JP2017193745A - Wear-resistant steel for endless track shoe - Google Patents
Wear-resistant steel for endless track shoe Download PDFInfo
- Publication number
- JP2017193745A JP2017193745A JP2016084314A JP2016084314A JP2017193745A JP 2017193745 A JP2017193745 A JP 2017193745A JP 2016084314 A JP2016084314 A JP 2016084314A JP 2016084314 A JP2016084314 A JP 2016084314A JP 2017193745 A JP2017193745 A JP 2017193745A
- Authority
- JP
- Japan
- Prior art keywords
- steel material
- wear
- steel
- weight
- silicon
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 229910000831 Steel Inorganic materials 0.000 title claims abstract description 128
- 239000010959 steel Substances 0.000 title claims abstract description 128
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims abstract description 17
- 239000000203 mixture Substances 0.000 claims abstract description 14
- 239000012535 impurity Substances 0.000 claims abstract description 8
- 229910052742 iron Inorganic materials 0.000 claims abstract description 7
- 239000000126 substance Substances 0.000 claims abstract description 7
- 229910052799 carbon Inorganic materials 0.000 abstract description 15
- 238000005096 rolling process Methods 0.000 abstract description 10
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000463 material Substances 0.000 description 118
- 239000011651 chromium Substances 0.000 description 51
- 230000000694 effects Effects 0.000 description 27
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 26
- 229910052710 silicon Inorganic materials 0.000 description 26
- 239000010703 silicon Substances 0.000 description 26
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 24
- 229910052804 chromium Inorganic materials 0.000 description 24
- 239000010936 titanium Substances 0.000 description 24
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 18
- 229910052796 boron Inorganic materials 0.000 description 18
- 239000011572 manganese Substances 0.000 description 18
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 14
- MTPVUVINMAGMJL-UHFFFAOYSA-N trimethyl(1,1,2,2,2-pentafluoroethyl)silane Chemical compound C[Si](C)(C)C(F)(F)C(F)(F)F MTPVUVINMAGMJL-UHFFFAOYSA-N 0.000 description 13
- 229910000976 Electrical steel Inorganic materials 0.000 description 11
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 10
- 238000005496 tempering Methods 0.000 description 10
- 229910052719 titanium Inorganic materials 0.000 description 10
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 8
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 8
- 229910052782 aluminium Inorganic materials 0.000 description 8
- 229910052748 manganese Inorganic materials 0.000 description 8
- 238000010791 quenching Methods 0.000 description 7
- 230000000171 quenching effect Effects 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 229910000734 martensite Inorganic materials 0.000 description 4
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 3
- 238000005299 abrasion Methods 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 238000005098 hot rolling Methods 0.000 description 3
- 229910052750 molybdenum Inorganic materials 0.000 description 3
- 239000011733 molybdenum Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000001376 precipitating effect Effects 0.000 description 2
- CADICXFYUNYKGD-UHFFFAOYSA-N sulfanylidenemanganese Chemical compound [Mn]=S CADICXFYUNYKGD-UHFFFAOYSA-N 0.000 description 2
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910001563 bainite Inorganic materials 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005520 cutting process Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000002689 soil Substances 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Images
Landscapes
- Heat Treatment Of Steel (AREA)
Abstract
Description
本発明は、建設機械で用いられる無限軌道帯の履板、特にブルドーザー用の履板として好適に用いられる無限軌道帯の履板用耐摩耗性鋼に関する。 TECHNICAL FIELD The present invention relates to a track-resistant plate for endless tracks used in construction machinery, and more particularly to a wear resistant steel for track plates for endless tracks used for bulldozers.
建設機械で用いられる無限軌道帯の履板、特にブルドーザー用の履板には、背の高いグローサが1本設けられている場合(いわゆる「シングルグローサ(図1)」)がある。
背の高いシングルグローサであれば、土を良く噛み、駆動力を効率良く伝達することが出来る。その反面、摩耗が発生するので、耐摩耗性が重要な条件となる。そのため、履板の耐摩耗性を向上したい、という要請が存在する。
係る要請に対しては、履板用の鋼材の硬度を高くして耐摩耗性を向上させることが提案されている。ここで履板は、一般的には圧延した鋼材を切断して製造される。しかし、鋼材の硬度を高くすると熱間変形抵抗が増加して圧延が困難になる。そのため、特に背の高いシングルグローサを有するブルドーザー用履板では、鋼材の硬度を高くすると圧延加工することが困難になり、不都合である。
In some cases, a track plate for an endless track used in construction machinery, particularly a bulldozer track plate, is provided with one tall grower (so-called “single growr (FIG. 1)”).
A tall single growthr can bite the soil well and transmit the driving force efficiently. On the other hand, since wear occurs, wear resistance is an important condition. Therefore, there is a demand for improving the wear resistance of the shoeboard.
In response to such a request, it has been proposed to increase the hardness of the steel material for the footwear to improve the wear resistance. Here, the track board is generally manufactured by cutting rolled steel. However, when the hardness of the steel material is increased, hot deformation resistance increases and rolling becomes difficult. For this reason, a bulldozer foot plate having a tall single-growser is inconvenient because it becomes difficult to perform a rolling process if the hardness of the steel material is increased.
その他の従来技術として、炭化チタン(TiC)を析出することにより耐摩耗性を向上し、硬度は上昇せず、割れの起点となる表面欠陥の少ない耐摩耗性鋼が提案されている(例えば特許文献1参照)。しかし、当該技術に係る鋼はホウ素(B)添加量が少なく、焼戻しをしていないため、靱性の点で問題がある。
その他にも、炭化チタン(TiC)を析出することにより耐摩耗性を向上する鋼材が提案されているが(例えば特許文献2)、基地相がフェライト−ベイナイト相であるため、一般的な履板用鋼材として要求される条件である鋼材の剛性(引張強さ)等を充足しないという問題が存在する。
さらに、シャルピー衝撃値が5kgf・m/cm2以上の高硬度高靱性鋼も提供されているが(例えば特許文献3:従来の高シリコン鋼)、熱間変形抵抗が大きく、圧延加工が困難である。
それに加えて、本出願人により無限軌道車両等の履帯に使用される履板が提案されているが(特許文献4:従来の履板用鋼材SMnB)、ブルドーザー用履板の様に摩耗による損耗が激しい用途では耐摩耗性の向上が求められている。
As another conventional technique, there has been proposed a wear-resistant steel that improves wear resistance by precipitating titanium carbide (TiC), does not increase hardness, and has few surface defects that cause cracks (for example, patents). Reference 1). However, since the steel according to the technology has a small amount of boron (B) added and is not tempered, there is a problem in terms of toughness.
