condition in the polishing method according to the present invention, a linear velocity in polishing (polishing linear velocity) can be mentioned. In general, the number of rotations of the polishing pad, the number of rotations of the carrier, the size of the object to be polished, the number of objects to be polished affect the linear velocity, but if the linear velocity is high, the frictional force applied to the object to be polished increases. The object is easily mechanically polished. In addition, frictional heat is generated by friction, and chemical action by the polishing composition may be increased. The lower limit of the polishing linear velocity in the polishing method according to the present invention is not particularly limited, but is preferably 10 m / min or more, and more preferably 20 m / min or more. Further, the upper limit of the polishing linear velocity is preferably 300 m / min or less, and more preferably 150 m / min or less. Within this range, in addition to obtaining a sufficiently high polishing rate, an appropriate frictional force can be imparted to the object to be polished. That is, in the present invention, the polishing linear velocity is preferably 10 m / min or more and 300 m / min or less, and more preferably 20 m / min or more and 150 m / min or less.

本発明の研磨用組成物を用いた研磨方法で使用される研磨パッドは、たとえばポリウレタンタイプ、発泡ポリウレタンタイプ、不織布タイプ、スウェードタイプ等の材質の違いの他、その硬度や厚みなどの物性の違い、さらに砥粒を含むもの、砥粒を含まないものなど種々あるが、これらを制限なく使用することができる。   The polishing pad used in the polishing method using the polishing composition of the present invention is different in material properties such as polyurethane type, polyurethane foam type, nonwoven fabric type, suede type, etc., as well as differences in physical properties such as hardness and thickness. Further, there are various types including those containing abrasive grains and those containing no abrasive grains, and these can be used without limitation.

本発明に係る研磨方法においては、研磨工程後に別の研磨用組成物を用いた仕上げ研磨工程を有することができる。以下、仕上げ研磨工程に用いる仕上げ研磨用組成物について説明する。   The polishing method according to the present invention can have a final polishing step using another polishing composition after the polishing step. Hereinafter, the finish polishing composition used in the finish polishing step will be described.

仕上げ研磨用組成物に含まれる砥粒としては、酸化ケイ素(シリカ)、酸化アルミニウム、酸化セリウム、酸化ジルコニウム、酸化チタン、酸化マンガン、炭化ケイ素、または窒化ケイ素であることが好ましい。なかでも酸化ケイ素(シリカ)が好ましく、具体的には例えば、コロイダルシリカ、フュームドシリカ、ゾルゲル法シリカ等が挙げられる。中でも、合金表面の平滑性をより効率的に得るという観点から、フュームドシリカまたはコロイダルシリカが好ましい。   The abrasive grains contained in the finish polishing composition are preferably silicon oxide (silica), aluminum oxide, cerium oxide, zirconium oxide, titanium oxide, manganese oxide, silicon carbide, or silicon nitride. Of these, silicon oxide (silica) is preferable, and specific examples include colloidal silica, fumed silica, and sol-gel silica. Among them, fumed silica or colloidal silica is preferable from the viewpoint of obtaining the smoothness of the alloy surface more efficiently.

コロイダルシリカの製造方法としては、公知の方法が挙げられる。例えば、作花済夫著 「ゾル−ゲル法の科学」(アグネ承風社刊)の第154〜156頁に記載のアルコキシシランの加水分解による方法;特開平11−60232号公報に記載の、ケイ酸メチルまたはケイ酸メチルとメタノールとの混合物を、水、メタノールおよびアンモニア、またはアンモニアとアンモニウム塩とからなる混合溶媒中に滴下してケイ酸メチルと水とを反応させる方法;特開2001−48520号公報に記載の、アルキルシリケー卜を酸触媒で加水分解した後、アルカリ触媒を加えて加熱してケイ酸の重合を進行させて粒子成長させる方法;特開2007−153732号公報に記載の、アルコキシシランの加水分解の際に特定の種類の加水分解触媒を特定の量で使用する方法等が挙げられる。また、ケイ酸ソーダをイオン交換することにより製造する方法も挙げられる。   As a method for producing colloidal silica, known methods may be mentioned. For example, a method by hydrolysis of alkoxysilane described in pages 154 to 156 of “Science of Sol-Gel Method” (published by Agne Jofu Co., Ltd.) by Sakuo Sakuo; described in JP-A-11-60232; A method in which methyl silicate or a mixture of methyl silicate and methanol is dropped into water, methanol and ammonia, or a mixed solvent composed of ammonia and an ammonium salt, and methyl silicate is reacted with water; A method of hydrolyzing an alkyl silicate koji described in Japanese Patent No. 48520 with an acid catalyst, followed by adding an alkali catalyst and heating to advance polymerization of silicic acid to grow particles; Japanese Patent Application Laid-Open No. 2007-153732 And a method of using a specific type of hydrolysis catalyst in a specific amount in the hydrolysis of alkoxysilane. Moreover, the method of manufacturing by ion-exchange of sodium silicate is also mentioned.

フュームドシリカの製造方法としては、四塩化ケイ素を気化し、酸水素炎中で燃焼させる気相反応を用いる公知の方法が挙げられる。さらに、フュームドシリカは、公知の方法で水分散液とすることができ、水分散液とする方法としては、例えば、特開2004−43298号公報、特開2003−176123号公報、特開2002−309239号公報に記載の方法が挙げられる。   As a method for producing fumed silica, a known method using a gas phase reaction in which silicon tetrachloride is vaporized and burned in an oxyhydrogen flame can be mentioned. Further, fumed silica can be made into an aqueous dispersion by a known method. Examples of methods for making an aqueous dispersion include, for example, JP-A Nos. 2004-43298, 2003-176123, and 2002. The method described in 309239 is mentioned.

仕上げ研磨用組成物中に含まれる砥粒の平均一次粒子径は5nm以上であることが好ましく、10nm以上であることがより好ましく、15nm以上であることがさらに好ましい。砥粒の平均一次粒子径が上記の範囲内にある場合、研磨対象物の研磨速度が向上する。仕上げ研磨用組成物中に含まれる砥粒の平均一次粒子径は、400nm以下であることが好ましく、300nm以下であることがより好ましく、200nm以下であることがさらに好ましく、100nm以下であることが最も好ましい。砥粒の平均一次粒子径が上記の範囲内にある場合、低欠陥かつ面粗度の小さい表面を得ることが容易である。研磨後の研磨対象物に大粒子径の砥粒が残留することが問題となる場合、大粒子径を含まない小粒子径の砥粒を用いることが好ましい。なお、仕上げ研磨用組成物に含まれる砥粒の平均一次粒子径は、窒素吸着法(BET法)による比表面積の測定値から算出することができる。   The average primary particle diameter of the abrasive grains contained in the final polishing composition is preferably 5 nm or more, more preferably 10 nm or more, and further preferably 15 nm or more. When the average primary particle diameter of the abrasive grains is within the above range, the polishing rate of the object to be polished is improved. The average primary particle diameter of the abrasive grains contained in the finish polishing composition is preferably 400 nm or less, more preferably 300 nm or less, further preferably 200 nm or less, and preferably 100 nm or less. Most preferred. When the average primary particle diameter of the abrasive grains is within the above range, it is easy to obtain a surface with low defects and low surface roughness. When it becomes a problem that abrasive grains having a large particle diameter remain on the polished object after polishing, it is preferable to use abrasive grains having a small particle diameter not including the large particle diameter. In addition, the average primary particle diameter of the abrasive grains contained in the final polishing composition can be calculated from the measured value of the specific surface area by the nitrogen adsorption method (BET method).

仕上げ研磨用組成物中の砥粒の含有量は、1質量%以上であることが好ましく、2質量%以上であることがより好ましい。砥粒の含有量が上記の範囲内にある場合、仕上げ研磨用組成物による研磨対象物の研磨速度が向上する。仕上げ研磨用組成物中の砥粒の含有量は、50質量%以下であることが好ましく、40質量%以下であることがより好ましい。砥粒の含有量が上記の範囲内にある場合、仕上げ研磨用組成物の製造コストが低減するのに加えて、スクラッチの少ない研磨面を得ることが容易である。また、研磨後の研磨対象物表面上に残存する砥粒の量が低減され、表面の清浄性が向上する。   The content of the abrasive grains in the finish polishing composition is preferably 1% by mass or more, and more preferably 2% by mass or more. When content of an abrasive grain exists in said range, the grinding | polishing speed | rate of the grinding | polishing target object by the composition for final polishing improves. The content of the abrasive grains in the finish polishing composition is preferably 50% by mass or less, and more preferably 40% by mass or less. When the content of the abrasive grains is within the above range, it is easy to obtain a polished surface with few scratches in addition to reducing the production cost of the finish polishing composition. In addition, the amount of abrasive grains remaining on the surface of the polished object after polishing is reduced, and the surface cleanliness is improved.

仕上げ研磨用組成物のpHは、研磨される研磨対象物の種類により異なる。仕上げ研磨用組成物中のpHは公知の酸、塩基、またはそれらの塩により調整される。なかでも塩基としては、脂肪族アミン、芳香族アミン等のアミン、水酸化第四アンモニウムなどの有機塩基、水酸化カリウム等のアルカリ金属の水酸化物、アルカリ土類金属の水酸化物、およびアンモニア等が挙げられ、これらの中でも、入手容易性から水酸化カリウムまたはアンモニアが好ましい。   The pH of the final polishing composition varies depending on the type of polishing object to be polished. The pH in the finish polishing composition is adjusted with a known acid, base, or salt thereof. Among them, bases include amines such as aliphatic amines and aromatic amines, organic bases such as quaternary ammonium hydroxide, alkali metal hydroxides such as potassium hydroxide, alkaline earth metal hydroxides, and ammonia. Among these, potassium hydroxide or ammonia is preferable from the viewpoint of availability.

仕上げ研磨用組成物のpHの下限は、2以上であることが好ましく、8以上であることがより好ましい。仕上げ研磨用組成物のpHが大きくなるにつれて、砥粒(例えば、シリカ粒子)の分散性が向上する。また、仕上げ研磨用組成物のpHの上限は、12.0以下であることが好ましく、11.5以下であることがより好ましい。仕上げ研磨用組成物のpHが小さくなるにつれて、仕上げ研磨用組成物の安全性がより向上する他、経済的観点からも好ましい。   The lower limit of the pH of the finish polishing composition is preferably 2 or more, and more preferably 8 or more. As the pH of the finish polishing composition increases, the dispersibility of abrasive grains (for example, silica particles) improves. Further, the upper limit of the pH of the finish polishing composition is preferably 12.0 or less, and more preferably 11.5 or less. As the pH of the finish polishing composition decreases, the safety of the finish polishing composition is further improved, and it is also preferable from an economic viewpoint.