In addition, although steel materials that improve wear resistance by precipitating titanium carbide (TiC) have been proposed (for example, Patent Document 2), since the base phase is a ferrite-bainite phase, There is a problem that the rigidity (tensile strength) of the steel material, which is a condition required as a steel material, is not satisfied.
Furthermore, although a high hardness and high toughness steel having a Charpy impact value of 5 kgf · m / cm 2 or more is also provided (for example, Patent Document 3: conventional high silicon steel), the hot deformation resistance is large and rolling is difficult. is there.
In addition, the present applicant has proposed a crawler plate used for a crawler track of an endless track vehicle or the like (Patent Document 4: Conventional steel material SMnB for crawler plate), but wear due to wear like a bulldozer footplate. In applications where the wear resistance is severe, improvement in wear resistance is required.
本発明は上述した従来技術の問題点に鑑みて提案されたものであり、鋼の成分を調整して、耐久性に優れ、圧延抵抗が少ない無限軌道帯の履板用高耐摩耗性鋼を提供することを目的としている。 The present invention has been proposed in view of the above-mentioned problems of the prior art. By adjusting the components of the steel, a highly wear-resistant steel for footwear of an endless track with excellent durability and low rolling resistance is provided. It is intended to provide.
本発明の無限軌道帯の履板用高耐摩耗性鋼は、
化学組成が、重量%で、
C 0.34〜0.42
Si 0.60〜0.80
Mn 0.50〜0.70
Cr 1.10〜1.40
Ti 0.30〜0.50
B 0.0005〜0.0030
Al 0.010〜0.075
であり、残部が実質的に鉄および不可避的不純物からなることを特徴としている(以下、本明細書では「請求項1に係る発明」と記載する場合がある)。
The high wear resistant steel for the track plate of the endless track of the present invention is
The chemical composition is in wt%
C 0.34-0.42
Si 0.60-0.80
Mn 0.50-0.70
Cr 1.10 to 1.40
Ti 0.30-0.50
B 0.0005-0.0030
Al 0.010-0.075
And the balance is substantially composed of iron and inevitable impurities (hereinafter referred to as “the invention according to claim 1” in some cases).
また本発明の無限軌道帯の履板用高耐摩耗性鋼は、
化学組成が、重量%で、
C 0.27〜0.34
Si 0.60〜0.80
Mn 0.50〜0.70
Cr 1.15〜3.96
Ti 0〜0.07
B 0〜0.0030
Al 0.010〜0.075
Mo 0〜0.25
であり、残部が実質的に鉄および不可避的不純物からなることを特徴としている(以下、本明細書では「請求項2に係る発明」と記載する場合がある)。
Further, the high wear-resistant steel for the track plate of the endless track of the present invention is
The chemical composition is in wt%
C 0.27-0.34
Si 0.60-0.80
Mn 0.50-0.70
Cr 1.15-3.96
Ti 0-0.07
B 0-0.0030
Al 0.010-0.075
Mo 0-0.25
And the balance is substantially composed of iron and inevitable impurities (hereinafter referred to as “the invention according to claim 2” in some cases).
さらに本発明の無限軌道帯用履板(例えばブルドーザー用履板)は、上述した高耐摩耗性鋼(請求項1または2記載の高耐摩耗性鋼)を成形し、熱処理(例えば焼入れ焼戻し)を施したことを特徴としている。 Further, the track plate for the endless track of the present invention (for example, a bulldozer track plate) is formed by forming the above-mentioned high wear-resistant steel (the high wear-resistant steel according to claim 1 or 2), and heat treatment (for example, quenching and tempering). It is characterized by having given.
上述の請求項1に係る発明によれば、炭素(C)、チタン(Ti)の含有量が多く、硬い粒子である炭化チタン(TiC)を析出するので、シリコン(Si)の含有量を増加することなく、硬度及び耐摩耗性を向上することが出来る。
また請求項1に係る発明では、既存の鋼材と同等量のホウ素を添加しているため、履板に必要程度の靱性を付与することが出来る。
さらに請求項1に係る発明の鋼材に熱処理を施す(焼入れ焼戻しを行う)ことにより、耐摩耗性と靱性を両立させることが出来る。そして、焼入れで基地相をマルテンサイトとして、耐摩耗性と剛性を両立させることが出来る。
According to the first aspect of the present invention, the content of carbon (C) and titanium (Ti) is large, and titanium carbide (TiC), which is hard particles, is precipitated, so the content of silicon (Si) is increased. Thus, hardness and wear resistance can be improved.
Moreover, in the invention which concerns on Claim 1, since the equivalent amount of boron is added to the existing steel materials, the toughness of the necessary degree can be imparted to the footboard.
Furthermore, by subjecting the steel material of the invention according to claim 1 to heat treatment (quenching and tempering), it is possible to achieve both wear resistance and toughness. And, the matrix phase is martensite by quenching, and both wear resistance and rigidity can be achieved.
また、上述の請求項2に係る発明によれば、炭素(C)量は従来鋼材と同程度であるが、クロム(Cr)量を1.15〜3.96重量%まで増量しているため、焼入れ性が向上する。そして、クロム(Cr)は鉄(Fe)との原子半径差が小さいため、添加しても熱間圧延抵抗を顕著に増加させず、焼戻し軟化抵抗(焼戻しにおける硬度の低下を抑制、減少する効果)を向上する。そのため、鋼材に靱性を持たせるために焼戻ししても、充分な耐摩耗性を得られる。
従来(例えば引用文献3)、クロム(Cr)が3.5重量%以上共存する場合、ケイ素(Si)添加による400℃以上での焼戻し軟化抵抗性は顕著に減退することが知られているが、請求項2に係る発明では、ケイ素(Si)添加量を0.80重量%以下に抑えているため、クロム(Cr)含有量が3.5重量%を超えているものの、ケイ素(Si)添加の効果(硬度及び耐摩耗性を向上する効果)が大きく減退することは無い。
Moreover, according to the above-described invention according to claim 2, the carbon (C) amount is the same as that of the conventional steel material, but the chromium (Cr) amount is increased to 1.15 to 3.96% by weight. , Hardenability is improved. And since chromium (Cr) has a small atomic radius difference from iron (Fe), even if it is added, the hot rolling resistance is not remarkably increased, and temper softening resistance (the effect of suppressing and reducing the decrease in hardness during tempering) ) To improve. Therefore, sufficient wear resistance can be obtained even if the steel material is tempered to give toughness.