仕上げ研磨用組成物は、本発明の研磨用組成物と同様、必要に応じて、研磨対象物の表面を酸化させる酸化剤、研磨対象物の表面や砥粒表面に作用する水溶性高分子、研磨対象物の腐食を抑制する防食剤やキレート剤、その他の機能を有する防腐剤、防黴剤等の他の成分をさらに含んでもよい。   Like the polishing composition of the present invention, the finish polishing composition is an oxidant that oxidizes the surface of the polishing object, if necessary, a water-soluble polymer that acts on the surface of the polishing object or the abrasive grain surface, You may further contain other components, such as anticorrosive agent and chelating agent which suppress corrosion of a grinding | polishing target object, antiseptic | preservative which has another function, antifungal agent.

本発明の研磨用組成物を用いて研磨対象物を研磨する際には、一度研磨に使用された研磨用組成物を回収し、再度研磨に使用することができる。研磨用組成物の再使用する方法の一例として、研磨装置から排出された研磨用組成物をタンク内に回収し、再度研磨装置内へ循環させて使用する方法が挙げられる。研磨用組成物を循環使用することは、廃液として排出される研磨用組成物の量を減らすことで環境負荷が低減できる点と、使用する研磨用組成物の量を減らすことで研磨対象物の研磨にかかる製造コストを抑制できる点で有用である。   When a polishing object is polished using the polishing composition of the present invention, the polishing composition once used for polishing can be recovered and used again for polishing. As an example of a method for reusing the polishing composition, there is a method in which the polishing composition discharged from the polishing apparatus is collected in a tank and is circulated again into the polishing apparatus. Recycling the polishing composition can reduce the environmental load by reducing the amount of polishing composition discharged as waste liquid, and reduce the amount of polishing composition to be used by reducing the amount of polishing composition to be used. This is useful in that the manufacturing cost for polishing can be suppressed.

本発明の研磨用組成物を循環使用する際には、研磨により消費・損失された砥粒、層状ケイ酸塩化合物、およびその他の添加剤の一部または全部を組成物調整剤として循環使用中に添加することができる。この場合、組成物調整剤としては、砥粒、層状ケイ酸塩化合物、およびその他の添加剤の一部または全部を任意の混合比率で混合したものとしてもよい。組成物調整剤を追加で添加することにより、研磨用組成物が再利用されるのに好適な組成物に調整され、研磨が好適に維持される。組成物調整剤に含有される砥粒、層状ケイ酸塩化合物、およびその他の添加剤の濃度は任意であり、特に限定されないが、循環タンクの大きさや研磨条件に応じて適宜調整されるのが好ましい。   When the polishing composition of the present invention is recycled, some or all of abrasive grains, layered silicate compounds, and other additives consumed and lost by polishing are being used as a composition modifier. Can be added. In this case, as a composition regulator, it is good also as what mixed a part or all of an abrasive grain, a layered silicate compound, and another additive by arbitrary mixing ratios. By additionally adding a composition adjusting agent, the polishing composition is adjusted to a composition suitable for reuse, and polishing is suitably maintained. The concentration of the abrasive grains, layered silicate compound, and other additives contained in the composition modifier is arbitrary and is not particularly limited, but may be appropriately adjusted according to the size of the circulation tank and the polishing conditions. preferable.

本発明の研磨用組成物は一液型であってもよいし、二液型をはじめとする多液型であってもよい。また、本発明の研磨用組成物は、研磨用組成物の原液を水などの希釈液を使って、たとえば、10倍以上に希釈することによって調製されてもよい。   The polishing composition of the present invention may be a one-component type or a multi-component type including a two-component type. The polishing composition of the present invention may be prepared by diluting the stock solution of the polishing composition, for example, 10 times or more using a diluent such as water.

本発明を、以下の実施例および比較例を用いてさらに詳細に説明する。ただし、本発明の技術的範囲が以下の実施例のみに制限されるわけではない。   The present invention will be described in further detail using the following examples and comparative examples. However, the technical scope of the present invention is not limited only to the following examples.

(研磨用組成物の調製)
砥粒が30質量%の含有量となるように水で希釈し、分散剤(層状ケイ酸塩化合物またはそれに代わる他の化合物)が0.5質量%の含有量となるように加えて室温(25℃)で攪拌し、分散液を調製した。次いで、前記の分散液に酸としてクエン酸または硝酸を加え、pHメーターにより確認しながら、下記表1〜6に記載のpHに調整した。
(Preparation of polishing composition)
Dilute with water so that the abrasive grains have a content of 30% by mass, and add the dispersant (layered silicate compound or other compound in place thereof) to a content of 0.5% by mass at room temperature ( 25 ° C.) to prepare a dispersion. Next, citric acid or nitric acid was added as an acid to the dispersion, and the pH was adjusted to the values shown in Tables 1 to 6 below while confirming with a pH meter.

<砥粒>
酸化アルミニウム:α化率90〜100%(酸化アルミニウム粒子のα化率は、X線解析装置(Ultima−IV、株式会社リガク製)を使用し、X線回折測定による(113)面回折線の積分強度比より算出した)
炭化ケイ素:GC#3000(D50:4.0μm)、GC#1200(D50:9.9μm)
砥粒のD50は、マルチサイザーIII(ベックマン・コールター株式会社製)を用い、細孔電気抵抗法により測定した。
<Abrasive>
Aluminum oxide: alpha conversion rate of 90 to 100% (the alpha conversion ratio of the aluminum oxide particles is determined by X-ray diffraction measurement using an X-ray analyzer (Ultima-IV, manufactured by Rigaku Corporation). (Calculated from the integrated intensity ratio)
Silicon carbide: GC # 3000 (D 50: 4.0μm), GC # 1200 (D 50: 9.9μm)
The D 50 of the abrasive grains was measured by a pore electrical resistance method using Multisizer III (manufactured by Beckman Coulter, Inc.).

<層状ケイ酸塩化合物>
Naベントナイト:ナトリウムベントナイト、粘度300mPa・s(4質量%水分散液での測定値、BM型粘度計、60rpm、25℃)、膨潤力63ml/2g
スティブンサイト:粘度1000mPa・s(4質量%水分散液での測定値、BM型粘度計、60rpm、25℃)、膨潤力12ml/2g
Naヘクトライト:ナトリウムヘクトライト、粒子径3μm(レーザー回折計による測定値)、アスペクト比1000
Na四ケイ素雲母:ナトリウム四ケイ素雲母、粒子径11μm(レーザー回折計による測定値)、アスペクト比2000。
<Layered silicate compound>
Na bentonite: sodium bentonite, viscosity of 300 mPa · s (measured value in 4% by mass aqueous dispersion, BM viscometer, 60 rpm, 25 ° C.), swelling power of 63 ml / 2 g
Steven sight: Viscosity of 1000 mPa · s (measured value in a 4% by mass aqueous dispersion, BM viscometer, 60 rpm, 25 ° C.), swelling power of 12 ml / 2 g
Na hectorite: sodium hectorite, particle size 3 μm (measured by laser diffractometer), aspect ratio 1000
Na tetrasilicon mica: sodium tetrasilicon mica, particle diameter 11 μm (measured by a laser diffractometer), aspect ratio 2000.

(砥粒の分散性の評価)
容量100mlの比色管(アズワン株式会社製)に研磨用組成物を100mlの目盛りまで入れてから1時間静置した。静置後に、砥粒層と上澄み液との界面の高さが静置前と比べてどのくらい下がったか、下がった目盛りの数を測定した。この値が小さいほど分散性が良好である。
(Evaluation of dispersibility of abrasive grains)
The polishing composition was put in a 100 ml colorimetric tube (manufactured by AS ONE Co., Ltd.) up to a scale of 100 ml and allowed to stand for 1 hour. After standing, how much the height of the interface between the abrasive layer and the supernatant liquid was lowered compared with that before standing, and the number of scales lowered was measured. The smaller this value, the better the dispersibility.

(砥粒の再分散性の評価)
容量50mlのPP容器(アズワン株式会社製)に45mlの研磨用組成物を入れてから60時間静置した。静置後、PP容器を上下にひっくり返し、底部の砥粒が取れた回数を測定した。回数が少ないほど再分散性が良好である。
(Evaluation of redispersibility of abrasive grains)
45 ml of the polishing composition was put in a 50 ml capacity PP container (manufactured by AS ONE Co., Ltd.) and allowed to stand for 60 hours. After standing, the PP container was turned upside down, and the number of times the bottom abrasive grains were removed was measured. The smaller the number of times, the better the redispersibility.

(研磨の評価)
各実施例および各比較例の研磨用組成物を用いて、下記の研磨条件で研磨し、研磨速度を求めた。また、研磨後の各研磨対象物の表面粗さを下記方法により測定した。
(Evaluation of polishing)
The polishing composition of each Example and each Comparative Example was used for polishing under the following polishing conditions, and the polishing rate was determined. Further, the surface roughness of each polished object after polishing was measured by the following method.

<研磨条件>
研磨装置:片面研磨装置(定盤径380mm)
研磨パッド:不織布タイプ(溝有り)
研磨荷重:150g/cm
定盤回転数:50rpm
研磨線速度:30m/分
研磨時間:8min
研磨用組成物の供給速度:35ml/min
<研磨対象物>
Al合金6000番台:3.2cm×3.2cm角、厚み5mmの大きさの基板3枚を、上記研磨装置の円形治具表面に、回転方向に等間隔にセットした。
<Polishing conditions>
Polishing device: Single-side polishing device (plate diameter 380mm)
Polishing pad: Non-woven fabric type (with grooves)
Polishing load: 150 g / cm 2
Plate rotation speed: 50 rpm
Polishing linear velocity: 30 m / min Polishing time: 8 min
Supply rate of polishing composition: 35 ml / min
<Polishing object>
Al alloy 6000 series: Three substrates having a size of 3.2 cm × 3.2 cm square and a thickness of 5 mm were set on the surface of the circular jig of the polishing apparatus at equal intervals in the rotation direction.

Al合金7000番台:5.0cm×5.0cm角、厚み5mmの大きさの基板を1枚、上記研磨装置にセットした。   Al alloy 7000 series: One substrate having a size of 5.0 cm × 5.0 cm square and a thickness of 5 mm was set in the polishing apparatus.