Conventionally (for example, cited reference 3), it is known that when chromium (Cr) is present in an amount of 3.5% by weight or more, the temper softening resistance at 400 ° C. or higher due to the addition of silicon (Si) is remarkably reduced. In the invention according to claim 2, since the silicon (Si) addition amount is suppressed to 0.80% by weight or less, although the chromium (Cr) content exceeds 3.5% by weight, silicon (Si) The effect of addition (effect of improving hardness and wear resistance) does not significantly decrease.
以下、本発明の実施形態を説明する。
最初に第1実施形態(請求項1に係る発明に対応)を説明する。
第1実施形態に係る鋼材は、化学組成として、炭素(C)が0.34〜0.42重量%、ケイ素(Si)が0.60〜0.80重量%、マンガン(Mn)が0.50〜0.70重量%、クロム(Cr)が1.10〜1.40重量%、チタン(Ti)が0.30〜0.50重量%、ホウ素(B)が0.0005〜0.0030重量%、アルミニウム(Al)が0.010〜0.075重量%であり、残部が実質的に鉄および不可避的不純物から構成されている。
そして第1実施形態に係る鋼材には焼入れ焼戻しを実行している。
Embodiments of the present invention will be described below.
First, a first embodiment (corresponding to the invention according to claim 1) will be described.
The steel material according to the first embodiment has a chemical composition of carbon (C) of 0.34 to 0.42 wt%, silicon (Si) of 0.60 to 0.80 wt%, and manganese (Mn) of 0.4. 50 to 0.70% by weight, chromium (Cr) from 1.10 to 1.40% by weight, titanium (Ti) from 0.30 to 0.50% by weight, and boron (B) from 0.0005 to 0.0030. % By weight and aluminum (Al) of 0.010 to 0.075% by weight, with the balance being substantially composed of iron and inevitable impurities.
And hardening and tempering are performed to the steel materials which concern on 1st Embodiment.
図1には実施形態に係る履板が示されている。
図1において、全体を符号10で示すブルドーザー用の履板は、シングルグローサ12を有している。履板10は、第1実施形態に係る鋼材或いは後述する第2実施形態に係る鋼材を成形し、熱処理として焼入れ焼戻しを施すことにより製造される。
FIG. 1 shows a footboard according to an embodiment.
In FIG. 1, a bulldozer shoe plate generally indicated by
第1実施形態に係る鋼材では、炭素(C)、チタン(Ti)の含有量が多く、硬い粒子である炭化チタン(TiC)を析出するので、ケイ素(Si)の含有量が少なくても、硬度及び耐摩耗性が向上している。そして、ケイ素(Si)の含有量を多くしていないため、熱間変形抵抗の上昇が抑制される(ケイ素Siの含有量が増加すると熱間変形抵抗が増大)。
また第1実施形態に係る鋼材では、履板に必要程度の靱性を付与するため、既存の鋼材と同等量のホウ素(B)を添加している。
さらに第1実施形態に係る鋼材では、焼入れ焼戻しを行うことにより、耐摩耗性と靱性を両立させている。そして、焼入れで基地相をマルテンサイトとしているため、耐摩耗性と剛性を両立させている。
In the steel material according to the first embodiment, the content of carbon (C) and titanium (Ti) is large, and since titanium carbide (TiC), which is hard particles, is precipitated, even if the content of silicon (Si) is small, Hardness and wear resistance are improved. And since the content of silicon (Si) is not increased, an increase in hot deformation resistance is suppressed (when the content of silicon Si increases, the hot deformation resistance increases).
Moreover, in the steel material which concerns on 1st Embodiment, in order to provide the toughness of a necessary grade to a footwear board, the equivalent amount boron (B) is added to the existing steel material.
Furthermore, the steel material according to the first embodiment achieves both wear resistance and toughness by quenching and tempering. And since the base phase is martensite by quenching, both wear resistance and rigidity are achieved.
[第1実施例]
第1実施形態の一例である第1実施例に係る鋼材の組成を下表1に表示する。
表1では、第1実施例に加えて、比較例として、特許文献2〜4に係る鋼材の組成も示している。
表1
[First embodiment]
The composition of the steel material according to the first example which is an example of the first embodiment is shown in Table 1 below.
In Table 1, in addition to 1st Example, the composition of the steel materials which concern on patent documents 2-4 is also shown as a comparative example.
Table 1
表1から明らかな様に、第1実施例に係る鋼材は特許文献4に係る鋼材(既存の履板用鋼材:SMnB)、或いは特許文献3に係る鋼材(既存の高シリコン鋼材)に比較して、炭素(C)、チタン(Ti)の含有量が多い。
また、第1実施例に係る鋼材のケイ素(Si)含有量は、他の鋼材に比較して多過ぎてはおらず、硬さと熱間変形抵抗のバランスを取るように含有量を決定している。
そのため、上述のように、第1実施例に係る鋼材では炭化チタン(TiC)を析出し、ケイ素(Si)の含有量が少なくても硬度及び耐摩耗性が向上している。
また、第1実施例に係る鋼材と特許文献4に係る鋼材(既存の履板用鋼材:SMnB)を比較するとホウ素(B)の含有量は同程度である。そのため、既存の鋼材と同程度の靱性を有している。
さらに、第1実施例に係る鋼材に焼入れ焼戻しを行うことにより、耐摩耗性と靱性を両立させることが出来る。そして、焼入れで基地相をマルテンサイトとして、耐摩耗性と剛性を両立している。
なお、特許文献2に記載の鋼材(マルテンサイト相の基地相中にTiC等を析出させた鋼材)は、ホウ素(B)を含有しておらず、実験例1で示す様に、履板に必要な剛性(引張強さ)を満たしていない。
上述したことは、以下の実験例1、実験例2からも確認された。
As is clear from Table 1, the steel material according to the first example is compared with the steel material according to Patent Document 4 (existing steel material for footwear: SMnB) or the steel material according to Patent Document 3 (existing high silicon steel material). Therefore, the carbon (C) and titanium (Ti) contents are large.
In addition, the silicon (Si) content of the steel material according to the first example is not too much compared to other steel materials, and the content is determined so as to balance hardness and hot deformation resistance. .
Therefore, as described above, in the steel material according to the first example, titanium carbide (TiC) is precipitated, and the hardness and wear resistance are improved even if the content of silicon (Si) is small.
Further, when the steel material according to the first example and the steel material according to Patent Document 4 (existing steel material for footwear: SMnB) are compared, the content of boron (B) is comparable. Therefore, it has the same toughness as existing steel materials.
Furthermore, it is possible to achieve both wear resistance and toughness by quenching and tempering the steel material according to the first embodiment. And by hardening the base phase as martensite, both wear resistance and rigidity are achieved.