SUS304:直径1インチ、厚み5mmの大きさの基板を3枚、上記研磨装置の円形治具表面に、回転方向に等間隔にセットした。   SUS304: Three substrates having a diameter of 1 inch and a thickness of 5 mm were set on the surface of the circular jig of the polishing apparatus at equal intervals in the rotation direction.

ポリカーボネート樹脂(シロキサン共重合グレード、AG1950):3.2cm×3.2cm角、厚み5mmの大きさの基板3枚を、上記研磨装置の円形治具表面に、回転方向に等間隔にセットした。   Polycarbonate resin (siloxane copolymer grade, AG1950): Three substrates having a size of 3.2 cm × 3.2 cm square and a thickness of 5 mm were set on the surface of the circular jig of the polishing apparatus at equal intervals in the rotation direction.

<研磨速度>
研磨前後の研磨対象物の質量の差から研磨速度を算出した。
<Polishing speed>
The polishing rate was calculated from the difference in mass of the polishing object before and after polishing.

<表面粗さRa>
研磨後の研磨対象物の表面粗さRaを、非接触表面形状測定機(レーザー顕微鏡、VK−X200、株式会社キーエンス製)を用いて測定した。なお、表面粗さRaは、粗さ曲線の高さ方向の振幅の平均を示すパラメーターであって、一定視野内での研磨対象物表面の高さの算術平均を示す。非接触表面形状測定機による測定範囲は、285μm×210μmとした。
<Surface roughness Ra>
The surface roughness Ra of the polished object after polishing was measured using a non-contact surface shape measuring instrument (laser microscope, VK-X200, manufactured by Keyence Corporation). The surface roughness Ra is a parameter indicating an average amplitude in the height direction of the roughness curve, and indicates an arithmetic average of the height of the surface of the polishing object within a fixed visual field. The measurement range by the non-contact surface shape measuring device was 285 μm × 210 μm.

(各種分散剤の比較)
層状ケイ酸塩化合物または他の化合物を含む研磨用組成物の砥粒の分散性および再分散性の評価、ならびに研磨の評価を、D50が3.1μmである砥粒を用いた場合(表1)、およびD50が8.0μmである砥粒を用いた場合(表2)のそれぞれで行った。また、比較例15は、エチレングリコールの添加量を10質量%とした。評価結果を下記表1および表2に示す。なお、下記表1〜6中の「−」は、その成分を添加しなかったことを示す。
(Comparison of various dispersants)
When abrasive grains of the evaluation of dispersibility and redispersibility of the polishing composition containing a layered silicate compound, or other compounds, as well as the evaluation of polishing, with abrasive grains D 50 is 3.1 .mu.m (Table 1) and the case where abrasive grains having D 50 of 8.0 μm were used (Table 2). Moreover, the comparative example 15 made the addition amount of ethylene glycol 10 mass%. The evaluation results are shown in Tables 1 and 2 below. In addition, "-" in the following Tables 1-6 shows that the component was not added.

上記表1および表2から明らかなように、層状ケイ酸塩化合物を含む研磨用組成物を用いた場合(表1の実施例1、表2の実施例2、3、4、5)、砥粒の分散性および再分散性、ならびに研磨性能において良好な結果が得られた。特に、層状ケイ酸塩化合物を添加していない比較例(表1の比較例1、表2の比較例7)と比べて、研磨速度やRa等の研磨性能を維持しつつ、砥粒の分散性が向上することがわかった。また、他の分散剤を用いた比較例(表1の比較例2〜6、表2の比較例8〜15)と比べて、実施例1の研磨用組成物は、研磨性能を維持しつつ砥粒の再分散性も向上することがわかった。   As apparent from Table 1 and Table 2 above, when a polishing composition containing a layered silicate compound was used (Example 1 in Table 1, Examples 2, 3, 4, 5 in Table 2), abrasive Good results were obtained in the dispersibility and redispersibility of the grains and the polishing performance. In particular, the dispersion of the abrasive grains while maintaining the polishing performance such as the polishing rate and Ra as compared with the comparative examples (Comparative Example 1 in Table 1 and Comparative Example 7 in Table 2) to which no layered silicate compound is added. It was found that the performance was improved. Moreover, compared with the comparative example (Comparative Examples 2-6 of Table 1, Comparative Examples 8-15 of Table 2), the polishing composition of Example 1 maintained polishing performance compared with the comparative example using other dispersing agents. It was found that the redispersibility of the abrasive grains was also improved.

(pHおよび砥粒のD50
研磨用組成物のpHを変えて砥粒の分散性および再分散性、ならびに研磨性能を評価した。また、砥粒のD50を変化させて砥粒の分散性および再分散性、ならびに研磨性能を評価した。なお、実施例9は、ナトリウムベントナイトの添加量を0.8質量%とした。評価結果を下記表3および表4に示す。比較のため、表3には上記実施例2および比較例7の結果を、表4には上記実施例1および2ならびに比較例1および7の結果を、それぞれ示した。
(PH and D 50 of abrasive grains)
The pH of the polishing composition was changed to evaluate the dispersibility and redispersibility of the abrasive grains and the polishing performance. Further, the abrasive grains of the dispersibility and redispersibility by changing the abrasive grains D 50, as well as evaluating the polishing performance. In Example 9, the amount of sodium bentonite added was 0.8% by mass. The evaluation results are shown in Table 3 and Table 4 below. For comparison, Table 3 shows the results of Example 2 and Comparative Example 7, and Table 4 shows the results of Examples 1 and 2 and Comparative Examples 1 and 7, respectively.

上記表3から明らかなように、種々のpHにおいて、実施例の層状ケイ酸塩化合物を含む研磨用組成物は、層状ケイ酸塩化合物を添加していない比較例の研磨用組成物と比べて、研磨性能を維持しつつ、砥粒の分散性を向上させることが分かった。また、実施例6および9の研磨用組成物では、同じpHである比較例(比較例17、比較例18)と比べると、砥粒の再分散性も向上することが分かった。   As is apparent from Table 3 above, the polishing composition containing the layered silicate compound of the example was compared with the polishing composition of the comparative example to which the layered silicate compound was not added at various pHs. It was found that the dispersibility of the abrasive grains was improved while maintaining the polishing performance. Further, it was found that the polishing compositions of Examples 6 and 9 also improved the redispersibility of the abrasive grains as compared with Comparative Examples (Comparative Examples 17 and 18) having the same pH.

さらに、上記表4から明らかなように、砥粒のD50を変化させた場合でも、実施例の研磨用組成物は、砥粒の分散性が向上することが分かった。実施例10の研磨用組成物は、比較例19の研磨用組成物と比べて、砥粒の再分散性も向上した。 Furthermore, as is clear from Table 4, even when changing the abrasive grains D 50, polishing compositions of the Examples were found to improve abrasive grains dispersible. Compared with the polishing composition of Comparative Example 19, the polishing composition of Example 10 also improved the redispersibility of the abrasive grains.

(炭化ケイ素、研磨対象物)
砥粒として炭化ケイ素を用い、分散性および再分散性、ならびに研磨性能を評価した。評価結果を下記表5に示す。
(Silicon carbide, polishing object)
Silicon carbide was used as the abrasive grains, and the dispersibility, redispersibility, and polishing performance were evaluated. The evaluation results are shown in Table 5 below.

また、研磨対象物を種々変えて研磨性能を評価した。用いた研磨用組成物は、実施例2および比較例7の研磨用組成物である。比較のため、実施例2および比較例7の結果も示した。評価結果を下記表6に示す。   Further, the polishing performance was evaluated by changing various objects to be polished. The polishing composition used is the polishing composition of Example 2 and Comparative Example 7. For comparison, the results of Example 2 and Comparative Example 7 are also shown. The evaluation results are shown in Table 6 below.

上記表5から明らかなように、砥粒として炭化ケイ素を用いた場合でも、実施例の研磨用組成物は、研磨性能を維持しつつ砥粒の分散性が向上することが分かった。実施例12の研磨用組成物は、比較例21の研磨用組成物と比べて、砥粒の再分散性も向上した。   As apparent from Table 5 above, it was found that even when silicon carbide was used as the abrasive grains, the polishing compositions of the examples improved the dispersibility of the abrasive grains while maintaining the polishing performance. Compared with the polishing composition of Comparative Example 21, the polishing composition of Example 12 also improved the redispersibility of the abrasive grains.

また、上記表6から明らかなように、実施例2の研磨用組成物は、比較例7の研磨用組成物と比べて、種々の研磨対象物に対しての研磨性能を維持しつつ、砥粒の分散性が著しく向上した組成物となることが分かった。   Further, as apparent from Table 6 above, the polishing composition of Example 2 was more effective than the polishing composition of Comparative Example 7 while maintaining the polishing performance for various objects to be polished. It turned out that it becomes a composition which the dispersibility of the grain improved remarkably.

Claims (8)

砥粒と、層状ケイ酸塩化合物と、分散媒とを含む、研磨用組成物。   Polishing composition containing an abrasive grain, a layered silicate compound, and a dispersion medium. 前記砥粒の体積平均粒子径は、3.0μm以上9.5μm以下である、請求項1に記載の研磨用組成物。   The polishing composition according to claim 1, wherein a volume average particle diameter of the abrasive grains is 3.0 μm or more and 9.5 μm or less. pHが2.0以上7.0以下である、請求項1または2に記載の研磨用組成物。   The polishing composition according to claim 1 or 2, wherein the pH is 2.0 or more and 7.0 or less. 前記砥粒は金属酸化物および金属炭化物からなる群より選択される少なくとも1種である、請求項1〜3のいずれか1項に記載の研磨用組成物。   The polishing composition according to any one of claims 1 to 3, wherein the abrasive grains are at least one selected from the group consisting of metal oxides and metal carbides. 合金材料および樹脂材料からなる群より選択される少なくとも1種を含む研磨対象物の研磨に用いられる、請求項1〜4のいずれか1項に記載の研磨用組成物。   The polishing composition according to any one of claims 1 to 4, which is used for polishing a polishing object including at least one selected from the group consisting of an alloy material and a resin material. 前記合金材料がアルミニウム合金および鉄合金からなる群より選択される少なくとも1種を含む、請求項5に記載の研磨用組成物。   The polishing composition according to claim 5, wherein the alloy material includes at least one selected from the group consisting of an aluminum alloy and an iron alloy. 前記アルミニウム合金は、マグネシウム、ケイ素、銅、亜鉛、マンガン、クロム、および鉄からなる群より選択される少なくとも1種の金属元素を、アルミニウム合金全体に対して0.1質量%以上含有する合金である、請求項6に記載の研磨用組成物。   The aluminum alloy is an alloy containing 0.1% by mass or more of at least one metal element selected from the group consisting of magnesium, silicon, copper, zinc, manganese, chromium, and iron with respect to the entire aluminum alloy. The polishing composition according to claim 6. 前記鉄合金は、クロム、ニッケル、モリブデン、およびマンガンからなる群より選択される少なくとも1種の金属元素を、鉄合金全体に対して10質量%以上含有する合金である、請求項6に記載の研磨用組成物。   The said iron alloy is an alloy containing 10 mass% or more of at least one metal element selected from the group consisting of chromium, nickel, molybdenum, and manganese with respect to the entire iron alloy. Polishing composition.
JP2016185783A 2016-04-26 2016-09-23 Polishing composition Active JP6099067B1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201610964365.5A CN106811176A (en) 2016-04-26 2016-10-28 Composition for polishing
PCT/JP2017/006954 WO2017187749A1 (en) 2016-04-26 2017-02-23 Polishing composition
TW106106862A TWI822654B (en) 2016-04-26 2017-03-02 Grinding composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2016088407 2016-04-26
JP2016088407 2016-04-26