Note that the steel material described in Patent Document 2 (steel material in which TiC or the like is precipitated in the matrix phase of the martensite phase) does not contain boron (B), and as shown in Experimental Example 1, The required rigidity (tensile strength) is not satisfied.
The above facts were also confirmed from Experimental Examples 1 and 2 below.
[実験例1]
第1実施例に係る鋼材と、特許文献2に記載の鋼材及び特許文献3、4に係る鋼材の引張強さ、0.2%耐力、伸び、シャルピー衝撃値を、それぞれ計測した。ただし、「特許文献2に記載の鋼材」の引張強さは特許文献2に開示された数値である。
計測結果を下表2に示す。
表2
[Experimental Example 1]
The tensile strength, 0.2% proof stress, elongation, and Charpy impact value of the steel material according to the first example, the steel material described in Patent Document 2, and the steel materials described in Patent Documents 3 and 4 were measured. However, the tensile strength of “steel material described in Patent Document 2” is a numerical value disclosed in Patent Document 2.
The measurement results are shown in Table 2 below.
Table 2
第1実施例に係る鋼材は、引張強さは特許文献2に記載の鋼材及び特許文献3、4に係る鋼材の何れよりも良好であり、0.2%耐力は特許文献3に係る鋼材(既存の高シリコン鋼材)及び特許文献4に係る鋼材(既存の履板用鋼材:SMnB)よりも良好である。
一方、伸び、シャルピー衝撃値は、第1実施例に係る鋼材の数値は特許文献3、4に係る鋼材の数値よりは小さいが、(第1実施例に係る鋼材は)実用的な機械強度を有している。
The steel material according to the first example has a tensile strength that is better than both the steel material described in Patent Document 2 and the steel materials according to Patent Documents 3 and 4, and the 0.2% proof stress is the steel material according to Patent Document 3 ( It is better than the existing high silicon steel material) and the steel material according to Patent Document 4 (existing steel material for footwear: SMnB).
On the other hand, the elongation and Charpy impact values of the steel material according to the first example are smaller than those of the steel materials according to Patent Documents 3 and 4, but the steel material according to the first example has a practical mechanical strength. Have.
[実験例2]
第1実施例に係る鋼材と、特許文献3、4に係る鋼材に対して、ガウジング摩耗試験を行った。
試験条件として、「軽摩耗」では、砥石はアルミナ砥石、荷重は10kg(12.7kg/cm2)、回転速度は45rpm(0.5m/sec)、試験時間は600秒で2回行った。
「重摩耗」では、砥石はアルミナ砥石、荷重は20kg(25.5kg/cm2)、回転速度は90rpm(1.0m/sec)、試験時間は180秒で2回行った。
[Experiment 2]
A gouging wear test was performed on the steel materials according to the first example and the steel materials according to Patent Documents 3 and 4.
As test conditions, “light wear” was performed twice with an alumina grindstone, a load of 10 kg (12.7 kg / cm 2 ), a rotation speed of 45 rpm (0.5 m / sec), and a test time of 600 seconds.
In “heavy wear”, the grinding wheel was an alumina grinding wheel, the load was 20 kg (25.5 kg / cm 2 ), the rotation speed was 90 rpm (1.0 m / sec), and the test time was 180 seconds.
下表3に実験結果を示す。
表3
The experimental results are shown in Table 3 below.
Table 3
表3では、特許文献4に係る鋼材(SMnB)の摩耗量を100とした場合における実施例1に係る鋼材の摩耗量(特許文献4に係る鋼材の摩耗量に対する比率)と、特許文献3に係る鋼材(高シリコン鋼材)の摩耗量(特許文献4に係る鋼材の摩耗量に対する比率)を示している。
実施例1に係る鋼材は、特許文献4に係る既存の履板用鋼材(SMnB)に比較して耐摩耗性が遥かに向上しており、既存の耐摩耗性を向上した特許文献3に係る鋼材(高シリコン鋼材)と同等(重摩耗の場合)或いはそれ以上(軽摩耗の場合)の耐摩耗性を有していることが表3から理解される。
In Table 3, the wear amount of the steel material according to Example 1 when the wear amount of the steel material (SMnB) according to Patent Document 4 is set to 100 (ratio to the wear amount of the steel material according to Patent Document 4), and Patent Document 3 The abrasion amount (ratio with respect to the abrasion amount of the steel material which concerns on patent document 4) of the steel material (high silicon steel material) which concerns is shown.
The steel material according to Example 1 has much improved wear resistance as compared to the existing steel material for footwear (SMnB) according to Patent Document 4, and relates to Patent Document 3 with improved existing wear resistance. It is understood from Table 3 that the steel material (high silicon steel material) has the same wear resistance (in the case of heavy wear) or more (in the case of light wear).
[実験例3]
発明者は第1実施形態に係る鋼材の組成を変動させて、実験を行った。
発明者の実験によれば、炭素(C)が0.34重量%よりも少ないと硬度が不足し、機械的な強度も不足することが分かった。
一方、炭素(C)が0.42重量%よりも多いと圧延抵抗が大きくなってしまうことが分かった。
[Experiment 3]
The inventor conducted experiments by changing the composition of the steel material according to the first embodiment.
According to the inventor's experiment, it was found that when the carbon (C) is less than 0.34% by weight, the hardness is insufficient and the mechanical strength is also insufficient.
On the other hand, it has been found that rolling resistance increases when the amount of carbon (C) is more than 0.42% by weight.
ケイ素(Si)が0.60重量%よりも少ないと、やはり硬度が不足し、強度も不足してしまうことが分かった。また、ケイ素(Si)は脱酸元素であり、0.60重量%よりも少ないと脱酸が不充分となり、鋼材中に酸化物が生成されることが実験で確認された。
一方、ケイ素(Si)が0.80重量%よりも多いと、圧延抵抗が大きくなる。
It was found that when silicon (Si) was less than 0.60% by weight, the hardness was insufficient and the strength was insufficient. Further, silicon (Si) is a deoxidizing element, and when it is less than 0.60% by weight, it was confirmed by experiments that deoxidation becomes insufficient and oxides are generated in the steel material.
On the other hand, when there is more silicon (Si) than 0.80 weight%, rolling resistance will become large.
マンガン(Mn)が0.50重量%よりも少ないと、熱処理後の硬度が不足することが分かった。マンガン(Mn)は焼入れ性を向上する元素であることに起因すると考えられる。
一方、マンガン(Mn)が0.70重量%よりも多いと、硫化マンガン(MnS)を生成して、粒界が不安定となり、脆くなることが分かった。そして、耐衝撃性が低下し、硬度が低くなることが確認された。
It was found that when manganese (Mn) is less than 0.50% by weight, the hardness after heat treatment is insufficient. Manganese (Mn) is thought to be due to the fact that it is an element that improves hardenability.