Publications (2)

Publication Number Publication Date
JP6099067B1 JP6099067B1 (en) 2017-03-22
JP2017197708A true JP2017197708A (en) 2017-11-02

Family

ID=58363160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016185783A Active JP6099067B1 (en) 2016-04-26 2016-09-23 Polishing composition

Country Status (4)

Country Link
JP (1) JP6099067B1 (en)
CN (1) CN106811176A (en)
TW (1) TWI822654B (en)
WO (1) WO2017187749A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021057524A (en) * 2019-10-01 2021-04-08 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polishing pad, manufacturing method of the same, and polishing method using the same
KR20220019053A (en) * 2019-06-17 2022-02-15 어플라이드 머티어리얼스, 인코포레이티드 Planarization Methods for Packaging Substrates
US11927885B2 (en) 2020-04-15 2024-03-12 Applied Materials, Inc. Fluoropolymer stamp fabrication method
US12051653B2 (en) 2019-05-10 2024-07-30 Applied Materials, Inc. Reconstituted substrate for radio frequency applications

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7197366B2 (en) * 2016-12-26 2022-12-27 株式会社フジミインコーポレーテッド Polishing composition and polishing method
JP6982427B2 (en) * 2017-07-25 2021-12-17 花王株式会社 Silica slurry
WO2019066014A1 (en) * 2017-09-29 2019-04-04 株式会社フジミインコーポレーテッド Polishing composition, method for producing polishing composition, and polishing method
CN108690508A (en) * 2018-07-16 2018-10-23 江西汇诺科技有限公司 A kind of polishing fluid field special efficacy suspending agent and preparation method thereof
CN112778912A (en) * 2021-02-22 2021-05-11 广东纳德新材料有限公司 Polishing solution and preparation method and application thereof
JP2024016448A (en) * 2022-07-26 2024-02-07 株式会社フジミインコーポレーテッド polishing composition
CN116000782B (en) * 2022-12-27 2023-09-19 昂士特科技(深圳)有限公司 Chemical mechanical polishing composition for metal alloy CMP
CN117733719B (en) * 2024-02-21 2024-05-03 北京特思迪半导体设备有限公司 Polishing method of gallium antimonide wafer and gallium antimonide polishing sheet prepared by polishing method

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145968A (en) * 1980-04-14 1981-11-13 Yushiro Do Brazil Ind Chem Ltd Lapping compound
JPS62297062A (en) * 1986-06-16 1987-12-24 Yushiro Chem Ind Co Ltd Lapping agent composition and manufacture thereof
JPH08209117A (en) * 1995-02-07 1996-08-13 Nippon Yuka Kogyo Kk Suspension composition for abrasive cleaning and cleaning of glass surface
JP2000017251A (en) * 1998-07-01 2000-01-18 Neos Co Ltd Aqueous composition for polishing
JP2004165424A (en) * 2002-11-13 2004-06-10 Ekc Technology Inc Polishing agent composition and polishing method using the same
US20050072054A1 (en) * 2003-10-02 2005-04-07 Amcol International Corporation, A Delaware Corporation Chemical-mechanical polishing (CMP) slurry and method of planarizing computer memory disk surfaces
JP2008502776A (en) * 2004-06-14 2008-01-31 アムコル・インターナショナル・コーポレーション Chemical-mechanical polishing (CMP) and surface planarization of a slurry containing clay and CeO2 abrasive particles
JP2010519158A (en) * 2007-02-20 2010-06-03 エボニック デグサ ゲーエムベーハー Dispersion containing cerium oxide and layered silicate
JP2011001515A (en) * 2009-06-22 2011-01-06 Mitsui Mining & Smelting Co Ltd Abrasive composition powder and abrasive composition slurry
JP2011507998A (en) * 2007-12-22 2011-03-10 エボニック デグサ ゲーエムベーハー Dispersion containing cerium oxide and layered silicate
CN103451658A (en) * 2013-08-23 2013-12-18 苏州长盛机电有限公司 Environmentally-friendly metal polishing agent and preparation method thereof
JP2015203080A (en) * 2014-04-15 2015-11-16 株式会社フジミインコーポレーテッド polishing composition