On the other hand, when manganese (Mn) is more than 0.70% by weight, manganese sulfide (MnS) is generated, and the grain boundary becomes unstable and becomes brittle. And it was confirmed that impact resistance falls and hardness becomes low.
クロム(Cr)が1.10重量%よりも少ないと、高温時の耐摩耗性が不足することが分かった。添加による焼入れ性向上の効果が、充分に発揮されなかったためと考えられる。
一方、クロム(Cr)が1.40重量%よりも多いと、靭性が低下した。
It has been found that when chromium (Cr) is less than 1.10% by weight, the wear resistance at high temperature is insufficient. It is considered that the effect of improving the hardenability by the addition was not sufficiently exhibited.
On the other hand, when there was more chromium (Cr) than 1.40 weight%, toughness fell.
チタン(Ti)が0.30重量%よりも少ないと、炭化チタン(TiC)を析出して耐摩耗性を向上する効果が得られないことが分かった。
一方、チタン(Ti)が0.50重量%よりも多いと、チタン(Ti)添加の効果が飽和してしまうと共に、鋼材を溶融し難くなるという問題を生じることが分かった。さらに、Tiは酸化物を作り易いため、0.50重量%よりも多く含有すると鋼材中に酸化物を生成してしまうことが分かった。
It has been found that when titanium (Ti) is less than 0.30 wt%, titanium carbide (TiC) is precipitated and the effect of improving wear resistance cannot be obtained.
On the other hand, when the amount of titanium (Ti) is more than 0.50% by weight, it has been found that the effect of adding titanium (Ti) is saturated and the steel material is difficult to melt. Furthermore, since Ti easily forms an oxide, it has been found that if it is contained in an amount of more than 0.50% by weight, an oxide is generated in the steel material.
ホウ素(B)が0.0005重量%よりも少ないと、靭性が不足することが分かった。添加により粒界強度を向上させる効果が、充分に発揮されなかったためと考えられる。
一方、ホウ素(B)が0.0030重量%よりも多いと、ホウ素(B)添加の効果が飽和してしまうことが分かった。
It has been found that if boron (B) is less than 0.0005% by weight, the toughness is insufficient. It is considered that the effect of improving the grain boundary strength by the addition was not sufficiently exhibited.
On the other hand, it was found that when boron (B) is more than 0.0030% by weight, the effect of boron (B) addition is saturated.
アルミニウム(Al)が0.010重量%よりも少ないと、上述のホウ素(B)添加の効果(靭性の向上)が得られないことが分かった。アルミニウム(Al)はホウ素(B)添加の効果を生じるために有効な元素であることに起因すると考えられる。
一方、アルミニウム(Al)が0.075重量%よりも多いと、延性、靭性が低下してしまうことが分かった。
It has been found that when the amount of aluminum (Al) is less than 0.010% by weight, the above-described effect of boron (B) addition (improvement of toughness) cannot be obtained. It is considered that aluminum (Al) is an effective element for producing the effect of boron (B) addition.
On the other hand, it was found that when the amount of aluminum (Al) is more than 0.075% by weight, ductility and toughness are lowered.
次に、本発明の第2実施形態(請求項2に係る発明に対応)を説明する。
第2実施形態に係る鋼材は、化学組成として、炭素(C)が0.27〜0.34重量%、ケイ素(Si)が0.60〜0.80重量%、マンガン(Mn)が0.50〜0.70重量%、クロム(Cr)が1.15〜3.96重量%、チタン(Ti)が0〜0.07重量%(Tiを包含しない場合を含む)、ホウ素(B)が0〜0.0030重量%(Bを包含しない場合を含む)、アルミニウム(Al)が0.010〜0.075重量%、モリブデン(Mo)が0〜0.25重量%(Moを包含しない場合を含む)であり、残部が実質的に鉄および不可避的不純物から構成されている。
そして第2実施形態に係る鋼材に対しては、熱処理(焼入れ、焼戻し)を実行した。
Next, a second embodiment (corresponding to the invention according to claim 2) of the present invention will be described.
The steel material according to the second embodiment has a chemical composition of carbon (C) of 0.27 to 0.34 wt%, silicon (Si) of 0.60 to 0.80 wt%, and manganese (Mn) of 0.5. 50 to 0.70 wt%, chromium (Cr) 1.15 to 3.96 wt%, titanium (Ti) 0 to 0.07 wt% (including the case where Ti is not included), boron (B) 0 to 0.0003 wt% (including the case where B is not included), aluminum (Al) is 0.010 to 0.075 wt%, molybdenum (Mo) is 0 to 0.25 wt% (when Mo is not included) The balance is substantially composed of iron and inevitable impurities.
And the heat processing (hardening and tempering) was performed with respect to the steel material which concerns on 2nd Embodiment.
係る組成を有する第2実施形態に係る鋼材では、炭素(C)の含有量は従来鋼材(特許文献4の鋼材:SMnB)と同程度である。そして、焼入れ性を高めるためにクロム(Cr)の含有量を3.96重量%まで増量している。
クロム(Cr)は鉄(Fe)との原子半径差が小さいことから、添加しても熱間圧延抵抗を顕著に増加させず、焼戻し軟化抵抗(焼戻しにおける硬度の低下を抑制、減少する効果)を向上させる効果がある。そのため、第2実施形態に係る鋼材に靱性を持たせるために焼戻ししても、充分な耐摩耗性を得られる。すなわち、クロム(Cr)を添加しても硬度は向上しないが、高温時の耐摩耗性を向上する。
ケイ素(Si)は焼戻し軟化抵抗を上げる効果を有している。しかし、ケイ素(Si)の添加量を増加すると圧延抵抗が増大すること、クロム(Cr)含有量が3.5重量%を超えるとケイ素(Si)添加の効果が減退することから、第2実施形態に係る鋼材では、ケイ素(Si)添加量は0.80重量%以下に抑えている。
上述の様に、第2実施形態に係る鋼材では、炭素(C)、ケイ素(Si)の含有量を従来鋼材に対して増加させることなく、クロム(Cr)の含有量を増量することにより充分な硬度と耐摩耗性を得ている。
In the steel material according to the second embodiment having such a composition, the content of carbon (C) is approximately the same as that of a conventional steel material (steel material of Patent Document 4: SMnB). And in order to improve hardenability, content of chromium (Cr) is increased to 3.96 weight%.
Chromium (Cr) has a small atomic radius difference from iron (Fe), so even if it is added, it does not remarkably increase the hot rolling resistance, and temper softening resistance (effect of suppressing and reducing the decrease in hardness during tempering) There is an effect of improving. Therefore, sufficient wear resistance can be obtained even if the steel according to the second embodiment is tempered to give toughness. That is, even if chromium (Cr) is added, the hardness is not improved, but the wear resistance at high temperature is improved.
Silicon (Si) has the effect of increasing the temper softening resistance. However, when the addition amount of silicon (Si) is increased, the rolling resistance increases, and when the chromium (Cr) content exceeds 3.5% by weight, the effect of addition of silicon (Si) decreases. In the steel material according to the embodiment, the amount of silicon (Si) added is suppressed to 0.80% by weight or less.
As described above, in the steel material according to the second embodiment, it is sufficient to increase the chromium (Cr) content without increasing the carbon (C) and silicon (Si) contents with respect to the conventional steel materials. Has good hardness and wear resistance.
[第2〜第4実施例]
第2実施形態における3種類の鋼材(第2〜第4実施例)の組成を下表4に例示する。
表4では、第2〜第4実施例に加えて、比較例として、特許文献3(既存の耐摩耗性を向上した鋼材:高シリコン鋼材)、特許文献4(既存の履板用鋼材:SMnB)に係る鋼材の組成も示している。
表4
[Second to fourth embodiments]
The compositions of three types of steel materials (second to fourth examples) in the second embodiment are illustrated in Table 4 below.
In Table 4, in addition to the 2nd-4th Example, as a comparative example, patent document 3 (steel material which improved existing abrasion resistance: high silicon steel material), patent document 4 (existing steel material for footwear: SMnB) The composition of the steel material according to) is also shown.
Table 4
表4から明らかな様に、第2〜第4実施例に係る鋼材は、特許文献4に係る鋼材(既存の履板用鋼材:SMnB)、或いは特許文献3に係る鋼材(既存の耐摩耗性を向上した鋼材:高シリコン鋼材)に比較して、炭素(C)の含有量は同程度であるが、クロム(Cr)の含有量を3.90〜3.96重量%まで増量している。
一方、第2〜第4実施例に係る鋼材のケイ素(Si)含有量は、特許文献3に係る鋼材(既存の耐摩耗性を向上した鋼材:高シリコン鋼材)に比較して少なく、0.66〜0.68重量%に抑えている。
As apparent from Table 4, the steel materials according to the second to fourth examples are steel materials according to Patent Document 4 (existing steel material for footwear: SMnB), or steel materials according to Patent Document 3 (existing wear resistance). Steel (high silicon steel)), the content of carbon (C) is the same, but the content of chromium (Cr) is increased to 3.90-3.96% by weight. .
On the other hand, the silicon (Si) content of the steel materials according to the second to fourth examples is less than that of the steel material according to Patent Document 3 (the existing steel material with improved wear resistance: high silicon steel material). 66 to 0.68% by weight.
上述の様にクロム(Cr)の含有量を増量することで、第2〜第4実施例に係る鋼材の焼入れ性が向上する。そして、クロム(Cr)は鉄(Fe)との原子半径差が小さいため、添加しても熱間圧延抵抗を顕著に増加させず、焼戻し軟化抵抗(焼戻しにおける硬度の低下を抑制、減少する効果)を向上する。そのため、鋼材に靱性を持たせるため第2〜第4実施例に係る鋼材に焼戻しを行っても、充分な耐摩耗性を得られる。
また、ケイ素(Si)添加量を抑えているため、クロム(Cr)含有量が3.5重量%を超えているが、Si添加の効果(硬度及び耐摩耗性を向上する効果)が減退することは無い。
第2〜第4実施例に係る鋼材は、上述の様に、クロム(Cr)の含有量を増量することで充分な耐摩耗性と靭性を確保しており、炭素(C)の含有量を従来鋼材に対して増量せず、ケイ素(Si)の含有量も特許文献3に係る鋼材(既存の耐摩耗性を向上した鋼材:高シリコン鋼材)に比較して少なくして、熱間変形抵抗が高くなることを抑制している。
By increasing the chromium (Cr) content as described above, the hardenability of the steel materials according to the second to fourth examples is improved. And since chromium (Cr) has a small atomic radius difference from iron (Fe), even if it is added, the hot rolling resistance is not remarkably increased, and temper softening resistance (the effect of suppressing and reducing the decrease in hardness during tempering) ) To improve. Therefore, even if the steel materials according to the second to fourth embodiments are tempered in order to give the steel materials toughness, sufficient wear resistance can be obtained.
Moreover, since the silicon (Si) addition amount is suppressed, the chromium (Cr) content exceeds 3.5% by weight, but the effect of adding Si (an effect of improving hardness and wear resistance) is reduced. There is nothing.
As described above, the steel materials according to the second to fourth examples ensure sufficient wear resistance and toughness by increasing the chromium (Cr) content, and the carbon (C) content is increased. The amount of silicon (Si) is not increased compared to the conventional steel material, and the hot deformation resistance is reduced by reducing the silicon (Si) content compared to the steel material according to Patent Document 3 (steel material with improved wear resistance: high silicon steel material). Is suppressed from becoming high.
[実験例4]
第2〜第4実施例に係る鋼材と、特許文献3、4に係る鋼材の引張強さ、0.2%耐力、伸び、シャルピー衝撃値を、それぞれ計測した。
計測結果を下表5に示す。
表5
[Experimental Example 4]
The tensile strength, 0.2% yield strength, elongation, and Charpy impact value of the steel materials according to the second to fourth examples and the steel materials according to Patent Documents 3 and 4 were measured.
The measurement results are shown in Table 5 below.
Table 5
第2〜第4実施例に係る鋼材は、引張強さと0.2%耐力は特許文献3に係る鋼材にわずかに劣るものの、特許文献4に係る鋼材よりも良好である。
一方、伸び、シャルピー衝撃値は、第2〜第4実施例に係る鋼材の数値は特許文献3、4に係る鋼材の数値と同等であり、(第2〜第4実施例に係る鋼材は)実用的な機械強度を有している。
Although the steel materials according to the second to fourth examples are slightly inferior to the steel material according to Patent Document 3 in terms of tensile strength and 0.2% yield strength, they are better than the steel material according to Patent Document 4.
On the other hand, as for the elongation and Charpy impact value, the numerical values of the steel materials according to the second to fourth examples are equivalent to the numerical values of the steel materials according to Patent Documents 3 and 4, and (the steel materials according to the second to fourth examples) Has practical mechanical strength.