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB296195A (en) * 1927-08-30 1928-08-30 Henry Robert Power Chemist Improvements in abrasive compositions
US3618272A (en) * 1965-10-08 1971-11-09 Ford Motor Co Process for lapping hypoid gearsets
US3462251A (en) * 1965-10-08 1969-08-19 Ford Motor Co Aqueous based lapping composition
DE19916155A1 (en) * 1999-04-11 2000-11-16 Orochemie Duerr & Pflug Gmbh & Suspension for the treatment of natural hard tissue

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56145968A (en) * 1980-04-14 1981-11-13 Yushiro Do Brazil Ind Chem Ltd Lapping compound
JPS62297062A (en) * 1986-06-16 1987-12-24 Yushiro Chem Ind Co Ltd Lapping agent composition and manufacture thereof
JPH08209117A (en) * 1995-02-07 1996-08-13 Nippon Yuka Kogyo Kk Suspension composition for abrasive cleaning and cleaning of glass surface
JP2000017251A (en) * 1998-07-01 2000-01-18 Neos Co Ltd Aqueous composition for polishing
JP2004165424A (en) * 2002-11-13 2004-06-10 Ekc Technology Inc Polishing agent composition and polishing method using the same
US20050072054A1 (en) * 2003-10-02 2005-04-07 Amcol International Corporation, A Delaware Corporation Chemical-mechanical polishing (CMP) slurry and method of planarizing computer memory disk surfaces
JP2008502776A (en) * 2004-06-14 2008-01-31 アムコル・インターナショナル・コーポレーション Chemical-mechanical polishing (CMP) and surface planarization of a slurry containing clay and CeO2 abrasive particles
JP2010519158A (en) * 2007-02-20 2010-06-03 エボニック デグサ ゲーエムベーハー Dispersion containing cerium oxide and layered silicate
JP2011507998A (en) * 2007-12-22 2011-03-10 エボニック デグサ ゲーエムベーハー Dispersion containing cerium oxide and layered silicate
JP2011001515A (en) * 2009-06-22 2011-01-06 Mitsui Mining & Smelting Co Ltd Abrasive composition powder and abrasive composition slurry
CN103451658A (en) * 2013-08-23 2013-12-18 苏州长盛机电有限公司 Environmentally-friendly metal polishing agent and preparation method thereof
JP2015203080A (en) * 2014-04-15 2015-11-16 株式会社フジミインコーポレーテッド polishing composition

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12051653B2 (en) 2019-05-10 2024-07-30 Applied Materials, Inc. Reconstituted substrate for radio frequency applications
KR20220019053A (en) * 2019-06-17 2022-02-15 어플라이드 머티어리얼스, 인코포레이티드 Planarization Methods for Packaging Substrates
JP2022536930A (en) * 2019-06-17 2022-08-22 アプライド マテリアルズ インコーポレイテッド Planarization method for packaging substrates
JP7438243B2 (en) 2019-06-17 2024-02-26 アプライド マテリアルズ インコーポレイテッド Planarization method for packaging substrates
US11931855B2 (en) 2019-06-17 2024-03-19 Applied Materials, Inc. Planarization methods for packaging substrates
KR102755448B1 (en) * 2019-06-17 2025-01-14 어플라이드 머티어리얼스, 인코포레이티드 Flattening methods for packaging substrates
JP2021057524A (en) * 2019-10-01 2021-04-08 エスケイシー・カンパニー・リミテッドSkc Co., Ltd. Polishing pad, manufacturing method of the same, and polishing method using the same
JP7139299B2 (en) 2019-10-01 2022-09-20 エスケーシー ソルミックス カンパニー,リミテッド Polishing pad, manufacturing method thereof, and polishing method using same
US11927885B2 (en) 2020-04-15 2024-03-12 Applied Materials, Inc. Fluoropolymer stamp fabrication method

Also Published As

Publication number Publication date
CN106811176A (en) 2017-06-09
WO2017187749A1 (en) 2017-11-02
TW201738353A (en) 2017-11-01
JP6099067B1 (en) 2017-03-22
TWI822654B (en) 2023-11-21

Similar Documents

Publication Publication Date Title
JP6099067B1 (en) Polishing composition
JP6151711B2 (en) Polishing composition
TWI277646B (en) Methods for machining ceramics
JP2015203080A (en) polishing composition
TW201000403A (en) Aluminum oxide particle and polishing composition containing the same
TW201315849A (en) Tantalum carbide single crystal substrate and polishing liquid
WO2013077281A1 (en) Method for polishing alloy material and method for producing alloy material
CN110168702B (en) Polishing composition and polishing method
JP2007311586A (en) Finish polishing method for silicon carbide single crystal wafer surface
JP2004204151A (en) Abrasive liquid composition
KR20180134916A (en) Abrasive material, composition for polishing and polishing method
WO2015019820A1 (en) Composition for polishing
TWI614093B (en) Polishing composition, alloy material, method for polishing alloy material, and method for producing alloy material
WO2012132106A1 (en) Polishing slurry and polishing method thereof
JP6085708B1 (en) Polishing composition for alloy material and method for polishing alloy material
JP2008093819A (en) Polishing liquid composition for magnetic disk substrate
JP2018075700A (en) Method for manufacturing article
TW202225368A (en) Polishing composition and polishing method using same
WO2024024413A1 (en) Polishing composition
JP2006346789A (en) Polishing liquid for thin-film magnetic head

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170214

R150 Certificate of patent or registration of utility model

Ref document number: 6099067

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250