[実験例5]
第2〜4実施例に係る鋼材と、特許文献3、4に係る鋼材に対してガウジング摩耗試験を行った。
試験条件は「軽摩耗」であり、砥石はアルミナ砥石、荷重は10kg(12.7kg/cm2)、回転速度は45rpm(0.5m/sec)、試験時間は600秒で2回行った。
[Experimental Example 5]
A gouging wear test was performed on the steel materials according to Examples 2 to 4 and the steel materials according to Patent Documents 3 and 4.
The test condition was “light wear”. The grindstone was an alumina grindstone, the load was 10 kg (12.7 kg / cm 2 ), the rotation speed was 45 rpm (0.5 m / sec), and the test time was 600 seconds.
下表6に実験結果を示す。
表6
The experimental results are shown in Table 6 below.
Table 6
表6では、特許文献4に係る鋼材(SMnB)の摩耗量を100とした場合における第2〜第4実施例に係る鋼材の摩耗量(特許文献4に係る鋼材の摩耗量に対する比率)と、特許文献3に係る鋼材(高シリコン鋼材)の摩耗量(特許文献4に係る鋼材の摩耗量に対する比率)を示している。
第2〜第4実施例に係る鋼材は、特許文献4に係る既存の履板用鋼材(SMnB)に比較して耐摩耗性が遥かに向上しており、「軽摩耗」の場合には既存の耐摩耗性を向上した特許文献3に係る鋼材(高シリコン鋼材)よりも良好な耐摩耗性を有していることが表6から理解される。
In Table 6, the wear amount of the steel material according to the second to fourth examples (ratio to the wear amount of the steel material according to Patent Document 4) when the wear amount of the steel material (SMnB) according to Patent Document 4 is defined as 100, The amount of wear of steel materials (high silicon steel materials) concerning patent documents 3 (ratio to the amount of wear of steel materials concerning patent documents 4) is shown.
The steel materials according to the second to fourth examples have much improved wear resistance as compared with the existing steel material for footwear (SMnB) according to Patent Document 4, and existing in the case of “light wear”. It is understood from Table 6 that the steel material (high silicon steel material) according to Patent Document 3 with improved wear resistance has better wear resistance.
[実験例6]
発明者は第2実施形態に係る鋼材の組成を変動させて実験した。
発明者の実験によれば、炭素(C)が0.27重量%よりも少ないと(後述するCrの添加で焼入れ性、焼戻し軟化抵抗を改善するものの)硬度が不足し、機械的な強度が不足することが分かった。
一方、炭素(C)が0.34重量%よりも多いと、上述のクロム(Cr)添加の効果に拘らず、圧延抵抗が大きくなってしまうことが分かった。
[Experimental Example 6]
The inventor experimented by varying the composition of the steel material according to the second embodiment.
According to the inventor's experiment, when the carbon (C) is less than 0.27% by weight (although the addition of Cr described later improves hardenability and temper softening resistance), the hardness is insufficient and the mechanical strength is low. I found out that it was insufficient.
On the other hand, when the amount of carbon (C) is more than 0.34% by weight, it has been found that the rolling resistance increases regardless of the effect of adding chromium (Cr).
ケイ素(Si)が0.60重量%よりも少ないと硬度が不足し、強度も不足してしまうことが分かった。また、ケイ素(Si)は脱酸元素であり、0.60重量%よりも少ないと脱酸が不充分となり、鋼材中に酸化物が生成された。
一方、ケイ素(Si)が0.80重量%よりも多いと、圧延抵抗が大きくなることが確認された。
It was found that when silicon (Si) is less than 0.60% by weight, the hardness is insufficient and the strength is also insufficient. Moreover, silicon (Si) is a deoxidizing element, and when it is less than 0.60% by weight, deoxidation becomes insufficient, and an oxide was generated in the steel material.
On the other hand, it was confirmed that when the amount of silicon (Si) is more than 0.80% by weight, the rolling resistance increases.
マンガン(Mn)が0.50重量%よりも少ないと、熱処理後の硬度が不足することが分かった。マンガン(Mn)は焼入れ性を向上する元素であることに起因すると考えられる。
一方、マンガン(Mn)が0.70重量%よりも多いと、硫化マンガン(MnS)を生成して、粒界が不安定となり、脆くなることが分かった。そして、耐衝撃性が低下し、硬度が低くなることが確認された。
It was found that when manganese (Mn) is less than 0.50% by weight, the hardness after heat treatment is insufficient. Manganese (Mn) is thought to be due to the fact that it is an element that improves hardenability.
On the other hand, when manganese (Mn) is more than 0.70% by weight, manganese sulfide (MnS) is generated, and the grain boundary becomes unstable and becomes brittle. And it was confirmed that impact resistance falls and hardness becomes low.
クロム(Cr)が1.15重量%よりも少ないと、高温時の耐摩耗性が不足することが分かった。添加による焼入れ性向上の効果が、充分に発揮されなかったためと考えられる。
一方、クロム(Cr)が3.96重量%よりも多いと、履板の材料としての性能が低下してしまった。クロム(Cr)は酸化物を作り易く、クロム(Cr)が酸化物を生成したためと考えられる。
It has been found that when chromium (Cr) is less than 1.15% by weight, the wear resistance at high temperature is insufficient. It is considered that the effect of improving the hardenability by the addition was not sufficiently exhibited.
On the other hand, when there was more chromium (Cr) than 3.96 weight%, the performance as a material of a footwear board fell. It is considered that chromium (Cr) easily forms an oxide, and chromium (Cr) generates an oxide.
チタン(Ti)が0.07重量%よりも多いと、チタン(Ti)添加の効果、すなわち不可避的不純物元素として混入する窒素(N)と結合(TiNを生成)することで、ホウ素(B)が窒化ホウ素(BN)を形成しホウ素(B)の効果を消失してしまうことを防止する効果、が飽和してしまうことが分かった。 When titanium (Ti) is more than 0.07% by weight, the effect of titanium (Ti) addition, that is, boron (B) is bonded to nitrogen (N) mixed as an inevitable impurity element (generates TiN). It has been found that the effect of preventing boron nitride (BN) from forming and eliminating the effect of boron (B) is saturated.
ホウ素(B)が0.0030重量%よりも多いと、ホウ素(B)添加の効果(粒界強化、焼入れ性向上により靭性を向上させる)が飽和してしまうことが分かった。 It has been found that when boron (B) is more than 0.0030% by weight, the effect of boron (B) addition (improves toughness by strengthening grain boundaries and improving hardenability) is saturated.
アルミニウム(Al)が0.010重量%よりも少ないと、ホウ素(B)添加の効果、すなわち靭性の向上が得られないことが分かった。アルミニウム(Al)はホウ素(B)を添加すると靱性が向上する効果を生じるために有効な元素であることに起因すると思われる。
一方、アルミニウム(Al)が0.075重量%よりも多いと、延性、靭性が低下した。
It was found that when the amount of aluminum (Al) is less than 0.010% by weight, the effect of adding boron (B), that is, the improvement of toughness cannot be obtained. It is considered that aluminum (Al) is an effective element because the effect of improving toughness is obtained when boron (B) is added.
On the other hand, when the amount of aluminum (Al) is more than 0.075% by weight, ductility and toughness are lowered.
モリブデン(Mo)が0.25重量%よりも多いと、モリブデン(Mo)添加の効果、すなわちクロム(Cr)と組み合わせて使用することにより高温での強度、硬度を向上する効果、が飽和した。 When the amount of molybdenum (Mo) is more than 0.25% by weight, the effect of adding molybdenum (Mo), that is, the effect of improving strength and hardness at high temperature by using it in combination with chromium (Cr) is saturated.
図示の実施形態はあくまでも例示であり、本発明の技術的範囲を限定する趣旨の記述ではないことを付記する。 It should be noted that the illustrated embodiment is merely an example, and is not a description to limit the technical scope of the present invention.
10・・・シングルグローサ履板
12・・・グローサ
10 ...
Claims (3)
C 0.34〜0.42
Si 0.60〜0.80
Mn 0.50〜0.70
Cr 1.10〜1.40
Ti 0.30〜0.50
B 0.0005〜0.0030
Al 0.010〜0.075
であり、残部が実質的に鉄および不可避的不純物からなることを特徴とする無限軌道帯の履板用高耐摩耗性鋼。 The chemical composition is in wt%
C 0.34-0.42
Si 0.60-0.80
Mn 0.50-0.70
Cr 1.10 to 1.40
Ti 0.30-0.50
B 0.0005-0.0030
Al 0.010-0.075
A high wear-resistant steel for a track plate in an endless track, characterized in that the balance is substantially composed of iron and inevitable impurities.
C 0.27〜0.34
Si 0.60〜0.80
Mn 0.50〜0.70
Cr 1.15〜3.96
Ti 0〜0.07
B 0〜0.0030
Al 0.010〜0.075
Mo 0〜0.25
であり、残部が実質的に鉄および不可避的不純物からなることを特徴とする無限軌道帯の履板用高耐摩耗性鋼。 The chemical composition is in wt%
C 0.27-0.34
Si 0.60-0.80
Mn 0.50-0.70
Cr 1.15-3.96
Ti 0-0.07
B 0-0.0030
Al 0.010-0.075
Mo 0-0.25
A high wear-resistant steel for a track plate in an endless track, characterized in that the balance is substantially composed of iron and inevitable impurities.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016084314A JP2017193745A (en) | 2016-04-20 | 2016-04-20 | Wear-resistant steel for endless track shoe |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2016084314A JP2017193745A (en) | 2016-04-20 | 2016-04-20 | Wear-resistant steel for endless track shoe |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2017193745A true JP2017193745A (en) | 2017-10-26 |
Family
ID=60154593
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2016084314A Pending JP2017193745A (en) | 2016-04-20 | 2016-04-20 | Wear-resistant steel for endless track shoe |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2017193745A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019157221A (en) * | 2018-03-14 | 2019-09-19 | トピー工業株式会社 | Track plate for welding link after heat treatment, and manufacturing method therefor |
CN114226611A (en) * | 2021-12-01 | 2022-03-25 | 北京北方车辆集团有限公司 | Forging forming method of TC4 titanium alloy track shoe for tracked vehicle |
-
2016
- 2016-04-20 JP JP2016084314A patent/JP2017193745A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019157221A (en) * | 2018-03-14 | 2019-09-19 | トピー工業株式会社 | Track plate for welding link after heat treatment, and manufacturing method therefor |
JP7180987B2 (en) | 2018-03-14 | 2022-11-30 | トピー工業株式会社 | Track shoes with links welded after heat treatment and manufacturing method thereof |
CN114226611A (en) * | 2021-12-01 | 2022-03-25 | 北京北方车辆集团有限公司 | Forging forming method of TC4 titanium alloy track shoe for tracked vehicle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6850890B2 (en) | High hardness wear resistant steel and its manufacturing method | |
CN101688283B (en) | Wear-resistant steel plate excellent in workability and manufacturing method thereof | |
JP7471417B2 (en) | High-hardness wear-resistant steel with excellent low-temperature impact toughness and manufacturing method thereof | |
JP2003027181A (en) | High-toughness, wear-resistant steel | |
JP2022502570A (en) | Wear-resistant steel with excellent hardness and impact toughness and its manufacturing method | |
JP4650013B2 (en) | Abrasion resistant steel plate with excellent low temperature toughness and method for producing the same | |
KR20210057089A (en) | Steel material and its manufacturing method | |
JP6620490B2 (en) | Age-hardening steel | |
JP2017128763A (en) | Steel for high strength mechanical structure and track link for endless track caterpillar band | |
JP3095845B2 (en) | High speed steel for end mills | |
JPH0551691A (en) | Wear resistant steel sheet excellent in delayed fracture resistance and its production | |
JP2017193745A (en) | Wear-resistant steel for endless track shoe | |
JPH0578781A (en) | High strength and high toughness wear resistant steel | |
JP5868099B2 (en) | Steel with excellent toughness and wear resistance | |
JPWO2019035401A1 (en) | Steel with high hardness and excellent toughness | |
JP2009191322A (en) | Case-hardened steel superior in grain-coarsening resistance for use in carburized parts | |
JP5141313B2 (en) | Steel material with excellent black skin peripheral turning and torsional strength | |
JP2013072105A (en) | Method for manufacturing steel having excellent toughness and wear resistance | |
JP7176877B2 (en) | Alloy steel for machine structural use with excellent impact resistance | |
JP2004169055A (en) | Age-hardened high-strength bainite steel part with excellent machinability and method for producing the same | |
JP6791179B2 (en) | Non-microalloyed steel and its manufacturing method | |
JP2576857B2 (en) | High strength non-tempered tough steel | |
JP7239056B1 (en) | Wear-resistant steel plate | |
JP2000178683A (en) | Free-cutting non-heat treated steel excellent in toughness | |
JP7544489B2 (en) | Alloy steel for machine structures with an excellent balance of hardness and toughness |